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ON Λ-ELASTICA

SHIGEKI MATSUTANI, HIROSHI NISHIGUCHI, KENJI HIGASHIDA,
AKIHIRO NAKATANI AND HIROYASU HAMADA

Communicated by Ivaïlo M. Mladenov
Abstract. In this paper, we investigate a transition from an elastica to a piece-
wised elastica whose connected point defines the hinge angle φ0 and we call the
piece-wised elastica Λφ0 -elastica or Λ-elastica. Such transition appears in the bend-
ing beam experiment when an elastic beam is gradually compressed and at some
moment suddenly due to the rupture, the shapes of Λ-elastica appear. We construct
a mathematical theory to describe the phenomena and represent the Λ-elastica in
terms of the elliptic ζ-function completely. Using the mathematical theory, we dis-
cuss the experimental results from an energetic viewpoint and numerically show the
explicit shape of Λ-elastica. It means that this paper provides a novel investigation
on elastica theory with rupture.
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1. Introduction

The elastica problem is the oldest minimal problem with the Euler-Bernoulli en-
ergy functional [2,10,14]. In the set of the isometric analytic immersions of (s1, s2)
into C for fixed s1, s2 ∈ R, (s1 < s2), the minimal point of the energy functional
corresponds to the shape of the elastic curve or elastica. Being related to the real
materials and nonlinear phenomena the Euler’s elastica is studied quite extensively
in the literature, see [1, 11].

In this paper, we investigate the elastic beam which is allowed to have a transition
from the set of isometric analytic immersions to the set of continuum immersions
which are analytic except at a certain point. We assume that the transition occurs
depending on its critical force at the point which has the maximal force in the
elastic beam. Then we have an interesting shape which we call Λ-elastica.

More precisely, we consider the set of the isometric analytic immersions, M(s1,s2)

:= {Z : (s1, s2) → C ; an isometric analytic immersion}. The Euler-Bernoulli

energy functional is given by
1

2

∫ s2

s1

k2dswhere k =
1√
−1

∂s log ∂sZ and ∂s =
d

ds
·

The elastica is given as the minimizer of the energy. Further for a point s0 ∈
(s1, s2) and a real parameter φ0, the transition is from M(s1,s2) to Ms0,φ0

(s1,s2) :=
{
Z :

(s1, s2) → C ; continues, φ0 =
1√
−1

log
∂sZ(s0 + 0)

∂sZ(s0 − 0)
, ρ(s1,s2)

(s1,s0)Z ∈ M(s1,s0)

and ρ(s1,s2)
(s0,s2)Z ∈ M(s0,s1)

}
for the condition. Here ρUV is the restriction operator

which restricts the domain of the function from U to V (V ⊂ U ). Correspond-

ing to Ms0,φ0
(s1,s2), we consider the minimal problem of the energy

1

2

∫ s0

s1

k2ds+

1

2

∫ s2

s0

k2ds. The minimizer is called Λ-elastica in this paper. The parameter φ0

is the angle to determines the shape of Λ-elastica, and thus we, precisely, say Λφ0-
elastica.

In this paper, we express deformation of elastic beams as a disjoint orbit in a func-
tion space which contains M(s1,s2) and Ms0,φ0

(s1,s2) which describe the transition from
elastica to Λφ0-elastica mathematically.

This work was motivated from the kink phenomena [8]. The plastic deformation
occurs due to the generations of dislocations [9]. The plastic deformation causes
kink phenomena. In the kink phenomena, there appear various shapes [1] and
we find some shapes which could be written by parts of elastica, or Λ-elastica as
mentioned above. In this stage, we do not find a reasonable connection between
the shape of elastica and the kink phenomena. However it is natural to investigate
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Λ-elastica because in [3], the same problem for the thin Kapton membranes was
studied using the finite element method and there appeared similar shapes in the
stretching elastic looped ribbons in [12]. Further it is also interesting to consider
the transition from elastica to Λ-elastica as we show experimental results in this
paper.

