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LINEAR RELATIONS AND ARITHMETIC ON ABELIAN
SCHEMES

Piotr Rzonsowski

Abstract: We investigate linear relations in Mordell-Weil groups of abelian varieties over finitely
generated fields over Q. Based on important and classical results for abelian varieties over these
fields and on lifts of abelian varieties to suitable abelian schemes, we prove theorems concerning
the reduction maps on torsion and non-torsion elements in Mordell-Weil groups of these varieties.
These theorems and the arithmetic of abelian schemes and their endomorphism algebras are our
key tools in the solutions of linear relation problems we work with in the last chapter of this
paper.
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1. Introduction

Let A/K be an abelian variety over finitely generated field extension K/Q. The
abelian variety A/K extends to an abelian group scheme A/S over an inte-
gral scheme S = SpecR such that S → SpecZ is a smooth morphism (cf [F2,
p. 204]). The smoothness of S → SpecZ implies that S is normal scheme [ST,
Lemma 33.14.2]. Hence, restricting to an open subset of S (cf. [Co] Rem 20.9 p. 148
and Remark 2.1 below), we observe that A/K extends to a projective abelian group
scheme A/S over an integral scheme S = SpecR such that S → SpecZ is smooth.
The ring R is a finitely generated Z-algebra, K is its field of fractions and A/K
is the generic fiber of A/S. Since A(K) is finitely generated we can choose S
(restricting to an open subset) such that the natural map A(S)→ A(K) is surjec-
tive. This map is also injective since A/S is proper, hence separated.

For every point s ∈ S there is a well defined reduction map rs : A(S) →
As (k(s)). In this paper we investigate linear relations among nontorsion points
in the Mordell-Weil group A(K) by use of the reduction map rv : A(S)→ Av(kv)
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for the closed points v ∈ S. Let us present below our main results of this paper
and recall the origins of the problems we investigate. In 1975 A. Schinzel proved
the following theorem.

Theorem ([Sch]). Let F be a number field and let γ, γ1, . . . , γr ∈ O×F,S0
for

some finite set S0 of primes of OF . Suppose that for every v /∈ S0 the following
congruence holds γ ≡ γ

n1,v

1 . . . γ
nr,v
r mod v for some n1,v, . . . , nr,v ∈ Z. Then the

exist n1, . . . , nr ∈ Z such that γ = γn1
1 . . . γnrr in F×.

In 2002 C. Khare proved the theorem of Schinzel by different methods [Kh] and
used this to investigate l-adic representations. Based on this in 2002 W. Gajda
asked the following question:

Question. Let F be a number field. Let A/F be an abelian variety and P ∈ A(F ).
Let Λ be a subgroup of A(F ). Suppose that for almost all v ∈ SpecOF the
following condition holds

rv(P ) ∈ rv(Λ).

Does it imply that P ∈ Λ?

This question has recently attracted attention of a number of mathematicians
and many results were obtained in the direction of solving this question: ([B],
[BGK1], [BGK2], [BK], [GG], [J], [K], [Pe1]), [We]. Nevertheless this question
does not have a positive solution in full generality and explicit counterexamples
to this question were presented in [BK], Section 6 and [JP].

In our paper we extend this question to abelian varieties over finitely generated
field extensions K/Q and we prove the following theorem:

Theorem (Thm 7.2). Let A be an abelian variety over K and P, P1, . . . , Pr
be nontorsion points in A(K). Let P1, . . . Pr be linearly independent over R :=
EndK(A) and Λ be a Z-submodule generated by P1, P2, . . . , Pr. Assume that

rv(P ) ∈ rv(Λ)

for all closed points v in U where U ⊂ S is an open subset. Then P ∈ Λ.

Theorem 7.2 in the case of a number field F with some extra assumption that
RP is a free R-module has been proven by G. Banaszak [B]. In the number field
case this assumption was removed by P. Perruca.

The original inspiration of my next results is the following question formulated
in 1988 by Paul Erdös. This question is called the support problem:

Question. Let Supp(n) denote the support of a natural number n, i.e. the set
of all prime numbers dividing n. Suppose that for some positive integers x, y the
following condition holds

Supp(xn − 1) = Supp(yn − 1)

for every natural number n. Does then x = y?
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This question and its analogues for number fields and for elliptic curves over
number fields has been solved by Corrales-Rodrigáñez and Schoof [C-RS]. The
support problem for abelian varieties over number fields has been recently inten-
sively investigated in many papers [BGK3], [KP], [Bar], [GG], [Lar], [Pe1]. The
most general result was obtained by M. Larsen [Lar]. We prove that Larsen’s
result holds in the general case of abelian varieties over finitely generated fields.

Theorem (Cor 8.5). Let A/K be an abelian variety defined over K. Let P,Q ∈
A(K) be two given points. Suppose that there is an open subset U ⊂ S such that
for all n ∈ Z and all closed points v ∈ U, the following condition holds

nrv(P ) = 0⇒ nrv(Q) = 0.

Then there exist a positive integer k and an endomorphism
ϕ ∈ EndK A \ {0} such that

ϕ(P ) = kQ.

In adition we also prove in this general case the following theorem which is
a vast generalization of a problem suggested to G. Banaszak by A. Schinzel in
1998 in the number field case. This theorem for abelian varieties over number
fields, with commutative endomorphism ring that is a domain, was proved by S.
Baranczuk [Bar].

Theorem. Let A/K be an abelian variety defined over K.
Let P0, P1, . . . , Pn, Q0, Q1, . . . , Qn ∈ A(K) be the points of infinite order. Assume
that the following condition holds:

There is an open set U ⊂ S such that for every set of nonnegative integers
m1, . . . ,mn and for all closed points v ∈ U , the following condition holds.

rv(P0) =

n∑
i=1

mirv(Pi) implies rv(Q0) =

n∑
i=1

mirv(Qi)

Then there exist αi ∈ EndK(A) \ {0} and ki ∈ N \ {0} such that αiPi = kiQi for
all i = 0, 1, . . . , n.

The main technical results of the paper are Theorems 2.3, 6.3 and 6.4, which
allow us to control images of torsion and nontorsion points via reduction maps.
These theorems, based on numerous results concerning the arithmetic of abelian
schemes and the properties of endomorphism rings EndK(A) are very useful tools
in this paper. Moreover these theorems make the proofs of our main results very
straightforward and in some cases even simpler then the corresponding results in
the number field case.
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of Polish Ministry of Science and Education no. 5289/B/H03/2010/38.
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Notation

l is a prime number
F is a number field
K is finitely generated fields over Q
Cl :=

⋃
k>1 C[lk] the l-primary part of an abelian group C

S is a base scheme
R is finitely generated Z− algebra such that K is fraction field
As = A×S Spec k(s)
Tl(A) Tate module
Klk = K(Al[l

k]), for any k > 0
Kl∞ := K(A[l∞])
Hl∞ := G(K/Kl∞)
Hlk := G(K/Klk)
GK = G(K/K)
Glk = G(Klk/K)
Gl∞ = G(Kl∞/K)

gs = Gk(s) = G(k(s)/k(s))

2. Galois and Kummer theory of abelian schemes

Let A/S be an abelian scheme over a base scheme S (see [FC] Chap. I, [Mi1]
Chap. 20). If s ∈ S is a point, not necessarily closed then As := A ×S Spec k(s)
denotes the fibre of A/S at s. By the properties of abelian schemes and universality
of fibre product we get the reduction map homomorphism

rs : A(S)→ As(k(s))

