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LOCAL VARIATION OF EULER PRODUCTS

Hugh L. Montgomery
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, Robert C. Vaughan
[2]

Dedicated to Władysław Narkiewicz
on the occasion of his 70th birthday

Abstract: We determine how big an Euler product can be at s2, when its size at s1 is known,
and apply this via Halász’s method to bound the mean value of a multiplicative function in terms
of the size of the generating Dirichlet series.
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1. Statement of results

Throughout this paper we let f(n) denote a totally multiplicative function such
that |f(n)| ≤ 1 for all n, and for σ > 1 we set

F (s) =
∞∑

n=1

f(n)
ns

=
∏
p

(
1 − f(p)

ps

)−1

.

Our object is to determine what can be said about the sizes of F (s1) and F (s2)
when s1 and s2 are nearby.

We first consider how an Euler product can vary for differing σ, with t fixed.
Since

σ − 1 � 1
ζ(σ)

≤ ζ(2σ)
ζ(σ)

≤ |F (s)| ≤ ζ(σ) � 1
σ − 1

(1.1)

uniformly in the strip 1 < σ ≤ 2, the orders of magnitude arising all lie between
σ − 1 and 1/(σ − 1). Suppose that 1 < σ1 ≤ σ2. Since

|F (σ1)|
|F (σ2)| = exp

(
�

∞∑
n=2

Λ(n)f(n)
logn

(
n−σ1 − n−σ2

))
,

it is immediate that
ζ(σ2)
ζ(σ1)

≤ |F (σ1)|
|F (σ2)| ≤ ζ(σ1)

ζ(σ2)
.
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Thus if 1 < σ1 ≤ σ2 ≤ 2, then

σ1 − 1
σ2 − 1

|F (σ2)| � |F (σ1)| � σ2 − 1
σ1 − 1

|F (σ2)| . (1.2)

Further insights on this topic are facilitated by

Theorem 1.1. Let f and F be as above. For σ > 1, put Q = Q(σ) = exp(1/(σ−
1)), and set

T (s) = �
∑
p≤Q

f(p)
p1+it

.

Then |F (s)| � exp
(
T (s)

)
uniformly in the half-plane σ > 1.

Suppose that 1 < σ1 ≤ σ2 ≤ 2. From Theorem 1.1 we see that any desired
order of magnitude of |F (σ2)| between σ2 − 1 and 1/(σ2 − 1) can be attained by
appropriately choosing f(p) for p ≤ Q(σ2). Once this has been done, any desired
size of |F (σ1)| in the interval (1.2) can be obtained by an appropriate choice of
f(p) for Q(σ2) < p ≤ Q(σ1).

We now fix σ > 1, and consider what can be said concerning |F (σ + it)| when
|F (σ)| is known. From (1.1) it follows that for each σ > 1 there is a number
γ ∈ [−1, 1] such that

|F (σ)| = ζ(σ)γ , (1.3)

and a μ ∈ [−1, 1] depending on both σ and t such that

|F (s)| = ζ(σ)μ . (1.4)

Thus we want to know what pairs (γ, μ) can occur. This is a fairly straightforward
issue when |t| ≥ 1, but when |t| is small, the reality is surprisingly intricate.

Theorem 1.2. Let f and F be as above, and suppose that γ is defined by (1.3).
Put

X(u) =
∫ 1

0

u+ cos 2πθ
|u+ e(θ)| dθ, Y (u) =

∫ 1

0

1 + u cos 2πθ
|1 + ue(θ)| dθ . (1.5)

Choose u so that X(u) = γ, and set μ = Y (u). Then

ζ(σ)−μ(log 4t)−A ≤ |F (σ + it)| ≤ ζ(σ)μ(log 4t)A (1.6)

uniformly for σ > 1, t ≥ 1. Here A is a suitable absolute constant. If

f(p) =
u+ pi

|u+ pi| (1.7)

for all p, then

|F (σ)| � ζ(σ)X(u), |F (σ + i)| � ζ(σ)Y (u) (1.8)

uniformly in u and σ > 1.
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As usual, e(θ) = e2πiθ. The function X(u) is continuous, odd, and strictly
increasing since

