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A NOTE ON HECKE’S FUNCTIONAL EQUATION

AND THE SELBERG CLASS

Ettore Carletti, Giacomo Monti Bragadin, Alberto Perelli

Abstract:We study the solutions of Hecke’s functional equation in the framework of the extended
Selberg class. It turns out that, notwithstanding certain differences between the two theories,
there are strong analogies in the behavior of the dimensions of the spaces of solutions. We also
provide details to an old argument of Hecke, which is presented in a sketchy way both in Hecke’s
original works and in subsequent books on Hecke’s theory.
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1. Introduction

Well known work by Hecke (see Hecke [3],[4], Ogg [12], Berndt [1] and Berndt-
Knopp [2]) deals with the solutions φ(s) of the functional equation

( λ
2π

)s

Γ(s)φ(s) = ω
( λ

2π

)k−s

Γ(k − s)φ(k − s) (1.1)

(λ, k > 0 and ω = ±1) satisfying the following conditions:

(a) φ(s) is a Dirichlet series with finite abscissa of convergence;
(b) (s− k)φ(s) is an entire function of finite order.

Denoting by D(λ, k, ω) the complex vector space of such Dirichlet series, Hecke
proved that for every k > 0 and ω = ±1

dimC D(λ, k, ω) =

{
d(λ, k, ω) if 0 < λ 6 2

∞ if λ > 2.

Moreover, Hecke gave the explicit value of the integer d(λ, k, ω). This is achieved by
his well known correspondence theorem, giving an isomorphism between D(λ, k, ω)
and the complex vector space M(λ, k, ω) of the modular forms of signature (λ, k, ω),
i.e. the functions f(z) holomorphic on the upper half-plane H = {=z > 0} satis-
fying the following conditions:
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(α) f(z) has a Fourier series expansion of type

f(z) =

∞∑

n=0

ane
2πinz/λ (1.2)

with an � nc for some c > 0;
(β) f(z) = ω(i/z)kf(−1/z).

More precisely, Hecke’s correspondence theorem states that given λ, k > 0, ω = ±1
and an � nc, writing f(z) as in (1.2) and

φ(s) =
∞∑

n=1

ann
−s,

then f ∈ M(λ, k, ω) if and only if φ ∈ D(λ, k, ω) and a0 = ω( λ
2π )kΓ(k) ress=k φ(s).

Note that a modular form of signature (λ, k, ω) is in fact a modular form for the
group G(λ) generated by the transformations S : z 7→ z + λ and T : z 7→ −1/z,
and that the dimension of M(λ, k, ω) depends heavily on the geometry of the fun-
damental domain of G(λ). Moreover, while the isomorphism between D(λ, k, ω)
and M(λ, k, ω) is established by a simple application of Riemann’s famous Mellin
transform method for the functional equation of the Riemann zeta function, the
dimension of M(λ, k, ω) is computed by means of ingenious arguments. It is an
interesting problem to obtain Hecke’s type results for D(λ, k, ω) dealing directly
with the Dirichlet series.

From a rather different viewpoint, one of the aims of the Selberg class project
is the classification of the solutions of Riemann type functonal equations, satis-
fying certain additional properties. We refer to Selberg [15], Kaczorowski-Perelli
[9], Kaczorowski [6] and Perelli [13],[14] for definitions and basic properties of the
Selberg class S. Although the emphasis there is mainly on solutions with arith-
metic properties (e.g. with Euler product), the classification results have been so
far obtained in the framework of the extended Selberg class S], defined by the
following properties:

(i) every F ∈ S] is an absolutely convergent Dirichlet series for σ > 1, and
(s− 1)mF (s) is an entire function of finite order for some integer m;

(ii) F (s) satisfies a functional equation of type Φ(s) = ωΦ̄(1 − s) with

Φ(s) = Qs
r∏

j=1

Γ(λjs+ µj)F (s),

|ω| = 1, Q > 0, λj > 0 and <µj > 0 (f̄(s) = f(s)).

We recall that the degree dF and the conductor qF of F ∈ S] are defined by

dF = 2

r∑

j=1

λj , qF = (2π)dFQ2
r∏

j=1

λ
2λj

j .
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At present, the above mentioned classification is complete for all degrees d < 2,
see Kaczorowski-Perelli [10], and the next open case, d = 2, looks quite difficult.

