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Abstract: Let Σ be a σ-algebra of subsets of a non-empty set Ω. Let B(Σ) be the space
of all bounded Σ-measurable scalar functions defined on Ω, equipped with the natural Mackey
topology τ(B(Σ), ca(Σ)). Let (E, ξ) be a quasicomplete locally convex Hausdorff space and let
ca(Σ, E) be the space of all ξ-countably additive E-valued measures on Σ, provided with the
topology Ts of simple convergence. We characterize relative Ts-compactness in ca(Σ, E), in
terms of the topological properties of the corresponding sets in the space Lτ,ξ(B(Σ), E) of all
(τ(B(Σ), ca(Σ)), ξ)-continuous integration operators from B(Σ) to E. A generalized Nikodym
type convergence theorem is derived.

Keywords: spaces of bounded measurable functions, Mackey topologies, strongly Mackey space,
vector measures, integration operators, topology of simple convergence.

1. Introduction and terminology

We denote by σ(L,K) and τ(L,K) the weak topology and the Mackey topol-
ogy on L with respect to a dual pair 〈L,K〉. For a locally convex space (L, η)
by (L, η)′ or L′η we denote the topological dual of (L, η). Recall that (L, η) is
a strongly Mackey space if every relatively σ(L′η, L)-countably compact subset of
L′η is η-equicontinuous.

We assume that Σ is a σ-algebra of subsets of a non-empty set Ω. Let B(Σ)
denote the Banach space of all bounded Σ-measurable scalar functions defined on
Ω, provided with the uniform norm ‖ · ‖. Denote by ba(Σ) the Banach space of
all bounded finitely additive scalar measures on Σ with the norm ‖µ‖ = |µ|(Ω),
where |µ|(A) denotes the variation of µ on A ∈ Σ. Then the Banach dual B(Σ)∗

of B(Σ) can be identified with ba(Σ) through the integration mapping ba(Σ) 3
µ 7→ Φµ ∈ B(Σ)∗, where Φµ(f) =

∫
Ω
f dµ for f ∈ B(Σ). Moreover, ‖Φµ‖ = |µ|(Ω)

(see [DU, Chap. 1, Theorem 13]). Let ca(Σ) be the subspace of ba(Σ) consisting
of all countably additive measures.
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Definition 1.1. Let µ ∈ ba(Σ). A linear functional Φµ on B(Σ) is said to be
σ-smooth if Φµ(fn) → 0 for each uniformly bounded sequence (fn) in B(Σ) such
that fn(ω)→ 0 for all ω ∈ Ω.

By B(Σ)∗c we will denote the space of all σ-smooth linear functionals on B(Σ).

Proposition 1.1. For µ ∈ ba(Σ) the following statements are equivalent:

(i) Φµ is σ-smooth.
(ii) µ ∈ ca(Σ).

Proof. (i)=⇒(ii) Assume that Φµ is σ-smooth, and let An ↓ ∅, (An) ⊂ Σ. Then
1An(ω)→ 0 for all ω ∈ Ω and supn ‖1An‖ 6 1. Hence µ(An) =

∫
Ω
1Andµ→ 0.

(ii)=⇒(i) Assume that µ ∈ ca(Σ) and let fn(ω) → 0 for all ω ∈ Ω and
supn ‖fn‖ < ∞. Then by the Lebesgue dominated convergence theorem,∫

Ω
|fn|d|µ| → 0. Since |Φµ(fn)| 6

∫
Ω
|fn|d|µ| → 0, we see that Φµ is σ-smooth. �

For ω ∈ Ω let Φω(f) = f(ω) for f ∈ B(Σ). Then Φω ∈ B(Σ)∗c and the set
{Φω : ω ∈ Ω} separates the points of Ω.

Let (E, ξ) be a locally convex Hausdorff space, briefly lcHs (over the field of
complex or real numbers). By ca(Σ, E) we denote the space of all ξ-countably
additive vector measure m : Σ → E, provided with the topology Ts of simple
convergence. By S(Σ) we denote the space of all scalar-valued Σ-simple functions
defined on Ω. Then S(Σ) can be endowed with the (locally convex) universal
measure topology τ of Graves [G], that is, τ is the coarsest locally convex topology
on S(Σ) such that the integration map Tm : S(Σ) 3 s 7→