Take a point P̃ ∈ A(S). It is given by a section P̃ : S → A of the map A → S.
Let l be prime to the residue characteristics of S. The multiplication by lk on A/S
is an étale map [Mi2, Prop. 20.7]. Hence the pull back of the lk-multiplication
map by the map P̃ :

1
lk
P̃ −−−−→ Sy yP̃
A lk−−−−→ A

(2.1)

gives a finite scheme 1
lk
P̃ which is étale over S. In particular if ẽ := S → A

is the the unit section then A[lk] := 1
lk
ẽ is a finite group scheme, étale over

S, of order l2gk. So if the base scheme S is integral by the universality of fiber
product one can also check that for any point s ∈ S there is a natural isomorphism
1
lk
P̃ ×S Spec k(s) ∼= 1

lk
rs(P̃ ). Hence if K is the function field of S and A/K

is the generic fibre of A/S then A[lk] ×S SpecK ∼= A[lk]. Let S be a normal
integral scheme. Consider all finite extensions of L/K and L ⊂ Ks such that the
normalization S′ of S in L gives an extension of schemes S′/S, unramified at all
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points of S. If Kur denotes the union of all such fields L in Ks then by [Mi1] I,
Example 5.2 (b) π1(S) := π1(S, η) = G(Kur/K). In particular if S = SpecR is an
affinie scheme with R normal in K and L is such that the integral closure R′ of R
in L gives an affine scheme S′ = SpecR′ unramified over S we can define Rur to
be the union of all the rings R′. Then S̃ := SpecRur will be called the universal
cover of S.

Put for simplicity GK := G(K/K) and gs := Gk(s) = G(k(s)/k(s)). There is
the following commutative diagram:

H0(GK , A[l∞])/Div

H1(GK , Tl(A))l

lim←−k A(K)/lk

A(K)l

=

H0(π1(S),A[l∞])/Div

H1(π1(S), Tl(A))l

lim←−kA(S)/lk

A(S)l
rη

rη

rη

rη

=

H0(gs,As[l∞])/Div

H1(gs, Tl(As))l

lim←−kAs(k(s))/lk

As(k(s))l
rs

rs

rs

rs

=

where Div denotes the maximal divisible subgroup in an appropriate group. We
also used often in the diagram the notation Cl for the l-torsion part of an abelian
group C (see the Notation at the end of the introduction).

Remark 2.1. If A/K is an abelian variety over a field K then A is projective, say
A ⊂ Pn. If K is the function field of an integral noetherian scheme S then we can
take the Zariski closure of A in Pn/S to get a projective scheme A/S. Over some
open subset U ⊂ S the scheme A/U will become a projective abelian scheme (see
[Mi1] Remark 20.9.)

Remark 2.2. If A/S is an abelian scheme over an integral base scheme S, and
S̃ → S is the normalization of S we can change the base to get an abelian scheme
Ã := A ×S S̃ over a normal base scheme S̃. Hence we can find an open subset
Ũ ⊂ S̃ such that Ã/Ũ is a projective abelian scheme over an integral normal base
scheme Ũ .

Theorem 2.3 (Banaszak). Let A/S be an abelian scheme over an integral,
normal base scheme S with generic fibre A/K. Let l be prime to the residue
characteristics of S. Let s ∈ S be a point of S. Assume that H0(gs,As[l∞]) is
finite. Then the natural map

rs : A(S)l → As(k(s))l

is a monomorphism.

Proof. Since the finite group scheme A[lk] = A[lk] is étale over S for all k > 1
then the action of GK on A[lk] factors through the action of π1(S) = G(Kur/K).
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Since A[lk]/S is a finite étale scheme over S for every k > 1, then G(K(A[l∞])/K)
is a quotient of π1(S) and G(ks(As[l∞])/ks) is a quotient of G(K(A[l∞])/K). For
every s ∈ S we have Div = 0 in H0(gs,As[l∞]) by finiteness assumption. Hence
the bottom right horizontal arrow in the diagram above is an embedding. In
the diagram above the upper vertical arrows are monomorphism by the appropri-
ate cohomology long exact sequences application. The bottom vertical maps are
equalities by the Theorem of Tate [T, Proposition 2.3 p. 261]. �

Let S := SpecR. Assume that S is an integral, normal base scheme. Let
A/S be an abelian scheme whose generic fibre is abelian variety A/K. We put
A(R) := A(S). Assume that S is such that all points of A(K) lift to A(S). In
other words we assume that the natural map

A(S)→ A(K) (2.2)

is surjective. This map is also injective since A/S is proper, hence separated.
Hence the reduction map can be written as follows:

rs : A(K)→ As(k(s)).

Taking further R to be a finitely generated Z-algebra its field of fractions K
is a finitely generated field over Q. Since in this case A(K) is finitely generated
by Mordell-Weil and Lang-Néron (see Theorem 5.1 ) we can find an open subset
U ⊂ S such that the natural map

A(U)→ A(K) (2.3)

is surjective. Since base change transforms proper maps into proper maps, without
loss of generality in this paper, we will always assume that S is such that the nat-
ural map (2.3) is an isomorphism. Let v be a closed point of S which corresponds
to a maximal ideal of R denoted also by v. Let kv := k(v) = R/v. In this case the
reduction map has the following form:

rv : A(K)→ Av(kv). (2.4)

Corollary 2.4. Let R be a finitely generated Z-algebra such that
S = SpecR is an integral and normal scheme. Let A/S be an abelian scheme with
generic fibre A/K. Let l be prime to the residue characteristics of S. Let v ∈ S
be a closed point. Then the natural map

rv : A(K)l → Av(kv)l,

is a monomorphism.

Proof. By the proper and smooth base change theorem [Mi2, Chap. VI, Sec. 4,
Cor 4.2] applied to the constant sheaves Z/lk on A, for each k > 1 we have a nat-
ural isomomorphism H1(A,Z/lk) ∼= H1(Av,Z/lk) of gv := G(kv/kv)-modules for
every k > 1. Taking inverse limit on k and passing to Zl duals we get a natural
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isomorphism Tl(A) ∼= Tl(Av) of Zl and gv-modules. Tensoring with Ql/Zl gives an
isomorphism A[l∞] ∼= Av[l∞] of gv-modules. The group gv acts on these modules
by its quotient G(kv(Av[l∞])/kv). Since kv is a finite field, we know by the Weil
conjecture proven by Deligne that H0(gv,Av[l∞]) is finite. Hence H0(GK , A[l∞])
and H0(π1(S),A[l∞]) are also finite. Hence the Corollary follows from Theo-
rem 2.3. �

From now on, when working with reduction map, we always consider abelian
scheme A/S such that the assumptions of corollary 2.4 hold. Moreover we can
take S → SpecZ to be a smooth morphism (cf [F2, p. 204]). The smoothness of
S → SpecZ implies that S is normal scheme [ST, Lemma 33.14.2] . Tensoring the
reduction map (2.4) by Zl gives the following reduction map

rv : A(K)⊗ Zl → Av(kv)l

which we are going to use later in this paper.

3. Homorphisms of abelian schemes

Theorem 3.1 (Raynaud). Let S be noetherian integral scheme and G, H be two
abelian schemes over S. Assume that there exists a dense open subscheme U of
the scheme S and there exists a homomorphism ψU : H|U → G|U . Then there is
the unique extension of ψU to homomorphism ψ : H → G over S.