∂

∂u

u+ cos 2πθ
|u+ e(θ)| =

(sin 2πθ)2

|u+ e(θ)|3 ≥ 0

for all θ and u. Moreover, limu→±∞X(u) = ±1, so for any γ ∈ [−1, 1] there is
a unique u such that X(u) = γ. Apart from the log power in (1.6), the pairs (γ, μ)
that can be achieved are those that lie in the body whose boundary is depicted
in Figure 1. In Lemma 3.1 we show that this is a convex convex body that is
symmetric about the x and y axes, and also about the lines y = ±x. It has
support lines x = ±1, y = ±1, x+ y = ±4/π, and x− y = ±4/π.

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

Figure 1: The parameterized curves (X(u),±Y (u)) for −∞ ≤ u ≤ ∞.

That one can simultaneously achieve |F (σ)| � (σ − 1)2/π, |F (σ + i)| � (σ −
1)−2/π was used by the first author [5] to show that if 0 < c < 4/π − 1 and
N > N0(c), then the function

UN (s) =
N∑

n=1

n−s (1.9)
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has zeros in the half-plane

σ > 1 +
c log logN

logN
. (1.10)

Subsequently, the authors [6] showed that this is best possible to the extent that
if c > 4/π − 1 and N > N1(c), then UN(s) �= 0 in the half-plane (1.10).

It is easy to show that |F (s)| � |F (σ)| when 0 ≤ t ≤ σ − 1. Suppose that
σ − 1 ≤ t ≤ 1, and let δ be defined by the relation

t = (σ − 1)1−δ . (1.11)

Thus 0 ≤ δ ≤ 1, and larger values of δ correspond to larger values of t. The
method used to prove Theorem 1.2 can be used to show that F (s) � F (σ)ζ(σ)4δ/π .
However, when |F (σ)| is very small or very large, we can do better:

Theorem 1.3. Let f and F be as described at the outset. If 0 ≤ t ≤ σ − 1, then

|F (s)| � |F (σ)| . (1.12)

Suppose that (1.3) holds, that σ − 1 ≤ t ≤ 1, that δ is defined by (1.11), and that
X(u) and Y (u) are defined as in Theorem 1.2. We have three cases:

Case 1. −1 ≤ γ ≤ −2/π and (1 + γ)/(1 − 2/π) ≤ δ ≤ 1. Then choose u ≤ −1
so that X(u) = (γ + 1 − δ)/δ, and set μ = δY (u) + δ − 1.

Case 2. 0 ≤ δ ≤ (1 + γ)/(1 − 2/π) and 0 ≤ δ ≤ (1 − γ)/(1 + 2/π). Set
μ = γ + 4δ/π.

Case 3. −2/π ≤ γ ≤ 1 and (1 − γ)/(1 + 2/π) ≤ δ ≤ 1. Choose u ≥ −1 so that
X(u) = (γ − 1 + δ)/δ, and set μ = δY (u) + 1 − δ.
In all three cases,

F (s) � ζ(σ)μ .

The three cases in Theorem 1.3 correspond to the three indicated regions in
Figure 2.

Halász [2] devised a method by which the summatory function S0(x) =∑
n≤x f(n) of a multiplicative function could be estimated in terms of the size

of the generating function F (s) in the half-plane σ > 1. Later, Halász [3] gave
a sharp quantitative form of this theorem. After further refinements by the first
author [4] and Tenenbaum [8], we know that if f is multiplicative and |f(n)| ≤ 1
for all n, then

S0(x) � x

log x

∫ 1

1/ log x

M0(α)
dα

α
(1.13)

where for α > 0 we set

M0(α) =
( ∞∑

k=−∞
max

|t−k|≤1/2
1+α≤σ≤2

∣∣∣F (σ + it)
σ + it

∣∣∣2)1/2

. (1.14)
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Figure 2: The three cases in Theorem 1.3.

