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DIFFERENCE EQUATIONS IN WEIGHTED SPACES
OF SEQUENCES

NADIR V. IBADOV, IL'DAR KH. MUSIN

Abstract: Let ¢ = {@m}5°_; be a family of convex functions ¢, on R™ with certain growth
conditions. With a help of restrictions of functions ¢,, on Z" a weighted space of functions on Z"
denoted as A, is defined. Linear continuous functionals on this space in terms of their Fourier-
Laplace transform are described. This description and functional analysis methods allowed to
study surjectivity of difference operators on A, and spectral synthesis problem in the kernel of
such operators for a special case of a family .

Keywords: sequence spaces, linear difference equation, entire functions, duality.

1. Introduction

Let o = {om }5°_; be a family of convex functions ¢, : R™ — R such that:

1) limg oo “aﬁ”i(f) = +oo for each m € N (|| - || is the Euclidean norm on R™);

2) 3A>0Ym e N 3B, > 0:
Om(T) = Pmy1(x) = Aln(l + H$||) — Bp, r € R™

For each m € N let

aczZn ePm (0‘)

Alpm) = {f : Z" — C such that p,,(f) = sup )] < oo} .

Obviously, for each m € N A(ppm41) C A(pm). Let Ay = ooy A(pm). Thus,
for n = 1 elements of A, are two-sided sequences, for n > 1 elements of A, are
multiple sequences. For brevity elements of A, will be simply called sequences.
Sometimes we denote a sequence f as (f(®))aczn-

Under usual operations of addition and multiplication by complex numbers A,
is a linear space. Endow A, with the topology of projective limit of the spaces
A(¢m). Obviously, A, is a separable Fréchet space.
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In this article a description of the strong dual space of A, in terms of Fourier-
Laplace transform of linear continuous functionals on A, as some space of periodic
entire functions in C" is obtained. Such a description allowed to study surjectivity
of difference operators on A, and spectral synthesis problem in the kernel of such
operators for a special case of a family .

Note that Fourier-Laplace transform of linear continuous functionals on se-
quence spaces was succesfully applied by many authors to study various analysis
problems in these spaces. For example, L.A. Rubel and B.A. Taylor [6] considered
spaces of all two-sided and one-sided sequences of complex numbers of at most ex-
ponential growth and proved some "polynomial" approximation theorems in these
spaces by dualizing a gap theorem of C. Rényi [4] for periodic entire functions.
This approach was also applied by A.A. Borichev [1] to describe the solutions of
convolution equations in certain spaces of two-sided and one-sided sequences of
exponential growth.

We shall use the following notations. For u = (uq,...,u,) € R* (C"), v =
(v1,...,v,) €R™ (C") (u,v) = uyv1 + - - + upvy, and [Jul| denotes the Euclidean
norm in R”(C™).

For @ = (a1,...,ap) € 2", x = (x1,...,2,) € R", 2 = (21,...,2,) € C"
|al zl?z1+...+an, o = (ag,...,0p), % =t xln, 2% =2 28 DY =

la

8z .. 920
' For multi-indices o = (a1, ..., ), 8 = (B1,...,B,) € Z7} the notation 3 < «

indicates that 5; < a; (j =1,2,...,n).

For multi-indices a = (aq,...,a,),8 = (B1,...,0n) € Z} such that § < a let
Ch = H?Zl ng where 05; are the combinatorial numbers.

For r >0 and z € C" let B(z,r) ={C € C": | —z| <r}.

For a locally convex space X let X’ be the space of linear continuous functionals
on X and let X* be the strong dual space.

