ELLIPTIC CURVES WITH RANK 0 OVER NUMBER FIELDS

Pallab Kanti Dey

Abstract

Let $E: y^{2}=x^{3}+b x$ be an elliptic curve for some nonzero integer b. Also consider K be a number field with $4 \nmid[K: \mathbb{Q}]$. Then in this paper, we obtain a necessary and sufficient condition for E having rank 0 over K.

Keywords: elliptic curve, number field, Diophantine equation.

1. Introduction

Let E be an elliptic curve defined over a number field K. By Mordell-Weil's Theorem, it is well-known that the set of all K-rational points $E(K)$ is a finitely generated Abelian group. Hence, by the structure theorem of finitely generated Abelian groups, we can write

$$
E(K) \cong T \oplus \mathbb{Z}^{r}
$$

for some non-negative integer r which is called the rank of E over K and T is the torsion subgroup. Sometimes we may write $T=E(K)_{\text {tors }}$.

In 1994, Merel [6] has proved that for every integer d, there is a constant $B(d)$ such that for every elliptic curve E / K with $[K: \mathbb{Q}]=d$ we have $\left|E(K)_{\text {tors }}\right| \leqslant$ $B(d)$. The bound in Merel's proof is not effective (it relies on Falting's theorem). However he proved the following. If p is the largest prime divisor of $\left|E(K)_{\text {tors }}\right|$ for $[K: \mathbb{Q}]=d>1$, then $p \leqslant d^{3 d^{2}}$. This bound was later improved by Oesterle to $\left(1+3^{\frac{d}{2}}\right)$ [1994, unpublished!].

Finding the rank of a given elliptic curve is a very difficult problem compared to that of the torsion group. If $E: y^{2}=x^{3}+b x$ is an elliptic curve over \mathbb{Q}, then, from [7], it is well-known that

$$
\operatorname{Rank}(E(\mathbb{Q})) \leqslant 2 \beta(2 b)-1
$$

where $\beta(2 b)$ denote the number of distinct primes $p \mid 2 b$. If b is a prime number, then,

$$
\operatorname{Rank}(E(\mathbb{Q})) \leqslant 2
$$

In [5], Kudo and Motose computed the rank of an elliptic curve $y^{2}=x^{3}-p x$ over \mathbb{Q} for Fermat prime p and Mersenne prime p. Also Bremner and Casssels [2] computed that for all odd prime p with $p \equiv 5(\bmod 8)$, the rank of $y^{2}=x^{3}+$ $p x$ over \mathbb{Q} is 1 . In $[3]$, for odd prime p, the rank of elliptic curves of the form $y^{2}=x^{3}-p x$ over \mathbb{Q} has been studied. Also in [4], the rank of an elliptic curve $y^{2}=x^{3}+p q x$ over \mathbb{Q} was considered with p and q are primes. In [9], Spearman proved that the rank of an elliptic curve $y^{2}=x^{3}-p x$ over \mathbb{Q} is 2 for all primes p with $p=u^{4}+v^{4}$ for some integers u and v. In [10], the rank has been computed for an elliptic curve of the form $y^{2}=x^{3}-2 p x$ over \mathbb{Q} with p is prime.

In this paper, we consider the rank of a class of elliptic curves of the form $y^{2}=$ $x^{3}+b x$ for some nonzero integer b over a number field K with $[K: \mathbb{Q}] \not \equiv 0(\bmod 4)$. More precisely, let K be a number field with its degree $[K: \mathbb{Q}]$ is not divisible by 4 and let $E: y^{2}=x^{3}+b x$ be an elliptic curve for some nonzero integer b. Then we give a necessary and sufficient condition for E having rank 0 over K.

Theorem 1. Let K be a number field with $[K: \mathbb{Q}] \equiv 2(\bmod 4)$ and b be a nonzero integer with $b \neq 4 m^{4}$ for any integer m. Then the elliptic curve $E: y^{2}=x^{3}+b x$ has rank 0 over K if and only if the Diophantine equation $X^{4}+b Y^{4}=Z^{2}$ has only trivial solutions in K.

Theorem 2. Let K be a number field of odd degree and b be a nonzero integer. Then the elliptic curve $E: y^{2}=x^{3}+b x$ has rank 0 over K if and only if the Diophantine equation $X^{4}+b Y^{4}=Z^{2}$ has only trivial solutions in K.

Remark 1. The statement of Theorem 1 is not true for $b=4 m^{4}$ for any integer m. In this case, the elliptic curve $E: y^{2}=x^{3}+4 m^{4} x$ is isomorphic to the curve $E_{4}: y^{2}=x^{3}+4 x$. The rank of E_{4} over $\mathbb{Q}(\sqrt{2})$ is 0 . Hence the rank of E over $\mathbb{Q}(\sqrt{2})$ is 0 . But the Diophantine equation $x^{4}+4 m^{4} y^{4}=z^{2}$ has a nontrivial solution $\left(\sqrt{2} m, 1,2 \sqrt{2} m^{2}\right)$ over $\mathbb{Q}(\sqrt{2})$.

In order to prove the above results, we need to compute the torsion subgroup of E over a number field K with $[K: \mathbb{Q}] \not \equiv 0(\bmod 4)$. Indeed, we prove the following propositions.

Proposition 1. Let $E: y^{2}=x^{3}+b x$ be an elliptic curve for some 4 -th power-free integer b and let $E(K)$ be the Elliptic curve group over K, where $[K: \mathbb{Q}]$ is odd. If T is the torsion subgroup of $E(K)$, then T is isomorphic to one of the following groups.

