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COMMENSURABILITY IN MORDELL-WEIL GROUPS
OF ABELIAN VARIETIES AND TORI

Grzegorz Banaszak, Dorota Blinkiewicz

Abstract: We investigate local to global properties for commensurability in Mordell-Weil groups
of abelian varieties and tori via reduction maps.
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1. Introduction

Local to global properties for detecting linear relations in Mordell-Weil groups
of abelian varieties and tori have been investigated by numerous authors:
[Sch](1975), [C-RS](1997), [B1](1998), [BGK1](2003), [La](2003), [We](2003),
[Kh-P](2004), [BGK2](2005), [Bar](2006), [BG](2008), [GG](2009), [B2](2009),
[JP](2010), [Pe](2010), [BK](2011), [J1](2013), [Rz](2015) and others. Commen-
surability questions in the Mordell-Weil groups have not yet been investigated in
relation to reduction maps. In this paper we establish the relations between lo-
cal to global detecting properties and local to global commensurability properties.
We apply these results to Mordell-Weil groups of abelian varieties and tori. The
structure of the paper is as follows. At the end of this introduction we define local
to global commensurability properties. We also define notion of strong commen-
surability in abelian groups with finite torsion. Then we define local to global
properties for strong commensurability. In section 2 we investigate relations be-
tween local to global commensurability properties and local to global detecting
properties. In section 3 we give examples of classes of abelian varieties and tori
where the local to global strong commensurability property holds. In both cases
we show examples of classes of abelian varieties and tori where the criterion fails.
As a corollary we obtain, in each case, four different Deligne 1-motives over a ring
of integers, which become all equal to a torsion 1-motive, after base change and
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application of reduction map for almost all residue fields. In section 4 we give ex-
amples where one can check the strong commensurability in Mordell-Weil groups
of abelian varieties and tori by finite number of reductions.

We use the following notation.
(1) F a number field,
(2) OF the ring of integers in F,
(3) S finite set of primes in OF ,
(4) OF,S the ring of S-integers,
(5) v a prime ideal in OF ,
(6) kv := OF /v,
(7) B(F ) a finitely generated abelian group,
(8) Bv(kv) a finite group for each v.

We assume in this and the next section that for almost all v there is a homomor-
phism of groups (the reduction homomorphism):

rv : B(F )→ Bv(kv). (1.1)

In the following we introduce the notion of strong commensurability. We also
introduce the local to global commensurability and strong commensurability prop-
erties.

1.1. Commensurability and strong commensurability

Recall that in any group G two subgroups H,H ′ are called commensurable if:

[H : H ∩H ′] <∞ and [H ′ : H ∩H ′] <∞. (1.2)

Definition 1.1. Let B be an abelian group with finite torsion subgroup Btor. Two
subgroups Λ and Λ′ are called strongly commensurable if:

Λ ⊂ Λ ∩ Λ′ + Btor and Λ′ ⊂ Λ ∩ Λ′ + Btor. (1.3)

Remark 1.2. It is clear that if Λ and Λ′ are strongly commensurable then they
are commensurable.

1.2. Local to global detecting properties

In the investigation of linear relations in Mordell-Weil groups of abelian varieties
and tori the following two properties were studied.

Detecting Property: Let P ∈ B(F ) be any element and Λ ⊂ B(F ) be any
subgroup. If rv(P ) ∈ rv(Λ), for almost all v, then P ∈ Λ +B(F )tor.

Weak Detecting Property: Let P ∈ B(F ) be any element and Λ ⊂ B(F ) be
any subgroup. If rv(P ) ∈ rv(Λ), for almost all v, then there exists n ∈ N such that
nP ∈ Λ.
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Remark 1.3. Obviously Detecting Property implies Weak Detecting Property.
On the other hand Weak Detecting Property does not imply Detecting Property.
Namely, let A/F be an abelian variety over F such that there is a nontorsion
element P ∈ A(F ). Let n ∈ N, n > 1 and let l be a prime number coprime to n.
Take B(F ) := A(F ), Bv(kv) := Av(kv)l. Let Λ = ZnP. Obviously rv(P ) ∈ rv(Λ)
and nP ∈ Λ but P /∈ Λ +B(F )tor.