In order to consider the transition from elastica to Λ-elastica, we first show the
experimental results of beam bending test with rupture phenomena in Section 2.
When the compressed force to the elastic beam is greater than a critical force, the
elastic beam is broken at the critical state in which the local force is the maxi-
mal value. Due to the energy of rupture, the total energy of this system decreases.
There appear Λ-elastica at the bounce-back of the pieces of the broken elastic beam
after they separate. It apparently behaves like a continuum beam and we find an
angle φ0 and the shape of Λφ0-elastica. We show the compression experiments of
elastic beams of different thickness which correspond to different effective elas-
tic constants. Section 3 is a review section of the elastica theory following [10].
The shape of elastica is described well in terms of Weierstrass elliptic ζ-function,
though we do not consider the boundary condition explicitly there. In order to ex-
plain the experimental results of the beam bending test, we explicitly describe the
boundary condition in the elastica problem in Section 4. After that, we investigate
the transition from elastica to Λφ0-elastica with hinge φ0. Section 4 is our main
part in this paper. There we construct the mathematical theory in order to describe
the experimental phenomena and represent the Λ-elastica in terms of the elliptic
ζ-function. In Section 5, we discuss the relation between theoretical results and
experimental results using the mathematical theory. It means that we provide a
novel investigation on elastica theory with rupture.

2. Experimental Results

2.1. Experimental results of elastica and Λ-elastica

In order to express our motivation in this study, we show our experimental results.
As in Figs. 1 and 2, we experimented the beam bending test for the three type sam-
ples of plastic panels as elastic beams δ×L′×L, where L′ is its width, 20.0 [mm],
L is its length, 300.0 [mm] and δ is the thickness, 2.0[mm], 3.0[mm] and 5.0[mm].
They consists of the same plastic material and the difference of the thickness means
the difference of the effective elastic constant κδ as mentioned in Section 2.2. We
used a compression testing apparatus, Autograph AG-100kNG made by Shimadzu
Corporation, in which we can fold the endings of the panels so that the ending are
parallel and the same horizontal position.
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Figure 1. Autograph AG-100kNG.

In the experiments, the crosshead
speed was 10[mm/min]. The
Phantom high-speed camera was
used to capture the bent panel
just before buckling and just af-
ter buckling. The frame rate was
10000[frame/sec]. The length of
folded area was 20.0[mm] at each
ends, therefore the length of bend-
ing part was 260.0[mm]. By pre-
serving the parallel and the same
levels, we can compress them to
observe the bending structure. We
gradually compress the panel and
then the panel broke suddenly. We
refer to this state as a critical state.

In this situation, we denote the height by Xc, the width by Wc and the curvature
by kc as in Fig. 3a). We call kc critical curvature, Xc critical height and Wc crit-
ical width. At the critical states, the shapes of the elastic panels are displayed in
Figs. 2a), b) and c). The unit of scale in the background is given as 18.89[mm/unit].
The rupture needs the energy ∆E and the system lost the energy. After pieces of
the broken elastic panel separate, the panel satisfies continuous condition at the
bounce-back of the pieces and there appear a hinge which connects pieces. In
other words, we find the Λ-elastica as in Figs. 2d), e) and f). The hinge angle φ0

and the height XΛ are defined as in Fig. 3b). As we are concerned with the transi-
tion from elastica to Λ-elastica at the critical state, the experimental results can be
regarded as the transition.

Table 1: The thickness vs Xc, Wc, and φ0. in Fig. 2 (W0 = 14.1)

δ Xc Wc φ0 XΛ

2.0 [mm] 49[mm] 234[mm] 0.66π 51[mm]
3.0 [mm] 25[mm] 242[mm] 0.79π 28[mm]
5.0 [mm] 21[mm] 250[mm] 0.86π 23[mm]

In order to obtain these shapes, the notch was introduced at the surface of testing
panel whose depth was 0.5[mm] and width was 1.0[mm] in the direction perpen-
dicular to the longitudinal direction.
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a) b) c)

d) e) f)

Figure 2. Press experiments of elastic beam: a) - c) are elastic panels with
critical curvature whereas d) - f) are of Λφ0

shapes of elastic panels which
appear at the bounce-back of the separated pieces of panels and they behave
like continuum beams. The thickness δ of a) and d) are 2.0[mm], b) and e)
correspond to 3.0[mm] and c) and f) to 5.0[mm].

Dependence of Xc, Wc, φ0 and XΛ on the thickness δ is shown in Table 1. The
thicker is, the lager the critical width Wc is, the lower the height Xc is and the
larger the angle φ0 is. It should be noted that XΛ is nearly equal to Xc.