We normalize the solutions φ(s) of functional equation (1.1) writing

H(s) = φ
(
s+

k − 1

2

)
,

and denote by D(λ, k, ω) the space of the normalized functions from D(λ, k, ω).
Thus D(λ, k, ω) looks similar to the real vector space S]

2(Q,µ, ω) of the degree 2
functions in S] satisfying (ii) with

Q =
λ

2π
, r = 1, λ1 = 1, µ1 = µ =

k − 1

2
;

note that the conductor q = qF becomes in this case

q = (2πQ)2 = λ2. (1.3)

However, there are differences between the definitions of the two spaces, such as
the abscissa of absolute convergence, the conjugate in (ii) and the location and
order of the possible pole in (i). Indeed, the pole of F ∈ S]

2(Q,µ, ω) if present
is at s = 1, while in the case of H ∈ D(λ, k, ω) the possible pole is at s = k+1

2 .

It is therefore of some interest to investigate the dimension of S]
2(Q,µ, ω), and in

particular to see if the dimensions of D(λ, k, ω) and S]
2(Q,µ, ω) are finite/infinite

for corresponding values of the parameters. We have

Theorem. Let Q > 0, µ > 0, |ω| = 1 and let q = (2πQ)2 denote the conductor.
Then for every µ and ω, dimR S]

2(Q,µ, ω) is finite if 0 < q 6 4, while there exist
uncountably many linearly independent functions F ∈ S]

2(Q,µ, ω) if q > 4.

Similar results can be proved when the functional equation contains a shift, i.e.
when µ is replaced by µ + iθ with θ ∈ R. In other words, an analogous theorem
holds for the general case of degree 2 functions from S] with exactly one Γ-factor.
Note that the proof allows to obtain an explicit bound for the dimension when
0 < q 6 4, analogous to Hecke’s case. Our Theorem is proved by a simple adapta-
tion of Hecke’s arguments, thus once again arguing on the side of modular forms.
Note that, in view of (1.3), the dimensions of the two spaces behave exactly in the
same way with respect to finiteness, notwithstanding the above mentioned differ-
ences in the definitions of the two spaces. Indeed, interesting members ofD(λ, k, ω)
like certain normalized Epstein zeta functions (which, having real coefficients, are
potential members of S]

2(Q,µ, ω)) do not belong to the corresponding S]
2(Q,µ, ω)

due to the location of the pole, if k 6= 1. Of course, the same applies in general to
all polar members of D(λ, k, ω) when k 6= 1. We also remark that apart from the
functional equations of degree 1, where everything is known concerning dimensions
(see Kaczorowski-Perelli [8]), as far as we know Hecke’s functional equation is the
only case where the dimension is known for all values of the conductor.
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Finally, we take this opportunity to prove the folklore statement that for λ > 2
the dimension of M(λ, k, ω) is uncountable. Moreover, still in the case λ > 2
we provide some details to an argument in Hecke’s original paper [3] which in our
opinion is a bit too vague, and which has not been clarified in the books on Hecke’s
theory (Hecke [4], Ogg [12], Berndt [1] and Berndt-Knopp [2]).

Acknowledgements. We wish to thank Giuseppe Molteni for several useful
remarks.

2. The case q > 4

We start with Hecke’s spaces D(λ, k, ω). Let λ > 2, z = x + iy and denote by
B = Bλ the region

B = {z ∈ C : −λ
2
< x < 0, y > −2, |z| > 1}.

The counterclockwise oriented boundary ∂B of B consists of the five sides γ1 =
{x = 0, y > 1}, γ2 = {x = −λ/2}, γ3 = {−λ/2 6 x 6 0, y = −2}, γ4 =
{x = 0,−2 6 y 6 −1} and γ5 = {|z| = 1, x 6 0}. The mapping T (z) = −1/z
is conformal and invertible on B, and maps B onto the simply connected region
T (B) contained in the unit disc. In fact, T maps the vertexes of ∂B to the vertexes
of the counterclockwise oriented boundary ∂T (B) of T (B) as follows:

i 7→ i, i∞ 7→ 0, −λ
2
− 2i 7→ ξ0, −2i 7→ − i

2
, −i 7→ −i,

where ξ0 is the non-zero intersection of the circles |w−1/λ| = 1/λ and |w+ i/4| =
1/4; it is easily checked that ∂T (B) is a piecewise smooth Jordan curve (see Sect.1.1
of Kodaira [11]).

