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SOME ELEMENTARY EXPLICIT BOUNDS FOR TWO
MOLLIFICATIONS OF THE MOEBIUS FUNCTION

OLIVIER RAMARE

Abstract: We prove that the sum Z{ d<z u(d)/d*te is bounded by 1+¢, uniformly in > 1,
(d,r)=1
r and € > 0. We prove a similar estimate for the quantity Z{ a<e  B(d) log(x/d)/d'*T¢. When
(d,r)=1
€ = 0, r varies between 1 and a hundred, and =z is below a million, this sum is non-negative and
this raises the question as to whether it is non-negative for every x.
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1. Introduction and results

Our first result is the following:
Theorem 1.1. When r > 1 and € > 0, we have
Z p(d)

d1+s

d<z
(d,r)=1

<1l+e¢

This Lemma generalizes the estimate of [5, Lemme 10.2] which corresponds
to the case ¢ = 0. This generalization is not straightforward at all and requires
a change of proof. The case e = 0 and r = 1 is classical. The parameter ¢ that is
being introduced induces some flexibility useful when applying Rankin’s method
(devised in [8]). As it turns out, we can do somewhat better concerning the lower
bound, and we prove that

w(d)
d1+s'

—(1+4e¢) <
d<z
(d,r)=1
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We ran computations covering the range 1 < x < 10 and 1 < r < 100 with & = 0;
we found that the lowest lower bound was met at x = 13 and r = 1. This raises
the following question:

Question 1. It is true that
d
> # > —2323/30030 7
d<z

(d,r)=1

See section 2 for a very preliminary result in this direction.
We proceed by proving the following more involved form:

Theorem 1.2. Whenr > 1 and 1.38 > € > 0, we have

p(d) z 2 rite
log—| <14+47¢6+33“+(1+¢ x°
A<z arve % ( )¢1+e(7")
(d)T):l
where e e
r p
Prie(r) g prte—1 W

The dependence in 7 is optimal as seen by taking for r the product of every
primes not more than /x. The proof is again unbalanced with respect to the
upper and the lower bound, and we prove a somewhat better lower bound:

d x
1( )logf.
dite d
d<z
(d,r)=1

—(1.434 + 4.992¢ + 3.558¢%) <

I expect the factor ¢ in the upper bound to be a blemish; however, the (limited)
numerical verifications we ran suggest that the factor 7'7¢/¢1,.(r) cannot be
omitted even if the condition r < z is added (this condition often appears in
practice). It should be added that it is not difficult to prove that

Z@loggwl (z — 00)

d<z

which means that one cannot expect an arbitary small constant in the right hand
side of the inequality given in Theorem 1.2. We have checked that

0< Mlog§< _

+0.007 z<10% 1< r <100
2 o0 ( )

(where z is a real number and not especially an integer) and all these maxima
were in fact very close to r/¢(r). These computations raise two questions:
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Question 2. Is it true that

3 @log§>o, (r=1,r>1) ?
d<z

(d,r)=1

Question 3. Is it true that

w(d) x T
Y02 < L 41 >1,r>1) ?
(;D FEG S gyt @>Lr>D

(d,r)=1

In both these questions, x is only assumed to be a positive real number. On
recalling what happens in the case of Turan’s conjecture on the summatory func-
tion of the Liouville function divided by its argument, see [2], we believe that the
answer to the first question is no. The sum is however less likely to be very errat-
ical because of the smoothing factor, a factor that is absent in Turén’s problem.
In direction of these conjecture, we note the following formula

Lo d e T () (1)
(d,r)=1

from which we easily deduce (on taking s = & > 0 and letting € go to infinity) that

lim sup Z () log§> ¢€T).

(d,r)=1

We discuss some related points in the last section.

