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ARITHMETIC LOCAL CONSTANTS FOR ABELIAN VARIETIES
WITH EXTRA ENDOMORPHISMS

Sunil Chetty

Abstract: This work generalizes the theory of arithmetic local constants, introduced by Mazur
and Rubin, to better address abelian varieties with a larger endomorphism ring than Z. We then
study the growth of the p∞-Selmer rank of our abelian variety, and we address the problem of
extending the results of Mazur and Rubin to dihedral towers k ⊂ K ⊂ F in which [F : K] is not
a p-power extension.
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1. Introduction

In [9], Mazur and Rubin introduce a theory of arithmetic local constants for an
elliptic curve E in terms of Selmer structures associated to E. With this theory
they study, for an odd prime p, the growth in Zp-corank of the p∞-Selmer group
Selp∞(E/K) (see §5) over a dihedral extension of number fields. To be precise,
an extension F/k is dihedral if k ⊂ K ⊂ F is a tower of number fields with K/k
quadratic, F/k Galois, F/K p-power abelian, and a lift of the non-trivial element
c ∈ Gal(K/k) acts on each σ ∈ Gal(F/K) as cσc−1 = σ−1. They prove (under
mild assumptions, see [9, §7]) that the growth in the Zp-corank of Selp∞(E/) over
F/K must be at least [F : K].

Here, we consider a more general context for the theory of local constants. In
particular, we replace the elliptic curve E/k with a pair (X/k, λ) of an abelian
variety X/k and a polarization λ : X → X∨ on X of degree prime to p, where
X∨ is the dual abelian variety. We consider the ring of integers O of a number
field K, and assume O ⊂ EndK(X) is contained in the ring of endomorphisms of
X defined over K. The case O = Z and K = Q is that of Mazur and Rubin in [9].
Recent work of Seveso [15] addresses similar questions for abelian varieties with
real multiplication.
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The condition that X has a polarization degree prime to p implies that many
of the constructions of [9] generalize verbatim1, with E replaced by X. The goal
in the present work is, in particular, to generalize Theorem 6.4 of [9] in the case
that the endomorphism ring of X is strictly larger than Z.

As a motivating example, consider p an odd rational prime, X = E an elliptic
curve defined over Q with complex multiplication by the ring of integers O of
a quadratic imaginary field K in which p does not split, and set K = K. The
Zp-corank of Selp∞(E/K) would be even, so E would not satisfy the hypotheses of
Theorem 7.2 of [9] and hence one does not obtain a lower bound for the Zp-corank
of Selp∞(E/F ). One needs to consider Selp∞(E/F ) as a module over O ⊗ Zp in
order to obtain any useful generalization of the main tool (Theorem 6.4 of [9]) in
the proof of Theorem 7.2 of [9].

1.1. Notation and assumptions

Before continuing, we introduce some notation and assumptions that will be used
until §6.1, where we will ease the restrictions on F/K.

Fix an odd rational prime p. The tower k ⊂ K ⊂ F is as above, with
K/k quadratic, F/K an abelian p-extension, and F/k dihedral. Also, X/k
and O ⊂ EndK(X) are as above, and we denote the cohomology groups
Hi(Gal(K̄/K), X(K̄)) by Hi(K,X). Define a set SF of primes v of K by

SF := {v | p, or v ramifies in F/K, or where X/K has bad reduction} ,

and define SL similarly for intermediate fields K ⊂ L ⊂ F . For a cyclic extension
L/K contained in F , define AL to be the twist of X, in the sense of [10], associated
to L/K (see §3 below).

We assume that our prime p is unramified in O ⊂ EndK(X) and we denote
Kp and Op for the local field and ring, respectively, at a prime p of O above p.
For each prime v of K we fix an extension of v to K̄, which in turn fixes an
embedding of K̄ into an algebraic closure of Kv and a decomposition subgroup
GKv = Gal(K̄v/Kv) ⊂ GK .

We fix a polarization λ : X → X∨ on X of degree prime to p, thus fixing
an isogeny λ ∈ Hom(X,X∨) which has an inverse in λ−1 ∈ Hom(X∨, X) ⊗ Q.
Associated to λ is the Rosati involution on End(X)⊗Q, given by

α 7→ α† := λ−1 ◦ α∨ ◦ λ,

where α∨ is the dual of α. This in particular satisfies,

e`,λ (αa, a′) = e`,λ
(
a, α†a′

)
,

where e`,λ(·, ·) = e`(·, λ(·)) is the Weil pairing and a, a′ ∈ T`(X) ⊗ Q (see [11,
§16-17]).

We assume that the non-trivial element c ∈ Gal(K/k) acts as the Rosati invo-
lution on O ⊂ EndK(X)⊗Q, and that O is taken to itself by the Rosati involution,
i.e. Oc = O† = O.

1see subsection “Generalizations” in [9, §1]
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Remark 1.1. Suppose X = E is an elliptic curve defined over k with complex
multiplication by O ⊂ K and O ⊂ EndK(E). We know that the Rosati involution
is the automorphism of O⊗Q = K of order 2. If K * k, then kK = K and so the
action of the Rosati involution and c ∈ Gal(K/k) on O must coincide.

1.2. Main results

With the above discussion in mind, the goal in the following is to keep track of the
extra endomorphisms of the variety X/k. Effectively this amounts to extending
the base ring (from Zp to O⊗Zp) for the p∞-Selmer module, and as such the main
results address this base extension.

In §2 we address the important properties, for our purposes, of torsion
O-modules, noting Proposition 2.8 for those modules equipped with a certain
biliear form. In §3 we extend the results of [9] regarding Selmer structures and du-
ality, and in §4 we apply those results to obtain information about the O/pO-rank
of the relevant modules (as in §2 of [9]). This, in particular, motivates a general-
ized definition (in §6) of the arithmetic local constant δv, and combining §2-§4 in
§5 leads to our main result, Theorem 6.2.

As an application, in §6.1 we are able to address another generalization men-
tioned in the introduction of [9]. In particular, we will consider dihedral towers
k ⊂ K ⊂ F where [F : K] is not a prime power. For example, suppose [F : K] is
divisible by two distinct odd primes p, q and L/K is a cyclic extension contained
in F . Then we have a p-power extension M/K and a q-power extension M ′/K in
L (one of these may be trivial) such that M ∩M ′ = K and L = MM ′. We can
apply Theorem 6.2 for X, AM , and the (p-power) dihedral extension M/k and
then separately for AM , AL, and a (q-power) dihedral extension M ′/k. Assuming
Conjecture 6.6, we can combine this information to compare X and AL.

In addition to applications to growth in p-Selmer rank, it would be interest-
ing to compare the individual δv to a quotient of the local root numbers for the
L-function associated to X, as in [3]. We leave this question to future work.

2. Torsion O-modules

In this section we consider various O-modules, and so we prove some general
results before applying them to our specific situation. Our abelian variety X and
the associated cohomology groups Hi(K,X) are the basic examples of O-modules
to keep in mind.

