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THE TAIL OF THE SINGULAR SERIES FOR THE PRIME PAIR
AND GOLDBACH PROBLEMS

DANIEL A. GOLDSTON, JULIAN ZIEGLER HUNTS, TIMOTHY NGOTIAOCO

Abstract: We obtain an asymptotic formula for a weighted sum of the square of the tail in the
singular series for the Goldbach and prime-pair problems.
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1. Introduction and statement of results

Hardy and Littlewood [5] conjectured in 1922 an asymptotic formula for the num-
ber of pairs of primes differing by k. The first major step forward on this conjecture
only occurred in 2013 when Zhang [15] proved that there exist some k’s for which
there are infinitely many such pairs of primes. Let A(n) be the von Mangoldt
function defined by A(n) = logp if n = p™, p a prime, m > 1 an integer, and
A(n) = 0 otherwise. Hardy and Littlewood’s conjecture is equivalent, for k even,
to

Yo (N, k) = Z A(n)A(n') ~ &(k)(N — |k|) as N — oo, (1.1)
n,n' <N
n' —n=k
where )
20, H (]9—2> if kiseven, k#0,
_ p—
&(k) = I{)|>k2 (1.2)
0 if kis odd
and )
Cy = (1 — ) =0.66016.... 1.3
’ pll (p—1)? (13)
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For odd k the sum in (1.1) has non-zero terms only when n or n' is a power
of 2, s0 Y2 (N, k) = O((log N)?). For the Goldbach problem Hardy and Littlewood
conjectured an analogous formula for the number of ways an even number k£ can
be expressed as the sum of two primes, which also includes the arithmetic function
S(k).

The function &(k) is called the singular series, a name given it by Hardy and
Littlewood because it first occurred as the series

0 2
6@—2ﬁ&%k% (1.4)

where the Ramanujan sum ¢, (n) is defined by

cq(n) = Z e(%), e(a) = ™, (1.5)
1<a<q 1
(a,q)=1

Some well-known properties of ¢,(n) (see, e.g., [10]) are that c¢,(—n) = c4(n), ¢q(n)
is a multiplicative function of ¢, and

cqn) =Y du(%) - ’W. (1.6)
dl

dlg

Since the singular series is a sum of multiplicative functions in ¢, it is easy to verify
that (1.4) is equivalent to the product in (1.2). The series in (1.4) is a Ramanujan
series; many arithmetic functions can be expanded into these series which have
the property that the first term ¢ = 1 is the average or expected value of the
arithmetic function. Thus we see that the ¢ = 1 term in (1.4) says that &(k) has
average value 1. If we consider the first two terms we have

oo 2
(k) =1+e(- g) + q;) ZEZ;QCQ(@,

and therefore we obtain the refinement that on average &(k) is 0 if & is odd and
is 2 if k is even.
In applications it is often useful to truncate the singular series; we write

S(k) = &, (k) + &, (k). (L.7)

where

&M =1, Em=Y"D s

We refer to éy(k) as the tail of the singular series. Montgomery and Vaughan [9],
by a simple argument using (1.5), proved for y > 1 the bound

log log 3y)?

S, (k) < d(k)( (1.9)
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Using a result of Ramanujan (for a proof see [14])
1
> d(k)* ~ = N(log N)?,
k<N T
this bound immediately gives the mean square estimate

N(log N)3(log log 3y)*
y? '

> 6, (k)° <

k<N

In [4]! the first-named author improved this last bound by showing

- Nlog N
D6, (k) < Of
k<N Yy

. (1.10)

Bounds of this type are useful in applications related to both the Goldbach and
prime pair conjectures. For a recent application, see [1]. The proof of (1.10) is
rather complicated and left open the question of whether the result can be im-
proved further or is best possible. Our first result answers this question in the
range 1 <y < \/N .

Theorem 1. We have, for 1 <y < VN and any fized 5, 0 < § < 1,

3 (N k)26, (k) =T(y)]\;3<1+05 <(§’;)5)> (1.11)

k<N
where (o
L Y
T(y) == ;, O (1.12)
From (2.8) below we have
_A 0 where A = 2= 1/p
T) =5 1 +0(1)), here A 1;[ <1+ o 1)2). (1.13)

A simple argument then gives the following result. Here f =< g means f < g and
g< f.

