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Abstract: The criteria for non-containment of l1 for the classes of Banach and Fréchet spaces
are extended to the class of locally complete locally convex spaces the bounded sets of which are
metrizable.
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1. Introduction

For the classes of Banach and of Fréchet spaces X, non-containment of l1 has been
characterized both (a) by internal conditions on sequences in either X – such as
all bounded sequences having weak Cauchy subsequences (cf. [20], [8, 17]) – or
in the dual – such as Mackey nullsequences being strongly null ([9, 23]–, and (b)
by compactness criteria for subsets of certain spaces of compact linear operators
from X into a locally convex space Y ([18, Thm. 1], [22, Prop. 2.1]).
In this paper, it is shown that these criteria extend to the class of all locally
complete locally convex spaces the bounded sets of which are metrizable.

Notation and Terminology. Given a locally convex space (lcs) (X, τ), X ′b, re-
spectively X ′τ , will denote the dual of X endowed with the strong β(X ′, X), re-
spectively the Mackey τ(X ′, X)-topology.

Given a subset C of X, C◦ := {x′ ∈ X ′ | |〈x′, x〉| 6 1 for all x ∈ C} will
denote its (absolute) polar in X ′.

A subset H of X ′ will be called limited if any weak nullsequence in X converges
to zero uniformly over H (cf. [13, Ch. V.3, Ex. suppl.]).

A subset B of an lcs X that is absolutely convex will be called a disk. The
closed absolutely convex hull of a subset B of X will be denoted by clacB.

Given any bounded disk B in an lcs X, we denote by (XB , B) the linear span
of B in X, endowed with the norm of the gauge qB of B. An lcs (X, τ) is called
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locally complete if (XB , B) is complete for all closed bounded disks in (X, τ), and
(X, τ) is said to satisfy the strict Mackey convergence condition (sMcc) if, given
any bounded subset B of X, there exists a closed bounded disk C in X containing
B such that the topologies induced on B by (XC , C) and τ coincide.

Recall that local completeness is an invariant for all locally convex topologies
compatible with the dual pair (X,X ′), that local completeness is implied by se-
quential completeness of any such topology, and that the sMcc is inherited by
closed linear subspaces as well as by countable products or direct sums.

Most importantly for the purpose of this paper, metrizable lcs satisfy the sMcc
([13, Ch. IV.2.2, Théorème 1]), so that Fréchet spaces both are locally complete
and satisfy the strict Mackey convergence condition.

These notions and results are pretty classical, compare [13]; for a more recent
account, we refer to [19, Chs. 3.2 and 5.1].

Finally, we recall that an lcs X is called quasinormable [13, Ch. IV.4.1] if for
every polar U◦ of a zero-neighbourhood U in X there exists another such V ◦ ⊃ U◦
such that the topologies induced on U◦ by X ′b and (X ′V ◦ , V

◦) coincide.

2. Results

The following are the extensions of the non-containment-of−l1 criteria from the
classes of Banach or Fréchet spaces to locally convex spaces that are locally com-
plete and have their bounded sets metrizable.

Theorem 2.1. For a locally complete locally convex space X, the bounded sets of
which are metrizable, the following are equivalent:

(a) X does not contain an isomorphic copy of l1.
(b) Every bounded sequence in X has a weak Cauchy subsequence.
(c) Every limited subset H of X ′ is strongly (β(X ′, X)-) precompact.
(d) Every Mackey (τ(X ′, X)-) precompact subset of X ′ is β(X ′, X)- precompact.
(e) Every τ(X ′, X)-nullsequence in X ′ is β(X ′, X)-null.

Remark 2.2. The implication “(e) ⇒ (a)” holds for just any locally convex space
[9, Lemma 1].