It is hard to control the transition in this experiment but if there is a certain geomet-
rical constraint so that it must be continuous even after it was broken, we may find
Λ-elastica statically. By assuming the situation, we investigate this experimental
result mathematically.

a) b)

Figure 3. Geometrical Characteristics: Xc, Wc and φ0.
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2.2. Thickness and elastic constant of the elastica

In order to show the relation between the thickness of elastic beam and the effective
elastic constant, let us consider an embedding of the elastic beam with constant
thickness δ in the complex plane C. Assume that the center axis of the beam does
not change its length. We estimate the stretching of the elastic beam. Let the curve
be parallel to the center axis curve with the vertical distance q from the center axis,
which is parameterized by sq with the euclidean distance. The stretching of the
curve is given by

dsq = (1 + k(s)q)ds

where s is the arclength of the center axis of the beam, k(s) is the curvature whose
inverse is the curvature radius ρ(s) = 1/k(s), and q ∈ [−δ/2, δ/2]. We assume

the case δ/ρ = δ · k � 1. It means that eq := 1 + k(s)q =
∂sq
∂s

is the ratio of the
stretching length. The free energy density Fdqds caused by bending is given by

Fdqds =
1

2
κ

(
∂eq
∂q

)2

(1 + kq)dqds

where κ is the elastic constant. By integrating along the vertical direction, we have(∫ δ/2

−δ/2
Fdq

)
ds =

1

2
δ

(
κk2 +

1

2
δk3

)
ds =

1

2
δκk2

(
1 + o

(
δ

k

))
ds. (1)

The factor κδ is regarded as an effective elastic constant, which is proportional to
the thickness δ. (1) is known as the density of the Euler-Bernoulli energy func-
tional.

Figure 4. Modeling of elastic beam. Figure 5. Elastic curve.

Thus in the experiment results mentioned in Section 2.1, we have considered three
cases which have different thickness.
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3. Review of Euler’s Elastica

This Section presents a review of the elastica theory following [10].

3.1. Geometry of a curve in the plane

Let Z : (s1, s2) → C be an isometric analytic immersion with the arclength s for
s1 < s2. In other words, we consider an analytic curve in a plane parameterized by
the arc-length s; Z(s) = X(s) +

√
−1Y (s), i.e., |∂sZ| = 1, where ∂s := d/ds.

Its tangential vector is t := ∂sZ = e
√
−1ϕ using the tangential angle ϕ ∈ {ϕ :

(s1, s2)→ R ; real analytic}, whereas the normal vector is n =
√
−1t. We have

the Frenet-Serret relation

∂s(∂sZ) =
√
−1k∂sZ (2)

where k := ∂sϕ is the curvature (inverse of curvature radius ρ(s)) of the curve.

From (1), the Euler-Bernoulli energy functional of Z is given by

E [Z] =
1

2

∫
(s1,s2)

k2(s) ds. (3)

Let us consider its minimal point in the regular function space of Z

M(s1,s2) := {Z : (s1, s2)→ C ; Z is an isometric analytic immersion}

which is known as Euler’s elastica problem [2, 5, 10, 14]. In order to obtain the
minimal point of the energy functional, we consider an infinitesimal deformation

Zε(sε) = Z(s) + nε(s)

which does not satisfy the isometric condition because

∂sZε = (1− εk(s))t + (∂sε)ε

and
ds2

ε = dZεdZε = (1− 2εk)ds2 + o(ε2).

The deformed curvature is given by

kε = k + (k2 + ∂2
s )ε+ o(ε2)
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since
∂2

∂s2
ε

Zε = (−(∂sε)k)t + (k + (k2 + ∂2
s )ε)n + o(ε2).

The deformed integrated of the Euler-Bernoulli functional is given by

k2
εdsε = (k2 + (k3 + 2k∂2

s )ε+ o(ε2))ds

and thus we have the following proposition.

Proposition 1. The curvature km of the minimizer Zm of the Euler-Bernoulli en-
ergy functional (3), i.e., Zm| min

Z∈M(s1,s2)

E [Z], satisfies

akm +
1

2
k3

m + ∂2
skm = 0 (4)

where a is a constant real number for the Lagrange multiplier. We call Zm elastica
or elastic curve.

Proof: The energy functional (3) is reduced to

−
δE + a

∫
(s1,s2) dsε

δε(s)
= k3 + 2∂2

sk + ak = 0 (5)

since we consider the isometric deformation. �

We note that there are uncountably infinite elasticas, Zm’s, depending on their
ending conditions. From here we will consider only an element of the set Zm of
elasticas, which is simply denoted by Z again in this section. The curvature km is
also simply denoted by k.

We have the governing equation of elastica.