If it is desired to bound S0(x) solely in terms of F (σ), then one could use Theo-
rem 1.2 to derive an estimate for M0, and hence for S0. Correspondingly, for the
weighted summatory function S1(x) =

∑
n≤x f(n)/n, the authors [6] showed that

if f is totally multiplicative and |f(n)| ≤ 1 for all n, then

S1(x) � 1
log x

∫ 1

1/ log x

M1(α)
dα

α
(1.15)

where for α > 0 we put

M1(α) =
( ∞∑

k=−∞
max

|t−k|≤1/2
1+α≤σ≤2

∣∣∣ F (σ + it)
σ − 1 + it

∣∣∣2)1/2

. (1.16)

One can use Theorems 1.2 and 1.3 to derive a bound for M1 from any given bound
for |F (σ)|. In particular, we use Theorem 1.3 to establish

Theorem 1.4. Let X(u) and Y (u) be as in Theorem 1.2, and let u0 = −0.822168
39 . . . be the unique root of the equation u + 2 = uX(u) + Y (u). For −1 ≤
γ ≤ X(u0) = −0.46019555 . . ., put ν(γ) = Y (uγ) where X(uγ) = γ, and for
X(u0) ≤ γ ≤ 1 put ν(γ) = 2− (1− γ)(Y (u0)− 2)/(X(u0)− 1). Let f and F be as
at the outset, suppose that 1 < σ ≤ 2, and that (1.3) holds. Then

F (σ + it)
σ − 1 + it

� ζ(σ)ν(γ)

uniformly for −1 ≤ t ≤ 1.

2. Proof of Theorem 1.1

Since

F (s) = exp
( ∞∑

n=2

Λ(n)f(n)
(logn)ns

)
,
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Figure 3: Plot of ν(γ) as defined in Theorem 1.4.

it is clear that

|F (s)| � exp
(
�
∑

p

f(p)
ps

)
.

But

�
∑

p

f(p)
ps

= T (s) + �
∑
p>Q

f(p)
ps

−�
∑
p≤Q

f(p)
pit

(1
p
− 1
pσ

)
,

so to complete the proof it suffices to establish the two estimates∑
p>Q

1
pσ

� 1 , (2.1)

∑
p≤Q

(1
p
− 1
pσ

)
� 1 . (2.2)

By the Chebyshev upper bound for the number of primes in an interval, we see
that ∑

2kQ<p≤2k+1Q

1
pσ

� (2kQ)1−σ

logQ
� 2k(1−σ)(σ − 1) .

Since
∞∑

k=0

2k(1−σ) � 1
σ − 1

,

we obtain (2.1).
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As for (2.2), we observe that

∑
p≤Q

(1
p
− 1
pσ

)
=
∑
p≤Q

log p
p

∫ σ−1

0

p−u du ≤ (σ − 1)
∑
p≤Q

log p
p

� 1 .

The last estimate above is due to Mertens, and is found, for example, in Theorem
2.7(b) of Montgomery & Vaughan [7].

3. Lemmas

Lemma 3.1. Let X(u) and Y (u) be defined as in Theorem 1.2. The region C
bounded by the curves (X(u),±Y (u)) is convex, and the line ux + y =

∫ 1

0
|u +

e(θ)| dθ is a support line of C passing through the point (X(u), Y (u)). The set C is
symmetric about the x-axis, the y-axis, and about the lines x = ±y. The function
X(u) is odd, while Y (u) is even, and Y (u) = sgn(u)X(1/u).

Proof. For r ∈ L1(T) we define Fourier coefficients r̂(k) =
∫ 1

0 r(θ)e(−kθ) dθ.
Let C1 consist of those points in the plane R2 that can be written in the form
(�r̂(0),�r̂(1)) for some r such that |r(θ)| ≤ 1 for all θ. Since the unit disk |z| ≤ 1
is convex, and the Fourier coefficient is linear, it follows that C1 is a convex set.
Let (a, b) �= (0, 0) define a direction in the plane. Since

a�r̂(0) + b�r̂(1) = �
∫ 1

0

r(θ)(a + be(−θ)) dθ ≤
∫ 1

0

|a+ be(−θ)| dθ , (3.1)

we see that C1 lies entirely in the closed half-plane ax+ by ≤ c where

c = c(a, b) =
∫ 1

0

|a+ be(−θ)| dθ .