Proof. See [FC, Prop 2.7, p. 9] �

Let A/S and B/S be two projective abelian schemes with respective generic
fibers A/K and B/K. Then by [FC, Prop 2.7, p. 9] we have

HomK(A,B) = HomS(A,B)

because every homomorphism φ ∈ HomK(A,B) extends to an element of
HomU (A|U ,B|U ) for an open subset U ⊂ S. In particular EndK(A) = EndS(A).
For an abelian scheme A/S there is a finite field extension L/K such that there
is an isogeny φ : A →

∏t
i=1A

ei
i over L where Ai is a simple abelian variety over

L. If L/K is separable, S normal and S̃ is the normalization of S in L then we
can choose an open subset Ũ ⊂ S̃ such that Ũ/S is étale, hence smooth [Mi2] I,
Theorem 3.21. Put Ã := A ×S S̃. By remark 2.1 we can require that Ũ ⊂ S̃ is
such that Ai gives rise to an abelian projective scheme Ãi over Ũ . We will assume
without loss of generality in our work that Ũ = S̃. Since

HomL(A,

t∏
i=1

Aeii ) = HomS̃(Ã,
∏
i

Ãeii ),

the isogeny φ lifts to a homomorphism φ̃ ∈ HomS̃(Ã,
∏
i Ã

ei
i ). If S → SpecZ is

smooth then S̃ → SpecZ is also smooth since smoothness is preserved by compo-
sition.
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4. Homomorphisms of abelian varieties and nontorsion points of Mordell-
Weil groups

In this section K will denote any field.
Let V and W be algebraic varieties over K. For any field extension L/K the

symbolHomL(V,W ) denotes the set of all morphisms from V toW defined over L.
The Galois group G(K/K) acts on HomK(V,W ) (see eg. [Sil, p. 15] ) as follows.
For φ ∈ HomK(V,W ) and σ ∈ G(K/K) and any P ∈ V we define σ(φ)(P ) := σ ◦
φ◦σ−1(P ) = σ(φ(σ−1P )).We have HomK(V,W )G(K/K) = HomK(V,W ) cf., [Sil,
p. 20]. Hence for any Galois extension L/K, L ⊂ K the group G(K/K) acts on
HomL(V,W ) via its quotient G(L/K) and HomL(V,W )G(L/K) = HomK(V,W ).

In particular, for two abelian varieties A and B defined over K and for any
finite Galois extension L/K there is a well defined trace homomorphism between
the groups:

TrL/K : HomL(A,B)→ HomK(A,B)

TrL/K(φ) :=
∑

σ∈G(L/K)

σ(φ).

Consider the natural imbedding:

HomL(A,B)⊗ Zl → HomG(K/L)(Tl(A), Tl(B)).

Then the image of σ(φ) via this map equals σl ◦φl ◦σ−1
l , where φl is the image of φ

and σl denotes the action of σ on both Tl(A) and Tl(B). Let T̃ r : End0
K

(A)→ Q
be the trace see [Mi1, p. 125]. Then by [Mi1, Prop 12.9] we get T̃ r(σ(φ)) =
Tr(σl ◦φl ◦σ−1

l ) = Tr(φl) = T̃ r(φ). The bilinear form (α, β)→ T̃ r(αβ) is positive
definite [Mi1, Theorem 17.3]. In particular, if β 6= 0 then T̃ r(β?β) > 0 where ? is
the Rosati involution.

Theorem 4.1 (Ribet [Ri, Prop 1.5]). Let A be an abelian variety over K.
Let R := EndK(A) and for any field extension L/K let RL := EndL(A). Let
P1, . . . , Pr ∈ A(K) and let L/K be a finite, separable field extension. Then
P1, . . . , Pr are independent over R if and only if P1, . . . , Pr are independent over RL.

Proof. If P1, . . . , Pr are independent over RL then it is clear that they are inde-
pendent over R. Asume that P1, . . . , Pr are independent over R. We can assume
that L/K is Galois. Let β1, . . . , βr ∈ RL, not all equal to zero, be such that∑r
i=1 βiPi = 0. If βj 6= 0 we can find a scalar b ∈ N such that TrL/K(bβ?j βi) ∈ N.

Multiplying out by bβ? and applying TrL/K we get

r∑
i=1

TrL/K(bβ?j βi)Pi = 0 (4.1)

because Pi ∈ A(K) for all 1 6 i 6 r. By the discussion before this Lemma we note
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that

T̃ r(TrL/K(bβ?j βj)) =
∑

σ∈G(L/K)

T̃ r(σ(bβ?j βj)) (4.2)

= [L : K]T̃ r(bβ?j βj) > 0.

Hence TrL/K(bβ?j βj) 6= 0. But equation (4.1) gives a linear dependence of points
P1, . . . , Pr over R with coefficient TrL/K(bβ?j βj) 6= 0. A contradiction. �

Below we collect three elementary lemmas that will be usefull in our proofs in
Section 6.

Lemma 4.2. Let A be an abelian variety A = A1× · · · × As, where Ai/K is an
abelian variety for each 1 6 i 6 s. Let Q1, . . . , Qr ∈ A(K). Write Qi = [Qji ]16j6s
with Qji ∈ Aj(K) for each 1 6 j 6 s.

1. If Q1, . . . , Qr ∈ A(K) are linearly independent over EndK(A) then Qj1, . . . Q
j
r

are linearly independent over EndK(Aj) for every 1 6 j 6 r.
2. If in addition Hom(Ai, Aj) = {0} for all j 6= i, then the following conditions

are equivalent

(a) Q1, . . . , Qr ∈ A(K) are linearly independent over EndK(A)

(b) Qj1, . . . Q
j
r are linearly independent over EndK(Aj) ∀16j6r.

Proof. (1) Follows from the following inclusion:

EndK(A1)× · · · × EndK(At) ⊂ EndK(A1 × · · · ×At).

(2) Follows from the following isomorphism:

EndK(A1)× · · · × EndK(At) ∼= EndK(A1 × · · · ×At). �

Lemma 4.3. Let A be a simple abelian variety over K and let e ∈ N. Let
Q1, . . . , Qr ∈ Ae(K) = A(K)e. Write Qi := [Qji ]16j6e, with
Qji ∈ A(K). The following conditions are equivalent

1. Q1, . . . , Qr ∈ A(K) are linearly independent over EndK(Ae)

2. the points Qji ,∀16i6r,16j6e are linearly independent over EndK(A).

Proof. Follows from simple observation that:

r∑
i=1

 α11
i · · · α1e

i
...

. . .
...

αe1i · · · αeei


 Q1

i
...
Qei

 =

 0
...
0


if and only if

∑r
i=1

∑e
j=1 α

kj
i Q

j
i = 0 for every 1 6 k 6 e. �
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Lemma 4.4. Let A =
∏t
i=1A

ei
i where Ai/K is simple for each 1 6 i 6 t and Ai

is not isogenous to Aj for all i 6= j. Let Q1, . . . , Qr ∈ A(K). Write Qi = [Qji ]16j6t
with Qji ∈ A

ej
j (K), and write Qji = [Qj,ki ]16k6ei for Q

j,k
i ∈ Aj(K).