For a function @ € C'(R™) such that lim,_, % = +o0 let

P*(z) = sup ({z,0) = P(a)), @ ERY

&* () := sup ((z,y) — P(y)), x € R™
yeR™
Recall that @* is called the Young conjugate of the function @. It is well known
that if @ is convex on R™ then (&*)* = .
Obviously, for each z € C™ the sequence f, : a € Z" — e~ belongs to A,
since for each m € N

—'<Z,O¢)
e x
Pm(f2) = sup le=™ ) oila) = OXP (sup ((Imz,a) — gom(oz))> = efmIm2) o0,
aezn €7 aEgLn
(1)

Thus, for each linear continuous functional S on A, the function S(z) = S(f.)
is correctly defined on C". It is called the Fourier-Laplace transform of S. The
mapping F : S € A7, — S is called the Fourier-Laplace transformation.
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For each m € N let
Pgh,) = {F € H(C") : F(z+2nl) = F(z) forall z€C", | 2"

F
and such that || F||,, = sup |*(72)| < oo}.
seCn ePm(Imz)
Let ¢* = {p}}5_, and P,» = J°_, P(¢r,). Under usual operations of
addition and multiplication by complex numbers Py« is a linear space. Endow

P, with the topology of inductive limit of the spaces P(¢7,).
The main results of the paper are the following.

Theorem 1.1. The mapping F : S € Ay, — S establishes an 1isomorphism between
the spaces A7, and Pyx.

Theorem 1.1 is proved in the second section. In the third section we apply
Theorem 1.1 to study difference operators in A,. For f € A, and h € Z" define
a sequence fp, by the rule: f,(«) = f(a+ h),a € Z™. Let H be a finite subset of
Z" and for h € H let v, be a complex number.

Theorem 1.2. Let ¢ satisfies the following additional conditions:
i1) for each m € N there exist numbers a,, > 0, by, > 0 and pmy, > 1 such that

QOWL(Z‘) 2 a,,m”.]jH'U‘m - b7rL7 MRS an

iy) for each m € N there exists d,, > 0 such that for all x € R™ and £ =
(&1,....&) eR M with |§| <1 (=1,...,n)

Pmt1(T + &) < pm(T) + dim.
Then the equation ),y Ynfn = g is solvable in A, for each g € A,.

For p € Z% and ¢ € C" define a sequence E, ¢ by the rule: o € Z" —
ate~ <) Note that in view of the second condition on ¢ E,¢isin Ag.

Denote the zero element of A, by 0. Let W be the set of all solutions f € A,
of the equation ), - ;; v.fn = 0 and £ be the set of all solutions of the form E|, ¢.

Theorem 1.3. Let the family ¢ satisfies the conditions of Theorem 1.2 and £ is
not empty. Then a closure of a linear envelope of £ in A, is W.

2. Space A, and its dual

To note some special properties of the spaces A, and P« we need to remember
definitions of (M™*)-space and (LN*)-space from [7], [8].

(M™)-space is a locally convex space F' which is the projective limit of a se-
quence of normed spaces F} with linear continuous mappings gmi : Fr — Fim,
m < k, such that g 41 is compact for each k € N.
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(LN*)-space is a locally convex space E which is the inductive limit of an
increasing sequence of normed spaces Fj such that the unit ball of E}, is relatively
compact in Fyqq for each k € N, i.e. such that the inclusion map from E} into
E}41 is compact.

It is known that if E (the inductive limit of an increasing sequence of normed
spaces Fy) is an (LN*)-space then a set B is bounded in E iff for some m € N it
is contained in E,, and bounded there ([7], Theorem 1).

It is easy to show that the inclusions I, : A(¢m+1) = A(pm) are compact
for each m € N. So A, is an (M*)-space. Therefore, A, is a reflexive space ([7],
Proposition 7).

From conditions on ¢ it follows that lim, o (¢}, 11 () — ¢}, (2)) = +00. Using
this fact and Montel’s theorem it can be shown that the mappings J,,, : P(¢},) —
P(¢}, 1) are compact for each m € N. Thus, the space Py« is an (LN*)-space.