∫
Ω
s dm ∈ E is continuous

for every locally convex space (E, ξ) and every m ∈ ca(Σ, E) (see [G, p. 5]). Let
(L(Σ), τ̂) stand for the completion of (S(Σ), τ). It is known that both (S(Σ), τ)
and (L(Σ), τ̂) are strongly Mackey spaces (see [G, Corollaries 11.7 and 11.8]). It
follows that τ = τ(S(Σ), ca(Σ)) and τ̂ = τ(L(Σ), ca(Σ)) (see [G], [GR]). We have
S(Σ) ⊂ B(Σ) ⊂ L(Σ) and the restriction τ̂ from L(Σ) to B(Σ) coincides with the
Mackey topology τ(B(Σ), ca(Σ)) (see [GR, §4]). Thus by Proposition 1.1 we get

τ̂ |B(Σ) = τ(B(Σ), ca(Σ)) = τ(B(Σ), B(Σ)∗c).

Then (B(Σ), τ(B(Σ), ca(Σ))) is a strongly Mackey space (see [G, Coro-
llary 11.8]). Moreover, if E is complete in its Mackey topology τ(E,E′ξ), then
for each m ∈ ca(Σ, E), the integration map Tm can be uniquely extended to
a (τ̂ , ξ)-continuous map T̃m : L(Σ)→ E (see [GR]).

Graves and Ruess ([GR, Theorem 7]) derived a characterization of relative
Ts-compactness in ca(Σ, E) in terms of the corresponding integration operators
Tm : S(Σ) → E (resp. T̃m : L(Σ) → E whenever E is complete in its Mackey
topology τ(E,E′ξ)).

The aim of this paper is to characterize relative compactness in (ca(Σ, E), Ts)
in terms of the corresponding integration operators from B(Σ) to E whenever
(E, ξ) is a quasicomplete lcHs (see Theorem 2.2 below). As an application, we
obtain a generalized Nikodym type convergence theorem (see Theorem 2.3 below).
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2. Topological properties of spaces of vector measures

We start with the following useful result.

Proposition 2.1. Assume that (fn) is a uniformly bounded sequence in B(Σ)
such that fn(ω)→ 0 for all ω ∈ Ω. Then fn → 0 for τ(B(Σ), ca(Σ)).

Proof. LetM be a relatively σ(ca(Σ), B(Σ))-compact subset of ca(Σ). Then in
view of [Z, Theorem 1.1] M is bounded and uniformly countably additive, and
hence |M| (= {|µ| : µ ∈ M}) is uniformly countably additive (see [DU, Chap. 1,
Proposition 17]). By [K, Theorem 1] we obtain that supµ∈M

∫
Ω
|fn|d|µ| → 0; hence

supµ∈M |
∫

Ω
fndµ| → 0. It follows that fn → 0 for τ(B(Σ), ca(Σ)), as desired. �

For terminology and basic results concerning the integration with respect to
vector measures we refer the reader to [L], [P1], [P2].

Let (E, ξ) be a quasicomplete lcHs (over the field of complex or real numbers)
and let Pξ stand for the set of all ξ-continuous seminorms on E. Let m : Σ → E
be a ξ-bounded measure (i.e., the range of m is ξ-bounded in E). Given f ∈ B(Σ),
let (sn) be a sequence of Σ-simple scalar functions that converges uniformly to f
on Ω. Following [P1, Definition 1] we say that f is m-integrable and define∫

Ω

f dm := ξ − lim

∫
Ω

sn dm.

The
∫

Ω
f dm is well defined (see [P1, Lemma 5]) and the map Tm : B(Σ)→ E

given by Tm(f) =
∫

Ω
f dm is (‖ · ‖, ξ)-continuous and linear, and for each e′ ∈ E′ξ

e′
(∫

Ω

f dm

)
=

∫
Ω

f d(e′ ◦m) for f ∈ B(Σ) (see [P1, Lemma 5]).

Conversely, let T : B(Σ) → E be a (‖ · ‖, ξ)-continuous linear operator, and
let m(A) = T (1A) for A ∈ Σ. Then m : Σ → E is a ξ-bounded vector measure,
called the representing measure of T and Tm(f) = T (f) for f ∈ B(Σ) (see [P1,
Definition 2]).

Definition 2.1. A linear operator T : B(Σ) → E is said to be σ-smooth if
T (fn) → 0 in ξ for each uniformly bounded sequence (fn) in B(Σ) such that
fn(ω)→ 0 for all ω ∈ Ω.