Corollary 1. We have, for some sufficiently small constant c,
~ N
> &,k <=, for 1<y<cVN. (1.14)
k<N Y
and for 1 <y < VN and any fized 5, 0 < § < 1,

> &, (k) =THN (1 + Os ((%)5/4» (1.15)

k<N
IBeware that in [4] &, (k) and éy(k) are defined differently than they are in this paper.
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Our main result is a refinement of Theorem 1.

Theorem 2. We have, for 1 <y < \/N,

2
Z (N = k)’ S, (k)? = T(y)— — = N? <10g ;]y\;) + cN? log%
kSN (1.16)

where

The proof of Theorem 2 requires a less direct approach than Theorem 1. To
proceed from the proof of Theorem 1 we want to take the parameter § > 1, but
then the sums that result from the tail of the singular series diverge. Therefore we
are forced to consider &, (k)? = (&(k) — &, (k))?, multiply this out, and evaluate
each of the three terms separately.

With a little additional work, by not dropping lower-order terms in (6.15),
(7.15), (7.16) and (7.21) we can replace the O(N?) in Theorem 2 by CN? +
O.(N2y=2+¢) for a complicated constant C.

The weight (N — k)? in our sum was chosen because it occurs naturally in the
prime-pair problem. Obviously other weights or families of weights can be used.

We have not been able to extend these results to the range VN < y < N so
in this range (1.10) remains the best result known. For y > N, the method of [4]

~ Nlog N
yields Gy (k) <a .
;@%:v (%) y*log(2y/N)4

Notation. We follow some common conventions. A sum will normally be over
integers; any sum without a lower bound on the summation variable will start at 1.
Empty sums will equal 0 and empty products will equal 1. The letter p will always
denote a prime. The letter € will denote a small positive real number which may
change from equation to equation.

2. Lemmas

We gather here some of the results we need later.

Lemma 1. Let s(z) =z — |z] — . Then for x > 0 we have

Z (x —k) = % ((aj - %)2 - s(x)2> (2.1)
1<k<a

and

S (@—k)? = %(x - %)3 - / s(w)? du. (2.2)

1<k<z
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Since |s(x)| < 3, we have

1 1
> (w—k) = 5952 - 5o +0(1). (2.3)
1<k<a
Since s(x) is periodic with period 1 and fol s(u)? du = 35, we have
1 1 1
Z (x—k)> = -2® — 2% + 2+ O(1). (2.4)
3 2 6
1<k<Lz
Proof. For the first identity, we use || = 2 — 3 — s(x) to write
Si(x):= Y (—k)= > (z—k)
1<ks<a 1<k )
1
ol - bl 4D

For the second identity, we use the first in
> (:c—k)2:2/ S (u) du. |
1<k<a 3

Lemma 2. For fized real numbers a and b, let

G(z;a,b) N (2.5)
r<a
and 1—pmotb(1— (1 - Ly
g(s;a,b) = ];[ <1 o 1)bp2(s_a)+b” > : (2.6)
Then we have
bt oty g, (o=t Fa b1
Glasa,b) = {900~ L) logw + Oas(l) fa=b-1 4o,

(a—b+1;a,b) aq—
¢(b—a)g(0; a,b) + LEitnd o=t
+04p(z270Y) ifa—b< -1,

where ((s) is the Riemann zeta function (3.3).
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This is Lemma 2 of [3]. In this paper we frequently apply this lemma to obtain
only an upper bound for G(x;a,b), but it is useful to know that the estimates
obtained are essentially sharp. We note that when a — b < —1

r 271(1
Z M;() = lim (G(y;a,b) — G(z;a,b))

r>x r)b ymroee

_gla—b+1;a,b)

— 2@ o, (x0T, (2.8)

Lemma 3 (Hildebrand). Forx > 1, d > 1, we have

wila) _od) (o log p log p
2 G T <1g MDD P )

(g,d)=1 (2.9)

+0(a [ +p7H).

pld

This is Hilfssatz 2 of [6].