Lemma 2.1. For each S € A; we have S € P,

Proof. First show that for S € Afp S is an entire function. For f € A, and
N € N define the mapping fxn : Z™ — C by the rule: fy(a) = f(a) for |a] < N,
fn(a) =0 for |a] > N. Then for each s € N

|f(c()2)‘ < ps+1(f) exp < sup (psi1(a) — 903(04))> )

la|>N

ps(f = fn) = sup =
la|>N €72

Taking into account condition 2) on ¢ we conclude that ps(f—fn) — 0as N — oo.
This means that fy — f in A, as N — oco. Hence, S(fn) — S(f) as N — oo.
For each a € Z™ let e,, be the mapping e, : Z™ — C acting by the rule: e, (8) =1
if a =0, en(8) = 0if @ # B. Then fy = EIaKN f(a)eq. Consequently,
S(f) =1limy 00 S(fN) = D qezn V(@) f(a), where y(a) = S(eq). In particular,

S(z) = Z y(a)e™ =) zeC". (2)

aEZm™

Obviously, S(z 4 2nl) = S(z) for all z € C” and | € Z". Since S is a linear
continuous functional on A, then for some m € N and ¢ > 0

|S(f)| ngm(f)’ fGAap-

From this we have for each o € Z"
[7(@)] = IS(ea)] < Pmlea) = ce=#m(®. @)

Using the second condition on ¢ we can choose k£ € N so that the inequality
Y aczn e#mir(@)=em(a) < o0 holds. Now using (3) we have for each z € C™

S e

aEZn
< ceSO:rL+k(Imz) E e‘ﬂvnﬁ»’v(a)_‘Pm(O‘).

aEeZn

|,§'(z)| = <c Z e‘@7n,(a)+(a,lmz>

an"L
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From this it follows that the series > y(a)e~4#*) converges uniformly on
compact subsets of C™. Hence, § is an entire function and S is in P,-. |

Remark 2.1. Using the representation (2), inequality (3) and the second condi-
tion on ¢ it is easy to see that for each S € A, we have

(D"8)(z) = S((—ia)’e " *) yezn), v €L, z€C™

Proof of Theorem 1.1. By Lemma 2.1 F(S) € P, for each S € A7

Let us show now that the linear mapping F is continuous. But first note that
the topology of A7, can be described as follows. For each k € N let Wy, = {f €
Ay : pr(f) <1} and WP = {S e A, : [S(f)| <1, Vf € Wy} be a polar of Wy in
Al Let Ty = Uyso(aWy) be a vector subspace in Af, generated by Wy (k € N).
Define a topology in T} with a help of the norm

Ni(S) = sup [S(f)l, S € Ty.
feW

Obviously, A, = JpZ, Tk Define in A/, the topology A of an inductive limit of
spaces 1. Since A, is a reflexive space then the strong topology in A:D coincides
with the topology A ([2], chapter 8). Now let S € Ty, k € N. Then |S(f)| <
Ni(S), f € Wy. Hence, |S(f)] < Ni(S)pr(f), f € A,. Putting here f = f, with
z € C™ and using (1) we obtain that

15(2)| < Ni(8)efiIm2),

From this it follows that HSHk < Ni(S), S € T, (k = 1,2,...). Thus, F is
continuous.

Let us prove that L is injective. Let S € A7 and S(z) = 0 for each z € C™.
For some m € N and ¢ > 0 we have |S(f)| < cpm(f), f € A,. As it was shown in
the proof of Lemma 2.1 the functional S admits the representation

S(f) = va)f(a),  feA,,

anTl
where complex numbers v(«) satisfy the inequality
@) < ce @, aezn

From this representation we have for each € R"

$)= 3 Ala)e i =0

acZm™

Therefore, coefficients v(a) = 0 for all « € Z™ and S is a zero functional. Thus,
F is injective.
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Now we prove that F is surjective. Let F' € P,«. Then F' € P(yp},) for some
m € N. Represent F'(z) by the Fourier series

F(z) = Z Cae HTa) x e R"™.

acZm™

For each o € Z™ we have

1 ™ ™ .
Ca = (2)"/ . / F(x)e!™) dg.
m —7 —7

In view of periodicity of F' for each o € Z™ and y € R™

1 ™ ™ . X
Co = W/_ﬂ‘/_w F(£C+iy)ez<x+ly’a> dx.

