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Abstract: Let X be a real normed vector space and B(X) be the cone of all nonempty bounded
closed convex subsets of X. For A, B,C, D € B(X) we have a relation of equivalence defined by
(A,B) ~ (C,D) if and only if A+ D = B+ C. By [A, B] we denote the quotient class of (A, B).
The quotient space X = B2(X)/~ is a vector space called the Minkowski-Radstrém-Hérmander
space over X. For & = [A, B] € X we have the Hausdorff norm ||Z||g = dg (A, B) = inf{e >
0l]A C B+¢eB,B C A+ B} where B is the closed unit ball in X. We also define Bartels-
Pallaschke norm [|Z||gp = inf{||C|| + ||D||| (C, D) € [A, B]}, where ||A]| = sup,¢ 4 ||al|. In this
paper we prove that the bilinear function (-,-) : (R?,|| - ||g) X (R%,|| - ||[Bp) — R defined by
(Z,9) = 2V (Z,9) + (s, sy), where V(Z, §) is a generalized mixed volume and sZ is a generalized
Steiner’s point, satisfies the inequality |(Z,9)| < (27 4+ 1)||Z||z||9]|Bp. We also prove that this

bilinear function defines an isomorphic mapping between Banach spaces (R2, || - || gp) and the
dual space to (R?, || - ||z) (Theorem 2).

Keywords: Minkowski-Radstrom—Hérmander spaces, extreme points, pairs of closed bounded
convex sets.

Let X be a real Hausdorff topological vector space and B(X) be the cone of all
nonempty bounded closed convex subsets of X. For A, B,C, D € B(X) we have
the Minkowski sum A + B = {a + bla € A,b € B} and a relation of equivalence
defined by

(A,B) ~ (C,D) if and only if A+D=B+C.

By [A, B] we denote the quotient class of (A, B). The quotient space X = B2(X)/.
is a vector space with the addition and multiplication by real numbers defined by
[A,B]+[C,D]=[A+C,B+D]and a-[A,B] = [atA+a B,a” A+a'B]. The

space X is called the Minkowski-Radstrom-Hérmander (MRH) space over X [7].
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The MRH space [11], [17] is very useful in studying bounded-valued corre-
spondences [5], [7], in quasidifferential calculus [6], [15], [20] and in calculating
Aumann-Integral [4]. The MRH spaces were studied also in a number of papers,
for example [8], [18] and [21].

In 2007 A. Pelczynski posed a question what is the dual space to the MRH
space over R?. In fact the dual space depends on the norm in the MRH space.

Let (X, |- ||) be a normed space, Z = [A, B] € X. The norm in the MRH space
over X can be introduce in two natural ways. Hausdorff’s metric determines the
following norm (see [17]): ||Z||lg = du(A,B) = inf{e > 0|A C B +¢B,B C
A + eB} where B is the closed unit ball in X. We also define Bartels-Pallaschke
norm |75 = inf{|C]l + |D|||(C.D) € [A,B]}, where || = sup,c4 lall-
Bartels-Pallaschke norm [2] is related to the norm given in [3]| defined in the space
of differences of real sublinear functions by ||f|| = inf{max{||g|, ||k} |g — h =
f, where g, h are sublinear}. Bartels-Pallaschke norm seems almost as natural as

Hausdorff norm. Notice that || - |z < || - |[sp. The normed space (X, | - ||#) is
not complete unless dim X = 1 but for Banach space X, Bartels-Pallaschke norm
turns the space (X, || - ||pp) into Banach space.

Let NBV|a,b] be the space of normalized real functions of bounded variation
on the interval [a,b], that is for f € NBV]a,b] we have f(a) = 0 and f(¢) =
F(7) =l f(5), for t € [a,b).

By f*, f~ we denote the smallest nondecreasing functions in N BV |a, b] such
that f = f* — f~. The space NBV[a,b] with the norm defined by | f|| = var} f =
fT(b) + f~(b) is a Banach space. Now we are ready to state our first theorem.