1.3. Local to global commensurability properties

Local to Global Commensurability Property: Let Λ, Λ′ ⊂ B(F ) be any two
subgroups. The subgroups Λ and Λ′ are commensurable if and only if there exists
a natural number c such that for almost all v:

[rv(Λ) : rv(Λ ∩ Λ′)] ≤ c and [rv(Λ
′) : rv(Λ ∩ Λ′)] ≤ c. (1.4)

Local to Global Strong Commensurability Property: Let Λ, Λ′ ⊂ B(F ) be
any two subgroups. Subgroups Λ and Λ′ are strongly commensurable if and only
if for almost all v:

rv(Λ) ⊂ rv(Λ∩Λ′) + rv(B(F )tor) and rv(Λ
′) ⊂ rv(Λ∩Λ′) + rv(B(F )tor). (1.5)

2. Remarks on commensurability

Proposition 2.1. The Local to Global Strong Commensurability Property implies
the Local to Global Commensurability Property.

Proof. Assume the Local to Global Strong Commensurability Property. Let
Λ, Λ′ ⊂ B(F ) be any two subgroups. Assume that for Λ, Λ′ for almost all v
the conditions (1.4) hold for some c ∈ N. Define two subgroups of B(F )

H := c! Λ + Λ ∩ Λ′ and H ′ := c! Λ′ + Λ ∩ Λ′.

Observe that Λ ∩ Λ′ ⊂ H ∩H ′, H ⊂ Λ and H ′ ⊂ Λ′. Hence H ∩H ′ = Λ ∩ Λ′.
Then by (1.4):

rv(H) = rv(c! Λ) + rv(Λ ∩ Λ′) ⊂ rv(Λ ∩ Λ′) ⊂ rv(H ∩H ′) + rv(B(F )tor),

rv(H
′) = rv(c! Λ′) + rv(Λ ∩ Λ′) ⊂ rv(Λ ∩ Λ′) ⊂ rv(H ∩H ′) + rv(B(F )tor).

Hence the conditions (1.5) hold for H and H ′. By the Local to Global Strong
Commensurability Property:

c! Λ + Λ ∩ Λ′ = H ⊂ H ∩H ′ +B(F )tor = Λ ∩ Λ′ +B(F )tor,

c! Λ′ + Λ ∩ Λ′ = H ′ ⊂ H ∩H ′ +B(F )tor = Λ ∩ Λ′ +B(F )tor.

Hence c! Λ ⊂ Λ ∩ Λ′ +B(F )tor and c! Λ′ ⊂ Λ ∩ Λ′ +B(F )tor. It obviously implies
that [Λ : Λ ∩ Λ′] <∞ and [Λ′ : Λ ∩ Λ′] <∞. �
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Proposition 2.2. The Weak Detecting Property is equivalent to the Local to Global
Commensurability Property.

Proof. Assume the Weak Detecting Property. Let Λ, Λ′ ⊂ B(F ) be any two
subgroups.

(⇒) Let Λ, Λ′ be commensurable. The condition (1.4) obviously holds taking
c := max{[Λ : Λ ∩ Λ′], [Λ′ : Λ ∩ Λ′]}.

(⇐) Assume that (1.4) holds for some c ∈ N. Then:

rv(c! Λ) ⊂ rv(Λ ∩ Λ′), (2.1)
rv(c! Λ′) ⊂ rv(Λ ∩ Λ′) (2.2)

for almost all v. Let P1, . . . , Pm ∈ c! Λ be a set of generators. By (2.1) rv(Pi) ∈
rv(Λ ∩ Λ′) for almost all v for all i = 1, . . . ,m. By the Weak Detecting Property
assumption there exists k ∈ N such that kPi ∈ Λ ∩ Λ′ for all i = 1, . . . ,m. Hence
kc! Λ ⊂ Λ∩Λ′ ⊂ Λ. Since B(F ) is finitely generated then Λ/kc! Λ is a finite abelian
group hence Λ/Λ ∩ Λ′ is a finite abelian group. In the same way we prove that
Λ′/Λ ∩ Λ′ is a finite abelian group.

