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Abstract: We propose an essential improvement of a convergence theorem for the Birkhoff
integral. We also obtain the respective version of this result for the convergence associated with
an ideal on N.
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1. Introduction

Several kinds of integrals for Banach space valued functions are known. For each
of them, convergence theorems are always important because of their possible
applications. Recently, we have obtained a new Vitali-type convergence theorem
for the Pettis integral [2] using the notion of scalar equi-convergence in measure
for a sequence of Banach space valued functions. We will use it in the main result
of this paper. Our pourpose is to improve a convergence theorem for the Birkhoff
integral due to Rodríguez [24]. Besides this, we provide the respective example
witnessing that our improvement is essential, and we formulate a counterpart of
the theorem for the convergence associated with an ideal on N := {1, 2, . . . }.

Through the paper, (Ω,Σ, µ) stands for a complete probability space. A fam-
ily F of real-valued Lebesgue integrable functions on Ω is said to be uniformly
integrable if sup{

∫
Ω
|f |dµ : f ∈ F} < ∞ and for every ε > 0 there is δ > 0 such

that
∫
A
|f |dµ < ε for all f ∈ F and A ∈ Σ with µ(A) < δ. Throughout, X is a real

Banach space with its dual X∗ and B(X) := {x ∈ X : ||x|| 6 1}. For f : Ω → X
we denote Zf := {x∗f : ‖x∗‖ 6 1}.

We refer the reader to [6] and [18] for basic terminology from the theory of
integral for vector-valued functions. A scalarly measurable function f is called
Pettis integrable if x∗f ∈ L1(Ω,µ) for all x∗ ∈ X∗, and for each E ∈ Σ there
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is νf (E) ∈ X such that x∗νf (E) =
∫
E
x∗fdµ for all x∗ ∈ X∗. Then νf (E) is

called the Pettis integral of f over E with respect to µ. The Pettis integral is
more general than the Bochner integral, usually treated as a counterpart of the
Lebesgue integral for X-valued strongly measurable functions.

The space of X-valued Pettis µ-integrable functions can be endowed with
a norm defined by ‖f‖P := sup‖x∗‖61

∫
Ω
|x∗f | dµ. It is known that in gen-

eral this space is not complete. An equivalent norm can be defined by ‖|f‖| =
supE∈Σ

∥∥∫
E
f dµ

∥∥. It follows from this fact that the convergence in the Pettis
norm coincides with the uniform convergence of the integrals on the σ-algebra Σ.
For a survey on the Pettis integral, see [18] (cf. also [17]).

A sequence (fn) of X-valued scalarly measurable functions is called scalarly
convergent in measure to a scalarly measurable function f : Ω → X if for each
x∗ ∈ X∗ the sequence (x∗fn) is convergent in measure to x∗f . The following
Vitali-type theorem for Pettis integral is due to Musiał [16, Theorem 1] (see also
[17, Theorem 8.1] and [18, Theorem 5.2]).

Theorem 1. [16] Let fn, n ∈ N, be Pettis integrable functions from Ω to X such
that

⋃
n∈N Zfn is uniformly integrable and (fn) is scalarly convergent in measure

to f . Then f is Pettis integrable and
∫
E
fn →

∫
E
f weakly for each E ∈ Σ.

In [2] we introduced a stronger notion called a scalar equi-convergence in mea-
sure. Namely, we say that a sequence of scalarly measurable functions fn : Ω → X,
n ∈ N, is scalarly equi-convergent in measure to a scalarly measurable function
f : Ω → X if for every δ > 0 we have

lim
n

sup
‖x∗‖61

µ{t ∈ Ω : |x∗fn(t)− x∗f(t)| > δ} = 0.

Note that, if a sequence of scalarly integrable functions fn : Ω → X, n ∈ N, is
convergent to a scalarly integrable function f : Ω → X in the Pettis norm, then it
is scalarly equi-convergent in measure to f : Ω → X.

If f : Ω → X is a scalarly measurable function, we can define (cf. [2]) the
following translation invariant F-norm

|f |µ := inf

{
λ > 0: sup

‖x∗‖61

µ{|x∗f | > λ} 6 λ

}
.