As O/pO may not be an integral domain, one does not have a natural definition
of the O/pO-rank of an O/pO-module via its fraction field (since there would be
no such field). However, since pO =

∏
i pi with pi 6= pj when i 6= j, one has

O/pO ∼= ⊕i(O/pi)

induced by the natural O → ⊕i(O/pi) maps.2 Thus, O/pO is a direct sum of
fields O/pi, and each of these is a finite extension of Fp.

2Alternatively, one has O/pO = O⊗Z(Z/pZ) and that O is a torsion-free, hence flat, Z-module
(see [7, §XVI.3]), which yields the same decomposition.
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Definition 2.1. Set R = O/pO and Ri = O/pi, so R ∼= ⊕mi=1Ri. For any R-
module M of finite type, define the R-rank of M to be

rankRM := (. . . ,dimRiM ⊗R Ri, . . .) ∈ Zm.

We say a = (a1, . . . , am) ∈ Zm is even if ai is even for each i.

A first, and most important, property of this definition of R-rank is that it
behaves as one expects with respect to short exact sequences. We will exploit
this property frequently. The proof of this and the subsequent Lemma are left as
exercises for the reader.

Proposition 2.2. If 0 → M1 → M2 → M3 → 0 is a short exact sequence of
R-modules then

rankRM2 = rankRM1 + rankRM3.

Lemma 2.3. If M is an O/pO-module of finite type (i.e. M is p-torsion as an
O-module) then M ⊗R (O/p) ∼= M [p].

For any R-module M , we denote M† for the R-module which has the same
underlying set as M , but with R-action given by rm := r†m. Also, for any
abelian group Γ, we denote Hom(M,Γ) := HomZ(M,Γ) for the R-module of group
homomorphisms fromM to Γ, with the R-action on Hom(M,Γ) given by (rf)(x) =
f(rx).

Lemma 2.4. Suppose M is an R-module and c : M
∼−→ M is an isomorphism

of groups with c(rm) = r†c(m). Then M ∼= M† as R-modules and in particular
rankRM = rankRM†.

Proof. The isomoprhism c induces an R-isomorphism, since c(rm) = r†c(m). �

Lemma 2.5. rankRRt = rankRHom(R†t ,Fp)†, for each t ∈ {1, . . . ,m}.

Proof. By Definition 2.1,

rankRRt = (. . . ,dimRjRt ⊗R Rj , . . .)
= (0, . . . ,dimRtRt, . . . , 0),

rankRHom(Rt,Fp)† = (. . . , dimRjHom(Rt,Fp)† ⊗R Rj , . . .).

Since Hom(R,Fp)† is an O/pO-module, we can use Lemma 2.3 to obtain

dimRjHom(Rt,Fp)† ⊗R Rj = dimRjHom(Rt,Fp)†[pj ], (2.1)

and we claim that

dimRjHom(Rt,Fp)†[pj ] =

{
0 when Rt 6= R†j
1 when Rt = R†j

}
(2.2)
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Consider f ∈ Hom(Rt,Fp)†[pj ], with Rt 6= R†j . If f(r†x) = 0 for all x ∈ Rt and
all r† ∈ p†j then f is the zero map, since there exists some r† ∈ p†j such that
r† 6∈ pt and hence r†Rt = Rt. When Rt = R†j , we have r†x = 0 for all x ∈ Rt,
and so f(r†x) = 0 is satisfied for every f ∈ Hom(R†j ,Fp)†[pj ], and this set has
Rj-dimension 1.

Now consider Rt 6= Rs. Then viewing Rt ⊗R Rs either as Rt[ps] or Rs[pt]
shows that Rt ⊗R Rs is trivial, and hence has rank 0. When Rt = Rs, we have
Rt⊗RRt = Rt. From this and (2.2), we obtain dimRRt = dimRHom(R†t ,Fp)†. �

Remark 2.6. Alternatively, one can prove Lemma 2.5 as follows. Define a perfect
pairing ( , ) : Rt × R†t → Fp via (x, y) 7→ TrRt/Fp(xy†). This pairing satisfies
(rx, y) = (x, r†y) and hence gives an Rt-module isomoprhism Rt ∼= Hom(R†t ,Fp)†.

Corollary 2.7. If M is an R-module of finite type, then

rankRM = rankRHom(M†,Fp)†.

Proof. This follows from the Lemma and M ∼= ⊕tRntt . �

The next proposition is analogous to a well-known theorem for alternating
pairings on vector spaces. Specifically, if k is a field with char(k) 6= 2 and there is
a non-degenerate, skew-symmetric pairing on a finite dimensional k-vector space V ,
then dimkV is even (see [7, §XV.8] or [12, §9.5]).

Proposition 2.8. Suppose A is a commutative ring, char(A) 6= 2, and A ∼=
⊕nj=1Aj, where each Aj is a local ring with principal maximal ideal mj. Let M ,
N be A-modules with M finite and [ , ] : M × M → N be a non-degenerate,
skew-symmetric pairing which satisfies [sx, y] = [x, sy] for all x, y ∈M and s ∈ A.
Then there exist A-submodules M ′, M ′′ with M ′ ∼= M ′′ and M ∼= M ′ ⊕M ′′.

Proof. LetMj = M⊗Aj . We first note that A ∼= ⊕jAj impliesM ∼= ⊕Mj . Since
M is finite, we see that x ∈Mj implies x ∈Mj [m

t
j ] for some t. For i 6= j, x ∈Mj

and y ∈ Mi, we have that [x, y] = 0. Indeed, there is some α ∈ mj with αx = 0
which acts as a unit on Mi. Thus, there is some y′ ∈Mi with αy′ = y and so

0 = [αx, y′] = [x, αy′] = [x, y].

Now, suppose x ∈ Mj is of maximal order, i.e. that x ∈ Mj [m
t
j ] but x 6∈

Mj [m
t−1
j ] and that t is maximal. Let π be a generator of mj in Aj . Since πt−1x 6= 0

there is some y ∈ Mj such that [πt−1x, y] 6= 0. We then have 0 6= [πt−1x, y] =
[x, πt−1y] and so πt−1y 6= 0. In particular, this implies that y 6∈ Mj [m

t−1
j ] and

y ∈ Mj [m
t
j ], since x was chosen to be of maximal order. Moreover, we have that

spanAj {x} ∼= spanAj {y}. We also note that if w = ax for some a ∈ A then

[x,w] = [x, ax] = [ax, x] = [w, x]

and so [x,w] = 0.
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Set U := spanAj {x, y}. We claim that U ∩ U⊥ = {0}. Let z ∈ U ∩ U⊥ with
z = ax+ by for some a, b ∈ Aj , and suppose that a 6= 0. Since Aj is a local ring,
we have πt - a, so a | πt−1. So, we can find a′ ∈ Aj such that aa′ = πt−1. Now,
for w = a′y we have

[z, w] = [ax+ by, a′y] = [ax, a′y] = [(aa′)x, y] = [πt−1x, y] 6= 0,

contradicting z ∈ U⊥. In the same way we can see that if πt - b then we can find
w ∈ U such that [z, w] 6= 0.

