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ELLIPTIC CURVES WITH RANK 0 OVER NUMBER FIELDS

Pallab Kanti Dey

Abstract: Let E : y2 = x3 + bx be an elliptic curve for some nonzero integer b. Also consider
K be a number field with 4 - [K : Q]. Then in this paper, we obtain a necessary and sufficient
condition for E having rank 0 over K.
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1. Introduction

Let E be an elliptic curve defined over a number field K. By Mordell-Weil’s
Theorem, it is well-known that the set of all K-rational points E(K) is a finitely
generated Abelian group. Hence, by the structure theorem of finitely generated
Abelian groups, we can write

E(K) ∼= T ⊕ Zr,

for some non-negative integer r which is called the rank of E over K and T is the
torsion subgroup. Sometimes we may write T = E(K)tors.

In 1994, Merel [6] has proved that for every integer d, there is a constant B(d)
such that for every elliptic curve E/K with [K : Q] = d we have |E(K)tors| 6
B(d). The bound in Merel’s proof is not effective (it relies on Falting’s theorem).
However he proved the following. If p is the largest prime divisor of |E(K)tors|
for [K : Q] = d > 1, then p 6 d3d2 . This bound was later improved by Oesterle to
(1 + 3

d
2 ) [1994, unpublished!].

Finding the rank of a given elliptic curve is a very difficult problem compared
to that of the torsion group. If E : y2 = x3 + bx is an elliptic curve over Q, then,
from [7], it is well-known that

Rank(E(Q)) 6 2β(2b)− 1
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where β(2b) denote the number of distinct primes p|2b. If b is a prime number,
then,

Rank(E(Q)) 6 2.

In [5], Kudo and Motose computed the rank of an elliptic curve y2 = x3 − px
over Q for Fermat prime p and Mersenne prime p. Also Bremner and Casssels [2]
computed that for all odd prime p with p ≡ 5 (mod 8), the rank of y2 = x3 +
px over Q is 1. In [3], for odd prime p, the rank of elliptic curves of the form
y2 = x3 − px over Q has been studied. Also in [4], the rank of an elliptic curve
y2 = x3 + pqx over Q was considered with p and q are primes. In [9], Spearman
proved that the rank of an elliptic curve y2 = x3 − px over Q is 2 for all primes p
with p = u4 + v4 for some integers u and v. In [10], the rank has been computed
for an elliptic curve of the form y2 = x3 − 2px over Q with p is prime.

In this paper, we consider the rank of a class of elliptic curves of the form y2 =
x3 +bx for some nonzero integer b over a number field K with [K : Q] 6≡ 0 (mod 4).
More precisely, let K be a number field with its degree [K : Q] is not divisible by
4 and let E : y2 = x3 + bx be an elliptic curve for some nonzero integer b. Then
we give a necessary and sufficient condition for E having rank 0 over K.

Theorem 1. Let K be a number field with [K : Q] ≡ 2 (mod 4) and b be a nonzero
integer with b 6= 4m4 for any integer m. Then the elliptic curve E : y2 = x3 + bx
has rank 0 over K if and only if the Diophantine equation X4 + bY 4 = Z2 has
only trivial solutions in K.

Theorem 2. Let K be a number field of odd degree and b be a nonzero integer.
Then the elliptic curve E : y2 = x3 + bx has rank 0 over K if and only if the
Diophantine equation X4 + bY 4 = Z2 has only trivial solutions in K.

Remark 1. The statement of Theorem 1 is not true for b = 4m4 for any integer
m. In this case, the elliptic curve E : y2 = x3 + 4m4x is isomorphic to the curve
E4 : y2 = x3 + 4x. The rank of E4 over Q(

√
2) is 0. Hence the rank of E over

Q(
√

2) is 0. But the Diophantine equation x4 + 4m4y4 = z2 has a nontrivial
solution (

√
2m, 1, 2

√
2m2) over Q(

√
2).

In order to prove the above results, we need to compute the torsion subgroup
of E over a number field K with [K : Q] 6≡ 0 (mod 4). Indeed, we prove the
following propositions.