The convergence in this F-norm is equivalent to scalar equi-convergence in mea-
sure.

Scalar equi-convergence in measure can be compared with other kinds of con-
vergence as follows.

Lemma 2. [2] Let fn : Ω → X, n ∈ N, and f : Ω → X be scalarly measurable
functions. We then have (A)⇒ (B)⇒ (C)⇒ (D) where

(A) (fn) is µ-a.e. convergent in the norm topology of X to f ;
(B) ∀ δ > 0 limn µ∗{‖fn − f‖ > δ} = 0 (µ∗ is inner measure induced by µ);
(C) (fn) is scalarly equi-convergent in measure to f ;
(D) (fn) is scalarly convergent in measure to f .
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It was observed in [2] that no implication stated in Lemma 2 is reversible.
A new Vitali-type convergence theorem obtained in [2] is the following. It

improves [24, Theorem 2.8] and [19, Corollary 5.3].

Theorem 3. [2] Let functions fn : Ω → X, n ∈ N, be Pettis integrable and let
f : Ω → X be scalarly measurable. The following conditions are equivalent:

(a) (fn) is scalarly equi-convergent in measure to f and
⋃
nZfn is uniformly

integrable;
(b) f is Pettis integrable and limn ‖fn − f‖P = 0.

In particular, (a) implies that limn

∥∥∫
E
fn dµ−

∫
E
f dµ

∥∥ = 0 uniformly with re-
spect to E ∈ Σ.

2. Results

In the recent years, a number of works have been devoted to the Birkhoff integral
[4] located between the Bochner and the Pettis integrals (see [5], [22], [23], [24], [3]).
A function f : Ω → X is called Birkhoff integrable with integral x =

∫
Ω
fdµ ∈ X

if for every ε > 0 there is a countable partition (Am) of Ω with Am ∈ Σ such
that, for any choice of points tm ∈ Am, the series

∑
m f(tm)µ(Am) converges

unconditionally in X and ||
∑
m f(tm)µ(Am) − x|| 6 ε. Cascales and Rodríguez

[5] discovered that f : Ω → X is Birkhoff integrable if and only if Zf is uniformly
integrable and has the Bourgain property. (A family H ⊆ RΩ is said to have the
Bourgain property if for every ε > 0 and every A ∈ Σ with µ(A) > 0 there are
A1, . . . , An ∈ Σ, Ai ⊆ A with µ(Ai) > 0 and min

16i6n
osc(h|Ai) 6 ε for each h ∈ H.)

Several convergence theorems for the Birkhoff integral were discussed in [22],
[23], [24] and [3]. Rodríguez showed in [22], [23] that the classical Lebesgue dom-
inated convergence theorem need not hold for the Birkhoff integral. Following
[3], we say that a family {fn : n ∈ N} ⊆ XΩ is Birkhoff equi-integrable if for every
ε > 0 there is a countable Σ-partition (Am) of Ω such that for any choice of points
tm ∈ Am we have:

• for each δ > 0 there is k ∈ N such that ||
∑
m∈M fn(tm)µ(Am)|| 6 δ for every

finite set M ⊆ N disjoint from {1, . . . , k} and all n ∈ N (in particular, each
series

∑
m fn(tm)µ(Am), n ∈ N, converges unconditionally in X);

• ||
∑
m fn(tm)µ(Am)−

∫
Ω
fndµ|| 6 ε for all n ∈ N.

Note that each member of a Birkhoff equi-integrable family is Birkhoff integrable
and every infinite subset of a Birkhoff equi-integrable family is Birkhoff equi-
integrable.

The following result was first proved in [3] for norm convergence, and shown
again in a different way in [24] where also weak convergence was considered.