We are now left with the case that πt | a and πt | b. Since x was chosen to be
of maximal order, this forces z = 0 and it follows that U ∩ U⊥ = {0}. Also, the
above argument shows that U ∼= Ajx⊕Ajy. The finiteness of M (and hence Mj)
then implies that we can decompose Mj as Mj = U ⊕ U⊥ and by induction we
obtain the claim. �

Remark 2.9. Recall that R = O/pO, Rj = O/pj , and set S = O ⊗ Zp and
Sj = Opj . We have decompositions R ∼= ⊕jRj and S ∼= ⊕jSj . For RL := RL⊗Zp,
where RL is as in §3 of [9] (see also §3 below), we again have a decomposition
O ⊗ RL ∼= ⊕j(Opj ⊗ RL). In what follows, these rings will play the role of A in
the above proposition.

3. Selmer structures and Tate duality

As our goal is to establish a theorem analogous to Theorem 6.4 of [9], we need to
generalize the results of [9] regarding the pairing of Tate’s local duality in order
to yield information about the Selmer structures of Definition 3.3 as O-modules.

Using Definition 3.3 of [9] (see also Definition 1.1 of [10]), we have the I-
twist A of X exactly as in the elliptic curve case X = E. Specifically, for a cyclic
extension L/K contained in F , let ρL denote the unique faithful irreducible rational
representation of Gal(L/K). Define the IL-twist of X to be AL := IL⊗X, where

IL := Q[Gal(F/K)]L ∩ Z[Gal(F/K)]

and Q[Gal(F/K)]L is the sum of all (left) ideals of Q[Gal(F/K)] isomorphic to
ρL. We define the ring RL (mentioned in Remark 2.9) as the maximal order of
Q[Gal(F/K)]L, and when [L : K] = pm we have that RL ∼= Z[µpm ] has a unique
prime above p.

Remark 3.1. By definition (in [10]), when IL is a Z-module, the twist AL =
IL ⊗ X is a Z-module. However, we may regard it as an O-module, simply by
letting O act on IL⊗X via its action on X. The resulting module coincides with
the O-module I ′L ⊗X obtained by twisting X with the O-module

I ′L := K[Gal(F/K)]L ∩ O[Gal(F/K)].

Proposition 3.2. For p̂ the unique prime above p in IL, there is a canonical
Gal(K̄/K)-isomorphism AL[p̂] ∼= X[p].
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Proof. This is exactly as in Proposition 4.1 of [9] (also Remark 4.2 in [9]), where
our p̂ is their p = pL. �

We are concerned with the following Selmer structures, analogous to those of
§2 and §4 of [9].

Definition 3.3. Define a Selmer structure X on X[p] as the collection of
O-modules H1

X (Kv, X[p]), defined to be, for each v, the image of

X(Kv)/pX(Kv) ↪→ H1(Kv, X[p]).

Fix a generator π of p̂, with p̂ as in Proposition 3.2. Define a Selmer structure A
on X[p] by setting, for each v, H1

A(Kv, X[p]) to be the image of

AL(Kv)/πAL(Kv) ↪→ H1(Kv, AL[p̂]) ∼= H1(Kv, X[p]).

We note that the image in H1(Kv, X[p]) is independent of the choice of our
generator. As in [9, §1], define

H1
X+A(Kv, X[p]) := H1

X (Kv, X[p]) +H1
A(Kv, X[p])

H1
X∩A(Kv, X[p]) := H1

X (Kv, X[p]) ∩H1
A(Kv, X[p]).

Definition 3.4. We say that a Selmer structure F on X[p] is self-dual if for every
prime v, H1

F (Kv, [X[p]) is its own orthogonal complement under the pairing of
Tate’s local duality:

〈 , 〉v : H1(Kv, X[p])×H1(Kv, X[p])→ H2(Kv,µp) = Fp. (3.1)

We note that in Definition 3.4, we are making use of our assumption that X
has a polarization of degree prime to p in order to have (3.1) as a self -pairing.

Definition 3.5. Given a Selmer structure F on X[p], define the Selmer group to
be

H1
F (K,X[p]) := kerH1(K,X[p])→

∏
v

H1(Kv, X[p])/H1
F (Kv, X[p]).

Thus, H1
F (K,X[p]) is the set of classes whose localizations are in H1

F (Kv, X[p]),
or in other words the classes satisfying the local conditions defined by F .

Proposition 3.6. The Selmer structures X and A on X[p] are self-dual.

Proof. The Tate pairing is the same as that in [9], and Tate local duality holds
for a general abelian variety (see [9, §1.4]). This shows that X is self-dual. For
A, the proof is exactly Proposition A.7 of Appendix A of [9], noting that we need
only regard AL as a Z-module here. �
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The pairing (3.1) is not O-linear, but understanding the interplay of the pairing
and the map induced by c on the local cohomology groups H1(Kv, X[p]) provides
information (see Lemma 4.4 below) about the R-rank of certain Selmer groups.

Now, we fix a lift of the nontrivial element c ∈ Gal(K/k) to Gal(K̄/k), which
we also denote c. As c ∈ Gk with c(K) = K, we have that c : Kv

∼−→ Kvc .
The maps c : GK → GK : s 7→ c−1sc and c : M → M : a 7→ c(a), for
any Gk-module M , are compatible in the sense of [14, §VII.5], and hence induce
c∗ : H∗(K,M) → H∗(K,M) on cohomology. Similarly, from c : GKv → GKvc we
obtain c∗ : H∗(GKvc ,M)→ H∗(GKv ,M).

Lemma 3.7. For Gk-moduleM , the map c∗ : H1(GK ,M)→ H1(GK ,M) induced
by the lift c ∈ Gk of c is independent of the choice of lift.

Proof. The claim follows from a special case of Proposition 3 of §VII.5 of [14]. �

Lemma 3.8. Let M and N be two Gk-modules and φ : M → N a Gk-equivariant
map. Then for the map φ∗ : H∗(K,M)→ H∗(K,N) induced by φ,

φ∗ ◦ c∗ = c∗ ◦ φ∗ : H∗(Kvc ,M)→ H∗(Kv, N).

Proof. Let G = Gal(K̄v/Kv) and G′ = Gal(K̄vc/Kvc). We prove the claim on
cochains. For each i > 0, let Pi := Z[Gi+1], be the free module generated by
elements (g0, . . . , gi) ∈ Gi+1, with a G-action by

s.(g0, . . . , gi) = (s.g0, . . . , s.gi).

These form the standard resolution for Z (see [14, §VII.3] or [1, §I.5]).
Suppose f ∈ HomG′(P

′
i ,M). Then

c∗(f)(g0, . . . , gi) = c(f(c−1g0c, . . . , c
−1gic))

φ∗(f)(g0, . . . , gi) = φ(f(g0, . . . , gi)),

and it follows that

(φ∗ ◦ c∗)(f)(g0, . . . , gi) = (c∗ ◦ φ∗)(f)(g0, . . . , gi),

using the Gk-equivariance of φ. �

Let W = X[p]. Denote e∗ : H∗(K,W ⊗W )→ H∗(K,µp) for the map induced
by the Weil pairing ep,λ on W . We will also use e∗ for the maps induced by ep,λ
on GKv -cohomology and GKvc -cohomology, and context will make the notation
clear. We know that ep,λ is Gal(K̄/k)-equivariant (see [16, §III.8] or [11, §12]).
By Lemma 3.8, we see that

e∗ ◦ c∗ = c∗ ◦ e∗ : H∗(Kvc ,W ⊗W )→ H∗(Kv,µp).