Proposition 1. Let E : y2 = x3 + bx be an elliptic curve for some 4-th power-free
integer b and let E(K) be the Elliptic curve group over K, where [K : Q] is odd.
If T is the torsion subgroup of E(K), then T is isomorphic to one of the following
groups.

1. T ∼= Z/2Z× Z/2Z, if − b is a square.
2. T ∼= Z/4Z, if b = 4.

3. T ∼= Z/2Z, otherwise.
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Proposition 2. Let E : y2 = x3 + bx be an elliptic curve for some 4-th powerfree
integer b and let E(K) be the Elliptic curve group over K, where [K : Q] ≡ 2
(mod 4). If T is the torsion subgroup of E(K), then T is isomorphic to one of the
following groups.

1. T ∼= Z/2Z× Z/4Z,

{
if b = 4 and i ∈ K,
or b = −1 and i ∈ K.

2. T ∼= Z/2Z×Z/2Z,


if b = −1 and i /∈ K,
or b = t2 for some nonzero integer t(6= ±2) and i ∈ K,
or − b is a square,
or
√
−b ∈ K.

3. T ∼= Z/4Z,


if b = 4 and i /∈ K,
or b = t2 for some nonzero integer t(6= ±2)

and
√

2t ∈ K.
4. T ∼= Z/2Z, otherwise.

Remark 2. From Propositon 1 and Propositon 2, it is clear that the largest prime
divisor of |E(K)tors| is 2 for all elliptic curves E : y2 = x3 + bx and for all number
field K with 4 - [K : Q].

2. Preliminaries

To prove Theorem 1 we need to build up some tools.
Throughout this article by an elliptic curve E we mean E : y2 = x3 + bx for

some nonzero integer b. For any given prime p, Ē(Fp) denote the elliptic curve
over Fp after reducing modulo p on E.

Proposition 3 ([11]). For any prime p, let |Ē(Fp)| = p+ 1− a with |a| 6 2
√
p.

Let the quadratic equation X2 − aX + p = (X − α)(X − β) for some complex
numbers α, β. Then,

|Ē(Fpn)| = pn + 1− (αn + βn)

for all n > 1.

Corollary 1. Let E : y2 = x3 + bx be an elliptic curve, where b is a nonzero
integer. Let p ≡ 3 (mod 4) be an odd prime such that p - ∆ where ∆ is the
discriminant of E. Then, we have

|Ē(Fpn)| =

{
(pn + 1), if n is odd
(p

n
2 + 1)2, if n ≡ 2 (mod 4).

Proof. By Hasse’s theorem [11], |Ē(Fp)| = p + 1 − a, where |a| 6 2
√
p. In this

case, a = 0 as p ≡ 3 (mod 4). Consider,

X2 + p = (X − i√p)(X + i
√
p).
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If we set α = i
√
p and β = −i√p, then, by Proposition 3, we have,

|Ē(Fpn)| =

{
(pn + 1), if n is odd
(p

n
2 + 1)2, if n ≡ 2 (mod 4). �

Proposition 4. Let E : y2 = x3 + bx + c be an elliptic curve for some integers
b and c. Let T be the torsion subgroup of E(K) for some number field K. Let
OK be the ring of integers in K. Also let P be a prime ideal lying above p in
OK for an odd prime p. If E has good reduction at P, then let φ be the reduction
modulo P map on T . That is, the reduction map φ : T −→ Ē(OK/P) is defined
as P = (x, y) → P̄ = (x̄, ȳ) if P 6= O and O → Ō. Then, the reduction map φ is
an injective homomorphism except finitely many prime ideals P.

Proof. Any elment inK can be wriiten as t−1x, where t ∈ Z and x ∈ OK . Now we
have only finitely many prime ideals containing t. Since by Merel’s theorem [6] T is
finite, we have only finite collection of prime ideals which contains denominators
of coordinates of any nontrivial point in T . Except these finitely many prime
ideals we consider here reduction modulo P homomorphism whenever E has good
reduction at P.

