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FAMILY OF ELLIPTIC CURVES WITH GOOD REDUCTION
EVERYWHERE OVER NUMBER FIELDS OF GIVEN DEGREE

NaAO TAKESHI

Abstract: We give families of elliptic curves having good reduction everywhere over number
fields which are generated by their j-invariants of given degree.
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It is known that the j-invariant j(F) of an elliptic curve E defined over a number
field K is an algebraic integer if and only if there exists a finite extension F//K such
that E attains good reduction everywhere over F' (cf. [3, Proposition VIL5.5]).
It follows that every algebraic integer a belongs to j(£%) for some extension field
F of Q(a). Here, & is the set of isomorphism classes of elliptic curves defined
over F, £ is the subset of & defined by

EY ={E € & : F has good reduction everywhere over F'}

and j(E%) = {j(E): E € £%}. However, we have a & j(E&(a)) for many algebraic
integers «, because it is known that £% is a finite set for any K. For example,
we have a & j (5(3(&)) for any rational integer «, because there exist no elliptic

curves having good reduction everywhere over Q, that is, £3 = (). We consider the
following problem.

Problem. Find algebraic integers o such that a € j(f)&(a)), i.e., a = j(E) for
some elliptic curve E defined over Q(a)) and having good reduction everywhere

over Q(a).

In [2], Rohrlich considered a specific case of the problem. He gave a necessary
and sufficient condition for an algebraic integer « to be the j-invariant of an elliptic
curve E € 5(%(a) with complex multiplication by the ring of integers of an imaginary
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quadratic field. By his result, it is immediately shown that there exist infinitely
many algebraic integers « satisfying a € j (5(8(&)). However, since there exist only
finitely many imaginary quadratic fields with given class number, his result gives
a finite number of algebraic integers o € j (5(%(&)) of given degree. In this paper,
we prove the following theorem.

Theorem 1. For any n > 2, there exist infinitely many algebraic integers o of
degree n such that o € j(E&(Q)).

Theorem 1 is known to be true for the case n < 3. Tate showed that a root «
of the polynomial 2% — 1728z + a'? with a € Z prime to 6 satisfies a € j(é'(%(a)).
Actually, the elliptic curve defined by the equation

36 1 )
a—1728"  a— 1728 M)
has the j-invariant equal to o and has good reduction everywhere over the quadratic
field Q(«) (see the remark following the proof of Proposition 2). The author gave
a family of elliptic curves having good reduction everywhere over cubic fields with
cubic j-invariants ([4, Theorem 1.2]).

We give two families of elliptic curves having good reduction everywhere in
Propositions 2 and 3. The elliptic curves in Proposition 2 are inspired by the
example of Tate, and Proposition 3 is a straightforward generalization of the result
of the author.

y? +ay =a° —

Proposition 2. Let n,a € Z with n > 2. Assume that a satisfies a* = 1 (mod
1728) and ged(a,1728"(n — 1) — 1) = 1. The polynomial

a* -1
1728

is irreducible over Q. For a root o of fn4(z), let E be the elliptic curve defined
by (1). Then j(E) = a and E has good reduction everywhere over Q(c).

fralz) =2" + ( - 1728"1> z+1

Proposition 3. Let n,a € Z with n > 2. The polynomial
Ina(z) =2" — 16" %(a — 16)2" " + az — 1

is trreducible over Q. For a root € of gn,q(x), let E1 and Ey be the elliptic curves
defined by the equations

Ey: y? +ay =% + 16ex? + 8ex + € (2)
and
By y* 4+ ay =2 — 8ex? + 2¢(8¢ — 3)a + e(4e — 1). (3)

Then Ey and Es have good reduction everywhere over Q(e). Moreover, their
j-invariants, given by

(4096€2 — 256€ 4 1)°
e(16e — 1)
respectively, satisfy Q(€) = Q(j1) = Q(j2)-

(256€2 + 224¢ +1)°
e(1— 166)*

(4)

J1= and Jo =
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Theorem 1 follows immediately from Proposition 2 since there exist infinitely
many a € Z satisfying the conditions. In the case n > 3, Theorem 1 also follows
from Proposition 3 since the number of the roots € defining the same j-invariant
is only finite by (4). When n = 2, the polynomial g2 ,(z) = 22 + 162 — 1 does
not depend on a € Z, so Proposition 3 only gives elliptic curves defined over
the quadratic field Q(e) = Q(v/65). The two propositions give almost distinct
algebraic integers a satisfying o € j (5&@)) (see Proposition 5).

In order to prove the irreducibility of f, () and g, q(z) in Propositions 2
and 3, we use the following lemma which follows immediately from the irreducibil-
ity criterion of Perron ([1, Theorem 2]).

Lemma 4. Letn € Z withn > 2 and
F(z)=2" +s2" ' +tx+ 1,
where s,t € Z. If |s| > [t| + 2 or [t| > |s| + 2, then F(zx) is irreducible over Q.

We begin the proofs of the propositions.