1. $T \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, if $-b$ is a square.
2. $T \cong \mathbb{Z} / 4 \mathbb{Z}$, if $b=4$.
3. $T \cong \mathbb{Z} / 2 \mathbb{Z}$, otherwise.

Proposition 2. Let $E: y^{2}=x^{3}+b x$ be an elliptic curve for some 4 -th powerfree integer b and let $E(K)$ be the Elliptic curve group over K, where $[K: \mathbb{Q}] \equiv 2$ $(\bmod 4)$. If T is the torsion subgroup of $E(K)$, then T is isomorphic to one of the following groups.

1. $T \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z},\left\{\begin{array}{l}\text { if } b=4 \text { and } i \in K, \\ \text { or } b=-1 \text { and } i \in K .\end{array}\right.$
2. $T \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z},\left\{\begin{array}{l}\text { if } b=-1 \text { and } i \notin K, \\ \text { or } b=t^{2} \text { for some nonzero integer } t(\neq \pm 2) \text { and } i \in K, \\ \text { or }-b \text { s a square, } \\ \text { or } \sqrt{-b} \in K .\end{array}\right.$
3. $T \cong \mathbb{Z} / 4 \mathbb{Z},\left\{\begin{array}{l}\text { if } b=4 \text { and } i \notin K, \\ \text { or } b=t^{2} \text { for some nonzero integer } t(\neq \pm 2) \\ \text { and } \sqrt{2 t} \in K .\end{array}\right.$
4. $T \cong \mathbb{Z} / 2 \mathbb{Z}$, otherwise.

Remark 2. From Propositon 1 and Propositon 2, it is clear that the largest prime divisor of $\left|E(K)_{\text {tors }}\right|$ is 2 for all elliptic curves $E: y^{2}=x^{3}+b x$ and for all number field K with $4 \nmid[K: \mathbb{Q}]$.

2. Preliminaries

To prove Theorem 1 we need to build up some tools.
Throughout this article by an elliptic curve E we mean $E: y^{2}=x^{3}+b x$ for some nonzero integer b. For any given prime $p, \bar{E}\left(\mathbb{F}_{p}\right)$ denote the elliptic curve over \mathbb{F}_{p} after reducing modulo p on E.

Proposition 3 ([11]). For any prime p, let $\left|\bar{E}\left(\mathbb{F}_{p}\right)\right|=p+1-a$ with $|a| \leqslant 2 \sqrt{p}$. Let the quadratic equation $X^{2}-a X+p=(X-\alpha)(X-\beta)$ for some complex numbers α, β. Then,

$$
\left|\bar{E}\left(\mathbb{F}_{p^{n}}\right)\right|=p^{n}+1-\left(\alpha^{n}+\beta^{n}\right)
$$

for all $n \geqslant 1$.
Corollary 1. Let $E: y^{2}=x^{3}+b x$ be an elliptic curve, where b is a nonzero integer. Let $p \equiv 3(\bmod 4)$ be an odd prime such that $p \nmid \Delta$ where Δ is the discriminant of E. Then, we have

$$
\left|\bar{E}\left(\mathbb{F}_{p^{n}}\right)\right|= \begin{cases}\left(p^{n}+1\right), & \text { if } n \text { is odd } \\ \left(p^{\frac{n}{2}}+1\right)^{2}, & \text { if } n \equiv 2 \quad(\bmod 4)\end{cases}
$$

Proof. By Hasse's theorem [11], $\left|\bar{E}\left(\mathbb{F}_{p}\right)\right|=p+1-a$, where $|a| \leqslant 2 \sqrt{p}$. In this case, $a=0$ as $p \equiv 3(\bmod 4)$. Consider,

$$
X^{2}+p=(X-i \sqrt{p})(X+i \sqrt{p})
$$

If we set $\alpha=i \sqrt{p}$ and $\beta=-i \sqrt{p}$, then, by Proposition 3, we have,

$$
\left|\bar{E}\left(\mathbb{F}_{p^{n}}\right)\right|= \begin{cases}\left(p^{n}+1\right), & \text { if } n \text { is odd } \\ \left(p^{\frac{n}{2}}+1\right)^{2}, & \text { if } n \equiv 2 \quad(\bmod 4)\end{cases}
$$

Proposition 4. Let $E: y^{2}=x^{3}+b x+c$ be an elliptic curve for some integers b and c. Let T be the torsion subgroup of $E(K)$ for some number field K. Let \mathcal{O}_{K} be the ring of integers in K. Also let \mathcal{P} be a prime ideal lying above p in \mathcal{O}_{K} for an odd prime p. If E has good reduction at \mathcal{P}, then let ϕ be the reduction modulo \mathcal{P} map on T. That is, the reduction map $\phi: T \longrightarrow \bar{E}\left(\mathcal{O}_{K} / \mathcal{P}\right)$ is defined as $P=(x, y) \rightarrow \bar{P}=(\bar{x}, \bar{y})$ if $P \neq \mathcal{O}$ and $\mathcal{O} \rightarrow \overline{\mathcal{O}}$. Then, the reduction map ϕ is an injective homomorphism except finitely many prime ideals \mathcal{P}.

Proof. Any elment in K can be wriiten as $t^{-1} x$, where $t \in \mathbb{Z}$ and $x \in \mathcal{O}_{K}$. Now we have only finitely many prime ideals containing t. Since by Merel's theorem [6] T is finite, we have only finite collection of prime ideals which contains denominators of coordinates of any nontrivial point in T. Except these finitely many prime ideals we consider here reduction modulo \mathcal{P} homomorphism whenever E has good reduction at \mathcal{P}.