The following conditions are equivalent

1. Q1, . . . , Qr ∈ A(K) are linearly independent over EndK(A),

2. For every 1 6 j 6 t the points (Qj,ki )16i6r,16k6ei are linearly independent
over EndK(Aj).

Proof. Follows immediately from Lemmas 4.2 and 4.3. �

5. l-adic representations for abelian varieties over finitely generated
fields

In this section we collect some classical results about abelian varieties A/K for K
a finitely generated field over Q. As explained at the beginning of the introduction
A/K extends to a projective, abelian group scheme A/S over an integral scheme
S = SpecR such that S → SpecZ is smooth and such that:

A(S)
∼=−→ A(K).

Let Ks denote a separable closure of K. Let v ∈ S be a closed point an let
Frv ∈ G(Ks/K) be any element of the conjugacy class of the canonical generator
of G(kv/kv) ⊂ π1(S). The elements will be called Frobenius elements for v.

Theorem 5.1 (Mordell-Weil, Lang-Néron). Let A be an abelian variety
over K. Then A(K) is a finitely generated abelian group.

Proof. See [L] Theorem 4.1 and Theorem 4.2 and Corollary 4.3 p. 27-28. �

Theorem 5.2 (Chebotarev). Let A/K be an abelian variety. The set {Frv :
v closed point of S} is dense in π1(S).

Proof. See [FW, pp. 206-207], [Se3, pp. 91]. �

Theorem 5.3 (Faltings). For any abelian variety A/K and any prime number l:

(i) End(A)⊗Z Zl → EndGF
(
Tl(A)

)
is an isomorphism,

(ii) Vl(A) is a semisimple Ql[Gl∞ ] module.

Proof. See [FW, Theorem 1, p. 204]. �

Theorem 5.4 (Zarhin). For any abelian variety A/K and for any prime num-
ber l:

(i) EndK(A)⊗ Z/l→ EndGK
(
A[l]

)
is an isomorphism,

(ii) A[l] is semisimple Z/l[Gl] module for l� 0

Proof. See [S-Z, Prop. 3.4] �
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Theorem 5.5 (Serre). Let A/K be abelian variety and let

ρl : GK −→ GL
(
Tl(A)

)
be the l-adic representation associated with A. Then the index

el :=
[
Z×IdTl(A) : ρl(GK) ∩ Z×l IdTl(A)

]
is bounded independently of l.

The Theorem 5.5 in the case when K is a number field is proven in [Se1] and it
was suggested in loc. cit. that the Theorem holds for A/K over a finitely generated
field K/Q. Since the proof for finitely generated fields is not in the literature we
will give two proofs of this theorem below. Proof 1 was explained to G. Banaszak
by J-P. Serre.

Proof 1 (Serre). The proof goes by induction on n = tr. deg .K. If n > 0, we may
view K as the function field of a smooth curve C over a field K0 with tr. degK0

equal to n− 1. The abelian variety A/K defines an abelian group scheme Ã over
an open dense subset U of C. Choose a closed point P in U and let v be the
discrete valuation of K defined by P ; its residue field kv is a finite extension of
K0. If m is any integer > 0, the field extension K(A[m])/K is unramified at v.
The corresponding Galois group G(K(A[m])/K) has a decomposition group at v
which is isomorphic to G(kv(Ãv[m])/kv) where Ãv is the fiber of Ã at v. This
shows, by taking a projective limit on m, that the image of

Gal(K/K)→
∏
l

GL
(
Tl(A)

)
contains the image of

Gal(kv/kv)→
∏
l

GL
(
Tl(Ãv)

)
,

where GL
(
Tl(A)

) ∼= GL
(
Tl(Ãv)

) ∼= GL2g(Zl). By induction the image of
Gal(kv/kv) →

∏
lGL

(
Tl(Ãv)

)
contains the e-powers of homotheties for some

e > 0. Hence the image of Gal(K/K)→
∏
lGL

(
Tl(A)

)
contains also the e-powers

of homotheties. �

Proof 2 (Banaszak). The proof is done in four steps.
Step 1. There is a smooth, geometrically irreducible scheme S over L (= the

algebraic closure of Q in K) with generic point η = SpecK such that A is the
generic fibre of A → S, an abelian scheme (= proper, smooth morphism with
geometrically connected fibers) [F1, p. 1] Moreover there is a closed point P ∈
S(L) [F2, p. 212]. So we have A = A×S η. Put AP := A×S P.
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Step 2. Put GK := G(K/K) and GL := G(L/L). The natural map GK →
π1(S) is surjective and the decomposition group DP ⊂ πet1 (S) is isomorphic to
GL, where πet1 (S) := πet1 (S, η). Moreover GK acts on Tl(A) via its quotient πet1 (S)
[F2, p. 212]

Step 3. By [Se2] the index

el = [Z×l IdTl(AP ) : ρL,l(DP ) ∩ Z×l IdTl(AP )]

is bounded as l varies where

ρL,l : GL → GL(Tl(AP )).

Step 4. By proper and smooth base change theorem [Mi2, Chap. VI, Sec. 4,
Cor 4.2] applied to the constant sheaves Z/lk on A, for each k > 1, we have
a natural isomorphism Tl(A) ∼= Tl(AP ) of Zl[DP ] modules such that DP acts on
Tl(A) as a subgroup of πet1 (S). Hence ẽl 6 el. �

Corollary 5.6 (Bogomolov). Let A/K be abelian variety and let l be a prime
number. Let ρl : GK −→ GL

(
Tl(A)

)
be the l-adic representation associated with A.

Then ρl(GK) ∩ Z×l IdTl(A) is open in Z×l IdTl(A)

Proof. Follows immediately from Theorem 5.5. �

Theorem 5.7 (Serre). For any abelian variety over K and for any prime num-
ber l:

(i) Hn (Gl∞ ; Vl(A)) = 0
(ii) Hn (Gl∞ ; Tl(A)) is finite

Proof. See [Se2] Corollaire and Remarque 2 p. 734. �

Theorem 5.8. Let A be an abelian variety over K and let l be a prime number.
Then:

(i) Hn
(
Glk′ ;A[lk]

)
= 0 for l� 0 and k′ > k > 1

(ii) Hn
(
Gl∞ ;Tl(A)

)
= 0 for l� 0

Proof. By Theorem 5.5 there is e ∈ N such that el 6 e for all l. Take l � 0

such that l > e + 1. Because Z×l ∼=
(
Z/l
)× × (1 + lZl) there is h := cIdTl(A) ∈

(Z/l
)×
IdTl(A) ⊂ Z×l IdTl(A), c 6≡ 1 mod l.

Let ∆ be the subgroup of Gl∞ generated by cIdTl(A), | ∆ |
∣∣∣l− 1 Observe that

∆ maps isomorphicaly to its image Gl∞ → Glk ∀k > 1. Note that ∆ ⊂ Z(Gl∞)
and ∆ ⊂ Z(Glk) for ∀k>1. Consider the spectral sequence

Ei,j2 = Hi

(
Glk′/∆;Hj(∆ ; A[lk])

)
⇒ Hi+j

(
Glk′ ;A[lk]

)
Observe that Hj(∆ : A[lk]) = 0 for all j > 0 because |∆||l − 1. Moreover by
definition of ∆ it is clear that H0(∆ : A[lk]) = A[lk]∆ = 0. This implies that
Hn(Glk′ : A[lk]) = 0 for all n > 0, l > e + 1 and for all k′ > k > 0. Hence
Hn
(
Gl∞ ;Tl(A)

)
= lim←−k lim−→k′

Hn(Glk′ ;A[lk]) = 0 for l > e+ 1. �
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6. Reduction of torsion and nontorsion points

In this section we apply all results of the previous sections to prove a theorem
on the reduction of nontorsion elements in A(K). This result is an extension of
Theorem 3.3 [BK] and Proposition 11 [Pe2] to the case of finitely generated field
K. This section reminds Section 3 of [BK] but we include complete proofs for the
convenience of the reader.