Theorem 1. There exists an isomorphic mapping between Banach spaces
(R2, || - |gp) and NBV0, 2].

Before we point out to the isomorphic mapping we need some more notations
and definitions.

For our convenience we denote e’ = (cost,sint) € R?. For A € B(R?),u € R?
we define the support function ps : R? 3  — max,ca(r,a) € R, where (z,a)
is the inner product of z and a, the face Hy, A = {a € A[{u,a) = pa(u)}, the
boundary function ha : [0,27] — OA by ha = H<ei(t+%)}_>(H<eit’.>A)~ We also
need the arc length function f4 : [0,27] — Ry where f4(t) is the length of the
arc contained in 9 A joining h4(0) and h4(t). The function f4 is a nondecreasing
function in NBV[0, 2x]. Most of these notations come from [9].

Let sA be the Steiner’s point of A (see [19], p. 42), that is

™

2
SA = l/ upa(u)dH' (u) = l/ e'pa(e)dt.
51 0
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For u € R? we define the auxiliary function f, : [0,27] — R, by

ity _ it .
fu(t):M(sin(thrgu)jLSin(Argu)):6u e My 4+ u u.

™ 21

The following lemma is essential in the proof of Theorem 1:

Lemma 1. The mapping k : R NBV|0,2n], where k(§) = fo — fp + =,
g =1[C,D],z =sC — sD is an 1-1 isomorphic mapping between vector spaces.

Proof. Since the functions po — pp and fe — fp do not depend on the choice
of representatives of § (see [9]), the mapping k is well defined and preserves the
addition and the multiplication by scalars. In order to give the inverse mapping
we need more definitions and facts.

In a manner of [9] for nondecreasing function f € NBV|0,2n] we define the
function hy : [0,27] — R? by hs(t) = fot e’*t3)df (s), where the latter is the
Stieltjes integer.

If hy(27) = 0 then we denote Ay = convhs([0,2n]). Then Ay, = A — h4(0)
and fa, = f (see [9]). If hy(2m) # 0 then there exists the unique function g €

NBV[0, 2] such that g is nondecreasing, g takes exactly two values and hy(27)
—hy(27). Hence hyyq(2m) = 0.

Let f € NBV|0,2n] and w = w(f) = fOQTr e'tdf (t). Then

2m 2m
/ 2 df, (1) = / e"(“'%)M cos(t — Argw)dt

0 0 T
||’UJH 2 i(t+Z) ei(tiArgw) —+ efi(t*Argw)
= 2
S 2

2m 2m
— ||wH (/ ei(%—Argw)eiQtdt +/ ei(’2'+Argu1)dt)
2T 0 0

27
_ @(0 + 2mei(BHATER)) = (iF gy = / e B df (1),
T 0

dt

Hence h(p_s,y+(2m) — hip_g,)- (27) = fOQTr T3 A(f — fu)(t) =0
and hs—g,)+(2m) = h(g—g,)- (27).

Then there exists the unique function ¢ € NBV]0,2n] such that g is non-
decreasing, g takes exactly two values and hy(27) = —h(s_y,)+(27). Hence
h(fffw)++g(277) =0 and h(f,fw)7+g(27r) =0.
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Let B = As_f,)t+g and F' = Ay_s y-4,. Let us define the mapping [ :
NBV[0,27] — R2 by I(f) = [E — sE +w, F — sF).

Let g € @, g = [C, D]. We can assume that (C, D) is a minimal pair (see [14],
9], [20] and [15]). We have I(k(3)) = I(fc — fp + f.) where z = sC — sD.

Notice that

27 " ~ 27 it 27 i 27 i
w= [ etawano = [ e - [t [ et

2
= Fhyo(2m) — e Fhy, (2m) + / ol it ot — avge)ar
0 s

=0-0+2z=z

Hence k(3) — fuw = fo — fp. Since the pair (C, D) is minimal, the maximal
nondecreasing function g € NBV|0, 27] such that the functions fo — g, fp — g are
nondecreasing takes not more than two values [9].