It is given that ϕ is a reduction modulo \mathcal{P} map. We need to prove that ϕ is an injective homomorphism. First we note that for a point Q on $E(K)$, we have,

$$
\overline{-Q}=\phi(-Q)=\phi(x,-y)=\overline{(x,-y)}=(\bar{x},-\bar{y})=-\bar{Q} .
$$

To show ϕ is a homomorphism, it is enough to prove that for the points Q_{1}, Q_{2} and Q_{3} in T,

$$
\text { if } Q_{1} \oplus Q_{2} \oplus Q_{3}=\mathcal{O}, \text { then } \bar{Q}_{1} \oplus \bar{Q}_{2} \oplus \bar{Q}_{3}=\overline{\mathcal{O}}
$$

since it implies that

$$
\phi\left(Q_{1} \oplus Q_{2}\right)=\phi\left(-Q_{3}\right)=-\overline{Q_{3}}=\overline{Q_{1}} \oplus \overline{Q_{2}}=\phi\left(Q_{1}\right) \oplus \phi\left(Q_{2}\right) .
$$

If any of Q_{1}, Q_{2} or Q_{3} equals \mathcal{O}, then the result follows from the fact that negatives goes to negatives. So we may assume that Q_{1}, Q_{2} and Q_{3} are not equal to \mathcal{O}. Let $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{3}=\left(x_{3}, y_{3}\right)$, where x_{i}, y_{i} 's are in K.

From the definition of the group law on E, the condition $Q_{1} \oplus Q_{2} \oplus Q_{3}=\mathcal{O}$ is equivalent to saying that Q_{1}, Q_{2} and Q_{3} lie on a line. Let

$$
y=\lambda x+k
$$

be the line passing through Q_{1}, Q_{2} and Q_{3} (If two or three of the points coincide, then the line has to satisfy certain tangency conditions).

From the addition formula [8], we get

$$
x_{3}=\lambda^{2}-x_{1}-x_{2}, \quad y_{3}=\lambda x_{3}+k .
$$

Since x_{1}, x_{2}, x_{3} and y_{3} are elements of K, we have $\lambda, k \in K$. Therefore, except for finitely many prime ideals \mathcal{P}, we can reduce λ and k modulo \mathcal{P}.

Substituting the equation of the line into the equation of the cubic, we know that the equation

$$
x^{3}+b x+c-(\lambda x+k)^{2}=0
$$

has x_{1}, x_{2} and x_{3} as its roots. In other words, we have the factorization

$$
x^{3}+b x+c-(\lambda x+k)^{2}=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) .
$$

This is the relation that ensures that $Q_{1} \oplus Q_{2} \oplus Q_{3}=\mathcal{O}$, regardless of whether or not the points are distinct.

Reducing this last equation modulo \mathcal{P}, we obtain

$$
x^{3}+\bar{b} x+\bar{c}-(\bar{\lambda} x+\bar{k})^{2}=\left(x-\overline{x_{1}}\right)\left(x-\overline{x_{2}}\right)\left(x-\overline{x_{3}}\right) .
$$

Also, we can reduce the equations $y_{i}=\lambda x_{i}+k$ to get

$$
\bar{y}_{i}=\bar{\lambda} \overline{x_{i}}+\bar{k}, \quad i=1,2,3 .
$$

This means that the line $y=\bar{\lambda} x+\bar{k}$ intersects the curve $\bar{E}: y^{2}=x^{3}+\bar{b} x$ at the three points $\overline{Q_{1}}, \overline{Q_{2}}$ and $\overline{Q_{3}}$. Further if two of the points among $\overline{Q_{1}}, \overline{Q_{2}}$ and $\overline{Q_{3}}$ are the same, say, $\bar{Q}_{1}=\bar{Q}_{2}$, then the line is tangent to \bar{E} at \bar{Q}_{1}; and similarly, if all three points coincide, then the line has a triple order contact with \bar{E}. Therefore,

$$
\bar{Q}_{1} \oplus \bar{Q}_{2} \oplus \bar{Q}_{3}=\overline{\mathcal{O}}
$$

which completes the proof that ϕ is a homomorphism.
A nonzero point $(x, y) \in T$ is sent to the reduced point $(\bar{x}, \bar{y}) \in \bar{E}\left(\mathcal{O}_{K} / \mathcal{P}\right)$, and that reduced point is not $\overline{\mathcal{O}}$. So the kernel of the reduction map consists only of \mathcal{O}. Hence the map is injective.

Now consider $E: y^{2}=x^{3}+b x$ be an elliptic curve with discriminant Δ, where b is a nonzero integer. Let T denote the torsion subgroup in $E(K)$ where $[K: \mathbb{Q}]=n$ for some integer n with $n \not \equiv 0(\bmod 4)$. Then we have the following lemmas.

Lemma 1. For any odd prime q, q does not divide $|T|$.
Proof. Since $4 \nmid n$, we seperate two cases as n is odd and $n \equiv 2(\bmod 4)$.
Case 1: n is odd. Suppose q divides $|T|$. Then, by Dirichlet's theorem on primes in arithmetic progression [1], we can choose a prime p with $p \nmid \Delta$ and $p \equiv 2 q(q+2)+1(\bmod 4 q)$ as $(2 q(q+2)+1,4 q)=1$. Let $p \mathcal{O}_{K}=\mathcal{P}_{1}^{e_{1}} \mathcal{P}_{2}^{e_{2}} \ldots \mathcal{P}_{r}^{e_{r}}$ be the ideal decomposition in \mathcal{O}_{K} where $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{r}$ are prime ideals in \mathcal{O}_{K} lying above p and e_{i} 's are ramification index for \mathcal{P}_{i} 's. Also, we have $\sum_{i=1}^{r} e_{i} f_{i}=n$ where f_{i} 's are residual degree for \mathcal{P}_{i} 's.