Equality is achieved in (3.1) by taking

r(θ) =
a+ be(θ)
|a+ be(θ)| ,

so the support line ax+ by = c contacts C1 at the point(∫ 1

0

a+ b cos 2πθ
|a+ be(θ)| dθ,

∫ 1

0

b+ a cos 2πθ
|b+ ae(θ)| dθ

)
.

Points of this form comprise the boundary of C1. On taking (a, b) = (u, 1) the
above is (X(u), Y (u)), and we see that C = C1.

We note that∫ 1

0

a+ b cos 2πθ
|a+ be(θ)| dθ =

∫ 3/2

1/2

a+ b cos 2πθ
|a+ be(θ)| dθ =

∫ 1

0

a− b cos 2πθ
|a− be(θ)| dθ . (3.2)



280 Hugh L. Montgomery, Robert C. Vaughan

Thus if the pair (a, b) yields (X,Y ), then (a,−b) yields (X,−Y ), (−a, b) yields
(−X,Y ), (−a,−b) yields (−X,−Y ), (b, a) yields (Y,X), and (−b,−a) yields
(−Y,−X).

From (3.2) we see that

X(−u) =
∫ 1

0

−u+ cos 2πθ
| − u+ e(θ)| dθ = −

∫ 1

0

u− cos 2πθ
|u− e(θ)| dθ = −X(u) ,

and that

Y (−u) =
∫ 1

0

1 − u cos 2πθ
|1 − ue(θ)| dθ = Y (u) .

�

By means of elementary calculations it is easy to show that

X(u) = 1 − 1
4u2

+O(u−4), Y (u) =
1
2u

+O(u−3) (3.3)

as u→ +∞, and that

X(u) =
u

2
+O(|u|3), Y (u) = 1 − u2

4
+O(u4) (3.4)

Further properties of X and Y may be elicited by observing that they can be
expressed in terms of complete elliptic integrals. Let

K(k) =
∫ 1

0

1√
1 − k2t2

√
1 − t2

dt , E(k) =
∫ 1

0

√
1 − k2t2√
1 − t2

dt .

be the complete elliptic integrals of the first and second kind, in the Legendre
normal form. This notation is employed both by Gradshteyn & Ryzhik [1], and
by Maple. In the restricted range 0 ≤ u ≤ 1 we find that

X(u) =
2
πu

(E(u) − (1 − u2)K(u)), (3.5)

Y (u) =
2
π
E(u) (3.6)

with the tangent line

ux+ y =
2
π

(2E(u) − (1 − u2)K(u)) . (3.7)

Lemma 3.2. Let g(θ) = |u+ e(θ)| =
√
u2 + 2u cos 2πθ + 1. Then ĝ(k) � k−2 for

all k �= 0, uniformly in u, and g(θ) =
∑

k ĝ(k)e(kθ) for all θ.
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Proof. By direct computation we see that

g′(θ) =
−2π sin 2πθ√

u2 + 2u cos 2πθ + 1
.

We observe not only that g′ has bounded variation but also that this variation is
uniformly bounded as a function of u. Hence ĝ(k) � 1/k2 for all k �= 0, uniformly
in u. This estimate is best possible when u = ±1. Since g is continuous, and its
Fourier series is absolutely convergent, it follows that its Fourier series converges
to g(θ) for all θ. �

With more work it can be shown that if |u| is large, then

ĝ(k) �
( 2
|u|
)|k|−1

.

Lemma 3.3. Let u be a given real number, and put h(θ) = (u+cos 2πθ)/|u+e(θ)|.
Then ĥ(k) � k−2 for k �= 0, uniformly in u, and h(θ) =

∑
k ĥ(k)e(kθ) for all θ.