Proposition 2. For a real constant b, the elastica obeys the equation

(∂sk)2 +
1

4
k4 + ak2 + b = 0. (6)

Proof: By multiplying (4) by (∂sk) and integrating it, (4) becomes (6). Here b is
an integral constant. Due to the reality of k and s, b must be also real. �
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3.2. Elastica in terms of elliptic functions

For later convenience, we introduce affine parameters

x(s) :=

√
−1

4α
∂sk +

1

8
k2 +

1

12
a

(7)

y(s) :=
1

2α
∂sx =

1

2

(√
−1

(
1

8
k3 +

1

4
ak +

√
−1

4α
k∂sk

))
.

Equation (6) means that we have an elliptic curve C1 given by the affine equation

ŷ2

4
= y2 =

(
x+

1

6
a

)(
x− 1

12
a− 1

4

√
b

)(
x− 1

12
a+

1

4

√
b

)
= (x− e1)(x− e2)(x− e3)

(8)

where e1 = −1
6a, e2 = 1

12a+ 1
4

√
b, and e3 = 1

12a−
1
4

√
b. For later convenience,

we let a2 − b = 16; C1 = {(x, y) ∈ C2 ; (8) } ∪ {∞}. They mean that
a = 2(e2 + e3 − 2e1) and b = −(e2 − e3)2. (x, ŷ) corresponds to the Weierstrass
standard form [15].

For the curve C1, the incomplete elliptic integral of the first kind is given by

u =

∫ x

∞
du, du =

dx

2y
· (9)

The complete elliptic integrals of the first kind as the double periodicity (2ω′, 2ω′′)
are given by

ω′ :=

∫ (e1,0)

∞
du, ω′′ :=

∫ (e3,0)

∞
du

whereas the complete elliptic integrals of the second kind are given by

η′ =

∫ (e1,0)

∞
dr, η′′ =

∫ (e3,0)

∞
dr (10)

where

dr =
xdx

2y
·

Using them, we define the Weierstrass sigma function σ by

σ(u) =
2ω′

2π
√
−1

exp

(
η′u2

2ω′

)
θ1(u/ω′)

θ′1(0)
(11)
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where τ = ω′′/ω′ and

θ1(v) =
√
−1

∞∑
n=−∞

exp
(√
−1π

(
τ(n− 1/2)2 + (2n− 1)(v + 1)

))
.

In terms of the sigma function, the Weierstrass ζ-function and ℘ function are given
by

ζ(u) =
d

du
log σ(u), ℘(u) = − d2

du2
log σ(u). (12)

We have an identity between ζ-function and an integral of the second kind,

ζ(u) = −
∫ (x,y)

∞
dr = −

∫ (x,y)

∞
xdu.

Then it is known that (℘(u), ∂u℘(u)/2) is identified with (x, y) in C1 by setting
u =

∫ (x,y)
∞ du and we identify both by writing x(s) = ℘(αs + u0) for a certain

u0 ∈ C.

3.3. Euler’s Elastica and ζ function

Following [10], we show the shape of elastica as a minimizer of E [Z] of M(s1,s2).
Here we do not consider the boundary condition explicitly since (s1, s2) has no
boundary.

Theorem 3. By choosing the origin of angle ϕ and u0

∂sZ(s) = e
√
−1ϕ =

√
−1(℘(αs+ u0)− e1)

Z(s) =

√
−1

α
(−ζ(αs+ u0)− e1s) + Z0.

(13)

Proof: Noting
√
−1k =

α℘u(αs+ u0)

℘(αs+ u0)− e1
from (7), the tangential angle of the

elastica is given by

ϕ(s) =
1√
−1

log
(
℘(αs+ u0)− e1

)
+ ϕ0. (14)

It means that the tangential vector of elastica is represented by an elliptic function
and we have an explicit formula of Z using the elliptic ζ function. In other words,
it is found that k ≡ ∂sϕ of (7) satisfies (4) and (6) and vice versa. �
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Remark 4. We obtain the relation

X(u) = X0 +
α

4
k(s) (15)

for an appropriate origin X0 ∈ R.

In the computation of elastica, the condition that ϕ and s are real is necessary. We
call the condition reality condition i.e., |∂sZ| = 1 and s is real.

Let us call the tangential period ω̂ of the (open) elastica that satisfies

∂sZ

(
s+

ω̂

α

)
= ∂sZ(s).

Further we define an index of (open) elastica by

index(∂sZ) =
1

2π
√
−1

(
log ∂sZ

(
s+

ω̂

α

)
− log ∂sZ(s)

)
.

Here we give a formula of the Euler-Bernoulli energy function.

Proposition 5.

1

2

∫ s2

s1

k(s)2ds =Re

(
4

α
(ζ(αs1 + u0)− ζ(αs2 + u0))− 1

3
a(s2 − s1)

)
where Re(z) means the real part of z.