Since n is odd, there exists a f_{i} which is an odd integer for some i. Let \mathcal{P}_{i} be the corresponding prime ideal and consider the reduction map modulo \mathcal{P}_{i}. Since $\left|\mathcal{O}_{K} / \mathcal{P}_{i}\right|=p^{f_{i}}$ and f_{i} is odd, we have $\left|\bar{E}\left(\mathcal{O}_{K} / \mathcal{P}_{i}\right)\right|=p^{f_{i}}+1$ by Corollary 1, as $p \equiv 3(\bmod 4)$. Hence by Proposition 4, we conclude that $q \mid\left(p^{f_{i}}+1\right)$. But we also have $p \equiv 1(\bmod q)$ which implies $p^{f_{i}}+1 \equiv 2(\bmod q)$, which is a contradiction as $q \nmid 2$. Therefore, any odd prime q does not divide $|T|$.

Case 2: $n \equiv 2(\bmod 4)$. Suppose q divides $|T|$. Then, by Dirichlet's theorem on primes in arithmetic progression [1], we can choose a prime p with $p \nmid \Delta$ and $p \equiv 2 q(q+2)+1(\bmod 4 q)$ as $(2 q(q+2)+1,4 q)=1$. Let $p \mathcal{O}_{K}=\mathcal{P}_{1}^{e_{1}} \mathcal{P}_{2}^{e_{2}} \ldots \mathcal{P}_{r}^{e_{r}}$ be the ideal decomposition in \mathcal{O}_{K} where $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{r}$ are prime ideals in \mathcal{O}_{K} lying above p and e_{i} 's are ramification index for \mathcal{P}_{i} 's. Also, we have $\sum_{i=1}^{r} e_{i} f_{i}=n$ where f_{i} 's are residual degree for \mathcal{P}_{i} 's.

Since $n \equiv 2(\bmod 4)$, we see that one of f_{i} 's is either odd or $f_{i} \equiv 2(\bmod 4)$. We consider the corresponding prime ideal \mathcal{P}_{i} and the reduction map modulo \mathcal{P}_{i}. Since $\left|\mathcal{O}_{K} / \mathcal{P}_{i}\right|=p^{f_{i}}$, by Corollary 1, we have $\left|\bar{E}\left(\mathcal{O}_{K} / \mathcal{P}_{i}\right)\right|=p^{f_{i}}+1$ if f_{i} is odd and $\left|\bar{E}\left(\mathcal{O}_{K} / \mathcal{P}_{i}\right)\right|=\left(p^{\frac{f_{i}}{2}+1}\right)^{2}$ if $f_{i} \equiv 2(\bmod 4)$, as $p \equiv 3(\bmod 4)$. Hence by Proposition 4, we conclude that $q \mid\left(p^{t}+1\right)$ for some integer t. But we also have $p \equiv 1(\bmod q)$ which implies $p^{t}+1 \equiv 2(\bmod q)$, which is a contradiction as $q \nmid 2$. Therefore, any odd prime q does not divide $|T|$.

Lemma 2. T does not have an element of order 8 .
Proof. As before, we have two cases.
Case 1: n is odd. Suppose T has an element of order 8. Then 8 divides $|T|$. By Dirichlet's theorem on primes in arithmetic progression [1], we can choose a prime p with $p \nmid \Delta$ and $p \equiv 3(\bmod 8)$. Let $p \mathcal{O}_{K}=\mathcal{P}_{1}^{e_{1}} \mathcal{P}_{2}^{e_{2}} \ldots \mathcal{P}_{r}^{e_{r}}$ be the ideal decomposition in \mathcal{O}_{K} where $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{r}$ are prime ideals in \mathcal{O}_{K} lying above p and e_{i} 's are ramification index for \mathcal{P}_{i} 's. Also, we have $\sum_{i=1}^{r} e_{i} f_{i}=n$ where f_{i} 's are residual degree for \mathcal{P}_{i} 's.

Since n is odd, we see that one of f_{i} 's is odd. We consider the corresponding prime ideal \mathcal{P}_{i} and the reduction map modulo \mathcal{P}_{i}. Since $\left|\mathcal{O}_{K} / \mathcal{P}_{i}\right|=p^{f_{i}}$ and f_{i} is odd, we have $\left|\bar{E}\left(\mathcal{O}_{K} / \mathcal{P}_{i}\right)\right|=p^{f_{i}}+1$ by Corollary 1 , as $p \equiv 3(\bmod 4)$. Hence by Proposition 4 , we conclude that $8 \mid\left(p^{f_{i}}+1\right)$. But we also have $p \equiv 3(\bmod 8)$ which implies $p^{f_{i}}+1 \equiv 4(\bmod 8)$, which is a contradiction as $8 \nmid 4$. Therefore, T does not have any element of order 8 .

Case 2: $n \equiv 2(\bmod 4)$. First we want to understand the points of order 4 in T. Indeed, we have the following claim.