Proof of Proposition 2. Set b = % — 1728771, We have |b| > 2. Indeed,
(z,y) = (12",a?) is on the elliptic curve y* = 23 + 17280 + 1, but this curve has
no integral point of such a form if || < 2. Therefore f, o(xz) = 2™ + bz + 1 is
irreducible by Lemma 4.
The discriminant of (1) is given by
o2

- (a—1728)%

We denote by ord, the normalized additive valuation on Q(«) at p. Assume that
a prime ideal p of Q(«) satisfies ord,(a — 1728) = 0. The coefficients of (1) are
p-integral. Moreover, we have ord,(A) = 0 since « is a unit by the definition.
Thus E has good reduction at p. Assume that p satisfies ord,(a — 1728) > 0.
Then we have ord,(a) = ord,(6) = 0. To prove that E has good reduction at p,
we have only to show that ord,(A) = 0 (mod 12) (cf. [3, Exercise 7.2]). Since «
is a root of f,, o(z), we have

atoa = —1728a™ 4 1728"a 4+ o — 1728
n—2
= (a — 1728) (1 — 17280 ) 1728ia”2i> :
=0

Hence ord,(a) > 0, which implies ord, (1728™(n — 1) — 1) = 0 by the assumption
on a. On the other hand, we have

n—2
1 - 1728« (Z 1728ia"_2_i> =1-1728"(n — 1) (mod p)

=0
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since @ = 1728 (mod p). Thus ord,(a — 1728) = ordy(a?) = 4ord,(a). This
shows that ord,(A) = 2ordy(a) — 3ord, (o — 1728) = —120rdy(a) = 0 (mod 12)
as desired. ]

Remark. As in the proof above, E with discriminant A = ﬁ has good
reduction at a prime p with ord,(6) = 0 if ord,(a) > 0 and 2 ord, () = 3ord, (e —
1728) (mod 12). For the example of Tate, this condition is verified by a(a—1728) =
a'?. Our curves are constructed so that « is a unit and ord, («—1728) = 0 (mod 4).

Proof of Proposition 3. When n = 2 and 3, the polynomial g, .(x) is irre-
ducible over Q since gp, o(£1) # 0. When n > 4, if a # 16, we have 16" 2|a— 16| >
la| + 2. So gnq(x) is irreducible by Lemma 4. The irreducibility of g, 16(z) =
™ + 16z — 1 also follows by Lemma 4.

Let € be a root of g, q(z). The discriminants of Ey and E, are given by
—€(1 — 16¢) and €(1 — 16¢)* respectively. Clearly € is a unit by the definition, and
1 — 16¢ is also a unit since 1 — 16¢ is a root of (—16)"gn . (%) € Z[z] which
is a monic polynomial with constant term 1 — 16"~*(a — 16) + 16" 'a — 16" =
1. Therefore E; and E5 have unit discriminants, that is, £ and Es have good
reduction everywhere over Q(e). By (4), €' is a root of the polynomial

28 4 (j1 — 768)x° — 24 (j; — 13056)z* — 2211123 4 2245122 — 23232 4235, (5)

Every conjugate of ¢! over Q(j1) is a unit and a root of (5). On the other
hand, (5) have only one 2-adic unit root since j; is a 2-adic unit by (4). Therefore
¢! € Q(j1). This means Q(¢) = Q(j1). We can show that j, satisfies Q(j2) = Q(e)
by using the same argument, because €' is a root of the polynomial of the form
2% — (jo — 672)2” + 25(j2 + 2364)2* — 2°(3j, — 22624)2°
+ 214(2364 + jo)a? — 210 (jy — 672)x 4 22
over Q(j) by (4). n
Remark (cf. [4, Remark 4.1 (A2)]). E; and E5 are isogenous to the elliptic curve

(256€2 — 16 4 1)°

By : y* + oy =2 — 8ex? + ¢(16e — 1)z with jz = €2(1 — 16¢)2

which has three Q(¢)-rational points of order 2. Therefore, we have the four curves
El, EQ, E3 and

(16¢2 — 16 + 1)°
e*(1 — 16¢)

Ey: v+ oy =2® — 2ex® + %z with j4 =

isogenous to each other. So E3 and Ej also belong to 5(82(6). It is shown that

n n

the degree of js (resp. js) is greater than or equal to § (resp. %) by applying
the same argument as in the proof of Proposition 3. Actually, there is a case

that the degrees of j; and j4 are %. For example, when (n,a) = (4,32), we have

QUs) = QU1 = Q(VIG3SE).
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We end this paper by remarking that the number fields given in Propositions 2
and 3 have different number of real places in general.

Proposition 5.

(i) Assumen is odd and |a| > +/1728" + 1. Then the number of real places of
the field defined by fno(x) is 1.
(ii) Assume n is even. Then the number of real places of the field defined by
fn.a(x) is less than or equal to 2.
(iii) Assume a # 16 (resp. a < —48 or a > 16) if n is odd (resp. even). Then
the number of real places of the field defined by gn o(z) is 3 (resp. 4).

Proof. Count the number of the real roots of f, () and g, q(z). [ |
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