Lemma 4. Forxz > 1,

Z(m —k)6(k) = %xQ - %xlogm + %(1 — v —log2m)z + Oe(x%"re). (2.10)
k<z

This was first stated in [3], and also appeared in [2], but the first published proof
is in [8].

Our next lemma is a generalization and strengthening of Lemma 4 due to
Vaughan. We let

_ p—1
Bq(k) = 2C(d) g (p —~ 2) , (2.11)
(p,2d)=1
where
1
C(d) —(png(l - (17—1)2> . (2.12)

Note that unlike for &(k) we do not require that &4(k) be zero if k is odd; instead
Gq(k) = Ga(2k).

Lemma 5 (Vaughan). For x > 1, we have

d logp
_ 2
g (x—k)By(k) =z —2dx<logm+*y—1+log27r+ 22d1>+E(m,d)
P

(2.13)
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where

log 22) %
E(z,d) < 2% exp (—c%) H(1 —p i) (2.14)
oglog3z)s /

for some positive constant c. If we assume the Riemann Hypothesis then T2 in
5
(2.14) can be replaced by x127¢.

This is Theorem 3 of [13]. (The Riemann Hypothesis estimate is on page 552 of
that paper.) We can recover Lemma 4 from Lemma 5 with a stronger error term

by using .
Y e-nek =23 (5 - k)eﬁl(k).

k<z k<E

3. Proof of Theorem 1.

We have
_ 20 1\2
Sim S P& = 0 X BRI S (N - k(R (-h)
E<N >y q'>y 1<kSN
Sl

(3.1)

and by the formula ¢,(—k) = Z du(%), we have
it
=33 du(%) d’u(%) SN -k (3.2)
dq d'|q’ 1<k<N

[d.d']|k

We now need to evaluate the inner sum over k. In proving Theorem 2 we do this
with the elementary Lemma 1, but here we need to use the formula in Theorem B
of Ingham [7]: if m is a positive integer, ¢ > 0, and = > 0, then

ml /c+ioo pstm {0 if0<x <1,

d —
i fo i S5A D+ (5+m) T (@—1)™ ifz>1.

The Riemann zeta function is, for s = o +it, o > 1,

C(s) = nil ni =11 (1 - 1>1 (3.3)

s
p p

The series and product converge absolutely and converge uniformly for o > 1 + €.
Hence for £ > 1 and ¢ > 1 we have

K k! c+ioco ((s)g:5+k
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Now

> ket S (k)

1<kEN
[Tk << man

and therefore

S v A [TT__deNE
1<k<N 27 Joioo S(s+1)(s+2)[d,d]s

[d,d’]|k

making use of the assumption that y < v/N to ensure that
N > N > N > N >1
d.d]~ dd' = qq' T y? ~

Hence )
2' c+100 NsJ,»Q

S = i) C(S)Bs(ll)m ds, (3.5)

where

=> “q lzZdeﬁfg,sg)~ (3.6)

>y q'>y q d'|q’

Following the method Selberg introduced for the Selberg sieve [11], we now diag-
onalize By(y). Define ¢4(n) by the equation n® = 3=, ¢s(d), so that ¢,(n) is
multiplicative and ¢4(p) = p® — 1. Letting n = (d,d’) we have

(d.d)* =) 6a(r)

r|d
r|d
and thus i
dd/ 1—s 5
@.dT 241
r|d
r|d’
Hence

:X_;% ul Z S (4] (3.7)
"~ o i

The simplest bound on ((s) in the critical strip is that if 0 < a < 1, [t| > 1
then
IC(s)| < C(a)|t)]'™ for o> a (3.8)

for some constant C(«), see Theorem 9 of Ingham|[7]. We also need the bound, for
0<a<l,