It is given that φ is a reduction modulo P map. We need to prove that φ is an
injective homomorphism. First we note that for a point Q on E(K), we have,

−Q = φ(−Q) = φ(x,−y) = (x,−y) = (x,−y) = −Q.

To show φ is a homomorphism, it is enough to prove that for the points Q1, Q2

and Q3 in T ,

if Q1 ⊕Q2 ⊕Q3 = O, then Q̄1 ⊕ Q̄2 ⊕ Q̄3 = Ō,

since it implies that

φ(Q1 ⊕Q2) = φ(−Q3) = −Q̄3 = Q̄1 ⊕ Q̄2 = φ(Q1)⊕ φ(Q2).

If any of Q1, Q2 or Q3 equals O, then the result follows from the fact that
negatives goes to negatives. So we may assume that Q1, Q2 and Q3 are not equal
to O. Let P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3), where xi, yi’s are in K.

From the definition of the group law on E, the condition Q1⊕Q2⊕Q3 = O is
equivalent to saying that Q1, Q2 and Q3 lie on a line. Let

y = λx+ k

be the line passing through Q1, Q2 and Q3 (If two or three of the points coincide,
then the line has to satisfy certain tangency conditions).

From the addition formula [8], we get

x3 = λ2 − x1 − x2, y3 = λx3 + k.

Since x1, x2, x3 and y3 are elements of K, we have λ, k ∈ K. Therefore, except for
finitely many prime ideals P, we can reduce λ and k modulo P.
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Substituting the equation of the line into the equation of the cubic, we know
that the equation

x3 + bx+ c− (λx+ k)2 = 0

has x1, x2 and x3 as its roots. In other words, we have the factorization

x3 + bx+ c− (λx+ k)2 = (x− x1)(x− x2)(x− x3).

This is the relation that ensures that Q1⊕Q2⊕Q3 = O, regardless of whether or
not the points are distinct.

Reducing this last equation modulo P, we obtain

x3 + b̄x+ c̄− (λ̄x+ k̄)2 = (x− x̄1)(x− x̄2)(x− x̄3).

Also, we can reduce the equations yi = λxi + k to get

ȳi = λ̄x̄i + k̄, i = 1, 2, 3.

This means that the line y = λ̄x + k̄ intersects the curve Ē : y2 = x3 + b̄x at the
three points Q̄1, Q̄2 and Q̄3. Further if two of the points among Q̄1, Q̄2 and Q̄3 are
the same, say, Q̄1 = Q̄2, then the line is tangent to Ē at Q̄1; and similarly, if all
three points coincide, then the line has a triple order contact with Ē. Therefore,

Q̄1 ⊕ Q̄2 ⊕ Q̄3 = Ō,

which completes the proof that φ is a homomorphism.
A nonzero point (x, y) ∈ T is sent to the reduced point (x̄, ȳ) ∈ Ē(OK/P),

and that reduced point is not Ō. So the kernel of the reduction map consists only
of O. Hence the map is injective. �

Now consider E : y2 = x3+bx be an elliptic curve with discriminant ∆, where b
is a nonzero integer. Let T denote the torsion subgroup in E(K) where [K : Q] = n
for some integer n with n 6≡ 0 (mod 4). Then we have the following lemmas.

Lemma 1. For any odd prime q, q does not divide |T |.

Proof. Since 4 - n, we seperate two cases as n is odd and n ≡ 2 (mod 4).
Case 1: n is odd. Suppose q divides |T |. Then, by Dirichlet’s theorem on

primes in arithmetic progression [1], we can choose a prime p with p - ∆ and
p ≡ 2q(q + 2) + 1 (mod 4q) as (2q(q + 2) + 1, 4q) = 1. Let pOK = Pe11 P

e2
2 . . .Perr

be the ideal decomposition in OK where P1,P2, . . . ,Pr are prime ideals in OK
lying above p and ei’s are ramification index for Pi’s. Also, we have