Proposition 3.9. Suppose S is a finite set of primes v of K such that v ∈ S if
and only if vc ∈ S. For any a, b ∈ ⊕v∈SH1(Kv,W ), let 〈a, b〉 :=

∑
v∈S〈av, bv〉v.

Then
〈a, c∗(b)〉 = 〈c∗(a), b〉.



Arithmetic local constants for abelian varieties with extra endomorphisms 67

Proof. Recall that 〈 , 〉v is defined via the composition (cf. [13, §1.4])

H1(Kv,W )⊗H1(Kv,W )

∪
��

H2(Kv,W ⊗W )
e∗ // H2(Kv,µp)

invv // µp.

The cup product ∪ is functorial, so the commutative diagram

H1(Kvc ,W )

c∗

��

⊗ H1(Kvc ,W )

c∗

��

∪ // H2(Kvc ,W ⊗W )

c∗

��
H1(Kv,W ) ⊗ H1(Kv,W )

∪ // H2(Kv,W ⊗W )

implies a ∪ c∗(b) = c∗c∗(a) ∪ c∗(b) = c∗(c∗(a) ∪ b). Also we can see that, for all
i > 0,

Hi(K,W )
∼
c∗

//

resvc

��

Hi(K,W )

resv

��
Hi(Kvc ,W )

∼
c∗
// Hi(Kv,W ).

commutes by recalling that on cochains resv(f) is restriction of the map f . Using
Lemma 3.8 and the property invv ◦ c∗ = invvc (see [14, §§XI.1-XI.2], particularly
Proposition 1) of the local invariant map, we see 〈a, c∗(b)〉 = 〈c∗(a), b〉. �

The next proposition shows how the R-action on our cohomology groups in-
teracts with the pairing (3.1).

Proposition 3.10. For any a, b ∈ H1(Kv, X[p]) and r ∈ R, 〈ra, b〉v = 〈a, r†b〉v.

Proof. Let W = X[p] as above, and let x, y ∈ W and r ∈ O. The claim is a
consequence of the identity ep,λ (rx, y) = ep,λ

(
x, r†y

)
. As ep,λ is bilinear, it can

be viewed as a map on W ⊗ZW , and the above property becomes ep,λ (rx⊗ y) =
ep,λ

(
x⊗ r†y

)
. Now, for a, b ∈ H1(Kv,W ) we have r and r† acting by (ra)(g) =

r.a(g) and (r†b)(g) = r†.b(g). Thus, keeping in mind that O ⊂ EndK(X), it follows
that

e∗((ra) ∪ b)(g, h) = ep,λ (((ra) ∪ b)(g, h))

= ep,λ
(
(a ∪ (r†b))(g, h)

)
= e∗p,λ((a ∪ (r†b))(g, h),

and so

〈ra, b〉v = invv ◦ e∗p,λ((ra) ∪ b)
= invv ◦ e∗p,λ(a ∪ (r†b)) = 〈a, r†b〉v. �
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Corollary 3.11. The orthogonal complement of H1(Kv, X[p])[p] under (3.1) is
⊕q6=p†H

1(Kv, X[p])[q].

Proof. Set M = H1(Kv, X[p]). Let a ∈M [p], b ∈M , and r ∈ p. Then

0 = 〈0, b〉v = 〈ra, b〉v = 〈a, r†b〉v,

so r†M ⊂ M [p]⊥ and in turn p†M ⊂ M [p]⊥. Since M = ⊕q|pM [q], we see that
p†M = ⊕q6=p†M [q] ⊂M [p]⊥, and non-degeneracy finishes the claim. �

4. O/pO-rank

Recall SL is a finite set of primes of K containing those which divide p or are
ramified in L/K or where X does not have good reduction. In this section we fix
a cyclic extension L/K contained in F .

Lemma 4.1. For v 6∈ SL, the Selmer structures X and A on X[p] coincide.

Proof. This is Corollary 4.6 of [9], which uses Lemma 19.3 of [2]. Specifically,
both X and A are self-dual (cf §3) and when v 6∈ SL then both Tp(X) and Tp(AL)
are unramified at v. Thus,

H1
X (Kv, X[p]) = H1

A(Kv, X[p]) = H1(Kur
v /Kv, X[p]). �

Let R = O/pO and Ri = O/pi be as in the previous section. We now gen-
eralize the main results of §1 of [9] regarding self-dual Selmer structures. Later,
determining the difference in the (O ⊗ Zp)-corank of the p∞-Selmer groups asso-
ciated to X and A will be reduced to determining the difference in the R-corank
of the p-Selmer groups, and Theorem 4.5 below describes the latter. We phrase
the result specifically in terms of the Selmer structures X and A, as we make use
of the assumption on c introduced in the beginning of §1 to prove Lemma 4.3.

Remark 4.2. The following is an example of an application of Lemma 2.4. Set
W = X[p] and

B =
⊕
v∈SL

(H1
X+A(Kv,W )/H1

X∩A(Kv,W )).

We check that v ∈ SL if and only if vc ∈ SL. Since c ∈ Gal(K/k), we have v | p
implies vc | p. Also, if w witnesses that v is ramified in L/K then wc witnesses
that vc is ramified in L/K. Lastly, since X is defined over k, X has good reduction
at v if and only if X has good reduction at vc.

The automorphism c induces an isomorphism X(Kv)
∼−→ X(Kvc) and in turn

H1(Kv,W )
∼−→ H1(Kvc ,W ). This restricts to a group isomorphism

H1
X (Kv,W )

∼−→ H1
X (Kvc ,W ).
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We have analogous isomorphisms for H1
A(Kv,W ). As B is a direct sum taken over

all v ∈ SL, we know that H1
X+A(Kv,W ) and H1

X+A(Kvc ,W ) occur symmetrically
in B. Thus,

B =
⊕
v∈SL

(H1
X+A(Kv,W )/H1

X∩A(Kv,W ))

∼=
⊕
vc∈SL

(H1
X+A(Kvc ,W )/H1

X∩A(Kvc ,W )) = B

and so c : B
∼−→ B. Lemma 2.4 then gives rankRB = rankRB†.

Recall the definition of a Selmer group, e.g. H1
X (K,X[p]), in Definition 3.5.

The following Lemmas generalize Proposition 1.3 of [9].

Lemma 4.3. Since X and A are self-dual,

rankRH1
X+A(K,X[p])/H1

X∩A(K,X[p])

=
∑
v∈S

rankR(H1
X (Kv, X[p])/H1

X∩A(Kv, X[p])).

Proof. We follow the ideas of Proposition 1.3 of [9], noting the adjustments needed
to address R-rank. Let W and B be as in Remark 4.2. The Tate pairing restricts
to H1

X+A(Kv,W ) for each v, and since X and A are self-dual we obtain a pairing
〈 , 〉 : B ×B → Fp.

Defining CX (resp. CA) to be the projection of ⊕vH1
X (Kv,W ) (resp.

⊕vH1
A(Kv,W )) in B, the local self-duality of X (resp. A) implies that CX (resp.