1
Bs(y) < e for o> a, (3.9
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which we will prove later in this section. In our formula for S we move the contour
to the left past the simple pole with residue 1 at s = 1 of {(s) to the line s = a+ it
with 0 < a < 1. Since by (3.8) and (3.9) the integrand is O, (N?+oy=22/[¢|>+*)
for |t| > 1, the integrals converge absolutely and we obtain

N3 9| ot Ns+2
B = B.(y)———
S=Bil5+55 ) CWBW Ty ®
Ve i (3.10)
=205+ 0o )
We have Z (g) = Z <ﬂ> _ )b ifg=m and thus
d\qud —s|gu s/ |0 ia#n
r|d "
2
= u q)? q
Biy) =Y o(r) > (%)
r=1 q>|y q d|q
rlq r|d
] (3.11)
= u q)* p(r)
=D o(r) =2 o
r=1 q>y q >y
q=r

We conclude that

S = T(y)N?S + 0, (Jf (N>1_a>,

which proves Theorem 1 on taking o =1 — 4.
It remains to prove (3.9). For the sums over ¢ and d inside the square in (3.7),
writing ¢ = du, d = rv, we have ¢ = ruv and

ZMZ2Z1S<) H )78 ().

q>y 'ruv>y
rlq r\d

Hence

i p(r ) i i p(u) 3 p(v)?ot =
2 2
r=1 e u=1_1 ¢(u) v>y/ur U>
u,T)= (v,ur)=1

We note that for squarefree r

baru()] < [ 0" +1) =2 (1 ¥ ) — (1),
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where o (r) = >, d*. We conclude

2
2,.2—a

o'} )2 e u2 v)Tv
\Baﬂ-t(y)\ < Z%Uu(r) z:lgguiz Z N(QS)(U)Q

r=1

Clearly the right-hand side is a decreasing function of a, and therefore to prove
(3.9) we only need to prove that the right-hand side above satisfies the bound in
(3.9) for a = a. Since by Lemma 2

we have

S p?u et
y“; ow? Sy
0 r 2r2—a0._a 2 2+o¢
Bs(y) <a ; ulr) o(r)? ) 2o g2 Z i )
Since ¢(dm) = ¢(d)p(m) when p(dm) #0
H(T)2T2+a i_ #(dm)2d2m2+a
Lo w2 gldmy
= pm)?m?e\ [ pl )
(S (B4F) <

and B;(y) < yza, which proves (3.9).
To prove Corollary 1, let

N)=>"6,(k)?  TnN)=> (N-k)"&,(k)? for m>1.

k<N k<N
Then by Theorem 1 and (1.13) for 1 < y < ¢N'/? with ¢ sufficiently small

N3
T5(N) < —
2() yg
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and (1.14) follows from

1 1
= To(N) S To(N) € 15 T2(2N).

To prove (1.15) we note for m > 0 that

N
Thmt1(N)=(m+ 1)/1 T (u) du.

Since T),(N) is a nondecreasing function of N, we have, for 1 < h < N,

1 [N To(N +h) — Ta(N)
< —_ frng
and similarly
T(N) > T5(N) — To(N — h).

2h
Now by (1.11) and (1.13)

3 3 /,2\9
7,(N) T(yfgws({:; (%) )

and hence

To(N £h) - To(N) 1
+2h N (

[VIES

Balancing the two error terms by choosing h = N (”ﬁ) , we conclude

Ty(N £ h) — To(N) N2 N2 /422
+2h =T 0 <y2 <N> ) ’

Ty(N) = T(y)NT + Os <J;[2 (g]/\]>2> .

By the same argument Tp(N) is bounded between the expressions

0 rueof )0 (35 (5))

and hence

127
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2

S
and the choice h = N ("W) " gives

To(N) = T(y)N + Os (y

| 2
7 N
=%
N———

N

which proves (1.15).

4. The average of the singular series tail

In this section for completeness we give a proof of the average size of the tail of
the singular series. This proof illustrates the method we use to prove Theorem 2
without all the complications.

Theorem 3. We have, for 1 <y < N,

1 N 1 logp
N—-k)G6,(k)=—=Nlog— + = |1 —log2m + —— | N
D (N = k)&, (k) =~ 8 2( g Zp:p(p_l)>

+O(Ny™2) + O(y).