∑r
i=1 eifi = n

where fi’s are residual degree for Pi’s.
Since n is odd, there exists a fi which is an odd integer for some i. Let Pi be

the corresponding prime ideal and consider the reduction map modulo Pi. Since
|OK/Pi| = pfi and fi is odd, we have |Ē(OK/Pi)| = pfi + 1 by Corollary 1, as
p ≡ 3 (mod 4). Hence by Proposition 4, we conclude that q | (pfi+1). But we also
have p ≡ 1 (mod q) which implies pfi + 1 ≡ 2 (mod q), which is a contradiction
as q - 2. Therefore, any odd prime q does not divide |T |.
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Case 2: n ≡ 2 (mod 4). Suppose q divides |T |. Then, by Dirichlet’s theorem
on primes in arithmetic progression [1], we can choose a prime p with p - ∆ and
p ≡ 2q(q + 2) + 1 (mod 4q) as (2q(q + 2) + 1, 4q) = 1. Let pOK = Pe11 P

e2
2 . . .Perr

be the ideal decomposition in OK where P1,P2, . . . ,Pr are prime ideals in OK
lying above p and ei’s are ramification index for Pi’s. Also, we have

∑r
i=1 eifi = n

where fi’s are residual degree for Pi’s.
Since n ≡ 2 (mod 4), we see that one of fi’s is either odd or fi ≡ 2 (mod 4).

We consider the corresponding prime ideal Pi and the reduction map modulo Pi.
Since |OK/Pi| = pfi , by Corollary 1, we have |Ē(OK/Pi)| = pfi + 1 if fi is odd
and |Ē(OK/Pi)| = (p

fi
2 +1)2 if fi ≡ 2 (mod 4), as p ≡ 3 (mod 4). Hence by

Proposition 4, we conclude that q | (pt + 1) for some integer t. But we also have
p ≡ 1 (mod q) which implies pt + 1 ≡ 2 (mod q), which is a contradiction as q - 2.
Therefore, any odd prime q does not divide |T |. �

Lemma 2. T does not have an element of order 8.

Proof. As before, we have two cases.
Case 1: n is odd. Suppose T has an element of order 8. Then 8 divides |T |.

By Dirichlet’s theorem on primes in arithmetic progression [1], we can choose a
prime p with p - ∆ and p ≡ 3 (mod 8). Let pOK = Pe11 P

e2
2 . . .Perr be the ideal

decomposition in OK where P1,P2, . . . ,Pr are prime ideals in OK lying above p
and ei’s are ramification index for Pi’s. Also, we have

∑r
i=1 eifi = n where fi’s

are residual degree for Pi’s.
Since n is odd, we see that one of fi’s is odd. We consider the corresponding

prime ideal Pi and the reduction map modulo Pi. Since |OK/Pi| = pfi and fi is
odd, we have |Ē(OK/Pi)| = pfi + 1 by Corollary 1, as p ≡ 3 (mod 4). Hence by
Proposition 4, we conclude that 8 | (pfi + 1). But we also have p ≡ 3 (mod 8)
which implies pfi + 1 ≡ 4 (mod 8), which is a contradiction as 8 - 4. Therefore, T
does not have any element of order 8.

Case 2: n ≡ 2 (mod 4). First we want to understand the points of order 4
in T . Indeed, we have the following claim.

Claim 1. If P = (x, y) is a point of order 4 in T , then we have x2 = b.

By the duplication formula [8], we have

x(2P ) =
(x2 − b)2

4y2

and

y(2P ) =
(x2 − b)(x4 − 4bx2 + b2)

8y3
.

Since P = (x, y) is of order 4 in T , we have y(2P ) = 0 and hence we get,

(x2 − b)(x4 − 4bx2 + b2) = 0.
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If x4 − 4bx2 + b2 = 0, then [Q(x) : Q] = 4, as the polynomial x4 − 4bx2 + b2 is
an irreducible polynomial over Q. Further since n ≡ 2 (mod 4), we conclude that
x /∈ K. Hence if P = (x, y) is a point of order 4 in T , then x2− b = 0. This proves
Claim 1.