From this we get

Fllpm [T T o ()
|ca|<|<|2 H) / / FnW= W) dy, aeZ", yeR"
)" -7 -7

*

Since ¥, (y) < i, (y) for every y € R™ then for each o € Z™ we have

lca| < ||F|[m exp ( ian”((‘P:n(y) - (y,a>)) = ||F||m€7((p:n)*(a) = ”FHmeﬂpm(ax

ye
(4)
Define a functional S on A, by the formula S(f) = > cz. caf(a), f € A,. Using
the estimate (4) and the second condition on ¢ it is easy to see that the linear

functional S is continuous. Obviously, S(z) = F(z), z € C". Thus, F is surjective.
By the open mapping theorem [2], [5] F~! is continuous. Thus, F is a topo-
logical isomorphism and the proof of theorem is complete. |

3. A difference operator on A,

3.1. In the proof of Theorems 1.2 and 1.3 we will use Lemma 3.2. But first let us
prove the following auxiliary result.

Lemma 3.1. Let a function h : Z™ — R be such that for some constants v > 1,
C>0andD >0

h(a) = O« — D, ae’Z”. (5)
Then there exists a constant My > 0 such that
|W* (&) — h*(z)| < My (6)

for all z,& € R™ satisfying the condition ||§ — x| < (14 ||x||)_ﬁ .
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Proof. For each z € R" let a(x) € Z™ be a point where the supremum of the
function u, : a € Z™ — (x, ) — h(«) over Z" is attained.
First prove that there exists a constant mj > 0 not depending on x such that

lee() || < mp - (14 |l2]|7=T).
Using (5) we have for each o € Z"
ug (@) <l - [lz]| = Clle]” + D.

Since h*(x) = sup,ezn Uz () = —h(0) (here 0 is the zero element of Z™) then the
supremum of u, over Z" is attained on the set

Gy ={aeZ":|af-[lz| = Cllaf” = D = h(0)}.

Put L;, = D+ h(0). By the condition on i we have Ly > 0. For each A > 0 denote
by T\ the set of solutions of the inequality
At > CtY — Ly,

belonging to R;. This set is a segment of a form [0,¢,], where ¢) < co. Let us
estimate ¢y from above. We have Aty = Ct§ — Lj,. If ty > 1 then

L

A=Ct7t — Th > Oty — Ly
A

1
From this ) < (%) v~1 . Taking into account a case ¢y € [0,1) we have

1
A+ Lp\ v 1
ty < 1.
A ( C ) +

1
From this if 0 < A < 1 then t), < (%)”’1 + 1. Moreover if A > 1 then
1

tx < AT (L) 7T 41 Let my, = (%)ﬁ + 1. Then

tx <ma(l+A7T).

Let dy := mp(1 +)\ﬁ). Then Ty C [0,d,]. Since a € G, < ||| € T, then for
all « € G, we have
ol < - [l 7= 4
In particular,
lo)ll < - [l 77 + .
Further, for all z,£ € R™ such that ||€ — z|| < (1 + ||z]|) ™7 we have
W(&) = Pi(x) = sup (¢, @) = h(a)) = sup ((z,@) = h())

< (€, a(€)) — h(a(©))) — ({z,al€)) — h(a(€)))
= (€ — z,a(6)) < ||€ — z[lle(€)l| < (1 + [lz]) TFma(L + [I€]7T)

C 2m(1+ o)™

(L[] =
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Similarly,
W (x) = h*(§) < (z = & o)) < [lz = Ellla(@)]
1 1
< ma A flz]77) _ 2ma (1 + [|])) 7
IR -
(L4 [lf) = (L4 [l]l)=
From these estimates we get (6) with M), = 2my,. |

mp.