Notation

We use here the notation h = O*(k) to mean that |h| < k. We denote by 7(m)
the number of (positive) divisors of m, and by (a,b) the ged of @ and b. For e > 0
and r > 1 any natural squarefree number, we define two functions. The first one
is alternatively defined by

frem = 3 M0rapp) &
ln
e,r)=1

or, in multiplicative form, by:

frem) =] <y+1—1%) I+ (3)

v

p”|n p”|In
pir plr
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We easily determine its Dirichlet series: > -, fre(n)/n® = C(s)?/¢(s +¢€). We
shall further write

Ire (n) =1x 9re (n) (4)

where the function g,. has the essential property of being non-negative and is
being defined by:

goetmy = 3 05, )
‘

(Z,rinzl

Thanks. Sincere thanks are due to the careful referee who has checked our com-
putations and indeed has rooted out several mistakes.

2. Verifying Theorem 1.1 for small values

We study what happens for small values here. The proof is pedestrian and painful,
but I have not seen any way to avoid it, or to present it in a more general frame.
We study the following quantity:

p(d)
di+e’ (6>
d<z
(d,r)=1

mo(r,z) =

Lemma 2.1. When x < 10 and € > 0, we have —1/30 < mo(r,z) < 1.

Proof. The sum we consider reads

h(2) _hB3) _ h(B)  h(6) A7)

- 21+€ 31+6 51+6 61+€ 71+5

where h is the characteristic function of the integers < = that are coprime with r.

The minimum is clearly
1 1 1

- 21+5 - 31+6 - 51+€

1

which is minimal when € = 0. This is the —1/30. The maximum contains the
summand 1. If the summand 1/6'7¢ is present, then so is the summand —1/21%¢.
This concludes the proof. |

3. Auxiliaries

Lemma 3.1. When ¢ > 0, we have

1+e
thz? +O*(H?).
h<tl +e

. . . . 1+e
This is also < HYT¢. When H is an integer, we have Zth ht® > 1{7
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Proof. Indeed, when € > 0, a summation by parts gives us directly

=)« /dt/tla—s/ > vat/te

h<H h<H t<h<H

e /H(H — 4 dt i 4+ O (HE).

We proceed by continuity to cover the case ¢ = 0. When H is an integer, a com-
parison to an integral gives the result. |

Lemma 3.2. For L > 1, we have

> fre(m) KLY gre(0)/e. (7)

n<L <L
Proof. We recall (4) and write, since g, > 0
Zfr,a(n): Z gra ngrs
n<L km<L m<L

The Lemma follows readily. |

Lemma 3.3. For every integer n and any € > 0, we have

g1,e(¢ Z 91.e/2(m)g1,c/2(n).
mn=~{
Proof. We check that, when a > 1 is an integer and p a prime number,
o 1 1 1 1
) =1- 2 =1 o+ o (1 )
91,e/2 (p )9175/2(1) +gl,€/2(1)gl,s/2 (pa)

91,e/2 (pa_ﬁ)gl,e/Q (pﬂ) :
0<BLa

We conclude by invoking the multiplicativity of g . /2. |
Lemma 3.4. We have when L > 7.2,

Z 10g11 <logL.

p<Lt

Proof. We cite [9, (2.8)]:

logp logp 1
E <logL — E L>31
R toogr (239
p<L p>2
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from which we deduce, for L > 319,

1

Z o8P <logL — v+
p—1

p<L

2log L’

A simple GP script shows that

1

Z o8P <logL
p—1

p<L

when 1000 > L > 7.2, and the reader will conclude readily. | |

Lemma 3.5. We have, when L > 1 and ¢ > 0,

YogO/e< I (®)

<L

Proof. Verifying the stated inequality for 1 < L < 8 is (tedious but) easy, hence
we can now assume that L > 8. We readily find that the sum in question is not

more than .
1 —p —€ 1— p_e
TZHil—Zfl :epolog(l—l— p—l)'
p<L p<L

We apply log(1 + z) < « for non-negative z and 1 — p~¢ < elogp to get, when
L>8,

log p
p—1

Tgexpez < L*

p<L
by invoking Lemma 3.4. |
Lemma 3.6. We have, when L>1,r>1 ande >0,

,r.lJre

> g0/t < L. 9)

< P14e(r)

Proof. We use the notation d|r* to say that each prime factor of d divides r. We
write

97“,8(6) _ gr,s(e)
Z ¢ - Z Z 0d

L L d|r>® ¢<L/d
a<L (tr)=1
1 rlte
~
adire dre(r)

by Lemma 3.5. The Lemma follows readily. |
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Lemma 3.7.