Proof. From the formula

h′(θ) =
−u sin 2πθ cos 2πθ − sin 2πθ

(u2 + 2u cos 2πθ + 1)3/2

we see not only that h′ has bounded variation, but that its variation is uniformly
bounded in u. Thus ĥ(k) � k−2 for k �= 0. Since h is continuous, and its Fourier
series is absolutely convergent, it follows that its Fourier series converges to h(θ)
for all θ. �

4. Proof of Theorem 1.2

We note that

log |F (s)| = �
∞∑

n=2

Λ(n)f(n)
(logn)ns

.

Let u be a real number. Then

u log |F (σ)| + log |F (s)| =
∞∑

n=2

Λ(n)
(log n)nσ

�f(n)(u+ n−it) ≤
∞∑

n=2

Λ(n)
(logn)nσ

|u+ n−it| .

Let g(θ) be defined as in Lemma 3.2. Then the right hand side above is

=
∞∑

n=2

Λ(n)
(logn)nσ

g
(−t logn

2π

)
=

∞∑
k=−∞

ĝ(k)
∞∑

n=2

Λ(n)
logn

n−σ−ikt =
∞∑

k=−∞
ĝ(k) log ζ(σ + ikt) .
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But (as found in Theorem 6.7 of Montgomery & Vaughan [7]) | log ζ(σ + it)| ≤
log log 4t+O(1) uniformly for σ ≥ 1, t ≥ 1, so the above is

= ĝ(0) log ζ(σ) +O(log log 4t) .

Thus far we have shown that

|F (σ)|u|F (s)| ≤ ζ(σ)bg(0)(log 4t)A .

We recall that |F (σ)| = ζ(σ)γ , and note that uX(u) + Y (u) = ĝ(0). Thus if we
choose u so that X(u) = γ, then the above gives

|F (s)| ≤ ζ(σ)Y (u)(log 4t)A .

To obtain the corresponding lower bound we argue similarly:

uT (σ) − T (s) =
∞∑

n=2

Λ(n)
(logn)nσ

�f(n)(u− n−it) ≤
∞∑

n=2

Λ(n)
(log n)nσ

|u− n−it|

=
∞∑

n=2

Λ(n)
(logn)nσ

g
(1

2
− t logn

2π

)
=

∞∑
k=−∞

(−1)kĝ(k)
∞∑

n=2

Λ(n)
logn

n−σ−ikt

=
∞∑

k=−∞
(−1)kĝ(k) log ζ(σ + ikt) = ĝ(0) log ζ(σ) +O(log log 4t),

so that

|F (σ)|u
|F (s)| ≤ ζ(σ)bg(0)(log 4t)A .

But |F (σ)| = ζ(σ)γ , uX(u) + Y (u) = ĝ(0), and X(u) = γ, so

1
|F (s)| ≤ ζ(σ)Y (u)(log 4t)A ,

which gives the desired lower bound.
It remains to prove (1.8). The function f is the one defined in (1.7). If u = 0,

then |F (σ)| = |ζ(σ − i)| � 1 and F (σ + i) = ζ(σ). If u = +∞, then F (σ) = ζ(σ)
and |F (σ+ i)| = |ζ(σ+ i)| � 1. If u = −∞, then F (σ) = ζ(2σ)/ζ(σ) � ζ(σ)−1 and
|F (σ + i)| = |ζ(2σ + 2i)/ζ(σ + i)| � 1. Thus (1.8) holds in these three cases, so it
remains to treat finite, non-zero u. Let h(θ) be as in Lemma 3.3. In log |F (σ)| we
wish to replace �f(n) by the more convenient quantity h((log n)/(2π)). When n
is prime, this involves no change at all, and when n is a higher power of a prime,
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we are replacing one bounded coefficient by another, so

log |F (σ)| =
∞∑

n=2

Λ(n)
(log n)nσ

h
( logn

2π

)
+O(1)

=
∞∑

k=−∞
ĥ(k)

∞∑
n=2

Λ(n)
(logn)nσ−ik

+O(1)

=
∞∑

k=−∞
ĥ(k) log(σ − ik) +O(1) .

But | log ζ(σ − it)| ≤ log log 4|k| +O(1) for all k �= 0, so the above is

= ĥ(0) log ζ(σ) +O(1) .