Theorem 4 ([24], [3] ). Let f : Ω → X and fn : Ω → X, n ∈ N, where {fn : n ∈
N} is Birkhoff equi-integrable. If (fn) is convergent pointwise in norm (weakly) to
f then f is Birkhoff integrable and

∫
E
fndµ→

∫
E
fdµ in norm (weakly) for every

E ∈ Σ.
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We propose the following improvement of this theorem:

Theorem 5. Let (fn) be a pointwise bounded sequence of Birkhoff equi-integrable
functions fn : Ω → X, n ∈ N, which is scalarly convergent in measure to a function
f : Ω → X. If Zf is contained in the pointwise closure of

⋃
nZfn , then f is

Birkhoff integrable and

lim
n

∫
Ω

|x∗fn − x∗f | dµ = 0 for every x∗ ∈ X∗. (1)

Moreover, if the sequence (fn) is scalarly equi-convergent in measure to f , then

lim
n
‖fn − f‖P = 0. (2)

In particular,

lim
n

∥∥∥∥∫
E

fn dµ−
∫
E

f dµ

∥∥∥∥ = 0 uniformly with respect to E ∈ Σ.

Proof. According to [24, Proposition 2.11] the set
⋃
nZfn is uniformly integrable

and has the Bourgain property. By the assumption, Zf is contained in the point-
wise closure of

⋃
nZfn , and we know that the Bourgain property is preserved

by taking pointwise closures (cf. [21, Theorem 11]). Consequently, Zf has the
Bourgain property. Applying the assumed convergence in measure, we obtain the
uniform integrability of the set Zf . Then applying the Cascales-Rodríguez theorem
[5], we get the Birkhoff integrability of f . Condition (1) follows from Theorem 1,
and condition (2) is a consequence of Theorem 3. �

It is obvious that the above result generalizes Theorem 4 in the case of weak
convergence. However, to show that this improvement is essential, we need an
example.

Example 1. Let (Ω,Σ, µ) be a non-atomic probability space such that there
exists a sequence (En)n of elements of Σ generating an algebra that is µ-dense in
Σ. If X is separable, l1 * X and X∗ is non-separable, then there exists a Pettis
integrable bounded function f : Ω → X∗ that is not weak∗ equivalent to any
strongly measurable X∗-valued function (see [14]). Without loss of generality, we
may assume that for a lifting ρ on L∞(µ) the function f satisfies for every x ∈ X
the equality xf = ρ(xf). It follows then from [17, Corollary 12.1] that the set
{xf : ‖x‖ 6 1} and then Zf have the Bourgain property. In virtue of [5], f is
Birkhoff integrable.

For each n ∈ N let πn be the partition generated by the sets E1, . . . , En. For
each n ∈ N let

fn :=
∑
E∈πn

(P )
∫
E
f dµ

µ(E)
with the convention 0/0 = 0 .

One can easily check that {(fn, σ(πn)) : n ∈ N} is a bounded martingale; in partic-
ular, for each x∗∗ ∈ X∗∗, the sequence {((x∗∗fn), σ(πn)) : n ∈ N} is a real valued
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uniformly integrable martingale. Moreover, E(x∗∗f |σ(πn)) = x∗∗fn µ–a.e. for ev-
ery n ∈ N. Hence, if Σ̃ = σ({En : n ∈ N}, then limn x

∗∗fn = E((x∗∗f)|Σ̃) = x∗∗f

in L1(µ|Σ̃) and µ–a.e.
If {xk : k ∈ N} is a norm dense in B(X) then, one can extract N ∈ Σ of

measure zero such that for each k and each t /∈ N we have limn xkfn(t) = xkf(t).
Since

sup
n

sup
t∈Ω

max{‖fn(t)‖, ‖f(t)‖} <∞,

it follows that limn xfn(t) = xf(t) for every x ∈ X and every t /∈ N .
Set now, for each n ∈ N, gn := fnχNc and g := fχNc . It is obvious that g is

Birkhoff integrable and gn → g pointwise in the weak∗ topology. Since g is not
scalarly equivalent to any strongly measurable function, no subsequence of (gn)n
can converge a.e. weakly to g.

By the same reason, g cannot be a pointwise weak limit of any sequence of
strongly measurable functions.