Let A = A1 × · · · × At be a product of simple nonisogenous abelian varieties
Ai defined over K. Let Ri := EndK(Ai). Let Pi1, . . . , Piri ∈ Ai(K) be linearly
independent over Ri for each 1 6 i 6 t. Put Kl∞ := K(A[l∞]), GK = G(K/K),
Gl∞ := G(Kl∞/K), Hl∞ := G(K/Kl∞) and Hlk := G(K/Klk) for all k > 1. For
each 1 6 i 6 t and 1 6 j 6 ri let

φij : Hl∞ → Tl(Ai)

denote the inverse limit over k of the Kummer maps:

φ
(k)
ij : Hlk → Ai[l

k],

φ
(k)
ij (σ) := σ(

1

lk
Pij)−

1

lk
Pij .

Lemma 6.1. If α11, . . . , α1r1 ∈ R1 ⊗Z Zl, . . . , αt1, . . . , αtrt ∈ Rt ⊗Z Zl are such
that

∑t
i=1

∑rt
j=1 αijφij = 0, then αij = 0 in Ri for all 1 6 i 6 t, 1 6 j 6 ri.

Proof. Let Ψ be the composition of maps:

A(K)⊗Z Zl ↪→ H1(GK ;Tl(A)) −→ H1 (Hl∞ ;Tl(A)) = Hom (Hl∞ ;Tl(A)) .

Note that φij = Ψ(Pij ⊗ 1). By Theorem 5.7 the group H1 (Gl∞ ;Tl(A)) is finite
hence ker Ψ ⊂ (A(K)⊗Z Zl)tor. Let c := |A(K)tor|. Since Ψ is an R ⊗Z Zl-
homomorphism, we have:

0 =

t∑
i=1

rt∑
j=1

αijφij = Ψ

 t∑
i=1

rt∑
j=1

αij(Pij ⊗ 1)

 .

Hence

c

t∑
i=1

rt∑
j=1

αij(Pij ⊗ 1) = 0

in A(K)⊗Z Zl. Since Pi1 ⊗ 1, . . . , Piri ⊗ 1 are linearly independent over Ri ⊗Z Zl
in Ai(K) ⊗Z Zl we obtain cαij = 0 hence αi1 = · · · = αiri = 0, because Ri
is a free Z-module for each 1 6 i 6 t. �
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Define the following maps:

Φki : Hlk → Ai[l
k]ri

Φki (σ) :=
(
φ

(k)
i1 (σ), . . . , φ

(k)
iri

(σ)
)

Then define the map Φk : Hlk →
⊕t

i=1Ai[l
k]ri as follows

Φk :=

t⊕
i=1

Φki .

Define the following maps:

Φi : Hl∞ → Tl(Ai)
ri

Φi(σ) := (φi1(σ), . . . , φiri(σ))

Again define the map Φ : Hl∞ →
⊕t

i=1 Tl(Ai)
ri as follows

Φ :=

t⊕
i=1

Φi.

Lemma 6.2. The image of the map Φ is open in
⊕t

i=1 Tl(Ai)
ri .

Proof. Let T :=
⊕t

i=1 Tl(Ai)
ri and let W := T ⊗Zl Ql =

⊕t
i=1 V

ri
il where Vil :=

Tl(Ai) ⊗Zl Ql. Denote by Φ ⊗ 1 the composition of Φ with the obvious natural
inclusion T ↪→ W. Put M := Im(Φ ⊗ 1) ⊂ W . Both M and W are Ql[Gl∞ ]-
modules. It is enough to show that ImΦ has a finite index in T (cf, [Ri, Th. 1.2].
Hence it is enough to show that Φ ⊗ 1 is onto. Observe that Vil is a semisimple
Ql[Gl∞ ]-module for each 1 6 i 6 t because it is a direct summand of the semisimple
Ql[Gl∞ ]-module Vl(A) =

⊕t
i=1 Vil by results of Faltings and Zarhin (see Theorem

5.3 (ii)). Note that Gl∞ acts on Vil via the quotient G(L(Ai[l
∞])/L). If Φ ⊗ 1

is not onto we have a decomposition W = M ⊕M1 of Ql[Gl∞ ]-modules with M1

nontrivial.
Let πM1

: W → W be the projection onto M1 and let πi : W → Vil be
a projection that maps M1 nontrivially. Denote π̃i := πi ◦ πM1 . Again it follows
by results of Faltings and Zarhin (see Theorem 5.3 (i)) that HomGl∞ (Vil;Vi′l) ∼=
HomL(Ai;Ai′)⊗Zl Ql = 0 for all i 6= i′. Hence

π̃i(vij) =

ri∑
j=1

βijvij ,

for some βij ∈ Ri ⊗ Ql. Since πi is nontrivial on M1, we see that some βij is
nonzero. On the other hand

π̃i(Φ(h)⊗ 1) =

ri∑
j=1

βij(φij(h)⊗ 1) = 0,
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for all h ∈ Hl∞ . Multiplying the last equality by a suitable power of l we get:

0 =

ri∑
j=1

αij(φij(h)⊗ 1),

for some αij ∈ Ri ⊗Zl. Since the maps Ri ⊗Zl ↪→ Ri ⊗Ql and Hom(Hl∞ , Tl) ↪→
Hom(Hl∞ , Vl) are imbeddings of R⊗ Zl-modules, we obtain

∑ri
j=1 αijφij = 0. By

Lemma 6.1 we get αi1 = · · · = αiri = 0, hence βi1 = · · · = βiri = 0 because R is
torsion free. This contradiction shows that M1 = 0. �

Theorem 6.3. Let A =
∏t
i=1Ai be abelian variety over finitely generated field K

over Q such that HomK(Ai, Aj) = 0 for all j 6= i. Let l be a prime number. Let
Qij ∈ Ai(K) for 1 6 j 6 ri be independent over Ri for each 1 6 i 6 t. Then for
every open subset U ⊂ S exists infinite many closed points v ∈ U such such that
rv(Qij) = 0 in Aiv(kv)l for all 1 6 j 6 ri and 1 6 i 6 t.

Proof. Step 1. By lemma 6.2 there is an m ∈ N such that

lm
t⊕
i=1

Tl(Ai)
ri ⊂ Φ (Hl∞)) ⊂

t⊕
i=1

Tl(Ai)
ri .

Let Γ be the R-submodule of A(K) generated by all the points Qij . Hence

Γ =

t∑
i=1

ri∑
j=1

RiQij .

For k > m consider the following commutative diagram.