The following characterization of σ-smooth operators from B(Σ) into a quasi-
complete lcHs (E, ξ) displays the close connection between the Mackey topology
τ(B(Σ), ca(Σ)) on B(Σ) and E-valued ξ-countably additive measures.

Proposition 2.2. Assume that (E, ξ) is a quasicomplete lcHs. Then for a ξ-
bounded measure m : Σ→ E the following statements are equivalent:

(i) e′ ◦m ∈ ca(Σ) for each e′ ∈ E′ξ.
(ii) e′ ◦ Tm ∈ B(Σ)∗c for each e′ ∈ E′ξ.
(iii) Tm is (σ(B(Σ), ca(Σ)), σ(E,E′ξ))-continuous.
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(iv) Tm is (τ(B(Σ), ca(Σ)), ξ)-continuous.
(v) Tm is (τ(B(Σ), ca(Σ)), ξ))-sequentially continuous.
(vi) Tm is σ-smooth.
(vii) m is ξ-countably additive.

Proof. (i)⇐⇒(ii) For each e′ ∈ E′ξ we have

(e′ ◦ Tm)(f) =

∫
Ω

f d(e′ ◦m) for all f ∈ B(Σ).

Hence by Proposition 1.1 we get e′ ◦ Tm ∈ B(Σ)∗c if and only if e′ ◦m ∈ ca(Σ).
(ii)⇐⇒(iii) See [AB, Theorem 9.26].
(iii)=⇒(iv) Assume that Tm is (σ(B(Σ), ca(Σ)), σ(E,E′ξ))-continuous. Then

Tm is (τ(B(Σ), ca(Σ)), τ(E,E′ξ))-continuous (see [AB, Ex. 11, p. 149]). It follows
that Tm is (τ(B(Σ), ca(Σ)), ξ)-continuous because ξ ⊂ τ(E,E′ξ).

(iv)=⇒(v) It is obvious.
(v)=⇒(vi) Assume that Tm is (τ(B(Σ), ca(Σ), ξ)-sequentially continuous, and

let (fn) be a sequence in B(Σ) such that fn(ω)→ 0 for all ω ∈ Ω and sup ‖fn‖ <
∞. Then by Proposition 2.1, fn → 0 for τ(B(Σ), ca(Σ)). Hence T (fn)→ 0 for ξ.

(vi)=⇒(vii) Assume that (vi) holds and let An ↓ ∅, (An) ⊂ Σ. Then 1An(ω) ↓ 0
for ω ∈ Ω and supn ‖1An‖ 6 1. It follows that m(An) = Tm(1An) → 0 for ξ, i.e.,
m is ξ-countably additive.

(vii)=⇒(i) It is obvious. �

Let Lτ,ξ(B(Σ), E) stand for the space of all (τ(B(Σ), ca(Σ)), ξ)-continuous lin-
ear operators from B(Σ) to E, equipped with the topology Ts of simple conver-
gence. Then Ts is generated by the family {qp,u : p ∈ Pξ, u ∈ B(Σ)} of seminorms
on Lτ,ξ(B(Σ), E), where

qp,u(T ) := p(T (u)) for all T ∈ Lτ,ξ(B(Σ), E).

Denote by Ts the topology of simple convergence in ca(Σ, E). Then Ts is
generated by the family {qp,A : p ∈ Pξ, A ∈ Σ} of seminorms, where

qp,A(m) := p(m(A)) for all m ∈ ca(Σ, E).

Now we establish some terminology (see [P1, pp. 92–93]). For p ∈ Pξ, let
Ep = (E, p) be the associated seminormed space. Denote by (Ẽp, ‖ · ‖∼p ) the
completion of the quotient normed space E/p−1(0). Let Πp : Ep → E/p−1(0) ⊂ Ẽp
be the canonical quotient map (see [P1, p. 92]).

Given a measure m : Σ→ E, let mp : Σ→ Ẽp be given by

mp(A) := (Πp ◦m)(A) for A ∈ Σ.

Thenmp is a Banach space-valued measure on Σ. We define the p-semivariation
‖m‖p of m by

‖m‖p(A) := ‖mp‖(A) for A ∈ Σ,
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where ‖mp‖ denotes the semivariation of mp : Σ→ Ẽp. Note that m is ξ-bounded
if and only if ‖m‖p(Ω) < ∞ for each p ∈ Pξ. Moreover, we have (see [P1,
Lemma 7])

‖m‖p(Ω) = ‖Tm‖p = sup

{
p
(∫

Ω

f dm
)

: f ∈ B(Σ), ‖f‖ 6 1

}
. 2.1

The following result will be of importance (see [SZ, Theorem 2]).