Let D ⊂ C be a simply connected bounded open set whose (counterclockwise
oriented) boundary ∂D is a piecewise smooth Jordan curve. We denote by ≺ the
orientation on ∂D, by D̃ the closure of D and by H̃ = H∪R∪ {∞} the closure of
the upper half-plane H in the Riemann sphere. We need the following version of
the Riemann mapping theorem.

Lemma. Let D be as above and let g be a conformal mapping from D onto H.
Then g can be extended to a homeomorphism g̃ from D̃ onto H̃ that sends ∂D
onto the positively oriented line R∪{∞}. Moreover, if c0, c1, c∞ are three distinct
points on ∂D with c0 ≺ c1 ≺ c∞, then there exists exactly one conformal mapping
g from D onto H such that g̃(c0) = 0, g̃(c1) = 1 and g̃(c∞) = ∞.

Proof. This is Theorem 5.7 of Kodaira [11]. �

Let z0 ∈ γ3 and write w0 = T (z0). Since T (B) satisfies the conditions on the
regionD in the Lemma, thanks to the Lemma we obtain a conformal mapping g(w)
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on T (B), depending on z0, with continuous extension to ∂T (B) as a real-valued
function satisfying

g(i) = 0, g(0) = 1, g(w0) = ∞.

Hence by composition with T we get a conformal mapping h(z) = g(T (z)) on B
with continuous extension to ∂B as a real-valued function satisfying

h(i) = g(i) = 0, h(i∞) = g(0) = 1, h(z0) = g(w0) = ∞.

Clearly, the mapping h(z) depends on z0. Let now consider the region

F = {z ∈ H : −λ
2
< x <

λ

2
, |z| > 1},

denote by (B ∩H)∗ the reflection of B ∩H with respect to the line x = 0 and let
γ6 = γ1 \ {i}. Since

F = (B ∩H) ∪ γ6 ∪ (B ∩H)∗,

by the Schwarz reflection principle (see e.g. Sect.5.3, part a, of Kodaira [11]) the
function h(z) continues as a conformal mapping on F with continuous extension
as a real-valued function on the boundary (excluding the part of the boundary on
the real axis). Since F (union half of its boundary, excluding the part on the real
axis) is a fundamental domain for G(λ), by repeated applications of the reflection
principle we obtain the analytic continuation of h(z) to the whole upper half-plane
H. From the above construction it is clear that:

• h(z) is G(λ)-invariant,
• h(z) tends to 1 as z → i∞ and hence h(z) 6= 1 on H,
• h(z) is bounded on H,
• h′(z) never vanishes apart from a simple zero at z = i and at its G(λ)-orbit,
• h(z) has analytic continuation to the lower part of B and tends to ∞ only

as z → z0.

In particular, as z0 varies the functions h(z) are linearly independent. Moreover,
thanks to the fact that z = i is a double zero and to the monodromy theorem,
the function h(z) is the square of a holomorphic function on H ∪ B, denoted by√
h(z) and satisfying

√
h(z + λ) =

√
h(z) and

√
h(−1/z) = −

√
h(z); see p.28

of [2] (with a different notation).
The above construction clearly follows Hecke’s arguments in [3], but provides

some missing details concerning his construction of a function analogous to h(z).
Indeed, Hecke’s construction starts with the region

B′ = {z ∈ C : −λ
2
< x < 0, |z| > 1},

which is unbounded at ±i∞. However, since ±i∞ coincide on the Riemann sphere,
the boundary of T (B′) is not homeomorphic to R ∪ {∞}, hence in particular the
Lemma does not apply. No reference is given in [3] to an appropriate version of
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the Riemann mapping theorem in order to justify all steps of the construction;
subsequent treatments do not clarify this point, and we were unable to trace such
a reference. Our truncation of the region simplifies the picture and allows to use
standard references.

Next we follow Hecke’s arguments, keeping track of certain properties of the
Fourier coefficients. From the above properties we deduce that h(z) has the Fourier
expansion

h(z) =
∞∑

n=0

ane
2πinz/λ, a0 = 1, a1 6= 0, y > 0.