(4.1)

. . 2 .
The reason the average does not have a main term of size NT as one might

expect is that the term 1 from ¢ =1 in (1.4) cancels out this term independent of

the truncation level y.
Proof. We have

STV - R&, () = (V- kS - (N - k)&, (k). (42)

k<N k<N k<N

The first sum is evaluated in Lemma 4. For the second sum, we use (1.8) and (1.6)
to obtain

k<N et
1(q)? q ( )
= E dul = E N —k
q<y d)(q)z d|q 8 d> 1<k<N( ) 7

1<kKN 1<m<
d|k
1 N2 1
=—-—— =N d
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and hence
1o i) gy 1 11(g)* q
2 (VRS = 5N D S %“Q) R %d“(d)
1(q)? >
"o q% ¢(q)? dZIqu
By Lemma 2,
1(9)° — pu(dm)?d? pu(m)? pu(d)*d?
2gtar 2= 2 Soame <\ 2 o ) | & v ) <
Hence we see
2
’;V(N — k)&, (k) = %N2 - ;N; ‘;((qq)) +O0(y). (4.3)

The theorem now follows from ( 2), (4.3), Lemma 3 with d = 1, Lemma 4, and
the fact that N27¢ < max(Ny~z,y) for e <3

5. Starting the proof of Theorem 2

To prove Theorem 2 we need to asymptotically evaluate

STV -E)?G, (k) =Y (N —k)?(8(k) — &, (k))

2

kSN k<N
=D (N-R)S(k)* =2 (N~ k)’ S(k)S,(k)
k<N k<N (5.1)
+ > (N=k)? 6, (k)
k<N
=:51 — 255 + S5.

We evaluate each of these terms in the following sections.

6. The sum S,

In this section we evaluate

The proof is along the same lines as the proof in [8] of Lemma 4.
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Theorem 4. We have

2SR = _ L \NM L 2
> (N k) &(k) _H(1+(p1)3 5 — N (log N) (6.2)
k<N p
3 1 1 logp 9 9
Sy = Zlog2m — = N2log N N?).
+<4 v = 5 log2m 2%:(]3_1)2) og N + O(N*)
2 2 .
_ p—1 ) o )4C3g(k) if 2k,
Proof. Let g(k)—g<p_2> , so that &(k) _{0 21k and
p>2

S1=4C3 Y (N —k)?g(k)=16C3 > (;V - k)Qg(k) = 16022511@)

1<kEN 1<k< Y
2|k
(6.3)
where S11(N) = > (N — k)?g(k). Let
1<kKN
_N 9 = 9(™)
Gy = S M T 1+ Y 42
n=1 P m=1 (64)

-(-3) T+ )

1S

and therefore we have

G@=«%Q<H(ij¢£J<“;J

— o TT (14 g ) = <)

— 92)2
s p—2)*p°

1 \2
with H (s) analytic for Res > 0. Next we write H(s) = ((s+1)? (1 ) J(s),

J) =] (1 4 @2_1’;)23205) (1 - p:ﬂ){ (6.6)
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We then have (by Mathematica) that

10 =TT (1 g (55 (2 5) <5 (- 3))

p>2
(6.7)
and for —1 < Res < 0 this is
1 3 1
H 1+ 2,8 <5+O(1)+O( 28+1))>’
p>2< (P=2p° \ p p
which is analytic for Res > —%.
Now, in the same way we obtained (3.4), we have for a > 1
N .
2! fatice N&t2
S11(N) =) (N —k)g(k) = — G(s)———————ds. 6.8
WM =N kP = o [ G0 gyt 69

k=1

We move the contour to Res = b, —% < b < 0. To ensure convergence and justify
moving the contour we need to use a standard bound for ¢(s) which improves on
(3.8). By [12], Chapter 5, for |¢t| > 1,

Clo +it) < ([t] + 3) ) +e, (6.9)
where
0 ifo>1,
Mo)y=<1-16 if0<o<1, (6.10)
% —0 ifo<0

This, along with the fact that J = Oy(1) for Res > b, shows that the integrand
is Oy (N2 /[t|20+3) for |t| > 1.