Proof:

1

2

∫ s2

s1

k2ds = 4

∫ s2

s1

1

8
℘(αs+ u0)ds− 4

∫ s2

s1

√
−1

4α
(∂sk)− 1

3
a(s2 − s1)

=
4

α
(ζ(αs1 + u0)− ζ(αs2 + u0))

−
√
−1

α
(k(s2)− k(s1))− 1

3
a(s2 − s1).

Since k is real, we have the expression. �

The number τ := ω′′/ω′ is a complex number called modulus, which determines
the elliptic curve uniquely modulo trivial transformation, translation, dilatation and
so on, and also determine the shape of elastica.

Due to the reality condition of the elastica, the moduli Ξ of elastica is given by [13]

Ξ :=
√
−1R>0 ∪

(
1

2
+
√
−1R>0

)
∪ {∞} modulo PSL(2,Z) (16)
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Figure 6. Moduli Ξ.

as a subspace of the moduli of elliptic curves, Ξ ⊂ H/PSL(2,Z) where H is the
upper half plane, i.e., H := {z ∈ C ; =z > 0} and R>0 is {x ∈ R ; x > 0} as in
Fig. 6.

This picture leads the classification of elastica as follows, without proof [10, 13].

Proposition 6. [10, 13]

1. Type Ia: for the case −4 ≤ a ≤ 0, u0 =

(
ω′′ − ω′

2

)
, ω̂ = 2ω′ ∈ R,

τ ∈
(√
−1R>0 +

1

2

)
and index(∂sZ) is zero.

We call a = 0 case, the rectangular elastica, which corresponds to τ =
1
2 + 1

2

√
−1 and 1− τ−1 =

√
−1.

2. Type Ib: for the case 0 < a ≤ 4, u0 = −ω
′

2
, ω̂ = 2ω′ − 4ω′′ ∈ R,

τ ∈
(√
−1R>0 +

1

2

)
and index(∂sZ) = 0.

3. Type II: for 4 < a, u0 =
ω′

2
, ω̂ = 2ω′′ ∈ R, τ ∈

√
−1R>0 and index(∂sZ)

is equal to ±1.

These types are illustrated in Fig. 7. Solutions in terms of the Jacobian elliptic
functions can be found in [4] and [11].

4. Transition from Elastica to Λφ0-Elastica with Hinge Angle φ0

In this section, we express the transition phenomenon from elastica to Λ-elastica.
In order to express it
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a)
d)

b) e)

c) f)

Figure 7. Types of Elastica: a) shows type Ia, b) is the rectangular elastica
(a = 0), c) is type Ib, and d)-f) correspond to type II.

1. we explicitly express the boundary condition in the theory of elastica in Sec-
tion 3 (We introduce the function space M[s1,s2] rather than M(s1,s2) and the
boundary condition BBT

W with a parameter W > 0.)

2. we introduce the novel function space Ms0,φ0
[s1,s2] in which the minimizer of the

Euler-Bernoulli energy is Λ-elastica of hinge φ0

3. we prepare the function space Ms0
[s1,s2] which includes the ordinary elasticas,

M(s1,s2), and Λ-elasticas Ms0,φ0
[s1,s2], and consider a disjoint orbit in Ms0

[s1,s2]

as the transition, and

4. using the symmetry, we set s1 = −L
2 , s2 = L

2 , s0 = 0 and give the explicit
results of the transition.

4.1. Preliminaries

From now on, we discriminate the minimizer Zm and the general immersion Z.
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Let ρUV be the restriction of the domain of the function from U to V (⊂ U). In order
to impose the boundary condition, we consider

M[s1,s2] :=
{
Z : [s1, s2]→ C ; Z is differentiable at sa(a = 1, 2),

ρ
[s1,s2]
(s1,s2)Z ∈M(s1,s2)

}
.

For real parameters φ0 and s0 ∈ (s1, s2), we introduce the function spaces

Ms0,φ0
(s1,s2) :=

{
Z : (s1, s2)→ C ; continues, φ0 =

1√
−1

log
∂sZ(s0 + 0)

∂sZ(s0 − 0)
,

ρ
(s1,s2)
(s1,s0)Z ∈M(s1,s0), ρ

(s1,s2)
(s0,s2)Z ∈M(s0,s2)

}
Ms0,φ0

[s1,s2] :=
{
Z : [s1, s2]→ C ; Z is differentiable at sa(a = 1, 2),

ρ
[s1,s2]
(s1,s2)Z ∈Ms0,φ0

(s1,s2)

}
and

Ms0
[s1,s2] :=

⋃
φ0∈[0,2π)

Ms0,φ0
[s1,s2].