Since ĥ(0) = X(u), we have the first relation in (1.8). We note that

�f(p)
pi

=
u cos log p+ 1

|u+ pi| = sgn(u)
1/u+ cos log p

|1/u+ pi| .

This is in the form sgn(u)h((log p)/(2π)) but with the parameter u replaced by
1/u. Thus we repeat the above argument with u replaced by 1/u. With this
change of parameter, ĥ(0) = X(1/u) = sgn(u)Y (u), so we obtain the second part
of (1.8), and the proof is complete.

5. Proof of Theorem 1.3

We may assume throughout that 1 < σ ≤ 2, as all quantities under discussion are
uniformly � 1 when σ > 2. Since

F ′

F
(s) = −

∞∑
n=2

Λ(n)f(n)
ns

�
∞∑

n=2

Λ(n)
nσ

= − ζ′

ζ
(σ) � 1

σ − 1
,

it follows that logF (s)−logF (σ) � t/(σ−1). Thus we have (1.12) if 0 ≤ t ≤ σ−1.
We observe that if 1 < σ1 ≤ σ2, then

logF (σ1 + iv) − logF (σ2 + iv) =
∞∑

n=2

Λ(n)f(n)
logn

( 1
nσ1

− 1
nσ2

)
n−iv .

We set σ1 = σ, σ2 = 1 + t, apply the above with v = 0 and v = t, and take real
parts to find that

u log
∣∣∣ F (σ)
F (1 + t)

∣∣∣+ log
∣∣∣ F (σ + it)
F (1 + t+ it)

∣∣∣
=

∞∑
n=2

Λ(n)
logn

( 1
nσ

− 1
n1+t

)
�f(n)(u + n−it)

≤
∞∑

n=2

Λ(n)
logn

( 1
nσ

− 1
n1+t

)
|u + n−it| .
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Let g(θ) be defined as in Lemma 3.2. Then the above is

=
∞∑

n=2

Λ(n)
logn

( 1
nσ

− 1
n1+t

)
g(−t(logn)/(2π))

=
∞∑

k=−∞
ĝ(k)

∞∑
n=2

Λ(n)
logn

( 1
nσ

− 1
n1+t

)
n−ikt .

The function g is even and real-valued, so the sequence ĝ(k) is even and real-valued.
Hence the above is

= ĝ(0) log
ζ(σ)

ζ(1 + t)
+ 2

∞∑
k=1

ĝ(k) log
∣∣∣ ζ(σ + ikt)
ζ(1 + t+ ikt)

∣∣∣ .
If 1 ≤ k ≤ 1/t, then |ζ(σ+ikt)| � 1/|σ−1+ikt| � 1/|t+ikt| � |ζ(1+t+ikt)|. Thus
the logarithm above is O(1) for these k. If k > 1/t, then log ζ(σ+ ikt) � log log 4k
and log ζ(1+ t+ ikt) � log log 4k, and ĝ(k) � k−2 for all k �= 0, so the entire sum
is O(1). We note that ĝ(0) = uX(u) + Y (u). Thus

u log
∣∣∣ F (σ)
F (1 + t)

∣∣∣+log
∣∣∣ F (σ + it)
F (1 + t+ it)

∣∣∣ ≤ (uX(u)+Y (u)) log
ζ(σ)

ζ(1 + t)
+O(1) . (5.1)

Our use of this depends on the various cases.

Case 1. First we note that

log
∣∣∣ F (σ)
F (1 + t)

∣∣∣ = γ log ζ(σ) −�
∞∑

n=2

Λ(n)f(n)
(logn)n1+t

(5.2)

≤ γ log ζ(σ) +
∞∑

n=2

Λ(n)
(logn)n1+t

= γ log ζ(σ) + log ζ(1 + t) .