Then (foc—fp)t = fc—gand (fe—fp)” = fp—g. Hence E = A5 _f)+49 =
Afc =C— hc(O) and F' = A(fC*fD)’Jrg = AfD =D — hD(O) (see [9])

Therefore, I(k(g)) = [E—sE+w, F—sF] = [C—sC+z,D—sD] = [C,D] =4.

Now, let f € NBVI0,2n]. Then k(I(f)) = kE([E — sE + w, F — sF]), where
E=A(—f) 49 F =A(p—fu)-+¢ and w = fOQW etdf (t).

Hence k(I(f)) = fE—sp+w — JF—sF + [ = fE — fr + fu because z = s(E —
sE 4+ w) — s(F — sF) = w.

Therefore, k(I(f)) = (f = fu) " +9—(f—fu) =9+t fo=([-fu)+fu=Ff W

Proof of Theorem 1. By the Open Operator Theorem we need only to prove
that k is continuous. For § = [C, D], z = sC' — sD we have

IE@)I = llfe — fp + [l < fo(2m) + fp(2m) + || /2|

c D
= |0C| +[0D] + 4@ < 27| C| + 2x||D|| + 4%

< (2n+ D)l + D).

where |0A| is the length of the boundary 0A.
Since these inequalities hold true for any pair (C, D) € § then |[k(7)[| < (2r+2)
9l zp-

The proof of Theorem 1 is completed. However, we can estimate the norm of
the operator I. For f € NBV/0,2x] we have
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1HNsp S |E—sE+w| +|[F —sF|
1 1
S G10AG -yt gl F 10l 4 5104 - 1)~ 4]

< (7 = fu)" +9)@m) + 5((F ~ fu) ™ +9)(2m) +

<(f = fu)T@m) + (f = fu)” @) + lwll < [If = foll + [|w]
Af|w]]
SUAI+ I fwll + Nl = 1A+ = + [Jwll
4 2m it 4
<+ (1) etar@l <1+ (= +1) 151
e 0 o
4
= (2+2) Il
If the norm in R? is not Euclidean then the inequalities above hold true with
different constants. |

Knowing that the MRH space (R2,| - ||pp) and the space NBV|0,2x] are
isomorphic we see that the dual to MRH space (R2,| - || gp) and the dual to
the space NBV0,2n] are also isomorphic. The dual to the space NBV[0,27] is
described for example in [1].

Let V : B?(R?) — Ry be the mixed volume (see Theorem 5.1.6 in [19]).
The function V can be extended to the bilinear function on (R2)? (see [22]) by
V(z,5)=V(AC)—-V(A,D)-V(B,C)+V(B,D), where = [A, B],y = [C, D].
Also the function s : B(R?) — R?, where sA is the Steiner’s point of A can be

extended to the linear function on R? by si = sA — sB.

Theorem 2. The function (-,-) : (R2,|| - ||z) x (R%,] - |[p) — R defined by
(Z,9) = 2V(Z,7) + (s, sy) is bilinear and continuous. Moreover, the space of
linear functions {(-,9)|y € R2} is dual to (R2,|| - || a)-

Proof. Let C0,2n] be the space of all continuous functions on [0,27] and let
Co[0,27] = {q € C0,27]|q(0) = ¢q(27)}. The bilinear function (-,-) : C[0, 27| x
NBV[0,2r] — R defined by (q,f) = 0% q(t)df(t) establishes duality of
NBVI0, 2] to C[0,27] (see the theorem of Riesz in [12], 17.7.4) and to Cy[0, 27].