Then we have their simple relations.

Lemma 7. For a given s0 ∈ (s1, s2)

Ms0,φ0
[s1,s2] ⊂Ms0

[s1,s2], M[s1,s2] ⊂Ms0
[s1,s2]. (17)

4.2. Elastica with boundary condition

In this subsection, we express the panel bending test by considering the boundary
condition explicitly. For simplicity, we let (s1, s2) = (−L

2 ,
L
2 ) and introduce the

boundary condition BBT which corresponds to the bending test in Section 2

BBT
W :=

{
Z :

[
−L

2
,
L

2

]
→ C ; Z is differentiable at ± L

2
,

Z

(
±L

2

)
= X0 ±

W

2

√
−1, ∂sZ

(
±L

2

)
=
√
−1
}

where W (> 0) means the width of the ending of the elastica Z. The shape Zm

of the ordinary elastica in the compression testing apparatus is obtained as the
minimizer

ZWm | min
Z∈M

[−L
2 ,
L
2 ]

⋂
BBTW

E [Z].

We obviously have the simple result
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Lemma 8. ZLm([−L
2 ,

L
2 ]) = {X0 + s

√
−1 ; s ∈ [−L

2 ,
L
2 ]}.

It is noted that forW ∈ (0, L], there are two points ZWm , which are up-concave and
down-concave. We are concerned only with a continuous deformation from the
straight elastica ZLm. We will choose the down-concave shapes. We consider one
parameter deformation in M[−L

2
,L
2

] for a deformation parameter t ∈ I := [0, 1)

with compression,
w(t) = (1− t) · L.

Let us consider a continuous orbit in M[−L
2
,L
2

]

Zwco : I →M0
[−L

2
,L
2

]
, t 7→ Zwco(t) = Zw(t)

m ∈M[−L
2
,L
2

].

Since Zwco is continuous and Zwco(0) = ZLm, Zwco is given by the following lemma.

Lemma 9. For a ∈ [−4, 0], Zwco(t)(s) =
√
−1
α (−ζ(αs + u0) − e1s) + X0 where

u0 =

(
ω′′ − ω′

2

)
, ω̂ = 2ω′ ∈ R and α =

ω̂

L
such that w(t) = (Zwco(t)(L/2) −

Zwco(t)(−L/2))/
√
−1.

The case a = −4 corresponds toZLm and t = 0 whereas the case a = 0 corresponds
to the part of the rectangular elastica and t = tR := 0.54305342. Zwco expresses
the deformation in the panel bending test and Lemma 9 shows the behavior of Zwco

for t ∈ [0, tR].

For the elasticaZwco, we denote its curvature by kwco. Since the curvature |kwco(t)(s =
0)| is the largest curvature in the elastic curve Zm, we fix the point s0 by s0 = 0
using the symmetry for the boundary condition.

4.3. Λφ0-elastica

With a certain boundary condition, the minimizer Zm of the Euler-Bernoulli func-
tional

EΛφ0 [Z] := E [ρ
(−L

2
,L
2

)

(−L
2
,0)
Z] + E [ρ

(−L
2
,L
2

)

(0,L
2

)
Z]

in Ms0,φ0
[s1,s2] is the Λφ0-elastica. We investigate it in this subsection.

Let us consider a disjoint orbit in M0
[−L

2
,L
2

]
as a transition from elastica to Λ-

elastica. For a positive parameter kc, which we call critical curvature, we define
the critical time tkcc by

tkcc := sup
t∈I
{|kwco(t)(0)| < kc} .
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We have the critical width

Wc := w(tkcc ) = (1− tkcc ) · L.

Then we can express the transition from elastica to Λφ0-elastica as

Zkc,φ0do : Ic →M0
[−L

2
,L
2

]

where Ic := [tkcc , 1] and the disjoint orbit

Zkc,φ0do (t) :=


Zwco(t) for t < tkcc

Zm| min
Z∈M0,φ0

[s1,s2]

⋂
BBT
w(t)

EΛφ0 [Z], for t = tkcc .

The following proposition is obvious

Proposition 10. The minimizer Zm of EΛφ0 [Z] in Ms0,φ0
[s1,s2] consists of the parts of

elastica.

Remark 11. The Λφ0-elastica can be regarded as a curve of picewised elastica.
Thus we can apply the Weierstrass-Erdmann corner conditions to this system di-
rectly [6], though we employ another approach.