CA) is its own orthogonal complement under 〈 , 〉. Using these orthogonality
relations, we will show

rankRC = rankRCX = rankRCA =
1

2
rankRB. (4.1)

First we note B = CX ⊕CA, and since C⊥X = CX and C⊥A = CA, the pairing 〈 , 〉
restricts to a non-degenerate pairing on CX × CA. From this we obtain in the
usual way (see [7, §I.9] or [7, §XIII.5]) an R-isomorphism CX → Hom(CA,Fp)†
which implies

rankRCX = rankRHom(CA,Fp)† = rankRC
†
A,

using Corollary 2.7 for the right-hand equality. Then by Lemma 2.4, as in Re-
mark 4.2, we see

rankRCX = rankRC
†
A = rankRCA.

Thus, we have the middle and right-hand equalities of (4.1).
Similarly, from B × B → Fp and C = C⊥, we obtain C × (B/C) → Fp which

gives
rankRC = rankRHom(B/C,Fp)† = rankR(B/C)†,
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and in turn, again by Lemma 2.4, we have rankRC = rankRB/C. Now using the
exact sequence (of R-modules)

0→ C → B → B/C → 0

and Proposition 2.2, we have

rankRB = rankRC + rankR(B/C) = 2rankRC,

and hence the left-hand equality of (4.1). The result now follows from

C ∼= H1
X+A(Kv,W )/H1

X∩A(Kv,W )

and
CX ∼= ⊕vH1

X (Kv,W )/H1
X∩A(Kv,W ). �

Lemma 4.4. With the same assumptions and notation of Lemma 4.3,

rankRH1
X+A(K,W ) ≡ rankR(H1

X (K,W ) +H1
A(K,W )) mod 2.

Proof. Again, we follow Proposition 1.3 of [9]. For u ∈ H1
X+A(K,W ), write

us ∈ C for the localization of u, and ux, ua for the projections of us to CX , CA,
respectively. Using the symmetry of 〈 , 〉, the pairing

[ , ] : H1
X+A(K,W )×H1

X+A(K,W )→ Fp : [u,w] := 〈ux, wa〉

is skew-symmetric. Also, exactly as in [9], the kernel of [ , ] is exactly H1
X (K,W )+

H1
A(K,W ), and so [ , ] induces an Fp-valued, non-degenerate, skew-symmetric

pairing on
H := H1

X+A(K,W )/(H1
X (K,W ) +H1

A(K,W )).

Since [ , ] is defined in terms of
∑
v∈SL〈 , 〉v, we use Propositions 3.10 and 3.9,

respectively, to see that

[u, rw] = [r†u,w] and [u, c∗(w)] = [c∗(u), w].

Define [ , ]′ on H by [u,w]′ := [u, c∗(w)]. The non-degeneracy and skew-symmetry
of [ , ] imply that [ , ]′ is non-degenerate and skew-symmetric also. In addi-
tion, the two properties above imply that [ru,w]′ = [u, rw]′ and with this pairing
Proposition 2.8 (with A = R) shows that rankRH is even. �

Theorem 4.5. Since X and A are self-dual,

rankRH1
X (K,X[p])− rankRH1

A(K,X[p])

≡
∑
v∈S

rankR(H1
X (Kv, X[p])/H1

X∩A(Kv, X[p])) mod 2.
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Proof. Applying Lemma 4.1, the claim follows from the congruences

rankRH1
X (K,X[p])− rankRH1

A(K,X[p])

≡ rankRH1
X (K,X[p]) + rankRH1

A(K,X[p])

≡ rankR(H1
X (K,X[p]) +H1

A(K,X[p])) + rankRH1
X∩A(K,X[p])

≡ rankRH1
X+A(K,X[p])− rankRH1

X∩A(K,X[p])

≡
∑
v∈S

rankR(H1
X (Kv, X[p])/dimH1

X∩A(Kv, X[p])) mod 2.

The last two steps follow from Lemmas 4.3 and 4.4. �

Remark 4.6. The summands in the right-hand side of Theorem 4.5 motivate
Definition 6.1 below of the arithmetic local constants δv.

5. p-Selmer corank

The p-Selmer group H1
X (K,X[p]) = Selp(X/K) sits in the exact sequence (see for

example [16, §X.4])

0→ X(K)⊗ Z/pmZ→ Selpm(X/K)→X(X/K)[pm]→ 0 (5.1)

and passing to the limit Selp∞(X/K) sits in

0→ X(K)⊗Qp/Zp → Selp∞(X/K)→X(X/K)[p∞]→ 0. (5.2)

We have similar sequences for H1
A(K,X[p]) = Selp̂(AL/K) and for the associated

direct limit Selp∞(AL/K).
We next generalize Proposition 2.1 of [9], but in order to do so we need to

define a notion of corank over the ring O ⊗ Zp (particularly in the case that it is
not an integral domain). Again, we have a decomposition

O ⊗ Zp ∼= ⊕iOpi .

Definition 5.1. Let S := O⊗Zp and Si := Opi . For an S-module M , define the
S-corank of M to be

corankSM := (. . . , corankSiM ⊗Opi , . . .).

Proposition 5.2.

corankSSelp∞(X/K) ≡ rankRSelp(X/K)− rankRX(K)[p] mod 2.

Proof. We follow the strategy of Proposition 2.1 of [9]. Let

d := rankR(Selp∞(X/K)/Selp∞(X/K)div)[p]

= rankR(X(X/K)[p∞]/X(X/K)[p∞]div)[p].
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We have

corankSSelp∞(X/K) = (. . . , corankSiSelp∞(X/K)⊗ Si, . . .)
= (. . . , rankRiSelp∞(X/K)div[p]⊗Ri, . . .)
= (. . . , rankRiSelp∞(X/K)[p]⊗Ri, . . .)− d
= rankRSelp∞(X/K)[p]− d,

with the first and last equalities by definition, and the others as in [9]. From (5.2)
we obtain another sequence

0→ (X(K)⊗Qp/Zp)[p]→ Selp∞(X/K)[p]→X(X/K)[p]→ 0

and then applying Proposition 2.2 we have

rankRSelp∞(X/K)[p] = rankR(X(K)⊗Qp/Zp)[p] + rankRX(X/K)[p].

From (5.1) and Proposition 2.2 we obtain

rankRSelp(X/K) = rankR(X(K)/pX(K)) + rankRX(X/K)[p].

Combining these, we see that

corankSSelp∞(X/K)− rankRSelp(X/K)

= rankRSelp∞(X/K)[p]− d− rankRSelp(X/K)

= rankR(X(K)⊗Qp/Zp)[p]− rankR(X(K)/pX(K))− d
= −rankRX(K)[p]− d.

Here we have cancelled the X(X/K)[p] terms in the second equality, and the
last equality follows from the exact sequence

0→ X(K)[p]→ X(K)⊗ Z/pZ→ (X(K)⊗Qp/Zp)[p]→ 0,

defined by considering each term as an O-module and decomposing each term as
in [12, §11.2], and applying [7, §XVI.2].