In order to extend the compact-operator characterization of non-containment
of l1 of [18, Thm. 1] and [22, Prop. 2.1] for Banach and for Fréchet spaces to the
more general class considered here, we work in the context of the following operator
space. Given locally convex spaces X and Y, the space Kb

b (X,Y ) is the space of all
weak-to-weak-continuous linear operators from X into Y that transform bounded
subsets of X into precompact subsets of Y, endowed with the topology of uniform
convergence on the bounded subsets of X.

Proposition 2.3. For a locally complete locally convex space X, the bounded sets
of which are metrizable, the following are equivalent:

(a) X does not contain an isomorphic copy of l1.
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(b) Given any locally convex (equivalently, any Fréchet, equivalently, any Ba-
nach) space Y, a subset H of Kb

b (X,Y ) is precompact if and only if
(i) H(x) is precompact in Y for all x ∈ X, and
(ii) h(xn) → 0 in Y uniformly over all h ∈ H for any weak-nullsequence

(xn)n in X.

Remarks 2.4.
1. Relations to existing results. Theorem 2.1: For Banach and Fréchet spaces,

(b) is H.P. Rosenthal’s (and L.E. Dor’s) original result [10, 20], and its ex-
tension to Fréchet spaces in [8, 17]. For Banach spaces, (c) is [12, Thm. 2].
For Fréchet spaces, the equivalence of (e) with (a) has been shown in [4,
Thm. 10] and in [23], while the implication “(e) ⇒ (a)” for just any locally
convex space is due to [9, Lemma 1].
Proposition 2.3 for Banach spaces is [18, Theorem 1], and for Fréchet spaces
[22, Prop. 2.1].

2. Further classes of locally convex spaces with their bounded sets metrizable:
Obviously, locally convex spaces with sMcc have their bounded sets metriz-
able. Notice that even this very special subclass includes the strong duals of
quasi-barrelled quasinormable locally convex spaces, as well as the class of
quasi-barrelled spaces with quasinormable strong duals.
Also, boundedly retractive (LF)-spaces (and thus, in particular, strict (LF)-
spaces) fulfill the assumptions on the space X in Theorem 2.1. (An inductive
limit (X, τ) of an inductive sequence (Xn, τn) of locally convex spaces is
boundedly retractive if every bounded subset B of (X, τ) is contained and
bounded in some Xn, and τ and τn agree on B, cf. [19, Def. 8.5.32].)
With regard to the class of (DF)-spaces, we recall from [1, 2, 3] that (a)
the strong dual of a metrizable locally convex space X has its bounded sets
metrizable if and only if X satisfies the density condition of [14], while (b) a
general (DF)-space has its bounded sets metrizable if and only if it satisfies
the dual density condition of [2]. As a further particular case, it is shown in
[3, 1.6. Prop.] that the space Lb(X,Y ) of bounded linear operators from X
into Y, endowed with the topology of uniform convergence on the bounded
subsets of X, has its bounded sets metrizable in case X is a metrizable lcs
with the density condition, and Y is an lcs with a fundamental sequence of
bounded sets that are metrizable in the induced topology. (For further re-
sults in this context, as well as for the definitions of the density condition
and the dual density condition, the reader is referred to [1, 2, 3] and [14].)

3. Proofs and related results

In order to have the subsequent proofs transparent, we first single out some tech-
nical facts about the class of locally convex spaces in question.

Lemma 3.1. Let (X, τ) be a locally complete lcs, (xn)n a bounded sequence in
(X, τ), and B = clac{xn | n ∈ N}. Then we have:
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(a) For any (αi)i ∈ l1, the series
∑∞

1 αixi converges in (XB , B), and the linear
map T : l1 → XB , {(αi)i 7→

∑∞
1 αixi}, is continuous into (XB , B) with

T (Bl1) ⊂ B, and B = τ -closure of T (Bl1) (Bl1 the closed unit ball of l1).
(b) If, in addition, (xn)n is a weak nullsequence in X, then the map T of (a)

is σ(l1, c0) − σ(X,X ′)-continuous, and B = T (Bl1) is σ(X,X ′)-compact
metrizable.