Theorem 2.1. Let K be a Ts-compact subset of Lτ,ξ(B(Σ), E). If C is a σ(E′ξ, E)-
closed and ξ-equicontinuous subset of E′ξ, then {e′ ◦ T : T ∈ K, e′ ∈ C} is
a σ(B(Σ)∗c , B(Σ))-compact subset of B(Σ)∗c .

Now using Theorem 2.1 we can state a characterization of relative Ts-compactness
in the space Lτ,ξ(B(Σ), E).

For a subsetM of ca(Σ, E) let

KM = {Tm ∈ Lτ,ξ(B(Σ), E) : m ∈M}.

Theorem 2.2. Assume that (E, ξ) is a quasicomplete lcHs. Then for a subsetM
of ca(Σ, E) the following statements are equivalent:

(i) KM is a relatively Ts-compact set in Lτ,ξ(B(Σ), E).
(ii) KM is (τ(B(Σ), ca(Σ)), ξ)-equicontinuous; and for each f ∈ B(Σ), the set
{
∫

Ω
f dm : m ∈M} is relatively ξ-compact in E.

(iii)
∫

Ω
fn dm → 0 in ξ uniformly for m ∈ M whenever (fn) is a uniformly

bounded sequence in B(Σ) such that fn(ω)→ 0 for all ω ∈ Ω; and for each
f ∈ B(Σ), the set {

∫
Ω
f dm : m ∈M} is relatively ξ-compact in E.

(iv) M is uniformly ξ-countably additive; and for each A ∈ Σ, the set {m(A) :
m ∈M} is relatively ξ-compact in E.

(v) M is a relatively Ts-compact set in ca(Σ, E).

Proof. (i)=⇒(ii) Assume that K is relatively Ts-compact. LetW be an absolutely
convex and ξ-closed neighbourhood of 0 for ξ in E. Then the polar W 0 of W, with
respect to the dual pair 〈E,E′ξ〉, is a σ(E′ξ, E)-closed and ξ-equicontinuous subset
of E′ξ (see [AB, Theorem 9.21]). Hence in view of Theorem 2.1 the set H =

{e′ ◦Tm : m ∈M, e′ ∈W 0} in B(Σ)∗c is relatively σ(B(Σ)∗c , B(Σ))-compact. Since
(B(Σ), τ(B(Σ), ca(Σ))) is a strongly Mackey space, the set H is τ(B(Σ), ca(Σ))-
equicontiunous. It follows that there exists a τ(B(Σ), ca(Σ))-neighborhood V of
0 in B(Σ) such that H ⊂ V 0, where V 0 denotes the polar of V with respect to
the dual pair 〈B(Σ), B(Σ)∗c〉. Hence for each m ∈ M we have that {e′ ◦ Tm : e′ ∈
W 0} ⊂ V 0, i.e., if e′ ∈ W 0, then |e′(Tm(f))| 6 1 for all f ∈ V . This means that
for each m ∈ M we get W 0 ⊂ Tm(V )0. Hence Tm(V ) ⊂ Tm(V )00 ⊂ W 00 = W
for each m ∈M, i.e., KM is (τ(B(Σ), ca(Σ)), ξ)-equicontinuous. Clearly, for each
f ∈ B(Σ), the set {Tm(f) : m ∈M} is relatively ξ-compact in E.
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(ii)=⇒(iii) Assume that (ii) holds. Let p ∈ Pξ and ε > 0 be given. Then there
exists a τ(B(Σ), ca(Σ))-neighborhood V of 0 in B(Σ) such that for eachm ∈M we
have p(Tm(f)) 6 ε for all f ∈ V . Let fn(ω)→ 0 for all ω ∈ Ω and supn ‖fn‖ <∞.
Then fn → 0 for τ(B(Σ), ca(Σ)) (see Proposition 2.1). Hence there exists nε ∈ N
such that fn ∈ V for n > nε. Then supm∈M p(Tm(fn)) = supm∈M p(

∫
Ω
fn dm) 6

ε for all n > nε, as desired.
(iii)=⇒(iv) Assume that (iii) holds, and let An ↓ ∅, (An) ⊂ Σ. Then 1An(ω)→

0 for all ω ∈ Ω and supn ‖1An‖ 6 1. Hence for each p ∈ Pξ we have

sup
m∈M

p(m(An)) = sup
m∈M

p
(∫

Ω

1Andm
)
−→ 0.