G(Kl∞( 1
l∞Γ)/Kl∞)

Φ−−−−→
⊕t

i=1 Tl(Ai)
ri/lm

⊕t
i=1 Tl(Ai)

riy y
G
(
Klk+1( 1

lk+1 Γ)/Klk+1

) Φk+1

−−−−→
⊕t

i=1

(
Ai[l

k+1]
)ri

/lm
⊕t

i=1

(
Ai[l

k+1]
)riy y=

G
(
Klk( 1

lk
Γ)/Klk

) Φk−−−−→
⊕t

i=1

(
Ai[l

k]
)ri

/lm
⊕t

i=1

(
Ai[l

k]
)ri

The maps Φ and Φk, for all k > 1, are induced naturally by Kummer maps.
For k � 0 the images of the middle and bottom horizontal arrows in this diagram
are isomorphic. Hence G(Klk+1( 1

lk+1 Γ)/Klk+1) maps onto G(Klk( 1
lk

Γ)/Klk) via
the left bottom vertical arrow in the diagram because the map Φk is injective for
each k > 1. Consider the following tower of field
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Klk

Klk
(

1
lk

Γ
)

Klk+1

Klk+1

(
1
lk

Γ
)

Klk+1

(
1

lk+1 Γ
)

It is clear that we have the following equality:

Klk(
1

lk
Γ) ∩Klk+1 = Klk for k � 0 (6.1)

Step 2. Let U0 := SpecR0 ⊂ S be an open affine subset where R0 is a lo-
calization of R. Let R1 (resp. R2) be integral closure of R0 in Klk+1( 1

lk
Γ) (resp.

in Klk( 1
lk

Γ)). Let U1 := SpecR1 and U2 := SpecR2. We can choose U0 such
that A(U1)

∼→ A(Klk+1( 1
lk

Γ)), A(U2)
∼→ A(Klk( 1

lk
Γ)) and A(U0)

∼→ A(K) (See
comment after Theorem 3.1).

By result of Bogomolov, Corollary 5.6, we can find k � 0 and h ∈ G (Kl∞/Klk)
which acts on TlA as a homothety 1+ lku for and some u ∈ Z×l . Let h also denote,
by a slight abuse of notation, the projection of h onto G (Klk+1/Klk). By (6) we
can choose σ ∈ G

(
Klk+1( 1

lk
Γ)/K

)
such that σ|K

lk
( 1

lk
Γ) = id and σ|K

lk+1
= h. By

Chebotarev density theorem, (see Theorem (5.2)) there is a infinite set of closed
points v ∈ U0 such that there is a closed point v1 ∈ U1 over v whose Frobenius in
Klk+1

(
1
lk

Γ
)
/K equals to σ.

Let lcij be the order of the element rv(Qij) in the group Aiv(kv)l, for some
cij > 0. Let v2 be a closed point of U2 below v1. Consider the following commu-
tative diagram:

Ai(K)
rv−−−−→ Aiv(kv)ly y=

Ai
(
Klk( 1

lk
Γ)
) rv2−−−−→ Ai,v(kv2)ly y

Ai
(
Klk+1( 1

lk
Γ)
) rv1−−−−→ Aiv(kv1)l

(6.2)

Observe that all vertical arrows in the diagram (6.2) are injective. Let Rij :=
1
lk
Qij ∈ A

(
Klk( 1

lk
Γ)
)
⊂ A

(
Klk+1( 1

lk
Γ)
)
. The element rv1(Rij) has order lk+cij in

the group Aiv1(kv1)l because

lk+cijrv1(Rij) = lcijrv(Qij) = 0.
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By the choice of v, we have kv = kv2 hence rv1(Rij) comes from an element of
Aiv(kv)l. If cij > 1 then

h
(
lcij−1rv1(Rij)

)
= (1 + lku)lcij−1rv1(Rij)

since lcij−1rv1(Rij) ∈ Aiv(kv)
[
lk+1

]
. On the other hand, by the choice of v,

Frobenius at v1 acts on lcij−1rv1(Rij) via h. So h
(
lcij−1rv1(Rij)

)
= lcij−1rv1(Rij)

because rv1(Rij) ∈ Aiv(kv)l. Hence, lcij−1urv1(Qij) = 0 but this is impossible
since the order of rv1(Qij) = 0 is lcij . Hence we must have cij = 0. �

Theorem 6.4. Let A =
∏t
i=1Ai be abelian variety over finitely generated field

over Q such that HomK(Ai, Aj) = 0 for all j 6= i. Let l be a prime number. Let
m ∈ N ∪ {0} for all 1 6 j 6 ri and 1 6 i 6 t. Let Pij ∈ Ai(K) be independent
over Ri and let Tij ∈ Ai [lm] be aribitrary torsion elements for all 1 6 j 6 ri and
1 6 i 6 t. Let R′ be integral closure of R in K(A[lm]). Let ω′ be a closed point in
U ′ over v where U ′ := γ−1(U) and γ is natural map γ : SpecR′ → SpecR. Then
exists infinitely many closed points v ∈ U such that

rw′(Tij) = rv(Pij)inAi,v(kv)l

for all 1 6 j 6 ri and 1 6 i 6 s, where

rw′ : Ai (L(Ai[l
m]))→ Ai,w(kw′)

is the corresponding reduction map.

Proof. It follows immediately from Theorem 6.3 taking L (A[lm]) for L and
putting Qij := Pij − Tij for all 1 6 j 6 ri and 1 6 i 6 t. �

7. Proof of Theorem A

By Poincare Irreducibility Theorem there is a finite extension L/K and isogeny
ϕ : A → Ae11 × · · · × A

et
t over L where Ai/L is a simple for every 1 6 i 6 t and

Ai is not isogenous to Aj for all i 6= j. We can always assume that L/K is Galois.
We will use the field L introduced above in the following lemma.

Lemma 7.1. Let A be an abelian variety over K and P, P1, . . . , Pr be nontorsion
points in A(K). Let P1, . . . Pr be linearly independent over RL := EndL(A),
R := EndK(A) and Λ be an Z-submodule generated by P1, P2, . . . Pr. Assume that

rv(P ) ∈ rv(Λ) (7.1)

for all closed points v in an open subset U ⊂ S. Then aP ∈
∑r
i=1RPi for some

positive integer a.

Proof. Case 1. A a simple abelian variety. We first proof that P, P1, . . . , Pr are
not linearly independent over R. Indeed, if P, P1, . . . , Pr are independent over R
then by theorems 6.3 and 6.4 there is closed point v in U s.t. rv(P ) has big order



100 Piotr Rzonsowski

and
rv(Pi) = 0 in Av(kv) but this contradicts (7.1). Hence there are α, α1, . . . , αr ∈ R
and α 6= 0 such that

αP = α1P1 + · · ·+ αrPr ∈ A(F )

Since A is simple there is an isogeny α̂ such that α̂α = a ∈ N. Then

α̂αP = α̂α1P1 + · · ·+ α̂αrPr.

Hence aP ∈
∑r
i=1RPi.

Case 2. A = A1 × · · · × As product of arbitrary simple abelian varieties (We
do not assume that Ai’s are not pairwise isogenous).

P =

 P 1

...
P s

 , Pi =

 P 1
i
...
P si


Now by lemma 4.2 we know that {P ji }16i6r are linearly independent over Rj :=

End(Aj) for every 1 6 j 6 s. By assumption (7.1) we get rv(P j) ∈
∑r
i=1 Zrv(P

j
i )

for every 1 6 j 6 s. By Case 1 for every 1 6 j 6 s there exist αij ∈ EndK(Aj)

and aj ∈ N such that ajP j =
∑s
i=1 α

j
iP

j
i . Putting a := LCM{aj : 1 6 j 6 s} this

gives aP j =
∑s
i=1 β

j
iP

j
i for some βji ∈ Rj . Hence we get

a

 P 1

...
P s

 =

r∑
i=1



β1
i · · · 0

0
. . .