Following Proposition 10, we numerically compute Λφ0-elastica. For φ0 = π/4,
the numerical computations shows a disjoint orbit Zkc,φ00 (t) illustrated in Fig. 8.
We set L = 1.

In the computation, we used the Maple 2019. We assume that Λφ0-elastica consist-
ing of type II elastica in Proposition 6 is the minimizer of EΛφ0 [Z]. In other words,
we searched the minimal point only in type II elastica for Λφ0-elastica, even though
there are other local minimal points in the function space because the shape which
satisfy the boundary condition and is given by type II elastica obviously seems to
have smaller curvature than the shapes consisting of other type elastica; we do not
argue the other possibilities in this paper.

We fix the parameter a ∈ [4,∞) in type II elastica. From Proposition 6, we find
αs1 and αs2 so that these points correspond to the minimal Xm, e.g., in Fig. 7f),
which satisfies the boundary condition ∂sZm(si) =

√
−1, (i = 1, 2) using (13).

We numerically found αs0 for the transcendental equation

log(∂sZm(s0)) = φ0

√
−1

using (14). It determines α because of α(s1 − s0) = L/2 and then we obtain its
width, WII, as a function of a. Thus for a given width Wc, using the bisection
method, we found a which reproduces Wc up to a certain error.
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The shape of Λφ0-elastica and the transition is given in Figs. 8a) - e). We define
the energy gap by

∆EΛφ0 := lim
t→tc−0

E [Zkc,φ00 (t)]− EΛφ0 [Zkc,φ00 (tkcc )]. (18)

In the case of Fig. 8, ∆EΛφ0 is positive, as in Fig. 8f). It means that by the tran-
sition, the total energy decreases and the Λ-elastica is stabler than the ordinary
elastica.

f)

Figure 8. A transition: a) - e) shows the orbit from elastica to Λφ0 elastica
from e) to a), whereas for the orbit, the total energy is illustrated in f). The
width of b) is the same as that of a), which corresponds to the critical width.
In the computation, we let L = 1 and κ = 1.

Under this boundary condition (13), and Proposition 5 mean that the relation be-
tween the width W and the energy E [ZWm ] is given as a linear equation

E [ZWm ] = E0(L−W ) (19)

because both are written by the Weierstrass’ zeta functions.

It is obvious to have the positivity of the energy gap from the fact (17)

Proposition 12.
∆EΛφ0 := sup

φ0∈[0,π)
∆EΛφ0

is non-negative.
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However for given φ0 and Wc, the positiveness of ∆EΛφ0 is not guaranteed but
there exists φ0 whose ∆EΛφ0 is non-negative since the case φ0 = π corresponds to
ordinary elastica. It might be expected that φ0 should be determined as a minimal
point of the energy ∆EΛφ0 in the parameter space φ0 ∈ [0, π].

We computed the cases with several conditions of Wc and φ0 = 0, π/4, π/2 nu-
merically and draw up lists of them as in Figs. 9 and 10, and Tables 2 - 6. Fig. 10
shows the table of the elastica and Λφ0-elastica. The blank in Fig. 10 and Tables 2
- 6 means that we cannot find the Λφ0-elastica; more precisely we can find shape
which satisfies the boundary conditions at s1, s0 and s2 but since it has the much
higher energy, we do not employ it as Λφ0-elastica in this paper. In this computa-
tion, we also used the algorithm as mentioned above. Table 2 shows the computed
width of each shape by the bisection method. Table 3 shows the height Xc and XΛ

for every widthW . Table 4 shows the elastica parameter a of each shape and Table
5 shows the imaginary part τi of the moduli parameter τ of elliptic function, i.e., τi
of τ = 1/2 + τi

√
−1 for the elastica and τ = τi

√
−1 for the Λφ0-elastica. Table 6

gives each energy E [Z] and EΛφ0 [Z]. We display the results in Fig. 9.

Table 2: Width Wc computed by means of the bisection method.

φ0 W5 W4 W3 W2 W1

π/2 0.872 0.900
π/4 0.807 0.873 0.901
0 0.648 0.742 0.808 0.872 0.901

elastica 0.645 0.742 0,808 0.873 0.901

Table 3: Height Xc and XΛ.

φ0 W5 W4 W3 W2 W1

π/2 0.186 0.186
π/4 0.245 0.186 0.154
0 0.313 0.261 0.212 0.151 0.119

elastica 0.334 0.297 0,262 0.218 0.194

Remark 13. For given φ0 and Wc, the positiveness of ∆EΛφ0 is not guaranteed as
in Fig. 9. Fig. 9 shows that in many cases, ∆EΛφ0 is positive whereas there exist
the case in which ∆EΛφ0 is negative.
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Table 4: Elastica parameter a in the computations.