If possible, we assume that T has an element of order 8. Therefore T must
have an element, say, P = (x, y) of order 4. Hence by Claim 1, we get x2 = b.

Subcase 1: b is not a square. In this case, x = ±
√
b ∈ Z[

√
d] where d is

a square-free part of b. Since b is 4-th power free integer, we let b = t2d for some
square-free integer t. Then x = ±t

√
d and y2 = ±2t3d

√
d. Since y ∈ K and

y2 ∈ Z[
√
d], we have y ∈ Z[

√
d]. Now let y = y1 + y2

√
d ∈ Z[

√
d]. Therefore, the

two relations y2
1 + dy2

2 = 0 and y1y2 = ±t3d together imply that dt6 = −y4
2 . Since

t is square-free, d = −1 and t = ±1. Therefore we get b = −1. This implies that
K ⊇ Q(i).

Let Q = (x1, y1) be a point of order 8 in T and let P = 2Q. Then P is of order
4 in T where x(P ) = ±i. So, 8Q = O ⇒ 4(2Q) = O ⇒ x(2Q) = ±i. That is, if
Q = (x1, y1), then

⇒ (x2
1 + 1)2

4x1(x2
1 − 1)

= ±i ⇐⇒ x4
1 + 2x2

1 + 1 = ±(4ix3
1 − 4ix1).

By putting r = ix1 ∈ K, we get

r4 − 2r2 + 1 = ±(4r3 + 4r) ⇐⇒ r4 ± 4r3 − 2r2 ± 4r + 1 = 0.

Now consider the polynomials f(X) = X4 − 4X3 − 2X2 − 4X + 1 and g(X) =
X4+4X3−2X2+4X+1. We claim that f(X) and g(X) are irreducible polynomials
in Z[X].

It is clear that f(X) does not have any integer root. Suppose f(X) is reducible
in Z[X]. Then, f(X) = (X2 + aX + a1)(X2 + bX + b1) for some integers a, b, a1

and b1. Since the constant term in f(X) is 1, either a1 = b1 = 1 or a1 =
b1 = −1. If f(X) = (X2 + aX + 1)(X2 + bX + 1), then we have relations:
a + b = −4 and ab = −4, which is a contradiction to a and b are integers. If
f(X) = (X2 + aX − 1)(X2 + bX − 1), then we have relations: a + b = −4 and
a + b = 4, which is impossible. Hence, f(X) is irreducible in Z[X]. Similarly, we
can prove that g(X) is also irreducible in Z[X].

Now, by Gauss lemma, f(X) and g(X) are irreducible polynomials over Q. As
a result, we see that [Q(r) : Q] = 4, which is a contradiction as K ⊇ Q(r) and
[K : Q] = n ≡ 2 (mod 4).

Subcase 2: b is a square. Since b is 4-th power free, we can write b = t2 for
some nonzero square-free integer t. Let Q = (x1, y1) be a point of order 8 in
T . In this subcase, the elements of order 4 in T has x-coordinates ±t. Hence
8Q = O ⇒ 4(2Q) = O ⇒ x(2Q) = ±t. That is,

⇒ (x2
1 − t2)2

4x1(x2
1 + t2)

= ±t ⇐⇒ x4
1 − 2t2x2

1 + t4 = ±(4tx3
1 + 4t3x1).
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By putting r = x1/t ∈ K, we get

r4 − 2r2 + 1 = ±(4r3 + 4r) ⇐⇒ r4 ± 4r3 − 2r2 ± 4r + 1 = 0.

Now consider the polynomials f(X) = X4 − 4X3 − 2X2 − 4X + 1 and g(X) =
X4 +4X3−2X2 +4X+1. As in the previous case, we see that f(X) and g(X) are
irreducible polynomials over Q and hence [Q(r) : Q] = 4, which is a contradiction
as K ⊇ Q(r) and [K : Q] = n ≡ 2 (mod 4). This proves the lemma. �

Proof of Proposition 1. Note that P = (x, y) is a point of order 2 in T ⇐⇒
2P = O ⇐⇒ P = −P ⇐⇒ 2y = 0 ⇐⇒ x(x2 + b) = 0. Therefore, either x = 0
or x2 + b = 0. If x = 0, then the point (0, 0) is a point of order 2. If x 6= 0, then
x = ±

√
−b.