Lemma 3.2. Let the family ¢ satisfies the conditions i1) and iz) of Theorem 1.2.
Then for each m € N:
there exists a constant K,, > 0 such that

o (&) = o (@)] < K (7)
for all z,& € R™ satisfying the condition ||€ — z| < (1 + ||:r||)_1m%1,
Omr1(@) — on (@) 2 |zl —dm,  z€R™ (8)

Proof. The inequality (7) holds in view of Lemma 3.1. So let us prove the in-
equality (8). For each x € R™ and m € N let a,,,(z) € Z" be a point where the
supremum of the function u, : @ € Z" — (z,a) — @, () over Z" is attained. Let
6(z) be the point in R™ with coordinates 6; defined as follows: §; = % ifax; #0
J

and ; =0if z; =0 (j =1,...,n). Then using the condition iy) we have

Prn1(®) — @5 (@) = (2, 0(2)) — emar(am () +0(2)) + om(am(z))

2 [oa] 4+ ] = dy = ]| = dp-

Thus, the inequality (8) is proved. |

Remark 3.1. For each m € N and z € R" let y,,,(x) be a point where the
supremum of the function v, : y € R” — (x,y) — om(y) over R™ is attained. Let
a € Z be the nearest point to ¥y, (). Then

(@) = (2, ym () — (z, @) + (2, @) = Pm41(a) + Emi1(@) = Pm(Ym(2)).
From this representation using the condition iz) we have
(@) < nllzll + @54 (2) + dm.
Now by (8) we get for some dy, ,, >0
P () < Phign41(@) + dm s reR"™

On the other hand, for each m € N and z € R" 7, (z) < ¢f,(x).
Two last inequalities mean that the space P, coincides with the space P~
which is an inductive limit of the spaces

P(pt,) = {F € H(C") : F(z+2nl) = F(z) for all z € C", 1 € Z"
|F(2)|

and such that ||F||,, = Zseu(g e Ima) < oo}.

Here " = {7, } -1
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3.2. Let the family ¢ satisfies the conditions of Theorem 1.2. In the first
section we defined for each f € A, and h € Z™ a sequence f3, by the rule: fj(a) =
fla+h), a € Z™. Using the condition is) on ¢ for each m € N we can find
numbers k € N and d > 0 such that p,,(fn) < dpg(f) for all f € A,. Thus, for
each h € Z" the linear operator Sj, : f € A, — f1 acts from A, to A, and is
continuous. So if H is a subset of Z" consisting of finite number of elements and
for h € H ~y, € C then an operator M : A, — A, acting by the rule

M(f) = mSu(f),  [€A,,
heH
is linear and continuous.

Let g(2) = Y ,cp e *™* (2 € C"). The function g is usually called a
characteristic function of the operator M.

3.2.1. In the proof of Theorems 1.2 and 1.3 the following lemma by L. Ehren-
preis and B. Malgrange (see, for example, Lemma A.1 in [3]) is used.

Lemma 3.3. Let P be a polynomial of degreec m. Then there exists a constant

C > 0 such that for every r > 0,z € C" and every function f which is defined for

all 2/ € C™ with ||2' — z|| < r and is such that % is holomorphic there, we have
I <erm s e
p(z) z'€B(z,r)

Proof of Theorem 1.2. We have to prove that the operator M is surjective on
Ag. First let us show that the image imM of the operator M is dense in A,. Let
Ny ={2 € C": g(z) = 0}. For z € C"\ N, consider the equation M(f) = f..

It has a solution f = e) belonging to A,. From this and completeness of the

system {f.}.ccn\n, We conclude that imM is dense in A,.

Let us show now that the image of the operator M is closed in A,. It is known
that closedness of image of M in A, is equivalent to closedness of the image of
the adjoint operator M™ in A7 (see [2], Theorem 8.6.13).

Consider an operator M* on P,+ acting by the rule:

M*(F) = F(M*(F"X(F))), F¢€ P,..

Obviously, M* is a linear continuous operator on P_+. Taking into account Theo-
rem 1.1 we see that closedness of the image of the operator M in A, is equivalent

to closedness of the image imM* of the operator M* in P,+. Note that for each
F e P, and z € C"

M*(F)(z) = F~HF)(M(f.))