(iv)=⇒(v) See [GR, Theorem 7].
(v)=⇒(i) Assume that M is relatively Ts-compact, and let (Tmα) be a net

in KM. Without loss of generality, we can assume that mα → m for Ts, where
m ∈ ca(Σ, E). We shall show that Tmα → Tm in (Lτ,ξ(B(Σ), E), Ts). Indeed,
let p ∈ Pξ and fix ε > 0. Since M is a Ts-bounded subset of ca(Σ, E), for
each A ∈ Σ we have supα p(mα(A)) = supα qp,A(mα) < ∞. Hence, since the
mapping Πp : E → Ẽp is (p, ‖·‖∼p )-continuous, we obtain that supα ‖(mα)p(A)‖∼p =
supα ‖(Πp ◦mα)(A)‖∼p < ∞. In view of the Nikodym boundedness theorem (see
[DU, Chap. 1, Theorem 1]) and (2.1) we get

c = sup
α
‖Tmα‖p = sup

α
‖mα‖p(Ω) <∞.

Let f ∈ B(Σ) be given and choose a Σ-simple function s0 such that ‖f −
s0‖ 6 ε

3a , where a = max(c, ‖Tm‖p). Then there exists α0 such that p(Tmα(s0)−
Tm(s0)) 6 ε

3 for α > α0. Hence for α > α0 we get

p(Tmα(f)− Tm(f))

6 p(Tm(f − s0)) + p(Tm(s0)− Tmα(s0)) + p(Tmα(s0)− Tmα(f))

6 ‖Tm‖p · ‖f − s0‖+ p(Tm(s0)− Tmα(s0)) + ‖Tmα‖ · ‖s0 − f‖

6 a · ε
3a

+
ε

3
+ a · ε

3a
= ε.

This means that Tmα → Tm for Ts, as desired. �

Now we derive a generalized Nikodym type convergence theorem for integration
operators T : B(Σ)→ E.

Theorem 2.3. Assume that (E, ξ) is a quasicomplete lcHs. Let mk : Σ → E be
a ξ-countably additive measure for k ∈ N and assume that m(A) = ξ − lim mk(A)
exists for each A ∈ Σ. Then the following statements hold:

(i) m : Σ→ E is a ξ-countably additive measure, and the integration operator
Tm : B(Σ)→ E is σ-smooth.

(ii)
∫

Ω
f dm = ξ − lim

∫
Ω
f dmk for all f ∈ B(Σ).

(iii)
∫

Ω
fn dmk → 0 in ξ uniformly for k ∈ N whenever (fn) is a uniformly

bounded sequence in B(Σ) such that fn(ω)→ 0 for all ω ∈ Ω.
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Proof. In view of the Nikodym convergence theorem (see [GR, Theorem 9]) m :
Σ → E is ξ-countably additive, and by Proposition 2.2 Tm : B(Σ) → E is σ-
smooth. Arguing as in the proof of [N, Theorem 3.3], we obtain that Tmk → Tm
in Lτ,ξ(B(Σ), E) for Ts, i.e.,

∫
Ω
f dm = ξ − limk

∫
Ω
f dmk for all f ∈ B(Σ). Since

{Tmk : k ∈ N} ∪ {Tm} is a Ts-compact subset of Lτ,ξ(B(Σ), E), by Theorem 2.2∫
Ω
fn dmk → 0 in ξ uniformly for k ∈ N if (fn) is a uniformly bounded sequence

in B(Σ) with fn(ω)→ 0 for all ω ∈ Ω. �

Remark 2.1. In case B(Σ) is the Banach lattice of bounded Σ-measurable real-
valued functions on Ω and (E, ξ) is a quasicomplete real lcHs that is complete in
its Mackey topology, the equivalences (i)⇐⇒(ii)⇐⇒(iv) ⇐⇒(v) in Theorem 2.2
were derived in [N, Theorem 3.2].

Remark 2.2. One can note that the equivalence (i)⇐⇒(iii) in Theorem 2.2 is
related to a Grothedieck’s characterization of relative weak compactness in the
space of bounded complex Radon measures on a locally compact space (see [Gr,
Theorem 2]).
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