Assume the Local to Global Commensurability Property. Let P ∈ B(F ) and
let Λ ⊂ B(F ) satisfy rv(P ) ∈ rv(Λ), for almost all v. Define Λ′ := ZP + Λ ⊂ B(F ).
Observe that Λ ∩ Λ′ = Λ. Moreover, rv(Λ) = rv(Λ

′) for almost all v. Hence (1.4)
holds with c = 1. Therefore, [Λ′ : Λ] <∞ because we assumed the Local to Global
Commensurability Property. Hence there is n ∈ N such that nP ∈ Λ. �

Proposition 2.3. The Detecting Property is equivalent to the Local to Global
Strong Commensurability Property.

Proof. The proof is left as an exercise for the reader. �

Remark 2.4. The Proposition 2.1 also follows by Propositions 2.2, 2.3 and Re-
mark 1.3.

3. Commensurability in Mordell-Weil groups

In the following we present examples where Propositions 2.1, 2.2 and 2.3 can be
applied.

Let A be an abelian variety over F and T be a torus over F . In this section
we will assume that B := A or T . Let F ′/F be a finite extension such that

B ⊗F F ′ =

t∏
i=1

Beii , where

{
Bi = Ai, for B = A,

t = 1, B1 = Gm/F ′, for B = T,

with Ai/F ′ simple, pairwise nonisogenous abelian varieties. We will also assume
that EndF ′(Bi) = EndF̄ (Bi). Let EndF ′(Bi)

0 := EndF ′(Bi) ⊗ Q. Let B(F ) :=
A(F ) or T (F ), Bv(kv) := Av(kv) or Tv(kv) and rv : B(F ) → Bv(kv) be the
reduction map for each prime of good reduction.
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Let T be a model of T for a finite set S of primes in OF containing the primes of
bad reduction. Then T = T ×specOF,S

specF. For B = T , by rv : B(F )→ Bv(kv)
we understand the reduction map rv : T (OF,S)→ Tv(kv). In addition, in this case
“a subgroup of B(F ) := T (F )” means in this paper “a subgroup of T (OF,S)".

We would like to mention, that working with the reduction maps rv, in the
proofs of our results concerning abelian varieties and tori, we can assume with-
out loss of generality that F = F ′ cf. [BK, pp. 317-318]. In this case T :=
(Gm/specOF,S)e1 , T (OF,S) = (O×F,S)e1 and rv : (O×F,S)e1 → (k×v )e1 .

Corollary 3.1. Let B := A or T as above. Assume that ei is such that

dimEndF ′ (Bi)0 H1(Bi(C), Q) ≥ ei (3.1)

for each 1 ≤ i ≤ t. Then the Local to Global Strong Commensurability Property
holds in B(F ) with respect to reduction maps.

Proof. The corollary follows by Proposition 2.3 because, under assumption (3.1),
the Detecting Property holds for abelian varieties by [BK, Theorem 4.1] and for
tori by the result of A. Schinzel [Sch, Theorem 2, p. 398]. �

The assumption (3.1) in Corollary 3.1 is important as shown in the following
counterexamples below based on [BK, pp. 330-332] and [Sch, p. 419].

3.1. Counterexample for tori

Consider the following group scheme G2
m := Gm ×specOF,S

Gm. We observe that
dimQ H1(Gm(C), Q) = 1. Hence the inequality (3.1) does not hold for G2

m. In this
case we might expect counterexamples to strong commensurability. Indeed, take
F = Q and S = {(2), (3), (5)}. Hence ZS = Z[ 1

2 ,
1
3 ,

1
5 ]. For each p 6= 2, 3, 5 consider

the reduction map rp × rp : Z[ 1
2 ,

1
3 ,

1
5 ]× × Z[ 1

2 ,
1
3 ,

1
5 ]× → F×p × F×p . By abuse of

notation we will write rp instead of rp×rp. Consider the following elements which
are linearly independent in Z[ 1

2 ,
1
3 ,

1
5 ]× × Z[ 1

2 ,
1
3 ,

1
5 ]×:

λ :=

[
1
4

]
, λ1 :=

[
2
1

]
, λ2 :=

[
3
2

]
, λ3 :=

[
5
3

]
, λ4 :=

[
1
5

]
, λ′ :=

[
25
1

]
.