(c) If, in addition, the bounded subsets of (X, τ) are metrizable, then every
weakly compact disk in X is weakly sequentially compact.

Remark 3.2. With regard to proposition (b) of Lemma 3.1, we note that, ac-
cording to [19, Thm. 5.1.11], the fact that closed absolutely convex hulls of weak
nullsequences in an lcs (X, τ) are weakly compact is actually equivalent to (X, τ)
being locally complete.

Proof of Lemma 3.1. (a) As, given (αi)i ∈ l1, qB(
∑n
m αixi) 6

∑n
m |αi|, com-

pleteness of (XB , B) implies qB-convergence of the series
∑∞

1 αixi in XB . With
B a τ -closed disk, if (αi)i ∈ Bl1 ,

∑n
1 αixi ∈ B for all n ∈ N, and thus

∑∞
1 αixi ∈

B as well, as the series is qB- and thus τ -convergent. Since T (ei) = xi, τ -
closure(T (Bl1)) = B.

(b) Let ((αλi )i)λ∈Λ ⊂ l1 be a σ(l1, c0)-nullnet, and x′ ∈ (X, τ)′.
Then 〈T ((αλi )i), x

′〉 =
∑∞

1 αλi 〈x′, xi〉 = 〈(αλi )i, (〈x′, xi〉)i〉 (duality l1 − c0) tends
to zero over λ ∈ Λ (as (〈x′, xi〉)i ∈ c0.) Hence, T (Bl1) is a σ(X,X ′)- compact disk,
and thus, according to (a), T (Bl1) = B.

(c) If C is a weakly compact disk in (X, τ), and (xn)n ∈ C, B = clac{xn |
n ∈ N} ⊂ C is a weakly compact, τ -metrizable (by assumption on X), and
τ -separable disk. Thus, according to [16] and [11, Theorem 1], there exists a norm
N on XB such that the topologies induced on B by τ and N coincide. As this
extends to the respective weak topologies (cf. [6, Ch. IV.3, Ex.3(a)]), B is thus
a weakly compact disk in (XB , N). According to Smulyan’s Theorem ([15, 24.1
(3)]), B is N -weakly sequentially compact, and thus (xn)n has a τ -weakly conver-
gent subsequence. This completes the proof of Lemma 3.1. �

The heart of the matter for the proof of Theorem 2.1 is the equivalence of (a)
with (b). It will be treated separately by the subsequent proposition.

Proposition 3.3. If (X, τ) is a locally complete lcs with bounded sets metrizable,
then a bounded sequence in X either has a weak Cauchy subsequence or a subse-
quence that spans an isomorphic copy of l1 in (X, τ).

Proof. For (xn)n a bounded sequence in (X, τ), let B := clac{xn | n ∈ N}, and
note that B is metrizable (by assumption) and separable. Thus, as in the proof
of (c) of Lemma 3.1 above, by [16] and [11, Theorem 1], there exists a norm N
on XB such that the topologies induced on B by τ and N coincide. According to
the Dor/Rosenthal l1-Theorem [10, 20], the sequence (xn)n, viewed as a bounded
sequence in the completion (X̃B , N) of (XB , N) either has an N -weak, and thus
a τ -weak Cauchy subsequence, or else a subsequence spanning an isomorph of l1
in this completion. In the latter case, by relabeling if necessary, we can assume
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that T : l1 → (X̃B , N), {(αi)i 7→
∑∞

1 αixi}, is a topological isomorphism into
(X̃B , N). It remains to show that T is a topological isomorphism into (X, τ) as
well. First, imT ⊂ XB , and T (Bl1) ⊂ B by proposition (a) of Lemma 3.1, so that
T is continuous into (X, τ) (as N and τ coincide on B). It thus remains to prove
τ - continuity of its inverse.