φ0 W5 W4 W3 W2 W1

π/2 45.0 10000.0
π/4 6 4.08 4.0148
0 20.0 4.45 4.06 4.0023 4.000167

elastica -1.3 -2 -2.5 -3 -3.215

Table 5:Imaginary part τi of the moduli parameter τ .

φ0 W5 W4 W3 W2 W1

π/2 0.3492 0.1586
π/4 0.6080 1.1749 1.4429
0 0.4272 0.9036 1.2205 1.7390 2.1560

elastica 0.5826 0.6396 0.6914 0.7617 0.8902

We assume that for given kc and φ0, Zkc,φ00 (tkcc ) consists of elastica of type II,
though we did not compare the other local minimum of the elastica which has the
boundary condition. Then the transition from elastica to Λ-elastica is given by a
map in the moduli space of the elastica as in Table 5. It is quite interesting from
the viewpoint of the study on the moduli of elastica.

5. Discussion

In this paper, we investigated the Λ-elastica. We explicitly show the shape of Λφ0-
elastica in terms of Weierstrass elliptic ζ-functions, and numerically showed it in
Fig. 8 and Fig. 10. By estimating their energy, we also considered the transition
from elastica to Λ-elastica and stability from the viewpoint of energetic study. The

Table 6: Energy E [Z] and EΛφ0 [Z].

φ0 W5 W4 W3 W2 W1

π/2 1.23 1.23
π/4 2.81 3.67 4.60
0 4.94 5.64 7.22 10.76 13.81

elastica 15.45 10.96 7.99 5.18 4.03
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Figure 9. Λφ0
-elastica and energy in Tables 2 - 6.

energy gap ∆EΛφ0 in (18) are numerically computed and illustrated in Fig. 9 and
Table 6.

By comparing the computational results and experimental results in Section 2, we
see that the effective elastic constant is crucial, and it is proportional to the thick-
ness δ, whereas in the computations we have used the normalized elastic constant,
κ = 1. The thickness δ of the elastic panel has the energy δ · ∆EΛφ0 and, for
examples, the values in the graph of Fig. 9 should be multiplied by its thickness δ.
In order to consider the effect of δ, Table 1 reads the following table, Table 7 by
letting E(δ) := δ · (L−Wc).

Table 7: The thickness vs Xc, Wc, φ0 and XΛ in Fig. 2.

δ Xc δ ·Xc Wc E(δ) φ0 XΛ δ ·XΛ

2.0 [mm] 49[mm] 98[mm2] 234[mm] 51[mm2] 0.66π 51[mm] 102[mm2]
3.0 [mm] 25[mm] 74[mm2] 242[mm] 52[mm2] 0.79π 28[mm] 85[mm2]
5.0 [mm] 21[mm] 104[mm2] 250[mm] 49[mm2] 0.86π 23[mm] 113[mm2]

From (19), E(δ) is proportional to the elastic energy at the critical state, which
are similar values, though the width in photographs in Fig. 2 is not easy to be
determined and must have some errors. On the other hand, from (15), it is expected
that the force δ · kc is proportional to δ · Xc (up to α-dependence) depend on the
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Figure 10. Elastica and Λφ0
-elastica in Table 2-6.

material properties though we made the notch in each panel, Table 7 gives the
natural results, in which δ · Xc’s are similar values. The height of Λ-elastica XΛ

is nearly equal to Xc for every δ and thus δ · XΛ’s are similar values though we
cannot compare δ ·Xc and δ ·XΛ from mechanical viewpoints because α’s in (15)
of both elastica and Λ-elastica are irrelevant.

In the experiment, it is expected that δ·∆EΛφ0 corresponds to the energy of rupture.
After the panel lost the energy of rupture, φ0 of Λφ0-elastica is determined by
energy conservation law.

Thus we note that Fig. 9 and Fig. 10 are consistent with the experimental results
- as larger Wc is, the larger is φ0. Our numerical computations also show that the
lager Wc is, the lager φ0 is because the energy gap needs positive.

It means that we provide a novel investigation of rupture phenomena for the beam
bending test. Further the shape of Λ-elastica is very interesting since the shape of
Λ-elastica appears in [12] and in [3]. As mentioned above, we described the tran-
sition from elastica to Λ-elastica in the beam bending experiment and Λ-elastica
mathematically. We hope that our investigation should have some effects on these
studies.
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