Take the following two subgroups of Z[ 1
2 ,

1
3 ,

1
5 ]× × Z[ 1

2 ,
1
3 ,

1
5 ]× :

Λ := λZ · λZ1 · λZ2 · λZ3 · λZ4 ,

Λ′ := λZ1 · λZ2 · λZ3 · λZ4 · λ′Z.

Then
Λ ∩ Λ′ = λZ1 · λZ2 · λZ3 · λZ4 .

Extending the argument of A. Schinzel [Sch, pp. 419-420] we obtain that

rp(Λ) = rp(Λ ∩ Λ′) = rp(Λ
′) (3.2)
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for p 6= 2, 3, 5. Indeed, let λ := rp(λ), λ′ := rp(λ
′) and λi := rp(λi) for i = 1, 2, 3, 4.

The equation
λ = λ1

R1
λ2

R2
λ3

R3
λ4

R4

is equivalent to the system of equations:

1 ≡ 2R1 3R2 5R3 mod p,

22 ≡ 2R2 3R3 5R4 mod p.
(3.3)

Let g be a generator of (Z/p)× i.e. (Z/p)× = < g > ∼= Z/(p − 1). For p > 5 the
system of equations (3.3) is equivalent to the system:

0 ≡ c1R1 + c2R2 + c3R3 mod (p− 1),

2c1 ≡ c1R2 + c2R3 + c3R4 mod (p− 1),
(3.4)

where 2 = gc1 , 3 = gc2 , 5 = gc3 for some c1, c2, c3.
If c1 ≡ 0 mod (p− 1) or c2 ≡ 0 mod (p− 1) then the system of congruences

(3.4) has the solution (R1, R2, R3, R4) = (0, 0, 0, 0), (0, 2, 0, 0), respectively. If
c3 ≡ 0 mod (p− 1), then we obtain the following congruences:

0 ≡ c1R1 + c2R2 mod (p− 1)

2c1 ≡ c1R2 + c2R3 mod (p− 1).
(3.5)

Observe that (3.5) and [Sch, (70), p. 419] are identical, so we obtain solutions
R1, R2, R3 in the same way as A. Schinzel and we can take arbitrary R4 ∈ Z.

So assume that c1 6≡ 0 mod (p − 1), c2 6≡ 0 mod (p − 1) and c3 6≡ 0
mod (p− 1). Let D := gcd(c1, c2, c3). Observe that

gcd

(
c21
D
,
c1c2
D

, c3

)
| c1.

Thus the equation c21
DR + c1c2

D R′ + c3R4 = 2c1 has an integer solution R, R′, R4.
Putting

R1 := −c2
D
R− c3

D
R′, R2 :=

c1
D
R, R3 :=

c1
D
R′

we find that R1, R2, R3, R4 satisfy the system of congruences (3.4). So we have
λ ∈ rp(Λ ∩ Λ′). Now we must show that λ′ ∈ rp(Λ ∩ Λ′). The equation

λ′ = λ1
R4
λ2

R3
λ3

R2
λ4

R1

is equivalent to the system of equations:

1 ≡ 5R1 3R2 2R3 mod p,

52 ≡ 5R2 3R3 2R4 mod p.
(3.6)
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For p > 5 it is equivalent to the system:

0 ≡ c1R1 + c2R2 + c3R3 mod (p− 1),

2c1 ≡ c1R2 + c2R3 + c3R4 mod (p− 1),
(3.7)

where 5 = gc1 , 3 = gc2 , 2 = gc3 in (Z/p)× = < g > ∼= Z/(p − 1). The systems
of congruences (3.7) and (3.4) are identical. Hence using the same calculation we
obtain the solution R1, R2, R3, R4.