By the construction of h(z) we have

h(−λ/2 + iy) =

∞∑

n=0

(−1)nane
−2πny/λ ∈ R

and hence an ∈ R. Moreover, since h(z) is bounded on H, a standard argument
(see e.g. Lemma 2.2 of [2]) shows that the coefficients an are bounded as well. In
order to construct the required modular forms, consider the holomorphic function
on H

k(z) =
h′(z)

h(z) − 1
=

2πi

λ

∞∑
n=1

nane
2πinz/λ

∞∑
n=1

ane2πinz/λ

=
2πi

λ

∞∑
n=1

nane
2πi(n−1)z/λ

∞∑
n=1

ane2πi(n−1)z/λ

=

∞∑

n=0

bne
2πinz/λ,

where bn ∈ iR, b0 6= 0 and bn = O(nc) for some c > 0. Indeed, the inverse
of a power series with coefficients of polynomial growth still has coefficients of
polynomial growth, and the same holds for the product of two such power series.
Since h(z) is G(λ)-invariant,

√
h(z) has also a Fourier expansion, which we may

assume to be of type

√
h(z) =

∞∑

n=0

cne
2πinz/λ, c0 = 1, cn ∈ R

with cn = O(nc) for some c > 0 (this can be checked by a recursive argument).
Hence the function `(z) = k(z)/

√
h(z) is holomorphic and non-vanishing on H,

and has an expansion of type

`(z) =
k(z)√
h(z)

= i

∞∑

n=0

dne
2πinz/λ

with dn ∈ R, d0 6= 0 and dn = O(nc) for some c > 0. Finally, for k > 0 we consider

f(z) = exp(
k

2
log `(z)) = ik/2

∞∑

n=0

ene
2πinz/λ
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with en ∈ R, e0 6= 0 and en = O(nc) for some c > 0. Clearly, f(z) is holomorphic
on H and satisfies condition (α). Moreover, thanks to the above properties of√
h(z) and to the fact that h′(−1/z) = z2h′(z), we see that f(z) also satisfies

condition (β) with ω = 1, hence f ∈ M(λ, k, 1). To get functions f̃ ∈ M(λ, k,−1),
in view of

√
h(−1/z) = −

√
h(z) one has simply to multiply by

√
h(z), thus getting

f̃(z) =
√
h(z)f(z) = ik/2

∞∑

n=0

fne
2πinz/λ

with fn ∈ R, f0 6= 0 and fn = O(nc) for some c > 0. An easy way to obtain
functions in M(λ, k,±1) that are linearly independent as z0 varies is to multiply
the above f(z) and f̃(z) by a sufficiently large integer power of h(z), in order
to “create a pole” at z = z0. In such a way, for every k > 0 and ω = ±1 we get
uncountably many linearly independent functions f ∈ M(λ, k, ω), thus proving the
folklore statement that the dimension of M(λ, k, ω) (or equivalently of D(λ, k, ω)
and D(λ, k, ω)) is uncountable when λ > 2. We denote by F(λ, k, ω) the set of
such functions. Note that every f ∈ F(λ, k, ω) has an expansion of type (1.2) with
an = ik/2gn, gn ∈ R, g0 6= 0 and gn = O(nc) for some c > 0.

Now we show how the second part of the Theorem follows from the above
result. Choose ω = 1 and λ, k such that Q = λ/2π and µ = (k − 1)/2. It is well
known that a function f ∈ M(λ, k, 1) gives rise to an entire Dirichlet series in
D(λ, k, 1) if and only if its 0-th Fourier coefficient a0 vanishes. Let f0 ∈ F(λ, k, 1)
be fixed and for every f ∈ F(λ, k, 1) \ {f0} let α ∈ R be such that

u(z) = f(z) − αf0(z)

has vanishing 0-th coefficient. The functions u(z) form an uncountable set of
linearly independent elements of M(λ, k, 1). Indeed, if

0 = c1u1(z) + ...+ cNuN(z) = c1f1(z) + ...+ cNfN(z) − (c1α1 + ...+ cNαN )f0(z)

identically, then c1 = ... = cN = 0. We now prove that the functions i−k/2u(z)

give rise to an uncountable set of linearly independent functions in S]
2(Q,µ, 1).