Claim 1. If $P=(x, y)$ is a point of order 4 in T, then we have $x^{2}=b$.
By the duplication formula [8], we have

$$
x(2 P)=\frac{\left(x^{2}-b\right)^{2}}{4 y^{2}}
$$

and

$$
y(2 P)=\frac{\left(x^{2}-b\right)\left(x^{4}-4 b x^{2}+b^{2}\right)}{8 y^{3}}
$$

Since $P=(x, y)$ is of order 4 in T, we have $y(2 P)=0$ and hence we get,

$$
\left(x^{2}-b\right)\left(x^{4}-4 b x^{2}+b^{2}\right)=0
$$

If $x^{4}-4 b x^{2}+b^{2}=0$, then $[\mathbb{Q}(x): \mathbb{Q}]=4$, as the polynomial $x^{4}-4 b x^{2}+b^{2}$ is an irreducible polynomial over \mathbb{Q}. Further since $n \equiv 2(\bmod 4)$, we conclude that $x \notin K$. Hence if $P=(x, y)$ is a point of order 4 in T, then $x^{2}-b=0$. This proves Claim 1.

If possible, we assume that T has an element of order 8. Therefore T must have an element, say, $P=(x, y)$ of order 4. Hence by Claim 1, we get $x^{2}=b$.

Subcase 1: b is not a square. In this case, $x= \pm \sqrt{b} \in \mathbb{Z}[\sqrt{d}]$ where d is a square-free part of b. Since b is 4 -th power free integer, we let $b=t^{2} d$ for some square-free integer t. Then $x= \pm t \sqrt{d}$ and $y^{2}= \pm 2 t^{3} d \sqrt{d}$. Since $y \in K$ and $y^{2} \in \mathbb{Z}[\sqrt{d}]$, we have $y \in \mathbb{Z}[\sqrt{d}]$. Now let $y=y_{1}+y_{2} \sqrt{d} \in \mathbb{Z}[\sqrt{d}]$. Therefore, the two relations $y_{1}^{2}+d y_{2}^{2}=0$ and $y_{1} y_{2}= \pm t^{3} d$ together imply that $d t^{6}=-y_{2}^{4}$. Since t is square-free, $d=-1$ and $t= \pm 1$. Therefore we get $b=-1$. This implies that $K \supseteq \mathbb{Q}(i)$.

Let $Q=\left(x_{1}, y_{1}\right)$ be a point of order 8 in T and let $P=2 Q$. Then P is of order 4 in T where $x(P)= \pm i$. So, $8 Q=\mathcal{O} \Rightarrow 4(2 Q)=\mathcal{O} \Rightarrow x(2 Q)= \pm i$. That is, if $Q=\left(x_{1}, y_{1}\right)$, then

$$
\Rightarrow \frac{\left(x_{1}^{2}+1\right)^{2}}{4 x_{1}\left(x_{1}^{2}-1\right)}= \pm i \quad \Longleftrightarrow \quad x_{1}^{4}+2 x_{1}^{2}+1= \pm\left(4 i x_{1}^{3}-4 i x_{1}\right)
$$

By putting $r=i x_{1} \in K$, we get

$$
r^{4}-2 r^{2}+1= \pm\left(4 r^{3}+4 r\right) \quad \Longleftrightarrow \quad r^{4} \pm 4 r^{3}-2 r^{2} \pm 4 r+1=0
$$

Now consider the polynomials $f(X)=X^{4}-4 X^{3}-2 X^{2}-4 X+1$ and $g(X)=$ $X^{4}+4 X^{3}-2 X^{2}+4 X+1$. We claim that $f(X)$ and $g(X)$ are irreducible polynomials in $\mathbb{Z}[X]$.

It is clear that $f(X)$ does not have any integer root. Suppose $f(X)$ is reducible in $\mathbb{Z}[X]$. Then, $f(X)=\left(X^{2}+a X+a_{1}\right)\left(X^{2}+b X+b_{1}\right)$ for some integers a, b, a_{1} and b_{1}. Since the constant term in $f(X)$ is 1 , either $a_{1}=b_{1}=1$ or $a_{1}=$ $b_{1}=-1$. If $f(X)=\left(X^{2}+a X+1\right)\left(X^{2}+b X+1\right)$, then we have relations: $a+b=-4$ and $a b=-4$, which is a contradiction to a and b are integers. If $f(X)=\left(X^{2}+a X-1\right)\left(X^{2}+b X-1\right)$, then we have relations: $a+b=-4$ and $a+b=4$, which is impossible. Hence, $f(X)$ is irreducible in $\mathbb{Z}[X]$. Similarly, we can prove that $g(X)$ is also irreducible in $\mathbb{Z}[X]$.

Now, by Gauss lemma, $f(X)$ and $g(X)$ are irreducible polynomials over \mathbb{Q}. As a result, we see that $[\mathbb{Q}(r): \mathbb{Q}]=4$, which is a contradiction as $K \supseteq \mathbb{Q}(r)$ and $[K: \mathbb{Q}]=n \equiv 2(\bmod 4)$.

Subcase 2: b is a square. Since b is 4-th power free, we can write $b=t^{2}$ for some nonzero square-free integer t. Let $Q=\left(x_{1}, y_{1}\right)$ be a point of order 8 in T. In this subcase, the elements of order 4 in T has x-coordinates $\pm t$. Hence $8 Q=\mathcal{O} \Rightarrow 4(2 Q)=\mathcal{O} \Rightarrow x(2 Q)= \pm t$. That is,

$$
\Rightarrow \frac{\left(x_{1}^{2}-t^{2}\right)^{2}}{4 x_{1}\left(x_{1}^{2}+t^{2}\right)}= \pm t \quad \Longleftrightarrow \quad x_{1}^{4}-2 t^{2} x_{1}^{2}+t^{4}= \pm\left(4 t x_{1}^{3}+4 t^{3} x_{1}\right)
$$

By putting $r=x_{1} / t \in K$, we get

$$
r^{4}-2 r^{2}+1= \pm\left(4 r^{3}+4 r\right) \quad \Longleftrightarrow \quad r^{4} \pm 4 r^{3}-2 r^{2} \pm 4 r+1=0
$$

Now consider the polynomials $f(X)=X^{4}-4 X^{3}-2 X^{2}-4 X+1$ and $g(X)=$ $X^{4}+4 X^{3}-2 X^{2}+4 X+1$. As in the previous case, we see that $f(X)$ and $g(X)$ are irreducible polynomials over \mathbb{Q} and hence $[\mathbb{Q}(r): \mathbb{Q}]=4$, which is a contradiction as $K \supseteq \mathbb{Q}(r)$ and $[K: \mathbb{Q}]=n \equiv 2(\bmod 4)$. This proves the lemma.