Hence (1.4) holds with c = 1. But Λ and Λ′ are not commensurable because
they are free Z-modules of rank 5 while their intersection Λ∩Λ′ is a free Z-module
of rank 4.

Remark 3.2. Similarly as in example [Sch, pp. 419-420] we can prove more.
Namely consider the reduction map rp×rp : Z×Z→ Z/p×Z/p. We have already
proved equality (3.2) for p > 5. Observe that (3.2) also holds for p = 2, 3, 5.
Namely the equations (3.3) and (3.6) have the following solutions:

(3.3) (3.6)
(R1, R2, R3, R4) (R1, R2, R3, R4)

p = 2 (0, 2, 0, 0) (1, 1, 0, 0)
p = 3 (0, 0, 0, 0) (0, 0, 0, 2)
p = 5 (2, 2, 0, 0) (0, 4, 4, 0)

Remark 3.3. Let F = Q as above, T := G2
m and T := Gm×specZ[ 12 ,

1
3 ,

1
5 ]Gm. Con-

sider the following 1-motives over specZ[ 1
2 ,

1
3 ,

1
5 ]: [Λ→ T ], [Λ′ → T ], [Λ∩Λ′ → T ]

and [Λ·Λ′ → T ] in the sense of P. Deligne. Changing the base to specFp and taking
the images of the subgroups Λ, Λ′, Λ∩Λ′, Λ ·Λ′ in Tp(Fp) via rp (for p 6= 2, 3, 5),
we obtain torsion 1-motives [rp(Λ) → Tp], [rp(Λ

′) → Tp], [rp(Λ ∩ Λ′) → Tp] and
[rp(Λ · Λ′) → Tp]. The above example shows that these four torsion 1-motives
are all equal, for each p 6= 2, 3, 5 (for the def. of torsion 1-motive see [B-VRS]
and [J2]).

Remark 3.4. A. Schinzel [Sch, pp. 419-420] considered four linearly independent
points:

γ :=

[
1
4

]
, γ1 :=

[
2
1

]
, γ2 :=

[
3
2

]
, γ3 :=

[
1
3

]
in Z[ 1

2 ,
1
3 ]× × Z[ 1

2 ,
1
3 ]×. This leads to two lattices Γ0 ⊂ Γ as follows:

Γ := γZ · γZ1 · γZ2 · γZ3 ,
Γ0 := γZ1 · γZ2 · γZ3 .

A. Schinzel proved that rp(Γ) = rp(Γ0) for p 6= 2, 3. He also checked that the
equality holds for p = 2, 3. Our extension of Schinzel’s example above gives lattices
Λ, Λ′ such that Λ 6⊂ Λ′ and Λ′ 6⊂ Λ.
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Consider T = Gm ×specZ[ 12 ,
1
3 ] Gm. We have two 1-motives [Γ → T ] and

[Γ0 → T ] which give two equal torsion 1-motives [rp(Γ) → Tp] = [rp(Γ0) → Tp]
for each p > 3. The 1-motive [Γ0 → T ] was called by P. Jossen [J2] the Schinzel’s
1-motive.

In a similar way we can consider the case of abelian varieties.

3.2. Counterexample for abelian varieties

Let Ed be the elliptic curve over Q given by the equation y2 = x3 − d2x. It has
CM by Z[i]. The rank of Ed(Q) can reach 6 see [RS, Table 2, p. 464]. Assume
that the rank of Ed(Q) is at least 3. Then rankZEd(Q(i)) = 2 rankZ(Ed(Q)). So
the rankZ[i]Ed(Q(i)) is at least 3. Define the abelian surface Ad := Ed × Ed
= E2

d over Q(i). Observe that Ad does not satisfy the condition (3.1) since
dimQ(i)H1(Ed(C),Q) = 1.