...
... βji

...
...

. . .
...

0 · · · βsi


 P 1

i
...
P si



So aP ∈
∑r
i=1RPi

Case 3. A an arbitrary abelian variety. By Poincare irreducibility theorem
there is a finite extension L/K and isogeny ϕ : A→ Ae11 × · · ·×Aems over L where
Ai is simple for every 1 6 i 6 m and Ai is not isogenous to Aj for all i 6= j. We
can work over L since A(K) ⊂ A(L) and Av(kv) ⊂ Av(kw) for every closed point
w over v in UL (See comment after theorem 3.1 concerning the choice of UL). To
make notation easier put B := Ae11 × · · · × Aems . By (7.1) we get the following
property for A/L :

rw(P ) ∈ rw(Λ) (7.2)

for all closed points w in UL. The points ϕ(P ), ϕ(P1), . . . , ϕ(Pr) are nontorsion
in B(L) and ϕ(P1), . . . , ϕ(Pr) are linearly independent over R′L := EndL(B) by
asumption. Now by Case 2 we get aϕ(P ) ∈

∑r
i=1R′ϕ(Pi) in B(L) for some a ∈ N.

There is an isogeny ϕ̂ : B → A over L such that ϕ̂◦ϕ = a′ ∈ N. Hence we get that
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a′aP ∈ RLP i + T for some and T ∈ A(L)tor. By Theorem 6.3 there are infinitely
many w ∈ UL such that rw(Pi) = 0 in Av(kw)l for every 1 6 i 6 r. Hence by
property (7.2) we get rw(T ) = 0 for infinitely many w. But rw is injection for
torsion points (Theorem 2.3) so T = 0. Put b = a′a. We have bP =

∑r
i=1 βiPi

with βi ∈ RL := EndL(A). Recall that we assume that L/K is Galois. Note
that since P, P1, . . . , Pr ∈ A(K) we get b|G(L/K)|P =

∑r
i=1 TrL/K(βi)Pi. But

TrL/K(βi) ∈ R for every 1 6 i 6 r �

Theorem 7.2. Let A be an abelian variety over K and P, P1, . . . , Pr be nontorsion
points in A(K). Let P1, . . . Pr be linearly independent over RL := EndL(A) and
Λ be a Z-submodule generated by P1, P2, . . . , Pr. Assume that

rv(P ) ∈ rv(Λ) (7.3)

for all closed points v in an open subset U ⊂ S. Then P ∈ Λ.

Proof. By Lemma (7.1) there is a ∈ N and αi ∈ R for 1 6 i 6 r such that

aP =

r∑
i=1

αiPi

Now we use an argument similar to an argument of [B].
Step 1. If αi ∈ Z for every 1 6 i 6 r then using Theorem 6.3 the same

arguments as of Step 1 of the proof of [B, Theorem 1.1] shows P ∈ Λ.
Step 2. Assume that αi /∈ Z for some 1 6 i 6 r. For any prime number l

consider the action of αi on Tl(A). By [Mi1, Proposition 12.9] we have Pαi(n) =
deg(αi−n) for every n ∈ Z, where Pαi(t) is the characteristic polynomial of αi on
Tl(A) and deg : End(A)→ Z is the degree function. Hence Pαi(t) ∈ Z[t] and Pαi(t)
is monic. Let K be the splitting field of Pαi(t). For any l that splits completely
in K we can treat OK as a subring of Zl. If Pαi(t) has at least two different roots
then we can easily find a vector u ∈ Tl(A) which is not an eigenvector of αi,
simply take a sum of two eigenvectors corresponding to different eigenvalues. If
Pαi(t) has only one root λ ∈ OK then Pαi(t) = (t − λ)2g and since 2gλ ∈ Z we
have λ ∈ OK ∩ Q = Z. By Theorem 5.3 we observe that αi 6= λIdTl(A) so the
minimal polynomial for αi on Tl(A) has form (t−λ)k for some 1 < k 6 2g. Hence
also in this case we can find a vector u ∈ Tl(A) which is not an eigenvector of
αi. Rescaling if necessary, we can assume that u /∈ lTl(A). Hence for m ∈ N and
m big enough we can see that the coset u + lmTl(A) is not an eigenvector of αi
acting on Tl(A)/lmTl(A) see [B] proof of Theorem 1. We put T ∈ A[lm] to be
the image of the coset u + lmTl(A) via the natural isomorphism of Galois and R
modules Tl(A)/lmTl(A) ∼= A[lm]. Put L := F (A[lm]). We can work in A(L). By
Theorem 6.3 we choose a closed point w in UL such that rw(Pj) = 0 for all j 6= i
and rw(Pi) = rw(T ) in Aw(kw)l. Hence arw(P ) = αirw(T ). By assumption (7.3)
there is d ∈ Z, such that arw(P ) = adrw(Pi) = adrw(T ). Since rw is injective, we
get:

αiT = adT in A[lm].



102 Piotr Rzonsowski

But this contradicts the fact that T is not an eigenvector of αi acting on A[lm].
Hence we must have αi ∈ Z for all 1 6 i 6 r, which is the step 1 of the proof. �

Proposition 7.3. Let A be an abelian variety over K. Let P1, . . . , Pr be elements
of A(F ) lineraly independent over R := EndK(A). Let P be a point of A(F ) such
that RP is a free R module. The following conditions are equivalent:

1. P ∈
∑r
i=1RPi

2. rv(P ) ∈
∑r
i=1Rrv(Pi) for all closed points v in an open subset U ⊂ S

Proof. The proof is similar as in [B, Prop 2.8]. �

8. Support Problem

Theorem 8.1. Let A/K be an abelian variety defined over a fnitely generated feld
K over Q. As before A is the generic fiber of the abelian scheme A/S. Assume that
A is isogeneous to Ae11 × · · · × A

et
t with Ai simple, pairwise nonisogenous abelian

varieties. Let P,Q ∈ A(K) be two given points. Suppose that there is an open
subset U ⊂ S such that for all n ∈ Z and all closed points v ∈ U, the following
condition holds.

nrv(P ) = 0⇒ nrv(Q) = 0

Then there exist a positive integer k and an endomorphism
ϕ ∈ EndK A \ {0} such that

ϕ(P ) = kQ

Proof. Let

P = (P1, . . . , Pt) ∈ A(K) and Q = (Q1, . . . , Qt) ∈ A(K)

with Pi, Qi ∈ Aei1 (K) for each 1 6 i 6 t. We can write Pi := (P ji )16j6ei , Qi :=

(Qji )16j6ei with P ji , Q
j
i ∈ Ai(K) for all 1 6 i 6 t and 1 6 j 6 ei. Recall that

R := EndA and Ri := EndAi. Note that Di := EndAi ⊗Q is a division algebra.
Hence for each 1 6 i 6 t we can choose a maximal, linearly independent over Ri
subset {P j1i , . . . , P

jsi
i } ⊂ {P 1

i , . . . , P
ei
i }. Then for every 1 6 i 6 t, 1 6 j 6 ei there

exists ci,j ∈ N such that

ci,jP
j
i =

si∑
k=1

βkP
jk
i (8.1)

Let c := LCM{ci,j : 1 6 i 6 t, 1 6 j 6 ei.} Assume that for some i and j the
points Qji and P j1i , . . . , P

ei
i are linearly independent over Ri. Then by Theorem

6.4 we can choose v ∈ U such that ord rv(P
jk
i ) = 0 and ord rv(Q

j
i ) has prder lc.