Note that −b must be a square of an integer. For otherwise, if −b is not a
square, then x 6∈ K, since K and Q(

√
−b) are linearly disjoint number fields over

Q (as [K : Q] is odd), which is a contradiction to P ∈ E(K). Thus, as −b is a
square, x ∈ Z ⊂ K. Thus, if (x, y) is a point of order 2 in T , then (x, y) = (0, 0)
or (±

√
−b, 0) with −b is a square of an integer.

Now, let P = (x, y) be an element of order 4 in T . Then by Claim 1 in
Lemma 2, we have x2 − b = 0⇐⇒ x = ±

√
b.

Again note that b is a square. If not, then x =
√
b, which is impossible because

K and Q(
√
b) are linearly disjoint over Q. If b is a square, then x ∈ Z ⊆ K. Let

b = a2 for some square-free integer a. Thus if P = (x, y) is a point of order 4 in

T , then x = ±a. Then y2 = ±2a3 ⇒ y = ±2a

√
±a

2
. Since y ∈ K, we have ±a

2
must be a square. Since a is square-free, we conclude that a = ±2. Hence the only
elements of order 4 are (2,±4) with b = 4.

In Lemma 1 and Lemma 2, we have seen that there are no points of order 8 or
of order q for any odd prime q. Therefore, by combining all the cases, we get the
desired result. �

Proof of Proposition 2. First we compute all the points of order 2 in T . If
P = (x, y) is a point of order 2, then 2P = O ⇐⇒ P = −P ⇐⇒ 2y = 0
⇐⇒ x(x2 + b) = 0. Therefore, if P = (x, y) ∈ T is a point of order 2, then x = 0
or x = ±

√
−b. If x = 0, then the point (0, 0) is a point of order 2. If x 6= 0, then

x = ±
√
−b ∈ K.

Now, let P = (x, y) be an element of order 4 in T . Then by Claim 1 in
Lemma 2, we have x2 − b = 0⇐⇒ x = ±

√
b.

Again note that b is a square. If not, then x = ±
√
b ⇒ y2 = ±2b

√
b, which is

impossible because y ∈ K and [K : Q] ≡ 2 (mod 4). Therefore, write b = t2 for
some square-free integer t. Thus, x = ±t⇒ y2 = ±2t3. Hence y = ±t

√
±2t.

If ±2t is a square, then t = ±2, because t is square-free. Hence b = 4. In this
case the possible elements of order 4 are (2,±4) and (−2,±4i).

If ±2t is not a square, then (t,±t
√

2t) are the only points of order 4 in T , when√
2t ∈ K and (−t,±t

√
−2t) are the only points of order 4 in T , when

√
−2t ∈ K.



Elliptic curves with rank 0 over number fields 33

In Lemma 1 and Lemma 2, we have seen that there are no points of order 8 or
of order q for any odd prime q.

Combining all the above cases, we get the desired result. �

3. Proof of Theorem 1 and Theorem 2

First we prove two claims and we deduce Theorem 1 and 2.

Claim 1.
1. Let K be a number field with [K : Q] ≡ 2 (mod 4) and E : Y 2 = X3 + bX

be a given elliptic curve for some 4-th power free integer b 6= 4. If the rank
of E over K is 0, then the equation x4 + by4 = z2 has only trivial solutions
over K.

2. Let K be a number field of odd degree and E : Y 2 = X3 + bX be a given
elliptic curve for some 4-th power free integer b. If the rank of E over K is
0, then the equation x4 + by4 = z2 has only trivial solutions over K.

Suppose (x, y, z) ∈ K3 with xyz 6= 0 is a nontrivial solution of the equation
x4 + by4 = z2. Dividing the equation by y4 and by the change of variable

s 7→ x

y
and t 7→ z

y2
,

we obtain the equation s4 + b = t2 for some s, t ∈ K. We can rewrite this equation
as

r = s2 and r2 + b = t2.