Proof of Proposition 1. Note that $P=(x, y)$ is a point of order 2 in $T \Longleftrightarrow$ $2 P=\mathcal{O} \Longleftrightarrow P=-P \Longleftrightarrow 2 y=0 \Longleftrightarrow x\left(x^{2}+b\right)=0$. Therefore, either $x=0$ or $x^{2}+b=0$. If $x=0$, then the point $(0,0)$ is a point of order 2 . If $x \neq 0$, then $x= \pm \sqrt{-b}$.

Note that $-b$ must be a square of an integer. For otherwise, if $-b$ is not a square, then $x \notin K$, since K and $\mathbb{Q}(\sqrt{-b})$ are linearly disjoint number fields over $\mathbb{Q}($ as $[K: \mathbb{Q}]$ is odd), which is a contradiction to $P \in E(K)$. Thus, as $-b$ is a square, $x \in \mathbb{Z} \subset K$. Thus, if (x, y) is a point of order 2 in T, then $(x, y)=(0,0)$ or $(\pm \sqrt{-b}, 0)$ with $-b$ is a square of an integer.

Now, let $P=(x, y)$ be an element of order 4 in T. Then by Claim 1 in Lemma 2, we have $x^{2}-b=0 \Longleftrightarrow x= \pm \sqrt{b}$.

Again note that b is a square. If not, then $x=\sqrt{b}$, which is impossible because K and $\mathbb{Q}(\sqrt{b})$ are linearly disjoint over \mathbb{Q}. If b is a square, then $x \in \mathbb{Z} \subseteq K$. Let $b=a^{2}$ for some square-free integer a. Thus if $P=(x, y)$ is a point of order 4 in T, then $x= \pm a$. Then $y^{2}= \pm 2 a^{3} \Rightarrow y= \pm 2 a \sqrt{ \pm \frac{a}{2}}$. Since $y \in K$, we have $\pm \frac{a}{2}$ must be a square. Since a is square-free, we conclude that $a= \pm 2$. Hence the only elements of order 4 are $(2, \pm 4)$ with $b=4$.

In Lemma 1 and Lemma 2, we have seen that there are no points of order 8 or of order q for any odd prime q. Therefore, by combining all the cases, we get the desired result.

Proof of Proposition 2. First we compute all the points of order 2 in T. If $P=(x, y)$ is a point of order 2 , then $2 P=\mathcal{O} \Longleftrightarrow P=-P \Longleftrightarrow 2 y=0$ $\Longleftrightarrow x\left(x^{2}+b\right)=0$. Therefore, if $P=(x, y) \in T$ is a point of order 2 , then $x=0$ or $x= \pm \sqrt{-b}$. If $x=0$, then the point $(0,0)$ is a point of order 2 . If $x \neq 0$, then $x= \pm \sqrt{-b} \in K$.

Now, let $P=(x, y)$ be an element of order 4 in T. Then by Claim 1 in Lemma 2, we have $x^{2}-b=0 \Longleftrightarrow x= \pm \sqrt{b}$.

Again note that b is a square. If not, then $x= \pm \sqrt{b} \Rightarrow y^{2}= \pm 2 b \sqrt{b}$, which is impossible because $y \in K$ and $[K: \mathbb{Q}] \equiv 2(\bmod 4)$. Therefore, write $b=t^{2}$ for some square-free integer t. Thus, $x= \pm t \Rightarrow y^{2}= \pm 2 t^{3}$. Hence $y= \pm t \sqrt{ \pm 2 t}$.

If $\pm 2 t$ is a square, then $t= \pm 2$, because t is square-free. Hence $b=4$. In this case the possible elements of order 4 are $(2, \pm 4)$ and $(-2, \pm 4 i)$.

If $\pm 2 t$ is not a square, then $(t, \pm t \sqrt{2 t})$ are the only points of order 4 in T, when $\sqrt{2 t} \in K$ and $(-t, \pm t \sqrt{-2 t})$ are the only points of order 4 in T, when $\sqrt{-2 t} \in K$.

In Lemma 1 and Lemma 2, we have seen that there are no points of order 8 or of order q for any odd prime q.

Combining all the above cases, we get the desired result.

3. Proof of Theorem 1 and Theorem 2

First we prove two claims and we deduce Theorem 1 and 2.

Claim 1.