It remains to see that d is even, which will show that the above equality implies
the desired congruence modulo 2. We prove d is even below in Proposition 5.8. �

First, we recall some definitions and results of Appendix A of [9]. For a cyclic
extension L/K of degree pn in F we define RL := RL ⊗ Zp, where RL is as in §3,
and consider RL as a GK-module by letting GK act trivially. Let ζ be a primitive
pn root of unity and denote ι for the involution of RL induced by ζ 7→ ζ−1, and
similarly for RL. Let π := ζ − ζ−1, which is a generator of the unique prime p̂ of
RL above p and of the maximal ideal P of RL.

For W an RL-module and B a Zp-module, a pairing 〈 , 〉 : W × W → B
is ι-adjoint if for each r ∈ RL and x, y ∈ W , 〈rx, y〉 = 〈x, rιy〉. Also, a pairing
〈 , 〉 : W ×W → RL ⊗Zp B is RL-semilinear if for each r ∈ RL and x, y ∈W

〈rx, y〉 = r〈x, y〉 = 〈x, rιy〉,

and is skew-Hermitian if it is RL-semilinear and 〈y, x〉 = −〈x, y〉ι⊗1.
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Mazur and Rubin construct a map τ : RL → Zp such that composition with
τ ⊗ 1 : RL ⊗Zp B → B gives a bijection (Lemma A.3 and Proposition A.4 of
[9]) between the set of RL-semilinear pairings W ×W → RL ⊗Zp B and the set
of ι-adjoint pairings W ×W → B. Also, if 〈 , 〉RL corresponds to 〈 , 〉Zp then
〈 , 〉RL is perfect (resp. GK-equivariant) if and only if 〈 , 〉Zp is perfect (resp.
GK-equivariant).

Definition 5.3 (Definition A.5 of [9]). Let pn = [L : K]. Define two pairings:
f : IL × IL → RL by

f(α, β) := π−2pn−1

αβι,

and 〈 , 〉RL := f ⊗ ep,λ on Tp(AL) = IL ⊗ Tp(X) by

〈α⊗ x, β ⊗ y〉 := (π−2pn−1

αβι)⊗ ep,λ (x, y) ∈ RL ⊗Zp Zp(1). (5.3)

In Theorem A.12 of [9], Mazur and Rubin use the pairing (5.3) and arguments
of Flach [5] to obtain a perfect, skew-Hermitian, Gal(K/k)-equivariant pairing
[ , ]RL on

X(AL/K)/div := X(AL/K)/X(AL/K)div,

taking values in Dp := RL ⊗Zp Qp/Zp. Using Flach’s arguments, we can also
obtain the classical Cassels-Tate pairing on X(X/K)/div from the Weil pairing on
X[p]. We first show that these pairings satisfy [sx, y] = [x, s†y], for each s ∈ O.

Proposition 5.4. Suppose Y/k is an abelian variety with an action of O and
B = Qp/Zp or B = Dp. If 〈 , 〉 : Tp(Y ) × Tp(Y ) → B induces (via Flach’s
construction) [ , ] on X(Y/K)/div and 〈sx, y〉 = 〈x, s†y〉 for all s ∈ O, then
[sx, y] = [x, s†y] for all s ∈ O.

Proof. We recall the construction of [ , ] from p.116 of [5]. Let Vp(Y ) = Tp(Y )⊗Q.
From x, x′ ∈ Selp∞(Y/K), we obtain cocylces α, α′ ∈ Z1(K,Y [p∞]). From the
exact diagram

C1(K,Vp(Y )) //

d

��

C1(K,Y [p∞])

d

��

// 0

C2(K,Tp(Y )) // C2(K,Vp(Y )) // C2(K,Y [p∞])

we see that α and α′ can be lifted to β, β′ ∈ C1(K,Vp(Y )), and we have dβ, dβ′ ∈
C2(K,Tp(Y )). The pairing 〈 , 〉 induces a cup-product ∪

Ci(K,Vp(Y ))× Cj(K,Vp(Y ))
∪−→ Ci+j(K,B).

Since H3(K,B) = 0, there is some ε ∈ C2(K,B) such that dβ ∪ β′ = dε.
Since α′ represents x ∈ Selp∞(Y/K), resv(α′) is the image of some cocycle β′v ∈
Z1(Kv, Vp(Y )). Define

γv := resv(β) ∪ β′v − resv(ε) ∈ C2(Kv, B),

and then [x, x′] :=
∑
v invv(γv).
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Just as in Proposition 3.10, the cup-product ∪ satisfies an O-adjoint property,
so

d(sβ) ∪ β′ = s(dβ) ∪ β′ = dβ ∪ s†β′,

giving the same ε for both pairs (sx, x′) and (x, s†x′). Also,

resv(sβ) ∪ β′v = s(resv(β)) ∪ β′v = resv(β) ∪ s†β′v.

Thus the pairs (sx, x′) and (x, s†x′) define the same γv, for each v, and so [sx, x′] =
[x, s†x′]. �

Corollary 5.5. If [ , ] is obtained from ep,λ or 〈 , 〉RL , then [sx, y] = [x, s†y] for
all s ∈ O.

Proof. We have already seen that ep,λ (sx, y) = ep,λ
(
x, s†y

)
. By definition, the

O-action on IL ⊗ Tp(X) is s(α⊗ x) = α⊗ (sx). Therefore,

〈s(α⊗ x), β ⊗ y〉 = 〈α⊗ (sx), β ⊗ y〉

= (π−2pn−1

αβι)⊗ ep,λ (sx, y)

= (π−2pn−1

αβι)⊗ ep,λ
(
x, s†y

)
= 〈α⊗ x, β ⊗ (s†y)〉 = 〈α⊗ x, s†(β ⊗ y)〉,

and Proposition 5.4 gives the claim. �

Proposition 5.6. Let [ , ] denote the Cassels-Tate pairing

X(X/K)/div ×X(X/K)/div → Qp/Zp.

Then [c∗(x), x′] = [x, c∗(x′)].

Proof. Recall that ep,λ is Gk-equivariant. We keep the notation in the proof of
Proposition 5.4. Specifically, let B = Qp/Zp and let x, x′ ∈ Selp∞(X/K). Just as
in Proposition 3.8 the Gk-equivariance of ep,λ implies, for any cochains ω, ω′,

c∗(c∗(ω) ∪ ω′) = ω ∪ c∗(ω′). (5.4)

Let the pair c∗(β), β′ (resp. β, c∗(β′)) define ε ∈ C2(K,B) and γv ∈ C2(Kv, B)
(resp. ε′, γ′v) as in Proposition 5.4. Property (5.4) then implies that c∗(ε) = ε′.
From c∗ ◦ resv = resvc ◦ c∗, we obtain

γ′v = resv(β) ∪ c∗(β′vc)− resv(c∗(ε))
= c∗(resvc(c∗(β)) ∪ β′vc − resvc(ε))
= c∗(γvc),

and so
∑
v invv(γ

′
v) =

∑
v invv ◦ c∗(γvc) =

∑
v invvc(γvc). Thus, we conclude that

[x, c∗(x′)] = [c∗(x), x′]. �
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Remark 5.7. The proposition also follows from Theorem A.12 of [9]. In partic-
ular, Mazur and Rubin show that the Gk-equivariance of ep,λ implies Gal(K/k)-
equivariance of [ , ], and Gal(K/k) acts trivially on Qp/Zp.