Mite 1 1
Z mer(m) = logM +2y — —— | +O* [ 0.961(1 +2e)M 27
et 1+e 1+e

Proof. We recall part of [1, Theorem 1.1]:

> r(m) =tlogt+ (2y — 1)t + O*(0.961V1), (t>1).

m<t

Since (tlogt + (2y — 1)t)/+/t is seen to vary between —0.681 and 0.155 when ¢
varies between 0 and 1, this estimate is also valid for ¢ > 0. We use summation
by parts and find that

M
Z meT(m) :ME —5/ Z m)dt/t' ¢

m<M m<M m<t

1
= M“*(log M + 2y — 1) + O" (0.961M§+5>

M M
- 5/ (logt + 2y — 1)t°dt + O* <0.9615/ tf—l/Zdt>
0 0

Ml+e 1 1
= T5: (logM + 2y — 1+> + O* (0.961(1 + 25)M2+€> .
|
Lemma 3.8. We have, when n > 2,
gre(n) <1 7]1(””;“ "),
Proof. Indeed, we verify that (1 —a)(1 —b) < (1 — ab) when 0 < a,b < 1. The
Lemma readily follows by recursion on the number of prime factors of n. |

4. Some lemmas on squarefree numbers

Here is a Lemma from [4]:
Lemma 4.1. We have, for D > 1664
> wA( 0*(0.1333V'D).
d<D
In particular, this is not more than 0.62D when D > 1700.
Lemma 4.2. We have

> P < 1.33/x, (z>1).

d<z
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If we are ready to assume larger, we would not save much since the best constant
one can get is 12/7% = 1.215 + O*(0.001).

Proof. We use PARI/GP see [7] and the following script:

{check(borne) =
my(res = 0.0, coef = 0);
for(d = 1, borne,
res += moebius(d)~2/sqrt(d);
coef = max(coef, res/sqrt(d)));
return(coef)}

It is then almost immediate to check our result when z < 107, despite the lack of
refinement of the script proposed. For larger values, we use a summation by parts
together with Lemma 4.1. |

Lemma 4.3. We have

—

Sprd) < Ha,  (x209).

We note that 11/15 = 0.7333... while the asymptotically best constant is
rather lower, namely 6/72 = 0.607927 . ... Reaching 73/115 = 0.63478 ... already
requires to take x > 75, and this means we would have to handle the possible
divisibility by 21 primes in section 2. This is out of reach of the simple-minded
method we have at our disposal.

Proof. We use PARI/GP see [7] and the following script:

{check(borneinf, bornesup) =
my(res = 0.0, coef = 0);
res = sum(d = 1, borneinf-1, moebius(d)"2);
for(d = borneinf, bornesup,
res += moebius(d)~2;
coef = max(coef, res/d));
return(coef)}

It is then almost immediate to check our result when 2 < 107, despite the lack of
refinement of the script proposed. For larger values, the result is an immediate
consequence of Lemma 4.1. [ |

5. Proof of Theorem 1.1

Lemma 2.1 establishes Theorem 1.1 when x < 10, so we may assume x > 10. We
further may restrict our attention to integer values of x. We start with

an,a Z Z d)(n/d)*.

n<e n<zr  dln
(d,r)=1
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Using the first expression yields 0 < Sy as well as

So/x® <1+ Z <gm(n) + Il(w)i) 13 (

2<n<x 2<n<x
(n,r):l

Each summand in the second sum is bounded above by 1 by Lemma 3.8. We get

2
0<Sy/z° <x— Z MT(En)

2<n<Lz
(n,r)=1

Let us write the second expression for Sp:

So= 3 uld) 3 me,

d<z m<x/d
(d;r)=1

We employ Lemma 3.1; we treat the case d = 1 separately for the lower bound to
reach

rlte N(d) .
S T
d<z 2<d<z
(d,r)=1 (d,r)=1
xlte p(d) —e
< +at Y pPd)d
1+e¢ = dite <
(d,r)=1 (d,r)=1

The lower bound requires = to be an integer, but not the upper bound. We rewite
the above as

a!te 11(d)

5 2 - 5 2 —c
So—x g p(d)d <1+€ d1+a<50+x E p(d)yd .
d<z d<z 2<d<z

(d,r)=1 (d,r)=1 (d,r)=1

By conjugating both estimates, we get,

1+e
2 =z 1(d) 1+
—z° E p(d)d < 11z Jite < zlte.
d< d<
(d,r)il (d,r)il

The right hand side is easily handled. We use Lemma 4.3 for the left hand side

via, when = > 9:
> m <D W@ < Fo

d<z d<z
(d,r)=1

By conjugating both estimates, we get

d
gﬁ2<1+a (x> 9). (10)

LRI
d<z
(d,r)=1

Theorem 1.1 is proved.
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6. Proof of Theorem 1.2

The proof relies on two ways of writing the sum

anfm Z Z d)(n/d)*T(n/d).

n<z n<r  dln
(d,r)=1

The first form shows that 0 < S; < z!*2¢r1+¢ /¢ (r) by combining Lemma 3.2
together with Lemma 3.6. Let us write this sum differently:

Si= 3 ud) S mer(m)

d<z m<z/d
(d,r)=1

and we use Lemma, 3.7 to reach

.131+E M(d) 1 -
Sl—1+€ dg; d1+€<1g3+27_ﬁ)+0 (0.961X1.33(1+25)x )

(d,r)=1

since Y-, #%(d)/Vd < 1.33\/z by Lemma 4.2. We set

1
=2y— —— €10,1]. 11
a=27— 7 [0, 1] (11)
All of that amounts to:

o plte N(d) . ) o
1= l1+e dg; di+e (IOgg +Oé) + O (1.279(1 + 2¢)z'*°)

(d,r)=1
= S} + aSy+ 0 (1.279(1 + 22)z' )

say. We thus have
1+e

—1.279(1 + 2¢)2' ™ < 87 + Sy < 1.279(1 + 2¢)atte 4 o1+ — .
¢1+E(T)

We use (10) and Lemma 2.1, and reach
rlte

d)l—‘rs("ﬂ).

—1.279(1 4 2¢) —a < 271787 < 1.279(1 + 2¢) + La + 2°

We use av < 2y — 1 + €. This gives
d
Md) 2

2
—1.434 — 4.992¢ — 3.558¢2 < 7 08

d<z
(dr)=1

x5r1+5

P14e (T) '

Since 25717 /¢y, .(r) > 1, we check that the right hand side is larger than minus
times the left hand side. Theorem 1.2 follows.

< 1.393 + 4.684¢ + 3.292¢% + (1 +¢)
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7. A generalization and a remark

It is not difficult to get along these lines the following Lemma;:

Lemma 7.1. Whenr > 1 and k > 1, we have

d k
51(+2 log" % <Ly, (%) (log z)*~1.

d<z
(d,r)=1

Such quantities appear for instance in [10] where cases Kk = 0 and k& = 1
are used, while case k = 2 is evaluated (there is a main term), but all with no
coprimality conditions (i.e. 7 = 1) and no €. The reader will find in [3, Chapter 1]
the evaluation of case k = 3, r = 1 and € = 0. [6] also pertains to these quantities.

Proof. Indeed, we first prove that

Z Z d)(n/d)*Ti11(n/d) < (¢ZT)>kx(logx)k—1_

n<r  dln
(d,r)=1

We then continue as in section 6. |
Here is a surprising elementary consequence.

Lemma 7.2. For any ¢ > 0, we have

pld) . 1(d) r
E — =T <L E——
~ d o de ()
(d,r)=1 (d,r)=1

provided that 0 < & < c(logx) L.

Proof. It is enough to consider
r

/ Z d1+n log (x/d)dn < 5¢( 5

d<x
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