Clearly

log
∣∣∣ F (s)
F (1 + t+ it)

∣∣∣− log
∣∣∣ F (σ)
F (1 + t)

∣∣∣
= u log

∣∣∣ F (σ)
F (1 + t)

∣∣∣+ log
∣∣∣ F (s)
F (1 + t+ it)

∣∣∣− (u+ 1) log
∣∣∣ F (σ)
F (1 + t)

∣∣∣ . (5.3)

If u ≤ −1, then by (5.1) and (5.2) the above is

≤ (uX(u) + Y (u)) log
ζ(σ)

ζ(1 + t)
− (u+ 1)(γ log ζ(σ) + log ζ(1 + t)) +O(1)

= u
(
(X(u) − γ) log ζ(σ) − (X(u) + 1) log ζ(1 + t)

)
+ (Y (u) − γ) log ζ(σ) − (Y (u) + 1) log ζ(1 + t) +O(1) . (5.4)
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Since ζ(1 + t) � 1/t = (σ − 1)δ−1 � ζ(σ)1−δ , we have

log ζ(1 + t) = (1 − δ) log ζ(σ) +O(1) . (5.5)

We insert this in (5.4), and in doing so note that the O(1) error term is multiplied
by Y (u) + 1, which is bounded, and also by u(X(u) + 1). Since X(u) is an
odd function, it follows from (3.3) that X(u) = −1 + 1/(4u2) + O(u−4) as u →
−∞. Thus u(X(u) + 1) is uniformly bounded for u ≤ −1, and we find that the
expression (5.4) is

=
(
u(δX(u) − γ − 1 + δ) + δY (u) − γ − 1 + δ

)
log ζ(σ) +O(1) .

Our choice of u ensures that δX(u) − γ − 1 + δ = 0. By (1.12) it follows that

log |ζ(1 + t)| = log |ζ(1 + t+ it)| +O(1) . (5.6)

Thus

log |F (σ + it)| ≤ (δY (u) + δ − 1) log ζ(σ) +O(1) ,

which gives the stated bound in this case.

Case 2. We take u = −1 in (5.1). Since X(−1) = −2/π and Y (−1) = 2/π,
by (5.5) it follows that the right hand side is 4δ/π log ζ(σ) + O(1). By (5.6) it
follows that

log |F (σ + it)| ≤ (γ + 4δ/π)ζ(σ) +O(1) ,

which is the desired bound in this case.
It is noteworthy that in Case 2 we do not use the hypotheses that define this

case. Thus the bound in this case holds universally. The point is that in the other
cases one can do better.

Case 3. We first note that

log
∣∣∣ F (σ)
F (1 + t)

∣∣∣ = γ log ζ(σ) −�
∞∑

n=2

Λ(n)f(n)
(logn)n1+t

≥ γ log ζ(σ) −
∞∑

n=2

Λ(n)
(logn)n1+t

= γ log ζ(σ) − log ζ(1 + t) .

By (5.1) and (5.3) it follows that if u ≥ −1, then

log
∣∣∣ F (s)
F (1 + t+ it)

∣∣∣− log
∣∣∣ F (σ)
F (1 + t)

∣∣∣
≤ (uX(u) + Y (u)) log

ζ(σ)
ζ(1 + t)

− (u+ 1)(γ log ζ(σ) − log ζ(1 + t))

= u
(
(X(u) − γ) log ζ(σ) + (1 −X(u)) log ζ(1 + t)

)
+ (Y (u) − γ) log ζ(σ) + (1 − Y (u)) log ζ(1 + t) .
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We appeal to (5.5), and note—as we did in Case 1—that the multipliers of the
O(1) error term are uniformly bounded. Thus the above is

=
(
u(δX(u) − γ − δ + 1) + δY (u) − γ − δ + 1

)
log ζ(σ) +O(1) .

We choose u so that δX(u) − γ − δ + 1 = 0, and appeal to (5.6) to see that

log |F (σ + it)| ≤ (δY (u) − δ + 1) log ζ(σ) +O(1) .

This gives the stated bound, so our proof is complete.