Now, we multiply the last equation by r and using the relation r = s2, we get

r3 + br = (st)2.

Then, by applying another change of variable X = r and Y = st, we obtain an
elliptic curve

E : Y 2 = X3 + bX.

Since x, y and z are nonzero, we have r, s and t are nonzero. This implies that the
corresponding X and Y are nonzero.

Case 1: [K : Q] ≡ 2 (mod 4). By the assumption, the elliptic curve E : Y 2 =
X3 + bX has rank 0 over K. Therefore, by Proposition 2, if b 6= −1 and b is not a
square, we have

E(K) ∼= Z/2Z× Z/2Z or E(K) ∼= Z/2Z.

That is, every nontrivial element of this group is of order 2 and hence Y = 0, which
forces that either x = 0 or z = 0, which is a contradiction. Hence, the equation
x4 + by4 = z2 has only trivial solutions over K if b is not a square and b 6= −1.

Suppose b = −1.
Subcase 1: i /∈ K. If b = −1 and i /∈ K, as E has rank 0 over K by Proposi-

tion 2, we have
E(K) ∼= Z/2Z× Z/2Z.
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That is, every nontrivial element of this group is of order 2 and hence Y = 0 which
forces that either x = 0 or z = 0, which is a contradiction. Hence, the equation
x4 + by4 = z2 has only trivial solutions over K, if b = −1 and i /∈ K.

Subcase 2: i ∈ K. If b = −1 and i ∈ K, as rank of E is 0 over K by
Proposition 2, we have

E(K) ∼= Z/4Z× Z/2Z.

Here (0, 0) and (±1, 0) are elements of order 2 and (i,±(1− i)), (−i,±(1 + i)) are
elements of order 4. The points of order 2 will lead to trivial solution for the
equation x4 + by4 = z2 over K. Corresponding to the points of order 4, we have
r = s2 = ±i, which is a contradiction because s ∈ K and [K : Q] 6≡ 0 (mod 4).
Therefore, the equation x4 + by4 = z2 has only trivial solutions for b = −1 and
i ∈ K.

Now, we assume that b is a square and let b = t2 for some nonzero integer t
with t 6= ±2 as b 6= 4.

If
√

2t ∈ K, as E has rank 0 over K by Proposition 2, we have

E(K) ∼= Z/4Z.

Here, (0, 0) is the only element of order 2 and (t,±t
√

2t) are elements of order 4.
The point (0, 0) will lead to trivial solution for the equation x4 + by4 = z2 over K.
Corresponding to the point (t,±t

√
2t), we have r = s2 = t, which is a contradiction

as s ∈ K and
√

2t ∈ K. Therefore, the equation x4 + by4 = z2 has only trivial
solutions in this case.

If
√

2t /∈ K, as E has rank 0 over K and b 6= 4, by Proposition 2, we have

E(K) ∼= Z/2Z.

Here, (0, 0) is the only element of order 2. Since the point (0, 0) leads to trivial
solution for the equation x4 + by4 = z2 over K, we are done.

Combining all the cases, we see that the equation x4 +by4 = z2 has only trivial
solutions over K for any nonzero 4-th power free integer b 6= 4 whenever E has
rank 0 over K.

Case 2: [K : Q] is odd. By the assumption, the elliptic curve E : Y 2 = X3+bX
has rank 0 over K. Therefore, by Proposition 1, if b 6= 4, we have

E(K) ∼= Z/2Z× Z/2Z or E(K) ∼= Z/2Z.

That is, every nontrivial element of E(K) is of order 2 and hence Y = 0 which
forces that either x = 0 or z = 0, which is a contradiction. Hence, the equation
x4 + by4 = z2 has only trivial solutions over K if b 6= 4.

When b = 4, by Proposition 1 and the assumption that the rank of E(K) is 0,
we have

E(K) ∼= Z/4Z.