We encounter a simple pole at s = 1 and a triple pole at s = 0. Since H(s) is
analytic at s =1 and ((s) = % + O(1), the pole at 1 contributes 1 H(1)N® to
S11(N). Expanding around s = 0 we have

Ns+2 1 2 N5+2
SO s - e (- ) SO
= Niz . iK( )N*®
R (6.11)
= N72 . s% <1 + (log N)s + Msz + O(s?’)>

X (K(O) + K'(0)s + @52 + 0(53)>7
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where

1

K(9) = () (s + VP =2 sy

J(s).

The pole at 0 therefore contributes 2 (3K(0)(log N)? + K'(0)log N + $K"(0)).
From the expansion s¢(s + 1) = 1+ vs + O(s?), we find that K(0) = 3¢(0)J(0) =

—iJ( ) and, using that if f; and fo are differentiable then (J}”;?) = f1 + f2 , that
KO _ C(O)Jr2’y+210g27177+ej( We have

K(0) — <(0)
0=T(+555) (3)

- 1)1;[2 (p—2)? +§p 2)3)( 1)? 6.12)
i’ (f; _log 2,
?(((()))) - % <2 (fg_p,)fzss - (p(fl;)z?(gi f){'i,);_ ) ey
-2 e
and
1 =T (1+ 255)
P-4 +6p—3
s (p=2)%p
N pll w (6.14)
5 ()
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Combining these, we obtain

S1(N) = 16022511<];[>
=16C3 (214H(1)N3 + JIV—; (K(0)(log(N/2))* +2K'(0) log(N/2) + K”(O)))

o1 fbtiee Ns+2
Yo SO eTD
1 1
=-T7(1+ —— ) N®
3H< +<p—1>3)

- iCSJ(O)NQ((logN)Q —2(log 2)log N + (log 2)?) (6.15)

1 _, 1 log p
- = log2m + 2y + 2log2 — 1 — =
2C’2J(0)<og T+ 27+ 2log 2+I§(p_1)2

x N2(log N —log2) + O(N?)
1 N3 o1

p

1 1 1
+ <3—7—1og27r— = (po_g]fy) N?log N + O(N?),
p

as desired.

7. The sum S,
In this section we evaluate

Sy =Y (N —k)*&(k)&, (k). (7.1)

Theorem 5. We have

M(q)Q N3 N2 N2 9
= — — —log N1 —(1
S Zd)(q)g 3~ 5 logNlogy + ——(logy)

q<y

log p N?
- (”Zp@— 1>> El (72)

p

p—1)

+ O (N2y=te) + O(N?log(2N)y ).

3 logp N2 9
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Proof. The definition of &, and the formula ¢,(— Z d [L( ) give
dlq
dk
1(q)?
Sy = Z z ( ) 3 (N - R2S(R). (7.3)
q<y q d|q 1<k<N
dlk

Letting £ = dm, the inner sum is
Sor(d)=d®> Y (N/d—m)*&(dm) = d*Sx(N/d), (7.4)
1<m<N/d

where

Soa(x) = Z (z —m)?S(dm)

1<m<z

(7.5)
=2 Z (u —m)S(dm) u—2/ Saz(u
L igmsgu
To evaluate this using Lemma 5, we write it in terms of &4:
d
Sps(x) = Y (z—n)&(dn) = > (x—n) s —<64(n)
1<n<e 1<n< (d7 2)¢(d)
2|dn
4 Z (x —n)Bg(n)  if d is even, (7.6)
20(d) | £,

2d x e g
@ 1@23 (5 - n) B4(n) if dis odd.