6. Proof of Theorem 1.4

For 0 ≤ t ≤ σ − 1 we have F (σ) � F (σ + it), so the order of magnitude in this
interval is the same as at its upper endpoint, |F (σ + i(σ − 1))|. This corresponds
to δ = 0 in (1.11). Thus in the sequel we may suppose that (1.11) holds with
0 ≤ δ ≤ 1. By Theorem 1.3 we may take

ν(γ) = max
0≤δ≤1

μ(γ, δ) + 1 − δ . (6.1)

In Case 2 of Theorem 1.3 we have ν(γ, δ) ≥ γ+1+(4/π−1)δ, which is an increasing
function of δ. Thus in Case 2 we may assume that δ is as large as possible. It is
easy to check that if −1 ≤ γ ≤ −2/π and δ = (1 + γ)/(1 − 2/π), then the bound
given in Case 1 is the same as that given in Case 2. Similarly, if −2/π ≤ γ ≤ 1
and δ = (1 − γ)/(1 + 2/π), then the bound given in Case 2 is the same as that
given in Case 3. Hence if −1 ≤ γ ≤ −2/π, we may assume that we are in Case 1,
and if −2/π ≤ γ ≤ 1, we may assume that we are in Case 3.

Suppose that we are in Case 1. Then we choose u so that

X(u) = (γ + 1)/δ − 1, (6.2)

and the expression (6.1) is maxδ δY (u). As δ increases, X(u) decreases, and hence
u decreases. Since the values of δ and of u are in one-to-one correspondence, we
may take u to be the independent variable. As δ runs from (1 + γ)/(1 − 2/π) up
to 1, X(u) runs from −2/π down to γ, and hence u runs from −1 down to the uγ

for which X(uγ) = γ. From (6.2) we find that δ = (γ + 1)/(X(u) + 1). Hence

δY (u) = (γ + 1)
Y (u)

X(u) + 1
, (6.3)

and our object is to determine the largest size of this quantity. The quan-
tity Y/(X + 1) is the slope of the chord from (−1, 0) to (X,Y ), and the curve
(X(u), Y (u)) is concave downwards, so the slope is a decreasing function of u.
Hence its largest value occurs when u is smallest, which is to say when X(u) = γ.
But then the quantity is Y (u), so we have shown that we may take ν(γ) = Y (u)
when −1 ≤ γ ≤ −2/π.
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Suppose we are in Case 3. Then we choose u so that

X(u) = (γ − 1 + δ)/δ , (6.4)

and the quantity (6.1) is maxδ δY (u)+2−2δ. As δ increases from (1−γ)/(1+2/π)
to 1, X(u) increases from −2/π to γ, and u increases from −1 to the uγ for
which X(uγ) = γ. Since the values of δ and u are in one-to-one correspondence,
we may take u to be the independent variable. From (6.4) we see that δ =
(1 − γ)/(1 −X(u)). Hence

δY (u) + 2 − 2δ = 2 − (1 − γ)
Y (u) − 2
X(u) − 1

, (6.5)

and we need to determine the maximum of this quantity for u in the interval
[−1, uγ]. The quotient (Y (u) − 2)/(X(u) − 1) is the slope of the line passing
through the two points (X(u), Y (u)) and (1, 2). This is at first decreasing (which
is to say that the expression (6.5) is increasing), until u reaches the point u0 at
which the tangent line ux + y = uX(u) + Y (u) passes through the point (1, 2).
For u > u0, the slope (Y (u) − 2)/(X(u) − 1) is increasing, which is to say that
the expression is decreasing. Thus if −1 ≤ uγ ≤ u0, then the expression (6.5) is
maximised by taking u = uγ , in which case the quantity (6.5) is Y (uγ). However,
if u0 ≤ uγ ≤ 1, then the quantity (6.5) is largest in the interval [−1, uγ] when
u = u0, and then its value is

2 − (1 − γ)
Y (u0) − 2
X(u0) − 1

.

To summarize, we find that if −1 ≤ γ ≤ X(u0), then the point (γ, ν) lies on the
curve (X(u), Y (u)), and the worst δ is δ = 1. On the other hand, if X(u0) ≤ γ ≤ 1,
then the point (γ, ν) lies on the tangent line u0x+ y = u0X(u0) + Y (u0), and the
worst δ decreases linearly from 1 to 0.
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