=FH(F) (Z 'VhSh(fz)> =FY(F) (Z Wh(e_i<a+h’z>)aezn>

heH heH
= FUE)NL) 3 e = F(2)g(2).
heH

Thus, for each F' € P,« we have M (F)(2) =F(2)g9(2), z € C"
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By Theorem 1 in [7] imM* is closed in P, iff imM* N P(¢r,) is closed in
P(pr,) for each m € N. So let m € N be arbitrary and F belongs to the closure
of imM* N P(pr,) in P(p},). Then there exists a sequence (F)52, of functions
Fy € imM* N P(gr,) converging to F' in P,. . In particular, Fy — F uniformly
on compact subsets of C™ as k — oco. So it is clear that the function (z) = S((j))

is holomorphic on C™. Obviously, ¢¥(z + 27l) = ¥(z) for all z € C" and | € Z™.
The functions F' and 1 can be represented by the series

F(z) = Z Cae B, zeC”,
aEeZm™

Y(z) = Z bae 1B, z e C".

aEZL™

As we know (see Lemma 2.1) the first series converges to F' in P(¢};, ) for some
k € N. The second series uniformly converges to 1 on compact subsets of C™. Let
us show that ¢ € P,+. Obviously, the functions Fo(C) = D, czn caC®, %0(C) =

Y aczn 0al® 90(C) = D hen ¢ are holomorphic in (C\ {0})" and

_ () n
Po(¢) = w0 € (C\{op)".
Choose N = (Ny,...,Ny,) € Z so that P(¢) = go(C) N ¢N» is a polynomial.
Then
N
() = B Ce@\ (o

Let us estimate |1o(¢)| from above at points ¢ = ((1,...,¢,) € (C\ {0})". Let

am(Q) = 1+ [ |Gil, ... I [Gu ) =
r(¢) = min (17 (1 —exp <— a”\}?)) min. |<j|> .

By Lemma 3.3 there exists a constant C' > 0 such that for all ¢ € (C\ {0})"
[%o(Q)l O ()™ sup  (|Fo(w)lw|™)
weB((,r(C))

<SOrQO) @+ sup  |Fo(w)l.
weB(r(0))

Since for ¢ = (¢1,...,¢,) € (C\ {0})™
[FO(Q)] < [|F e O 6ot énh,

then

[%0(¢)] < Cr(Q)) (L + I exp ( sup oy, (Infwy, ... 71H|wn|)> - (9)
weB(Gr(C))
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For points w = (wy, ..., wy) € B((,r(¢)) we have

e (=220 i < g < o0 (220 )i 65 = 1)

From this we get for w € B((,r(())

GT/%O,]':L...

Thus, for points w = (w1, ...,w,) € B(¢,r(())

[T fw; | = In |G <

(i fewr ], Infwa]) = (|G (D < (L4 [ Gl In [Gal) ) T

Now using the inequality (7) we have

sup o (Infwql,...,Inw,]) < o5, (0|, ..., 1In]¢]) + K.
weB((,r(¢))

From this and (9) we get
[$0(Q)] < O™ (r(¢)) 7 (1 + [[¢[l) MePm Umiclnicnd

forall ¢ = (¢1,...,¢n) € (C\{0})™. Taking into account that for z = (21,...,2,) €
C™ and y = Imz
am(e™5, o) = (14 [yl

it is easy to show that z € C™

1

(1—e 7 )e-llvl

k
WMS%“<H >0+WM%WAWMWWWM.

From this we have

p(2)] < Cen (21

k
) CINIHRIImE (1 4 )Nl (Tma)
1—e v»

Using the inequality (8) we obtain
[(2)] < KeFmoam@ma) 2 e cn,

where K is some constant depending on k,m,|N|,n. Hence, ¢ € P(gpfn+k+‘N|).

Thus, 1 € P,«. This means that F' € imM?*. Hence, imM* N P(y?,) is closed

in P(¢},) for each m € N. Thus, the image of the operator M* is closed in P,..
Therefore, the image of the operator M is closed in A,.