Then we see that crv(P ) = 0 so it implies by our assumption that crv(Q) = 0.
But this is a contradiction since the order of rv(Q) is lc by the choice of v ∈ U.

So for every 1 6 i 6 t, 1 6 j 6 ei. There exists αji , β
j1
i , . . . , β

jsi
i ∈ Ri with

αji 6= 0 such that

αjiQ
j
i =

si∑
k=1

βjki P
jk
i
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For each 1 6 i 6 t put Bi := diag[α1
i , . . . , α

ei
i ] ∈ Mei(Ri). Hence equality (8.1)

gives the following equality:
B1 0 · · · 0

0 B2
. . . 0

...
. . . . . .

...
0 · · · 0 Bt

Q = ϕ(P )

for some ϕ ∈ R. But for every αji there exists α̂ji such that αji ◦ α̂
j
i = α̂ji ◦ α

j
i = dji

for some dji ∈ N. For each 1 6 i 6 t put B̂i := diag[α̂1
i , . . . , α̂

ei
i ] ∈ Mei(Ri) and

Di := diag[d1
i , . . . , d

ei
i ] ∈ Mei(Z). Hence multiplying the equality by the block

diagonal matrix 
B̂1 0 · · · 0

0 B̂2
. . . 0

...
. . . . . .

...
0 · · · 0 B̂t


we get equality

DQ = ϕ1P (8.2)

for some ϕ1 ∈ R, where D := diag[D1, . . . , Dt] ∈ R. Since dji 6= 0 for all i, j
then there are diagonal matrices D′i := diag[d1′

i , . . . , d
ei′
i ] ∈ Mei(Z) such that

D′iDi = dIei . So multiplying the equality (8.2) by the matrix
D′1 0 · · · 0

0 D′2
. . . 0

...
. . . . . .

...
0 · · · 0 D′t


we get

dQ = ϕ2(P )

for d ∈ N and some ϕ2 ∈ R. �

Remark 8.2. Let ϕ : A→ B be an isogeny and let ψ : B → A be the dual isogeny.
Let n := degϕ = ψ ◦ϕ. There exist lifts ϕ̃ : A → B, ψ̃ : B → A to homomorphisms
of abelian schemes by [FC] and Theorem Raynaud (see also Section 3) such that
n = ψ̃ ◦ ϕ̃. Since n : A → A is an isogeny (quasi-finite S-map of abelian schemes
over S) then ϕ̃ and ψ̃ are also quasi-finite hence they are isogenies. The map
d : S → N, d(s) = deg ϕ̃s is locally constant. In particular | ker ϕ̃s| = deg(ϕ) for
every s ∈ S. For this reason one defines deg(ϕ̃) := deg(ϕ).
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Remark 8.3. Let ϕ : A → B be an isogeny. Let P,Q ∈ A(K) any two given
points and U ⊂ S be an open subset such that the following condition holds

nrv(P ) = 0⇒ nrv(Q) = 0 for all n and all closed point v ∈ U. (8.3)

By remark 8.2 it follows that there is c ∈ N

nrv(ϕ(P )) = 0⇒ nrv(ϕ(cQ)) = 0 for all n and all closed point v ∈ U. (8.4)

Remark 8.4. Let ϕ : A → B be an isogeny and let P,Q ∈ A(K). Assume
the support theorem holds for the abelian variety B which means that for any P ′,
Q′ ∈ B(K) the condition

nrv(P
′) = 0⇒ nrv(Q

′) = 0 for all n and all closed point v ∈ U. (8.5)

implies that there is b ∈ N and β ∈ EndK(B) such that

bQ′ = βP ′. (8.6)

Hence by Remark 8.3 we have

bϕ(cQ) = βϕ(P ) for same β ∈ EndK(B) and b ∈ N (8.7)

Hence
[degϕ]bcQ = ϕ̂βϕ(P ),

so the support theorem holds for the abelian variety A.

Corollary 8.5. Let A/K be an abelian variety defined over K. Let P,Q ∈ A(K)
be two given points. Suppose that there is an open subset U ⊂ S such that for all
n ∈ Z and all closed points v ∈ U, the following condition holds

nrv(P ) = 0⇒ nrv(Q) = 0.

Then there exist a positive integer k and an endomorphism
ϕ ∈ EndK A \ {0} such that

ϕ(P ) = kQ

Proof. There exist field L/K such that the isogeny
ϕ : A→ Ae11 × · · · ×A

et
t is defined. Let c ∈ N be such that the following condition

holds
nrw(ϕ(P )) = 0⇒ nrw(cQ) = 0

for same w ∈ U ′ over v where U ′ is preimage of U for the map SpecR′ → SpecR
such that R′ is integral closure of R in L. Let B =

∏t
i=1A

ei
i . Now from Theo-

rem 8.1 there exists C ∈ Z and endomorphism β ∈ EndL(B) such that

Cϕ(cQ) = βϕ(P ).
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Let ϕ̃ be a dual isogeny such that

[degϕ]CcQ = ϕ̃βϕ(P ).

Now using method from the proof of Theorem 8.1 we get

kQ = αP

for same k ∈ Z \ {0} and α ∈ EndK(A) \ {0}. �

Theorem 8.6. Let A/K be an abelian variety defined over K. Let P0, P1, . . . , Pn,
Q0, Q1, . . . , Qn ∈ A(K) be the points of infinite order. Assume that the following
condition holds:

There is an open set U ⊂ S such that for every set of nonnegative integers
m1, . . . ,mn and for all closed points v ∈ U , the following condition holds.

rv(P0) =

n∑
i=1

mirv(Pi) implies rv(Q0) =

n∑
i=1

mirv(Qi)

Then there exist αi ∈ EndK(A) \ {0} and k ∈ N \ {0} such that αiPi = kiQi for
all i = 0, 1, . . . , n.

Proof. Assume that A = Ae11 × · · ·×A
et
t where Ai is simple and not isogenous to

Aj for all j 6= i. We use the same notation as in the proof of Theorem 8.1.

P0 =
[
P j11 , . . . , P jtt

]
16j16e1,...,16jt6et

, Q0 =
[
Qj11 , . . . , Q

jt
t

]
16j16e1,...,16jt6et

,

and R := EndK A, Ri := EndK Ai. Because mi is any nonnegative integer we can
take mi = 0 for all i. Then we have

rv(P0) = 0⇒ rv(Q0) = 0

Using the same method as in proof of Theorem 8.1 we get

k0Q0 = α0P0, for k0 ∈ N \ {0}, α0 ∈ R \ {0}.

Now fix mi = 1 and mj = 0 for all j 6= i. We get

rv(Pi) = rv(P0)⇒ rv(Qi) = rv(Q0).

Let l - k0. We show that Pi and Qi are linearly dependent in A(K). Assume that
Pi and Qi are linearly independent in A(K) over R. By the Theorem 6.3 there
exists v ∈ U such that rv(Pi) = 0 and rv(Qi) 6= 0 in Av(kv)l. But the point P0

and Q0 are linearly dependent, hence

0 = rv(Pi) = rv(P0) = rv(Q0) = rv(Qi) 6= 0

So the point Pi and Qi are linearly dependent. Again we use methods from proof
of Theorem 8.1 and Corollary 8.5. This finishes the proof. �
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