What we have is that there exists c > 0 such that
∑n

1 |αi| 6 cN(
∑n

1 αixi)
for all n ∈ N, and all scalars α1, ..., αn. At this point, we invoke the seminorm
approximation result of [21, Thm. 3.4]: as N restricted to B is τ -continuous, this
result yields that, given any ε > 0, there exists a τ -continuous seminorm qε on XB

such that |N(b)− qε(b)| < εqB(b) for all b ∈ XB . We thus have

∞∑
1

|αi| 6 cN
( ∞∑

1

αixi

)
6 c
(
qε

( ∞∑
1

αixi

)
+ ε

∞∑
1

|αi|
)

(3.1)

for all (αi)i ∈ l1.
Now, let (αi)

λ
i be a net in l1 such that T ((αi)

λ
i ) tends to zero with respect

to τ, and let η > 0. Choosing 0 < ε < 1
2c , and the corresponding τ -continuous

seminorm qε on XB , let λ0 such that qε(
∑∞

1 αλi xi) <
η
2c for all λ � λ0. We then

conclude from (3.1) that
∑∞

1

∣∣αλi ∣∣ < η for all λ � λ0. This shows that the inverse
of T is in fact τ - continuous, and thus finishes the proof.

Remark 3.4. In the context of the above technique of proof based on [21, Thm.
3.4], it has been claimed in [5, Rem. 2.2] that the strict Mackey convergence
condition is actually equivalent to: for each closed bounded disk D there exists
a continuous seminorm q such that q|D = qD|D . This is false: Let (X, τ) be an
infinite-dimensional Fréchet space, and choose any xn ∈ Un for (Un)n a zero-
neighbourhood base. Then (xn)n is a nullsequence, and D := clac{xn | n ∈ N} is
a compact disk in X. If the above claim were true, there would exist a continuous
seminorm q with q|D = qD|D , implying that q|XD = qD (note that XD = ∪∞1 nD).
This, in turn, easily implies that D is actually compact in (XD, D) as well, so that
XD is finite-dimensional. Since X is infinite-dimensional, there exists a countably-
infinite linear independent sequence (yn)n in X. Choose αn > 0 such that xn =
αnyn ∈ Un. Then the above argument shows that the linear span of the x′ns, and
thus the one of the y′ns, is finite-dimensional. This contradiction proves the claim
to be false.

Proof of Theorem 2.1. With the equivalence of (a) and (b) covered by Propo-
sition 3.3, the remainder of the proof is a combination of this equivalence with
classical work by A. Grothendieck [13], in tandem with Lemma 3.1: According to
[13, Ch. V.3, Ex. suppl. 3], a subset H in the dual X ′ of an lcs X is limited if and
only if it is precompact with respect to (the uniformity of) uniform convergence
on all sets of the family S of subsets S of X with the property that every sequence
in S has a weak Cauchy subsequence. So, the implication “(b) ⇒ (c)” follows
immediately, since (b) implies that S = family of all bounded subsets of X.

As for the equivalence of (c) and (d), we now show that, for (X, τ) locally
complete with bounded sets metrizable, a subset H of X ′ is limited if and only
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if it is τ(X ′, X)-precompact. In fact, assume that H ⊂ X ′ is limited. Given any
weakly compact disk C in X, proposition (c) of Lemma 3.1 above reveals that C
is weakly sequentially compact. Thus, τ(X ′, X) is coarser than the S-topology of
the above result of Grothendieck. As, by that same result, H is S-precompact,
it is thus τ(X ′, X)-precompact by the following result [15, Section 28.5.(2)] from
general topology: given two Hausdorff linear topologies τ1 coarser than τ2 on
a linear space, these topologies coincide on every τ2- precompact set in case τ2 has
a zero-neighbourhood base consisting of τ1-closed sets. (The latter is trivially true
for τ(X ′, X) and β(X ′, X).)