The contribution to Sgs(x) from the main term of Lemma 5 is (;f d)x regardless

of the parity of d, and because prd = =3 l;gp if d is even while

log(z/2) Jrzzljogp +Z 1ng

p|2d p\d

if d is odd, the second term contributes

—(IogaH—’y— 1+10g27r+zpogp>,
pld

again regardless of d’s parity. The error term in Lemma 5 is < z2d° and
(,f)(d) < d¢. Thus

Soz(x) = iaj logz +~v—1+log2m + E logp —i—Oe(x%dE). (7.7)
(d) 2 3 <p-1
P
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— % + log 27 by ¢y,

r d a? x2 log p
S sz/S u)du = —— logx +c1 +
22(z) : 23(u) o) 3 ( g 1 %d: )

1 1
G50 kot

Integrating, and denoting

(7.8)

3o(d) ~ 24 p

Thus, because W and 3 ;g” are both O(d°),

N3 N2 ng 3 .1
=—— log N —1 N2dzte), .
So1(d) 3¢(d) (Og ogd+cy +Z|(; + O (N2d>7°¢). (7.9)
P

For square-free g,

d
>
dlg

L0 -5%) s

3

the t N tribut
so the term —-—- contributes
3¢(d)
w@)? = dp(HN? _ N? = pla)? (7.10)
2 3 :
< o2 o= 30(d) 3 = 9a)
to So. Next, the terms —5-(log N + ¢1) are easily dealt with, and contribute
? p(q) q
— —(log N +¢1) 5 du(f)
el Chton d
X q
2 2
1(q)
=——(log N +c1) (7.11)
= o)

N2 1 ,
~ 2 (log N + 1) <logy t+ Y p(;g_pl)) + O(N?log(2N)y~ %)
p

by Lemma 3. The error O, (N 2d21¢) contributes

( “ q +> — O.(N3y2t).  (1.12)
q<y

Z“q220

q
q<y
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For the remaining terms, we first evaluate the inner sum:
N2
Zd ( ) <lo d— Z 10gp> 5 Zdu(fi)Z(l—pi) log p
d|q pld
= Z( logpzdu< ))
pld

plg

ZP¢( >logp

plg
N? p(p—2)
plq
N2 log p
= — 1 — _—
5 9l )<0gq > 1)
plq
(7.13)
Thus the contribution of the terms N72 (log d— Zp‘ d l;’f P ) is 2 times
nlg log p (g wlq
SO (- 3 (20 ) ey T - 5 0 st
q<y pla q<y q<y
(7.14)
logp g
D DN Z
p<y
p\q
The first sum is evaluated in Lemma 3, and contributes
(logy)? ( ) logy + O(1). (7.15)
Writing ¢ = pr, the last sum is
1ogp u log p
Z = Z = Z m(log(y/p) +0(1))
p<y r<y/p Py
(r.p)=1 (7.16)
logp
= ———— |logy + O(1).
(%: p(p - 1)2> W
We do the middle sum via contour integration:
M 1 a+1i00 ys
>ty st = 5 | e (717)

where G(s) = Y07 ”(("n)) n~% and a > 0.
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We have

Tl )

p

s 11 (7.18)
=¢+l) 1;[ (1 - r plp- 1)p25>

—: ((s+ ) H(s),

where H(s) is analytic for Res > —1/2 and H(0) = 1. Near s = 0,

C(s+1)H(s)y*

(i +y—ms+ 0(32)) (1 +H'(0)s + 2O

_ L
. £0() (ra9)
X (1 + (logy)s + % + 0(53)> :

The residue at 0 is then

log y)? H"(0
LD (4 ) 1ogy — 7 + v/ 0) + 10,

(7.20)

so by moving the contour to Res = b, —1/2 < b < 0 (convergence follows from
(6.9)), we get

_ (logy)®
2

u

log + (y+ H'(0))logy + O(1). (7.21)

q<y

We have

H'(s) _ (2p~> —p~*)logp
H(s) zp:p(p— D) +p==—p~?

so H'(0) =5 —I°8P_ Then combining (7.21) with (7.15) and (7.16),

p p(p—1)

Z Ha < =Y logf)2> - %(logy)z - (Z logﬁF) logy + O(1).

i _p (p — p(p
(7.22)
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Combining with the other terms (7.10), (7.11) and (7.12),
5= 30 (N - KPE(S, ()

k<N

N3 N2 lo
(ZE)T e (e )
q<y

+ O(N? 1og(2N)y*%)

+J§<§“°gy)2‘<§m> %ng(”)”( N (729)

N3 NZ2 N2
= ( /(;E ;3)3—log1\710gy+4(logy)
q<y ¢
2

lo lo N
(’erZ &b >1ogN <01+Z &b )210gy

+ O(N?) + O (N2y=t) + O(N?log(2N)y~2),

as claimed. ]

8. The sum S3

In this section we prove the following result on Ss.