Indeed, the Hecke correspondence theorem associates to

i−k/2u(z) =

∞∑

n=1

hne
2πinz/λ, (hn ∈ R and hn = O(nc) for some c > 0)

the Dirichlet series

φ(s) =

∞∑

n=1

hn

ns
.

Therefore, the normalized function H(s) = φ(s+(k−1)/2) satisfies the functional
equation in (ii) (with r = 1, λ1 = 1, µ1 = µ and ω = 1) since the conjugate
has no effect on real coefficients. Moreover, H(s) is an entire function of finite
order. Further, H(s) converges absolutely for σ > 1. This follows by a standard



218 Ettore Carletti, Giacomo Monti Bragadin, Alberto Perelli

argument (see e.g. the proofs of Theorem 5.1 and Corollary 5.2 in Iwaniec [5]),
which we very briefly sketch for completeness. As y → 0+ we have u(z) � y−k/2,
hence by Parseval’s formula we get

∞∑

n=1

|hn|2e−4πny/λ � y−k, y → 0+.

Therefore, taking y = 1/X we obtain
∑

n6X

|hn|2 � Xk,

and the result follows by the Cauchy-Schwarz inequality and partial summation
(see p.188–189 of [7] for more details). Finally, given |ω| = 1 and H ∈ S]

2(Q,µ, 1)

it is easy to find |η| = 1 such that ηH ∈ S]
2(Q,µ, ω), hence the second part of the

Theorem follows.

3. The case 0 < q 6 4

We start with a simple observation about the possible pole at s = 1. By the
functional equation, a pole at s = 1 of F ∈ S]

2(Q,µ, ω) induces a pole of the same
order of Φ(s) at s = 0, hence Γ(s + µ) must have a pole at s = 0. Therefore, if
µ > 0 then F (s) must be entire, while if µ = 0 the pole at s = 1, if present, must
be of order 1.

If F ∈ S]
2(Q,µ, ω) we write

φ(s) = F (s− µ), k = 2µ+ 1, λ = 2πQ

and note that φ(s) satisfies
( λ

2π

)s

Γ(s)φ(s) = ω
( λ

2π

)k−s

Γ(k − s)φ̄(k − s). (3.1)

Moreover, by the above observation (s−k)φ(s) is an entire function of finite order
for every µ > 0. An inspection of the Mellin transform argument leading to the
Hecke correspondence theorem (see Theorem 1 of Ch.I of Hecke [4]) shows that
(3.1) implies the modified modular relation

f(z) = ω
( i
z

)k

f∗
(
− 1

z

)
. (3.2)

Here, denoting by an (n > 1) the Dirichlet coefficients of φ(s) and writing

a0 = ωρ, ρ = ress=k

( λ
2π

)s
Γ(s)φ(s),

f(z) is defined as in (1.2) and is holomorphic on H, while f∗(z) is the series in
(1.2) with an in place of an for n > 0. Since f∗(z) = f(−z), from (3.2) we deduce
that

f∗(z) = ω
( i
z

)k

f
(
− 1

z

)
,
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and hence writing g(z) = f(z)f∗(z) we have that g(z) is holomorphic over H, has
a Fourier series of type (1.2) with coefficients of polynomial growth and satisfies

g(z) =
( i
z

)2k

g
(
− 1

z

)
.

Thus g ∈ M(λ, 2k, 1).
Now we recall that in Hecke’s theory the computation of the dimension of the

spaces M(λ, k, ω) with λ 6 2 is reduced to counting the multiplicity of the zero
at i∞ of f ∈ M(λ, k, ω) (see Ch. 3 and 4 of [4]). Clearly, this idea carries over to
the case of the solutions of functional equation (3.1) and its associated functions
f(z) satisfying (3.2). However, in order to perform the actual computations it
is technically convenient to deal with functions satisfying the original modular
relation (β) in the Introduction, rather than (3.2). Hence we deal with g(z) instead
of f(z). Since the zeros of g(z) contain those of f(z), and g(z) satisfies the modular
relation (β), we deduce that dimR S]

2(Q,µ, ω) is finite for all values of Q for which
the corresponding modular space is finite, i.e. 0 < q 6 4. Moreover, explicit
bounds similar to those of Hecke’s case can be obtained in this case.
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