Conversely, assume that H ⊂ X ′ is τ(X ′, X)-precompact, and let (xn)n be
a weak nullsequence in X. Then, according to proposition (b) of Lemma 3.1 above,
C = clac{xn | n ∈ N} is a weakly compact disk in X. Thus, by τ -precompactness
of H, given any ε > 0, there exist n ∈ N, and hi ∈ H, i ∈ {1, ..., n}, such that
H ⊂

⋃n
1 (hi + εC◦). Hence, if k0 ∈ N is such that |〈hi, xk〉| < ε for all k > k0

and i ∈ {1, ..., n}, we have |〈h, xk〉| < 2ε for all such k as well and for all h ∈ H.
Thus, (xn)n converges to zero uniformly over H. This shows that H is limited,
and completes the proof of equivalence of (c) and (d).

The implication “(d) ⇒ (e)” is general topology: if (x′n)n is a τ(X ′, X)-nullse-
quence, then its union H with 0 ∈ X ′ is τ(X ′, X)-compact. In case of (d), it
is thus β(X ′, X)-precompact. Now, once again invoke [15, Section 28.5., (2)])
to conclude that (x′n)n converges strongly to zero. This completes the proof of
Theorem 2.1. �

Remark 3.5. With regard to the above proof of equivalence of (c) and (d), the
relationship of limitedness with τ -precompactness for subsets H in the dual of an
lcs X dates back to [13, Ch. V.3, Ex. suppl. 3.3], where it is stated that (i) τ -
precompactness implies limitedness for just any lcsX, while (ii) the converse is true
any time Smulyan’s Theorem holds in X. In the above proof, for the implication
“τ -precompactness ⇒ limitedness”, I have not simply used (i) above, but have
gone through proposition (b) of Lemma 3.1, because I am unable to verify this
implication for general lcs. (In this respect, notice Remark 3.2 above.)

Proof of Proposition 2.3. The proof of this result follows the same lines as the
corresponding one for [22, Prop. 2.2], based on the subsequent linearized Arzela-
Ascoli theorem:

Given locally convex spaces X and Y, and a family S of bounded subsets of X
that coverX, we consider the spaceKS(X,Y ) of all weak-to-weak continuous linear
operators from X into Y that transform the sets S ∈ S into precompact subsets of
Y, endowed with the topology of uniform convergence on the S ∈ S. The space X ′
endowed with the topology of uniform convergence on the S ∈ S will be denoted
by X ′S . For subsets H ⊂ KS(X,Y ) and A ⊂ Y ′, the subset

⋃
{h′(A) | h ∈ H} of

X ′ will be denoted by H ′(A). �

Lemma 3.6 ([7, Corollary, section 3], [22, Lemma 3.1]). A subset H of
KS(X,Y ) is precompact if and only if
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(i) H(x) is precompact in Y for all x ∈ X, and
(ii) H ′(V ◦) is precompact in X ′S for all zero-neighbourhoods V of Y.

Condition (b) (ii) of Proposition 2.3 amounts to 〈x′, xn〉 → 0 uniformly over all
x′ ∈ H ′(V ◦) for any zero-neighbourhood V in Y. Thus, letting S = BX = all
bounded subsets of X in Lemma 3.6, necessity of conditions (i) and (ii) in (b)
holds for general X, as H ′(V ◦) is precompact in X ′b by Lemma 3.6. In turn,
in case X does not contain l1, sufficiency of (i) and (ii) follows from combining
Lemma 3.6 (for S = BX ) and proposition (c) of Theorem 2.1, as (ii) amounts to
H ′(V ◦) being limited in X ′. Finally, the special case of Y = scalars in (b), teamed
with proposition (c) of Theorem 2.1, shows that (b) implies (a).

Acknowledgement. The author is grateful to the referee for helpful suggestions,
and for drawing his attention to the works [1, 2, 3] on (DF)-spaces with their
bounded sets metrizable (compare Remarks 2.4, 2.).
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