Thus, the image of the operator M is dense and closed in A,. Therefore,
imM = A,. The proof is complete. |
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3.2.2. Consider the equation M(f) = 0 in A,. Note that if f belongs to the
kernel W of the operator M then for each 8 € Z™ Sp(f) € W.

Recall that for 4 € Z7} and ¢ € C" we defined the sequence E, ; by the rule:
a € 7" — ate K0,

Lemma 3.4. The sequence E, ¢ is in W iff (D’g)(¢) = 0 for all B € 7% such
that B < p.

Proof. Consider more complicated case n > 2. Let p € Z"} and ¢ € C™ be such
that (D?g)(¢) = 0 for all B8 € Z" such that 8 < p. Then for each o € Z"

M(E,¢)(a) = Z va(a + h)teiatho)

heH
= =10 37 g (a4 e MO
heH
=e w0 N Clarm BN gy pPem 0
BELL:B<p heH
=e a0 N ClarFilfl(DPg)(¢) = 0.
BEZY :B<p

Thus, B, € W.
Now let for some p € Z"} and ¢ € C* E,, . € W. Then for each oo € Z"

Z fyh(a + h)lte—i<(¥+h7§) =0
heH
Hence, for each a € Z"

S et hyte i) <o, (10)
heH

In particular, .,y ynh*e "¢ = 0. This means that (D"g)(¢) = 0. Further,
let v = (v1,...,v,) € Z7 be such that (D?g)(¢) = 0 for all 3 € Z7 such that
v<pB<p Ifv=(0,...,0) then Lemma holds. If v # (0,...,0) then there
exists j € {1,...,n} such that v; > 1. For simplicity suppose j = 1 and show that
(DBLV2svn) g)(¢) = 0 for all By = 0,...,v; — 1. For each o € Z™

Z v (a + h)ue—i(hm — Z Y Z Cﬁa#—ﬁhﬁe—i(hm

heH heH  (0,...,0)<B<pu

= Y Py hfeniln)

(0,...,0)<BLp heH

= > ClarTlDg)()

= > Gl

(0,...,0)<BLV, BV
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In view of (10)

> Clar=Filfl(DPg) () =0, aezZ™
(0,...,0)<B<LY, B#Y

From this we have for all o € Z"

V1
Syt ST @RI (D) (¢) = 0.

B1=0 (0,...,0)<B' <V’
Putting here ag = --- = o, =0 we get for all a; € Z
Vl—l
Z 0511 O/1/1—51 P (D(617V27~..7l/n)g) (C) =0.
B1=0

From this it follows that (D(P1:¥2n)g)(¢) = 0 for all 81 = 0,...,v; — 1. Ob-
viously, applying these arguments so on we will obtain that (D?g)(¢) = 0 for all
B € Z7 such that 8 < p.

The proof of Lemma is complete. |

Let A= {(p,¢) € Zt x C" : E,,c € W}. Recall that € is a set of all solutions
of the form E,, ¢ of the equation ), vnfrn = 0.

Proof of Theorem 1.3. Let S be a linear continuous functional on A, such that
S(f) = 0 for each f € £. If we will show that S(f) = 0 for each f € W then
a closure of a linear envelope of £ will coincide with W. Using Lemma 3.4 and
taking account that for all (u,¢) € A (D?S)(¢) = 0 for B € Z" such that 8 < p it
is easy to check that the function v := 5 is entire. From the proof of Theorem 1.2
it follows that ¢ € P,~. Hence, by Theorem 1.1 there exists a functional ¥ € AZP
such that ¥ = 1. Obviously, the functional W o M is in A{, too. And for each
z € C" we have F(¥ o M)(z) = U(M(f.)) = U(g(2)f.) = ¥(2)g(z) = S(2). By
theorem 1 ¥ o M = S. Now for each f € W we have

S(f) = (Yo M)(f) = W(M(f)) = 0.

Thus, a linear envelope of £ is dense in W. |
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