Theorem 6. We have, for 1 < \/N,
Syi= Y (N —k)? ( g )
k<N q<y

(8.1)

2
lo N? 1
(logy+v+2 gp1)> — +ON*y~ 2 logy) + O(Ny?),

Proof. The definition of &, (k) and the formula c,(—k) = > g, d (%) give
d|k

/

Sa=2_ “qg“ > (N —kPeg(~kley(=k),  (82)

q<y ¢'<y q (b q) 1<kEN
S31
and ,
531:ZZd,u(%) d’u<%) Y (VR (8.3)
dlq d'|q’ 1<k<N

[d,d']|k
Using Lemma 1 on

2, (N-RE=(ddl >, ([dfvdf]"“)Q’

1<k<N )
d.dk s
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we obtain
/ 3 2
Sal—dZ;quIdd’ Padu(g) (5 )(3[évd’] ‘2{é,vd@2+0<[dj,vd@>>
=S aan(§) () - X S aru(h) u(f)
dlg d’|q’ dlg d’|q’
+O<szd2d’2>,
dlq d'|q’

where we use that m +0(1) = O(ﬁ) because [d,d'] < dd' < q¢’ <y?> < N.
Thus

5= 4%~ 4:0)% + O w)N), (5.4
where
w0 =TS S s s aon(e(F). e
q<y ¢’y dlq d’|q’
) - T3 HEHE (D) (Sen) oo
2
B 1(q)?
= 2 5l ¢>(Q)>,
and

B 1(q)? p(q')? 0 2
A = 2 2 G ol <Zd ) <Zd )

<y @'y dlq d'lq’
2
1(q)* S p(d
=Y d Z (8.7)
2
(q = 9a)? 4 d?"
2
d)2d?
u r)? u d w(r)” y 2
'r‘<y d<y/r
(d,r)=1

using Lemma 2 for the last two steps. We compute A;(y) the same way we did
Bi(y) in §3, using
@)=Y ot

r|d
r|d’
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to get ,
A(y) =D o) | D ZEZ;Q ‘ u(%) => 2233 (8.8)
r<y sy d <Y
Tlq r|d

We conclude
)2 3 2\2 A2
s (S4F) 5 (S ron o

Theorem 6 now follows from Lemma 3. | |

9. Completion of the proof of Theorem 2
By (5.1) and Theorems 4, 5, and 6, for 1 <y < /N we have
D (N —k)*&y(k)? = S1— 28 + Ss

k<N

_ p(q ng)? | N?
_(H<1+( ) q3+z¢(q>3) 3

D q<y

- iz\ﬂ(log N)2 42 <2N2 log N logy — ENQ(log y)Q) - %J\ﬂ(logy)2
(f s gy

+2 <<v+§p:p(1;g_p1)> N;logN

+ (’Y— 3 +10g27r+zlog]1)2>]\;210gy> -2 (’74—2 logp1)> N7210gy

— p(p

+O(N?) + O(N?10g(2N)y~ %) + O (N*/2y/2+¢) £ O(N?y~ % logy) + O(Ny?)

1
( At ) 7+N2 (—4(logN)2+logNlogy—(10gy)2>
= ?

3 2)1
+ (4— log27r—|—z (— ng) N?log N

(2-p)1 L
(_3 +log 27 + Z p)lo)gp> N?logy + O(N?) + O(N?1og(2N)y 2)

2 3 2
= Ha)”\ N7 1N2 logﬁ JrchlogE+O(N2)+O(N210g(2N)y7%)~
#(q)? y? y?
9>y
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