The following proposition shows that d = rankRX(X/K)/div[p] is even. The-
orem 1 of [5] shows that X(X/K)/div is finite, and in particular it is a finite
p-group. Thus, for some t > 1

X(X/K)/div = X(X/K)/div[pt] = ⊕iX(X/K)/div[pti].

Proposition 5.8. d = rankR(X(X/K)[p∞]/X(X/K)[p∞]div)[p] is even.

Proof. From Corollary 5.5 and Proposition 5.6 the pairing [ , ] on X(X/K)/div

satisfies [sx, x′] = [x, s†x′] and [c∗(x), x′] = [x, c∗(x′)] for all s ∈ O and x, x′ ∈
X(X/K)/div. Define [ , ]′ by [x, y]′ := [x, c∗(y)] as in Lemma 4.4, obtain-
ing a non-degenerate, skew-symmetric, Zp-bilinear pairing on X(X/K)/div with
[sx, y]′ = [x, sy]′ for all s ∈ O and x, y ∈ X(X/K)/div. Since X(X/K)/div is
finite, Proposition 2.8 (with A = O ⊗ Zp) then shows that d is even. �

We now provide the analogous statement to Proposition 5.2 for AL. Previously,
we noted that the twist AL is defined over K, but in fact it is essential that AL
have a model over k in order to apply Theorem A.12 of [9]. Again, the results
of Appendix A of [9] (Definition A.8 and on, or alternatively [10, §6]) allow us to
consider AL defined over k. Combining Propositions 5.2 and 5.9 in Theorem 6.2
below proves a generalization of Theorem 6.4 of [9]. Recall RL = RL ⊗ Zp.

Proposition 5.9.

corankO⊗RLSelp∞(AL/K) ≡ rankRSelp̂(AL/K)− rankRX(K)[p] mod 2.

Proof. The proof is the same as Proposition 5.2, using Proposition 3.2 to identify
AL(K)[p̂] with E(K)[p], and seeing that d = rankRX(AL/K)/div[p̂] is even as
follows. Theorem 1 of [5] showsM = X(AL/K)/div is an O⊗RL-module of finite
cardinality. Since

O ⊗RL = O ⊗ (Zp ⊗RL) = (O ⊗ Zp)⊗RL,

we have M = ⊕j(M ⊗ O′p̂j ), where O
′
p̂j

= Opj ⊗ RL. As noted above, Theorem
A.12 of [9] produces a perfect, skew-Hermitian, Gal(K/k)-equivariant pairing [ , ].
Defining [x, y]′ = [x, c∗(y)] as before gives a non-degenerate, skew-symmetric, RL-
bilinear pairing with [sx, y]′ = [x, sy]′ for all s ∈ O. We can therefore apply
Proposition 2.8 (with A = O ⊗RL) to see d is even. �

6. Main results

We are now in a position to define and make use of the arithmetic local constants
for our abelian variety X. Recall R = O/pO, where O ⊂ EndK(X). Also, recall
that for each cyclic L/K, we have a twist AL of X and rings RL (see §3) and
RL = RL ⊗ Zp.
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Definition 6.1. As in Definition 4.5 of [9], for each cyclic L/K contained in F ,
we define the arithmetic local constant δv := δ(v,X,L/K) by

δv := rankR(H1
X (Kv, X[p])/H1

X∩A(Kv, X[p])) mod 2.

Theorem 6.2. For SL as in §1.1,

corankO⊗ZpSelp∞(X/K)− corankO⊗RLSelp∞(AL/K) ≡
∑
v∈SL

δv mod 2.

Proof. First, Lemma 4.1 and Theorem 4.5 give

rankRSelp(X/K)− rankRSelp̂(AL/K) ≡
∑
v∈SL

δv mod 2.

The claim then follows from this, Proposition 5.2 and Proposition 5.9. �

Corollary 5.3 of [9] shows that in the elliptic curve case, δv can be computed via
a completely local formulae, and the same arguments apply in our more general
setting. For v a prime of K and w a prime of L above v, if Lw 6= Kv, let L′w be
the unique subfield of Lw containing Kv with [Lw : L′w] = p, and otherwise let
L′w := Lw = Kv. Proposition 5.2 of [9] provides an O-module isomorphism

H1
X∩A(Kv, X[p]) ∼= (X(Kv) ∩NLw/L′wX(Lw))/pX(Kv). (6.1)

Proposition 6.3 (Corollary 5.3 of [9]). For every prime v of K, (6.1) implies

δv ≡ rankRX(Kv)/(X(Kv) ∩NLw/L′wX(Lw)) mod 2.

Corollary 6.4. Let Sc
L be the set of primes v of K such that v ramifies in L/K

and vc = v. Then

corankO⊗ZpSelp∞(X/K)− corankO⊗RLSelp∞(AL/K) ≡
∑
v∈ScL

δv mod 2.

Proof. The arguments are as in the proof of Theorem 7.1 of [9]. If v 6∈ Sc
L then

vc 6= v or v is unramified in L/K. If vc 6= v then Lemma 5.1 of [9] shows that
δv + δvc ≡ 0. If vc = v and v is unramified then, Lemma 6.5 of [9] shows that v
splits completely in L/K and hence NLw/L′w is surjective. Using Proposition 6.3,
we see that δv ≡ 0. �

The following is a first example of a class of abelian varieties for which Proposi-
tion 6.2 can be used to produce a lower bound for the growth in p-Selmer (O⊗Zp)-
rank.

Corollary 6.5. Suppose that for every v ∈ Sc
F , we have v | p and X has good

ordinary, non-anomalous reduction at v. If corankO⊗ZpSelp∞(X/K) is odd then

corankO⊗ZpSelp∞(X/F ) > ([F : K], . . . , [F : K]).
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Proof. Suppose L/K is a cyclic extension contained in F . Theorem 6.2 and
Corollary 6.4 show that we need only see that δv = 0 for all v ∈ Sc

F . Since
v ∈ Sc

F , we have v is totally ramified in Lw/Kv by Lemma 6.5 of [9].
The assumptions that v | p and that X has good ordinary, non-anomalous

reduction at v allow us to apply the arguments of Appendix B of [9] to see δv = 0.
The key ingredients therein are, firstly, the diagram on page 239 of [8], which
applies to abelian varieties of any dimension. Secondly, non-anomalous reduction
guarantees the relevant norm maps are surjective.

Now, for each cyclic L in F , we have

corankO⊗ZpSelp∞(X/K) ≡ corankO⊗RLSelp∞(AL/K) mod 2,

and by our hypotheses, the left-hand side is odd. As in Theorem 7.1 of [9], the
Pontrjagin dual Sp(X/F ) of Selp∞(X/F ) (see for example [9, §3]) decomposes as

Sp(X/F ) ∼= ⊕LSp(AL/K),

with each Sp(AL/K) a K[Gal(F/K)]L⊗Qp-module (see §3 and Remark 3.1), and
we have just seen each has odd dimension. FromK[Gal(F/K)] ∼= ⊕LK[Gal(F/K)]L,
we see that Sp(X/F ) contains a submodule isomorphic to

Kp[Gal(F/K)] ∼= ⊕L(K[Gal(F/K)]L ⊗Qp),

and the claim follows. �

6.1. Composite dihedral extensions

We now consider an abelian extension F/K of odd degree [F : K] = m, and a
cyclic extension L/K inside F . To ease notation, we fix some ordering of the
primes in [L : K] =

∏
i p
ei
i , where ei > 0 for each i. For such L/K in F and each

i, there exists a pi-power subextension Mi/K such that L/Mi is of degree prime
to pi.