1. Let K be a number field with $[K: \mathbb{Q}] \equiv 2(\bmod 4)$ and $E: Y^{2}=X^{3}+b X$ be a given elliptic curve for some 4 -th power free integer $b \neq 4$. If the rank of E over K is 0 , then the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over K.
2. Let K be a number field of odd degree and $E: Y^{2}=X^{3}+b X$ be a given elliptic curve for some 4 -th power free integer b. If the rank of E over K is 0 , then the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over K.
Suppose $(x, y, z) \in K^{3}$ with $x y z \neq 0$ is a nontrivial solution of the equation $x^{4}+b y^{4}=z^{2}$. Dividing the equation by y^{4} and by the change of variable

$$
s \mapsto \frac{x}{y} \text { and } t \mapsto \frac{z}{y^{2}},
$$

we obtain the equation $s^{4}+b=t^{2}$ for some $s, t \in K$. We can rewrite this equation as

$$
r=s^{2} \text { and } r^{2}+b=t^{2} .
$$

Now, we multiply the last equation by r and using the relation $r=s^{2}$, we get

$$
r^{3}+b r=(s t)^{2}
$$

Then, by applying another change of variable $X=r$ and $Y=s t$, we obtain an elliptic curve

$$
E: Y^{2}=X^{3}+b X
$$

Since x, y and z are nonzero, we have r, s and t are nonzero. This implies that the corresponding X and Y are nonzero.

Case 1: $[K: \mathbb{Q}] \equiv 2(\bmod 4)$. By the assumption, the elliptic curve $E: Y^{2}=$ $X^{3}+b X$ has rank 0 over K. Therefore, by Proposition 2, if $b \neq-1$ and b is not a square, we have

$$
E(K) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \quad \text { or } \quad E(K) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

That is, every nontrivial element of this group is of order 2 and hence $Y=0$, which forces that either $x=0$ or $z=0$, which is a contradiction. Hence, the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over K if b is not a square and $b \neq-1$.

Suppose $b=-1$.
Subcase 1: $i \notin K$. If $b=-1$ and $i \notin K$, as E has rank 0 over K by Proposition 2 , we have

$$
E(K) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

That is, every nontrivial element of this group is of order 2 and hence $Y=0$ which forces that either $x=0$ or $z=0$, which is a contradiction. Hence, the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over K, if $b=-1$ and $i \notin K$.

Subcase 2: $i \in K$. If $b=-1$ and $i \in K$, as rank of E is 0 over K by Proposition 2, we have

$$
E(K) \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

Here $(0,0)$ and $(\pm 1,0)$ are elements of order 2 and $(i, \pm(1-i)),(-i, \pm(1+i))$ are elements of order 4 . The points of order 2 will lead to trivial solution for the equation $x^{4}+b y^{4}=z^{2}$ over K. Corresponding to the points of order 4, we have $r=s^{2}= \pm i$, which is a contradiction because $s \in K$ and $[K: \mathbb{Q}] \not \equiv 0(\bmod 4)$. Therefore, the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions for $b=-1$ and $i \in K$.

Now, we assume that b is a square and let $b=t^{2}$ for some nonzero integer t with $t \neq \pm 2$ as $b \neq 4$.

If $\sqrt{2 t} \in K$, as E has rank 0 over K by Proposition 2, we have

$$
E(K) \cong \mathbb{Z} / 4 \mathbb{Z}
$$

Here, $(0,0)$ is the only element of order 2 and $(t, \pm t \sqrt{2 t})$ are elements of order 4. The point $(0,0)$ will lead to trivial solution for the equation $x^{4}+b y^{4}=z^{2}$ over K. Corresponding to the point $(t, \pm t \sqrt{2 t})$, we have $r=s^{2}=t$, which is a contradiction as $s \in K$ and $\sqrt{2 t} \in K$. Therefore, the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions in this case.

If $\sqrt{2 t} \notin K$, as E has rank 0 over K and $b \neq 4$, by Proposition 2, we have

$$
E(K) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

Here, $(0,0)$ is the only element of order 2 . Since the point $(0,0)$ leads to trivial solution for the equation $x^{4}+b y^{4}=z^{2}$ over K, we are done.

Combining all the cases, we see that the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over K for any nonzero 4-th power free integer $b \neq 4$ whenever E has rank 0 over K.

Case 2: $[K: \mathbb{Q}]$ is odd. By the assumption, the elliptic curve $E: Y^{2}=X^{3}+b X$ has rank 0 over K. Therefore, by Proposition 1, if $b \neq 4$, we have

$$
E(K) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \quad \text { or } \quad E(K) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

That is, every nontrivial element of $E(K)$ is of order 2 and hence $Y=0$ which forces that either $x=0$ or $z=0$, which is a contradiction. Hence, the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over K if $b \neq 4$.

When $b=4$, by Proposition 1 and the assumption that the rank of $E(K)$ is 0 , we have

$$
E(K) \cong \mathbb{Z} / 4 \mathbb{Z}
$$

Here, $(0,0)$ is the only element of order 2 and $(2, \pm 4)$ are the only elements of order 4 . Note that $(0,0)$ will lead to trivial solution for the equation $x^{4}+b y^{4}=z^{2}$
over K. Corresponding to the point $(2, \pm 4)$, we have $r=s^{2}=2 \Longleftrightarrow s= \pm \sqrt{2}$. Since $s \in K$, we see that $\sqrt{2} \in K$, which is a contradiction because K and $\mathbb{Q}(\sqrt{2})$ are linearly disjoint over \mathbb{Q}. Therefore the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions in this case also.

Combining all the cases, we see that the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over K for any nonzero 4 -th power free integer b whenever E has rank 0 over K. This proves the Claim 1.

Claim 2. Let $E: Y^{2}=X^{3}+b X$ be an elliptic curve over K, where K is any field with characteristic 0 . If the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over K, then E has rank 0 over K.

Suppose E has positive rank over K. Then there exists a point $P=(X, Y)$ of infinite order in $E(K)$. Therefore, $X Y \neq 0$.