Here, (0, 0) is the only element of order 2 and (2,±4) are the only elements of
order 4. Note that (0, 0) will lead to trivial solution for the equation x4 + by4 = z2
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over K. Corresponding to the point (2,±4), we have r = s2 = 2 ⇐⇒ s = ±
√

2.
Since s ∈ K, we see that

√
2 ∈ K, which is a contradiction because K and Q(

√
2)

are linearly disjoint over Q. Therefore the equation x4 + by4 = z2 has only trivial
solutions in this case also.

Combining all the cases, we see that the equation x4 +by4 = z2 has only trivial
solutions over K for any nonzero 4-th power free integer b whenever E has rank 0
over K. This proves the Claim 1.

Claim 2. Let E : Y 2 = X3 + bX be an elliptic curve over K, where K is any field
with characteristic 0. If the equation x4 + by4 = z2 has only trivial solutions over
K, then E has rank 0 over K.

Suppose E has positive rank over K. Then there exists a point P = (X,Y ) of
infinite order in E(K). Therefore, XY 6= 0.

By the duplication formula, we have

X(2P ) =
(X4 − 2bX2 + b2)

4Y 2
=

(X2 − b)2

(2Y )2
.

Note that, X(2P ) is a square in K. Since P is of infinite order, so is 2P .
Therefore there exists a point Q = (x′, y′) on E such that x′ = s2 and y′ = st

for some nonzero s, t ∈ K.
So we have,

s2t2 = s6 + bs2 ⇒ t2 = s4 + b.

Thus (s, 1, t) is a nontrivial solution for the equation x4 + by4 = z2 over K, which
is a contradiction to the assumption. Hence we conclude that if x4 + by4 = z2 has
only trivial solutions over K, then E has rank 0 over K, which proves the Claim 2.

To prove Theorem 1 and Theorem 2, it is enough to assume that b is a 4-th
power free integer. If not, let b = at4 for some 4-th power free integer a and
nonzero integer t. Then (t2x, t3y) is a point on the elliptic curve E : y2 = x3 + bx
if and only if (x, y) is a point on E1 = y2 = x3 + ax. Also (x, y, z) is a solution of
the Diophantine equation x4 + by4 = z2 if and only if (x, ty, z) is a solution of the
Diophantine equation x4 + ay4 = z2. Thus, it is enough to assume that b is a 4-th
power-free integer. Then theorems follow from Claim 1 and Claim 2. �

4. Applications

As an application we have following results.

Corollary 2. For any nonzero integer b the Diophantine equation x4 + by4 = z2

has only trivial solutions over Q iff it has only trivial solutions over Q(i).

Proof. If x4 + by4 = z2 has only trivial solutions over Q(i) then obviously it has
trivial solutions over Q.

Conversely, assume that the equation x4 + by4 = z2 has only trivial solutions
over Q. Then by Theorem 1, the elliptic curve E : y2 = x3 + bx has rank 0 over Q.
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Now, note that −1-quadratic twist of E is E(−1) : y2 = x3 + x, which is E itself.
Now from [7], it is well-known that if ED be the D-quadratic twist of E for some
rational D, then

Rank E(Q(
√
D)) = Rank E(Q) + Rank ED(Q).

For D = −1 we have, E(−1)(Q) = E(Q). Since Rank E(Q) is 0, we have Rank
E(Q(i)) = 0. Then again by Theorem 1, x4 + by4 = z2 has only trivial solutions
over Q(i). �

Corollary 3. A positive square-free integer n is a congruent number iff x4−y4 =
z2 has a non-trivial solution in Q(

√
n).

Proof. We know that a positive square-free integer n is a congruent number iff
En : y2 = x3 − n2x has positive rank over Q. Now En is n-quadratic twist of
E : y2 = x3 − x. Since E has rank 0 over Q, we have Rank En(Q) = Rank
E(Q(

√
n)). Hence n is a congruent number iff Rank E(Q(

√
n)) > 0. Then, by

Theorem 1, we get, n is a congruent number iff x4 − y4 = z2 has a non-tivial
solution in Q(

√
n). �
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