Let Q1, Q2, Q3 ∈ Ed(Q(i)) be independent over Z[i]. Consider the following
points in Ad(Q(i)):

P :=

[
0
Q1

]
, P1 :=

[
Q1

0

]
, P2 :=

[
Q2

Q1

]
, P3 :=

[
Q3

Q2

]
, P4 :=

[
0
Q3

]
, P ′ :=

[
Q3

0

]
.

Consider the following two free Z[i]-submodules of Ad(Q(i)):

Λ := Z[i]P + Z[i]P1 + Z[i]P2 + Z[i]P3 + Z[i]P4,

Λ′ := Z[i]P1 + Z[i]P2 + Z[i]P3 + Z[i]P4 + Z[i]P ′.

Then
Λ ∩ Λ′ = Z[i]P1 + Z[i]P2 + Z[i]P3 + Z[i]P4.

In the same way as in the case of tori above and using [BK, Proposition 5.6] we
prove that rv(Λ) = rv(Λ∩Λ′) = rv(Λ

′) for all primes v - 2d ∈ Z[i]. Hence property
(1.4) holds with c = 1. But Λ and Λ′ are not commensurable because they are
free Z[i]-modules of rank 5 and their intersection Λ ∩ Λ′ is a free Z[i]-module of
rank 4.

Remark 3.5. Let S be the set of primes of bad reduction for A. Let A be the
Néron model overOF,S . Consider the following 1-motives over specOF,S : [Λ→ A],
[Λ′ → A], [Λ∩Λ′ → A] and [Λ+Λ′ → A], in the sense of P. Deligne [Del]. Changing
the base to spec kv and taking the images of the subgroups Λ, Λ′, Λ ∩ Λ′, Λ + Λ′

in Av(kv) via the reduction maps rv (for v /∈ S), we obtain torsion 1-motives
[rv(Λ)→ Av], [rv(Λ

′)→ Av], [rv(Λ∩Λ′)→ Av] and [rv(Λ+Λ′)→ Av]. The above
example shows that for each v 6∈ S these four torsion 1-motives are all equal.

4. Commensurability and finite number of reductions

4.1. Abelian variety case

Let B = A be as in Corollary 3.1. The first author and P. Krasoń proved [BK,
Theorem 6.4] that for such an abelian variety we can use only a finite set S fin

P,Λ of
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primes v ∈ OF to check whether P ∈ Λ + A(F )tor. This set depends on A, P , Λ
and a choice of a Z-basis of A(F )/A(F )tor. The proof of [BK, Theorem 6.4] used
the effective Chebotarev theorem [LO] and the height pairing that is a symmetric,
positive definite bilinear form over R (see [HS], [Sil]). In addition S fin

P,Λ can be
constructed in an effective way when one can choose a Z-basis of A(F )/A(F )tor

that is constructed in an effective way (cf. [BK, Remark 6.5]). If the Tate-
Shafarevich group of A is finite then an effective construction of a Z-basis of
A(F )/A(F )tor is possible.

Remark 4.1. Let B = A be as in Corollary 3.1. Let Λ, Λ′ ⊂ A(F ) be two
subgroups. Let P1, . . . , Pr and P ′1, . . . , P ′s be generators of Λ and Λ′ respectively.
By theorem [BK, Theorem 6.4] there exist finite sets S fin

Pi,Λ∩Λ′ and S fin
P ′

j ,Λ∩Λ′ for
each i = 1, . . . , r and j = 1, . . . , s such that the following properties hold:

if rv(Pi) ∈ rv(Λ ∩ Λ′) for all v ∈ S fin
Pi,Λ∩Λ′ then Pi ∈ Λ ∩ Λ′ +A(F )tor,

if rv(P
′
j) ∈ rv(Λ ∩ Λ′) for all v ∈ S fin

P ′
j ,Λ∩Λ′ then P ′j ∈ Λ ∩ Λ′ +A(F )tor.

(4.1)

Let

S fin
Λ,Λ′ :=

r⋃
i=1

S fin
Pi,Λ∩Λ′ ∪

s⋃
j=1

S fin
P ′

j ,Λ∩Λ′ .

Then by (4.1) we obtain the following criterion for strong commensurability in
terms of a finite number of reductions.