By the duplication formula, we have

$$
X(2 P)=\frac{\left(X^{4}-2 b X^{2}+b^{2}\right)}{4 Y^{2}}=\frac{\left(X^{2}-b\right)^{2}}{(2 Y)^{2}}
$$

Note that, $X(2 P)$ is a square in K. Since P is of infinite order, so is $2 P$.
Therefore there exists a point $Q=\left(x^{\prime}, y^{\prime}\right)$ on E such that $x^{\prime}=s^{2}$ and $y^{\prime}=s t$ for some nonzero $s, t \in K$.

So we have,

$$
s^{2} t^{2}=s^{6}+b s^{2} \Rightarrow t^{2}=s^{4}+b
$$

Thus $(s, 1, t)$ is a nontrivial solution for the equation $x^{4}+b y^{4}=z^{2}$ over K, which is a contradiction to the assumption. Hence we conclude that if $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over K, then E has rank 0 over K, which proves the Claim 2.

To prove Theorem 1 and Theorem 2, it is enough to assume that b is a 4 -th power free integer. If not, let $b=a t^{4}$ for some 4 -th power free integer a and nonzero integer t. Then $\left(t^{2} x, t^{3} y\right)$ is a point on the elliptic curve $E: y^{2}=x^{3}+b x$ if and only if (x, y) is a point on $E_{1}=y^{2}=x^{3}+a x$. Also (x, y, z) is a solution of the Diophantine equation $x^{4}+b y^{4}=z^{2}$ if and only if $(x, t y, z)$ is a solution of the Diophantine equation $x^{4}+a y^{4}=z^{2}$. Thus, it is enough to assume that b is a 4 -th power-free integer. Then theorems follow from Claim 1 and Claim 2.

4. Applications

As an application we have following results.
Corollary 2. For any nonzero integer b the Diophantine equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over \mathbb{Q} iff it has only trivial solutions over $\mathbb{Q}(i)$.

Proof. If $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over $\mathbb{Q}(i)$ then obviously it has trivial solutions over \mathbb{Q}.

Conversely, assume that the equation $x^{4}+b y^{4}=z^{2}$ has only trivial solutions over \mathbb{Q}. Then by Theorem 1 , the elliptic curve $E: y^{2}=x^{3}+b x$ has rank 0 over \mathbb{Q}.

Now, note that -1-quadratic twist of E is $E^{(-1)}: y^{2}=x^{3}+x$, which is E itself. Now from [7], it is well-known that if E^{D} be the D-quadratic twist of E for some rational D, then

$$
\operatorname{Rank} E(\mathbb{Q}(\sqrt{D}))=\operatorname{Rank} E(\mathbb{Q})+\operatorname{Rank} E^{D}(\mathbb{Q})
$$

For $D=-1$ we have, $E^{(-1)}(\mathbb{Q})=E(\mathbb{Q})$. Since Rank $E(\mathbb{Q})$ is 0 , we have Rank $E(\mathbb{Q}(i))=0$. Then again by Theorem $1, x^{4}+b y^{4}=z^{2}$ has only trivial solutions over $\mathbb{Q}(i)$.

Corollary 3. A positive square-free integer n is a congruent number iff $x^{4}-y^{4}=$ z^{2} has a non-trivial solution in $\mathbb{Q}(\sqrt{n})$.

Proof. We know that a positive square-free integer n is a congruent number iff $E_{n}: y^{2}=x^{3}-n^{2} x$ has positive rank over \mathbb{Q}. Now E_{n} is n-quadratic twist of $E: y^{2}=x^{3}-x$. Since E has rank 0 over \mathbb{Q}, we have Rank $E_{n}(\mathbb{Q})=\operatorname{Rank}$ $E(\mathbb{Q}(\sqrt{n}))$. Hence n is a congruent number iff Rank $E(\mathbb{Q}(\sqrt{n}))>0$. Then, by Theorem 1, we get, n is a congruent number iff $x^{4}-y^{4}=z^{2}$ has a non-tivial solution in $\mathbb{Q}(\sqrt{n})$.

References

[1] R. Ayoub, An introduction to the analytic theory of numbers, American Mathematical Society, Providence, RI, (1963).
[2] A. Bremner and J.W.S. Cassels, On the equation $Y^{2}=X\left(X^{2}+p\right)$, Math. Comp. 42 (1984), 257-264.
[3] A.J. Hollier, B.K. Spearman and Q. Yang, On the rank and integral points of ellipitc curves $y^{2}=x^{3}-p x$, Int. J. of Algebra 3 (2009), 401-406.
[4] A.J. Hollier, B.K. Spearman and Q. Yang, Elliptic Curves $y^{2}=x^{3}+p q x$ with maximal rank, Int. Math. Forum 5 (2010), 1105-1110.
[5] T. Kudo and K. Motose, On group structures of some special elliptic curves, Math J. Okayam Univ. 47 (2005), 81-84.
[6] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Inventiones Mathematicae 124 (1996), 437-449.
[7] J.H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York, (1992).
[8] J.H. Silverman and J.Tate, Rational points on elliptic curves, Springer-Verlag, New York, (1992).
[9] B.K. Spearman, Elliptic curves $y^{2}=x^{3}-p x$ of rank two, Math. J. Okayama Univ. 49 (2007), 183-184.
[10] B.K. Spearman, On the group structure of elliptic curves $y^{2}=x^{3}-2 p x$, Int. J. of Algebra 1 (2007), 247-250.
[11] L.C. Washington, Elliptic curves number theory and cryptography, Chapman and Hall/CRC, Florida, (2003).

Address: Pallab Kanti Dey: Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad, 211019, India.
E-mail: pallabkantidey@gmail.com
Received: 6 October 2015; revised: 25 August 2016