All the functions t — (pa — pp)(e'), where A, B € B(R?), form a dense
subspace of Cy[0, 27]. Since k is an isomorphic mapping then the space of functions
(R2 57— [27(pa —pp)(e)d(k(7))(t) € R|§ € R2}, 7 = [A, B, is the space of
all continuous linear functions on (i@, Il le)-

Let z,y € f@,fv = [A, B,y = [C, D], z = sj. By the formulas 1.7.3 and 5.1.15
in [19],

1

on 27
sa=2 [Tpaeeta, viao) =3 [ paeie,
m™Jo 2 0
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Then

/0 (o4 — p5) (€ (RGO
27 ) 27 )
- / (pa — pp) () df(t) - / (pa — pp)(e)dfp(t)

+ /0 (oA - ps)(@)df. (1)
— 2V(A,C) — 2V(A, D) — 2V(B,C) + 2V (B, D)

2m
+ / Li”(]m —pp)(e™) cos(t — Argz)dt
0

2
=2V (%,9) +/ @(pA —pgp)(e) (e, e A18%) dt
0
7 17 1 o 7 i
~2W @)+ [ s - pe)eet
0

1 27 ) ) 1 21 ) )
=2V (z,9) + </ pale)eltdt — = [ pp(e™)etdt, z>
™ Jo 0

=2V (Z,9) + (sA — sB,sC — sD) = 2V (&,9) + (Z, 7).

3

Let us notice that

1

Vel <|y [ oa-poeare] |3 [ oa-poean)

1 1
< 5 sup [(pa —pe)(w)] - |0C| + 5 sup |(pa — pB)(u)| - [0D]
2 4est 2 4est

1, .
= 5lzlr(0C] +10D]) < 7ll@|# (IC] + DI))-

Since the inequality holds true for any (C, D) € g, |V(Z,9)| < 7||Z||x |7l 5P-
By [16] we have ||sZ| = ||sA — sB|| < 2dy (A, B) = 2||%|| . Therefore, |(Z,§)| <
2V (2,9)| + [(s%, s9)| < 27(|Z|| |Gl Bp + 2 Emllgllm < Cr+ DIE|al7llzp. W

By Theorem 15.7 in [13] the function of mixed volume V is continuous on
(B(R?),dy) x (B(R?),dy). However, the following example shows that the exten-
sion of V' is not continuous on (R2, || - ||z) x (R2,|| - ||zz) (compare Theorem 5.2.2
in [19]).

Example. Let A, be a regular n-gon in R? with the center in 0 and all sides of

the length equal to 1. Let B, be the n-gon A, rotated around 0 by the angle .
The radius r,, of the circle inscribed in A,, or B, is W. The radius R,, of the
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. . . . 1 ~ —"
circumscribed circle is TemtT) Denote Z,, = [A,, By] € R2. Then

V(Zp, Tpn) = V( 2V (A,, B,) +V (B, By)

An) =
mAn) V(An, Brn))

1 1
We have ||Z,||g = dr(An, An) = Ry, — 1. Since R, — 1, tends to 0,
lim M: T
nreo HxHHH n—oo Ry —rp

and the bilinear function V is not contnuous in 0.

Theorem 2 shows that the MRH space (R2 LIl 5p) is basicly dual to the MRH

space (]R2, Il - [|z). Then the dual space to (RQ, || - [lzp) is double dual space to
B2, |- ).

We can also provide the space R? with the norm of Demyanov (see [6]) which
is stronger than Hausdorff norm but weaker than Bartels-Pallaschke norm. We do
not know what is the dual space to that space.

The unit ball in the space (X, || - ||z) has exactly two extreme points (see for
example [10]). What are extreme points of the unit ball in (X, || - ||zp) is an open
question, even if we know extreme points in NBV[0, 1].

In Theorem 2 in general we can naturally replace the bilinear function by
(o) s R Jla) < (R [ |Bp) — R defined by

(@,9) =2V(%,9,B,...,B) + (s7, s7),
———

n—2

where B is the Euclidean unit ball in R”. However, the theorem will no longer
hold true.
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