By Proposition 5.10 of [10], if M and M ′ are cyclic extensions of K inside L
with [M : K] and [M ′ : K] coprime and L = MM ′, then the twist AL of X with
respect to L/K may also be realized as a twist of AM , i.e. AL ∼= (AM )M ′ . Thus,
if we want to compare AL and X, it suffices to compare X with AM , and also AM
with (AM )M ′ . As in the paragraph preceeding Proposition 5.9, we consider AM
and (AM )M ′ as defined over k.

In order to inductively apply Theorem 6.2 (see Theorem 6.9 below), we assume
the following conjecture.

Conjecture 6.6. Suppose p is a prime, Y/L is an abelian variety, B ⊂ EndL(Y )
is an integral domain, and q and q′ are primes of B above p. Then

1. corankB⊗ZpSelp∞(Y/L) is independent of p,
2. corankBq

Selp∞(Y/L)⊗Bq = corankBq′Selp∞(Y/L)⊗Bq′ ,
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Remark 6.7. Both parts of the conjecture follow from the Shafarevich-Tate Con-
jecture. Indeed, when #X(Y/L) <∞, (5.2) implies

corankB⊗ZpSelp∞(Y/L) = rankB⊗Zp(Y (L)⊗Qp/Zp) = (. . . , rankBY (L), . . .).

Each entry in the tuple is identical, giving (2), and independent of p, giving (1).

For the remainder, we let F/K be as at the beginning of §6.1 with F/k dihedral,
X/k and O ⊂ EndK(X) as in the previous sections (see §1.1), and assume that
each prime dividing [F : K] is unramified in O. For Theorem 6.9 below, we also
fix a cyclic extension L/K in F .

For each M/K in L, let RM denote the maximal order in Q[Gal(F/K)]M (as
in §3 for M = L) and OM = O ⊗ RM .3 Recall c is the non-trivial element of
Gal(K/k). Let (as in Corollary 6.4)

Sc
M := {primes v of K : vc = v and v ramifies in M/K} .

Set M0 = K and for each i > 0 set Mi ⊂ L to be a pi-extension of K such that
pi - [L : Mi].

Using Conjecture 6.6 (2), for any p, the tuple defining corankB⊗ZpSelp∞(Y/L)
may be thought of as a single value, so we define rp(Y/L,B) ∈ Z by

rp(Y/L,B) := corankBq
Selp∞(Y/L)⊗Bq,

where q is some prime of B above p. In turn, one may interpret the right-hand
side of Theorem 6.2 as a single value, so we define δ(X,L/K) ∈ Z/2Z as

δ(X,L/K) := the first component of

( ∑
v∈SL

δ(v,X,L/K)

)
mod 2.

Remark 6.8. We emphasize that the sum of the local constants δ(v,X,L/K),
for fixed X and L/K, has constant parity across components, by Conjecture 6.6
(2) and Theorem 6.2. It would be interesting to determine under what condi-
tions one can prove that the individual δ(v,X,L/K) have constant parity across
components.

Theorem 6.9. Assume Conjecture 6.6. For K = M0,M1, · · · , L as above and p
a prime dividing [L : K],

rp(AL/K,OL)− rp(X/K,O) ≡
∑
i>1

δ(AMi−1
,Mi/K) mod 2.

Proof. Without loss of generality we may assume p = p1. We proceed by induc-
tion on the number j of primes dividing [L : K], and the case j = 1 is that of
Theorem 6.2. Suppose now that j > 1, and let M = M1 and let M ′ correspond

3We note that OL ⊗ Zp ∼= O ⊗RL, with the latter as in Theorem 6.2. The new notation is
more convenient for dealing with more than one prime.
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to the compositum of the Mi for 1 < i 6 j. Recall from the discussion above that
Proposition 5.10 of [10] shows AL ∼= (AM )M ′ . Arguments of Howe [6, §2] show
that AM has a polarization degree of p2, in particular prime to [L : M ], and so we
can apply Theorem 6.2 in L/M with AM playing the role of X. For p′ any prime
dividing [L : M ], by induction we have

rp′(AL,OL)− rp′(AM ,OM ) ≡
∑
i>2

δ(AMi−1
,Mi/M) mod 2.

Using Conjecture 6.6 (1), we have

rp(Y/K,B) ≡ rp′(Y/K,B) mod 2,

for Y = X, AM , AL, and B = O, OM , OL, respectively, and hence

rp(AL/K,OL)− rp(X/K,O) ≡ rp′(AL/K,OL)− rp′(AM/K,OM )

+ rp(AM/K,OM )− rp(X/K,O)

≡
∑
i>2

δ(AMi−1
,Mi/M)

+ δ(X,M/K)

≡
∑
i>1

δ(AMi−1 ,Mi/K) mod 2.

We are able to restrict the primes v in the preceeding sums to those in Sc
Mi

just
as in Corollary 6.4. �

As in Corollary 6.5, the following is a first example of a setting in which The-
orem 6.9 can be used to provide a lower bound for growth in the rank of E (i.e.
when X = E is an elliptic curve).

Corollary 6.10. Let E/k be an elliptic curve, K 6⊂ k, and assume
#X(E/F ) < ∞. For each cyclic L/K let ML,i ⊂ L be as in the paragraphs
preceeding Theorem 6.9. Suppose that for every prime v of K,

1. if v = vc then v is unramified in ML,i/K for every L and each i > 2,
2. if v = vc and v ramifies in ML,1/K then v - p1 and E has good reduction

at v.

Let m be the number of primes v satisfying (2). If rankOE(K) + m is odd, then
rankOE(F ) > [F : K].

Proof. Fix a cyclic extension L/K inside F , and set Mi = ML,i. From
#X(E/F ) <∞ we have (e.g.) rankOE(K) = rp(E/K,O) and Conjecture 6.6, so
we are in the situation of Theorem 6.9. As in Corollary 6.4, if v is unramified or
v 6= vc then δ(v,Ami−1

,Mi/K) ≡ 0 or

δ(v,Ami−1
,Mi/K) + δ(vc, Ami−1

,Mi/K) ≡ 0,
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respectively, for every i > 1. For v = vc, condition (1) gives δ(v,Ami−1
,

Mi/K) ≡ 0, for every i > 2. Thus δ(E,Mi/K) ≡ 0 for i > 2. By Theo-
rem 2.8 of [4], condition (2) along with K 6⊂ k gives δ(v,E,M1/K) ≡ (1, 1),
and so δ(E,M1/K) ≡ m.

Using Theorem 6.9, we combine the calculations to see that

rp(AL/K,OL) ≡ rp(E/K,O) +m mod 2.

By assumption, this is forces rp(AL/K,OL) to be odd and hence at least 1. The
claim then follows just as in Corollary 6.5. �
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