But X is separable, and so, due to Rosenthal’s subsequence theorem, if x∗∗ ∈
B(X∗∗), then there is a subsequence (yk)k inB(X) satisfying the equality limk yk =
x∗∗ in the weak∗ topology of X∗∗. It follows that x∗∗g is in the pointwise closure
of {xg : ‖x‖ 6 1}. But each xg is in the pointwise closure of the set {xgn : n ∈ N}.
This proves that Zg is contained in the pointwise closure of

⋃
nZgn . �

Recently, extensive studies have been developed in various applications of a gen-
eralized kind of convergence associated with an ideal (or, equivalently, with a filter)
of subsets of N. (cf. [13, 20, 9, 10, 11, 8, 7, 1, 12]). If I is an ideal of subsets of
N, we say (cf. [13], [20]) that a sequence (xn)n∈N of real numbers is I-convergent
to x ∈ R if for every ε > 0 we have {n ∈ N : |xn − x| > ε} ∈ I. We then write
I-limn xn = x. Note that the usual convergence implies I-convergence, while the
converse is not true in general. If functions f : Ω → R and fn : Ω → R, n ∈ N, are
measurable, we say (cf. [1]) that (fn) is I-convergent in measure to f whenever

I- lim
n
µ({t ∈ Ω : |fn(t)− f(t)| > δ}) = 0

for every δ > 0.
The following Vitali-type theorem was proved in [2].

Theorem 6 ([2]). Let (fn) be a uniformly (Lebesgue) integrable sequence of func-
tions fn : Ω → R, n ∈ N, I-convergent in measure to a measurable function
f : Ω → R. Then f is integrable and I-limn

∫
Ω
|fn − f | = 0.

For our pourposes we need two else definitions. Let fn : Ω → X, n ∈ N and
fn : Ω → X be scalarly measurable functions. We say that (fn) is I-scalarly
convergent in measure to f if (x∗fn) is I-convergent in measure to x∗f for each
x∗ ∈ X∗. We say (cf. [2]) that the sequence (fn) is I-scalarly equi-convergent in
measure to f if for every δ > 0 we have

I- lim
n

sup
‖x∗‖61

µ({t ∈ Ω : |x∗fn(t)− x∗f(t)| > δ}) = 0.
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The following result is an I-version of Theorem 5.

Theorem 7. Assume that (fn) is a pointwise bounded Birkhoff equi-integrable se-
quence of functions fn : Ω → X, n ∈ N, which is I-scalarly convergent in measure
to a scalarly measurable function f : Ω → X. If Zf is contained in the pointwise
closure of

⋃
n∈NZfn , then f is Birkhoff integrable and

I- lim
n

∫
Ω

|x∗fn − x∗f | dµ = 0 for every x∗ ∈ X∗. (3)

Moreover, if (fn) is I-scalarly equi-convergent in measure to f , then I- limn ‖fn−
f‖P = 0. In particular,

I- lim
n

∥∥∥∥∫
E

fn dµ−
∫
E

f dµ

∥∥∥∥ = 0 uniformly with respect to E ∈ Σ. (4)

Proof. To show that f is Birkhoff integrable we proceed as in the proof of The-
orem 5 (the uniform integrability of Zf follows from the assumed convergence of
(fn), the uniform integrability of

⋃
nZfn , and Theorem 6). Condition (3) follows

from Theorem 6 applied to the sequence (x∗f) for every fixed x∗ ∈ X∗.
Assume that (fn) is I-scalarly equi-convergent in measure to f . Then we

modify simply the argument used in the final part of the proof of Theorem 3
(cf. [2]). Fix ε > 0 and pick δ > 0 such that

∫
A
|x∗fn − x∗f |dµ < ε for all

n ∈ N, ||x∗|| 6 1 and A ∈ Σ with µ(A) < δ. By the assumption of the I-scalar
equi-convergence, pick E ∈ I such that

sup
‖x∗‖61

µ({t ∈ Ω : |x∗fn(t)− x∗f(t)| > ε}) < δ for all n ∈ N \ E.

Then for all n ∈ N \ E we have

‖fn − f‖P = sup
‖x∗‖61

∫
Ω

|x∗fn − x∗f |dµ

6 sup
‖x∗‖61

∫
{|x∗fn−x∗f |>ε}

|x∗fn − x∗f |dµ

+ sup
‖x∗‖61

∫
{|x∗fn−x∗f |6ε}

|x∗fn − x∗f |dµ < 2ε.

This yields I- limn ‖fn − f‖P = 0 and consequently, condition (4) holds. �
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