Corollary 4.2. Let Λ, Λ′ ⊂ A(F ) be two subgroups. Assume that

rv(Λ) ⊂ rv(Λ ∩ Λ′) and rv(Λ
′) ⊂ rv(Λ ∩ Λ′) for all v ∈ S fin

Λ,Λ′ .

Then Λ and Λ′ are strongly commensurable.

4.2. 1-dimensional torus case

In this section we will show that an analogue of Corollary 4.2 holds also for S-
units. Let S be a finite set of places in OF containing the Archimedean ones. Let
U(S) := O×F,S/(O

×
F,S)tor. There is a bilinear regulator pairing:

〈 . , . 〉 : U(S)× U(S)→ R,

〈u, u′〉 :=
∑
v

log |u|v log |u′|v,

where
∑
v means that summation is over set S with one Archimedean place re-

moved. The pairing 〈 . , . 〉 is symmetric and semi-positive definite. It is also non-
degenerate because the regulator is non-zero (cf. [Bart, pp. 219-221] for different
approach to regulator pairing). Hence 〈 . , . 〉 is positive definite.

Let (u1, . . . , um) be a basis of U(S). Let γ, γ′ be any elements of U(S) ⊗ R.
Then γ and γ′ can be uniquely written as γ =

∑m
i=1 ui⊗ ci and γ′ =

∑m
j=1 uj ⊗ c′j
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(using additive notation for the group U(S)). Consider extension of coefficients to
R as follows:

〈 . , . 〉 ⊗ R : U(S)⊗ R × U(S)⊗ R −→ R,

〈γ, γ′〉 :=
∑
i,j

cic
′
j

∑
v

log |ui|v log |uj |v.

This bilinear pairing is symmetric. For γ =
∑m
i=1 ui ⊗ ci ∈ U(S)⊗ R we have

〈γ, γ〉 =
∑
v

∑
i,j

ci log |ui|v cj log |uj |v

 =
∑
v

(∑
i

ci log |ui|v

)2

≥ 0.

Hence 〈 . , . 〉⊗R is semi-positive definite. It is also non-degenerate since its matrix
in the basis (u1 ⊗ 1, . . . , um ⊗ 1) is the same as the matrix of 〈 . , . 〉 in the basis
(u1, . . . , um). Hence 〈 . , . 〉 ⊗ R is positive definite.

Recall that for 1-dimensional tori the Detecting Property holds by [Sch, The-
orem 2, p. 398] without torsion ambiguity. By [BK, Remark 5.1], using the
effective Chebotarev theorem, the bilinear pairing 〈 . , . 〉 ⊗ R and the methods of
the proof of [BK, Theorem 6.4] one obtains the analogue of [BK, Theorem 6.4] for
1-dimensional tori.

Theorem 4.3. Let λ ∈ O×F,S and Λ be a subgroup of O×F,S. There is a finite set
S fin
λ,Λ of primes v of OF,S depending on λ, Λ and the basis u1, . . . , um of U(S),

such that the following property holds:

if rv(λ) ∈ rv(Λ) for all v ∈ S fin
λ,Λ then λ ∈ Λ · (O×F,S)tor.

Remark 4.4. The set S fin
λ,Λ can be constructed effectively because the generators

of U(S) can be constructed effectively (cf. [Le, p. 234]).

Remark 4.5. Let Λ, Λ′ ⊂ O×F,S be two subgroups. Let λ1, . . . , λr and λ′1, . . . , λ′s
be generators of Λ and Λ′ respectively. In the same way as in Remark 4.1, using
Theorem 4.3, we obtain a finite set S fin

Λ,Λ′ such that the following result holds.

Corollary 4.6. Let Λ, Λ′ ⊂ O×F,S be two subgroups. Assume that

rv(Λ) ⊂ rv(Λ ∩ Λ′) and rv(Λ
′) ⊂ rv(Λ ∩ Λ′) for all v ∈ S fin

Λ,Λ′ .

Then Λ and Λ′ are strongly commensurable.
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