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Abstract: Let f € Z[X,Y, Z] be a non-constant, absolutely irreducible, homogeneous polyno-
mial with integer coefficients, such that the projective curve given by f = 0 has a function field
isomorphic to the rational function field Q(7"). We show that all integral solutions of the Dio-
phantine equation f = 0 (up to those corresponding to some singular points) can be parametrized
by a single triple of integer-valued polynomials. In general, it is not possible to parametrize this
set of solutions by a single triple of polynomials with integer coefficients.
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Recently, the first author and L. Vaserstein proved that the set of all Pythagorean
triples can be parametrized by a single triple of integer-valued polynomials, but
not by a single triple of polynomials with integer coefficients (in any number of
variables) [2]. We denote by Int (Z™) the ring of integer-valued polynomials in m
variables,

Int (Z™) = {p € Q[X1, ..., Xm] | (Z™) C Z}.

In this paper we will generalize the affirmative part of [2] to such homogeneous
equations as define a (plane) projective curve with a rational function field.
Throughout this paper, f € Z[X,Y, Z]\ {0} denotes an irreducible polynomial
with integer coefficients, which is homogeneous of degree n > 1. Let Q be an
algebraic closure of Q and C; C P?(Q) the plane projective curve defined by

f:O)
Cr={(w:y:2) € PAQ) | f(z,,2) = 0} .

We will further suppose that the function field K = Q(Cy) of Cy over Q is iso-
morphic to the rational function field Q(7"). This implies that f is absolutely
irreducible (i.e., irreducible in Q[X,Y, Z]). Our assumption is satisfied, for in-
stance, if Cy has genus 0 and possesses a regular point defined over Q.
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Recall that a point (z : y : 2) € Cy is singular if and only if the local ring
R(z.y:zy C K of all rational functions of Cy that are defined at (z : y : 2) is not
a discrete valuation ring (cf. [3, pp. 56-57]). In this case, there are finitely many
discrete valuation rings Op, C K above R(;.,..) (meaning R,.,..) C Op, and
M(g.y:z) C Pi, where m(,.,..) and P; denote the corresponding maximal ideals).
Let C}’ad denote the set of those singular points (x : y : z) € C for which there
exists no discrete valuation ring Op above R(y.,..) with Op/P ~ Q. These points
will be “bad” for our main theorem.

We investigate the set of integer solutions of the Diophantine equation
f(X,Y,Z) =0,

Ly :={(z,y,2) €2’ | f(x,y,2) =0},
up to those solutions which correspond to the “bad” points of the curve. We set
L9 = {(wy.2) € Ly | (22 y 2 2) € OP)

Theorem 1. Let f € Z[X,Y, Z]\ {0} be an irreducible, homogeneous polynomial
of degree n > 1 such that the function field K = Q(CY) is isomorphic to Q(T).
Then there exist polynomials g1, gz, gs € Int(Z™) for some m € N such that

Lp\ Ly = {(91@),92@),93(&)) ‘ ze€ Zm} ;
in other words, up to the “bad” solutions, all solutions of the Diophantine equation
F(X.Y,2) =0 1)

can be parametrized by one triple of integer-valued polynomials.

The suppositions of Theorem 1 imply that for n < 2 the curve C; has no
singular point. For n =1, Cy is just a line and the result of Theorem 1 is obvious
(even with g; € Z[U,V]). For n = 2, we immediately obtain

Corollary 2. Let f € Z[X,Y, Z] be an absolutely irreducible quadratic form. Then
there exist polynomials g1, ge, g3 € Int(Z™) for some m € N such that

;= {(9@).9:@) @) |zcz"}.

For the proof of Theorem 1 we will use the resultant of polynomials and there-
fore recall some well-known results on it (cf. [5, Chap. I, §9-10]).
Given polynomials g, h € Z[U, V] in the variables U, V, let Resy (g, h) € Z[U] de-
note the resultant of g, h when considered as polynomials in the variable V' over the
ring Z[U], and, vice versa, Resy (g, h) € Z[V] the resultant of g, h as polynomials
inU.

Lemma 3. Let g,h € Z[U, V] be relatively prime polynomials.
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a) Then Resy(g,h) # 0 and Resy(g,h) # 0, and there exist polynomials r, s,
r', s € Z[U, V] with

gr+ hs = Resy(g,h) and gr' + hs' = Resy(g,h).

b) If g and h are homogeneous of degree di and ds, resp., then Resy(g,h) and
Resy (g, h) are each homogeneous of degree dida, and consequently

Resy(g,h) = aV¥®%  and  Resy(g,h) =bU%  with a,bc Z\ {0}.

We will also use the implication (D)=-(B) of the main theorem of [1], which
for the sake of completeness we state in the following

Proposition 4. Let k € N and suppose that S C ZF is the set of integer k-tuples
in the range of a k-tuple of polynomials with rational coefficients, as the variables
range through the integers, i.e., there exist hy,..., hy € Q[X1,...,X,]| for some
r € N such that

S={(h@),.... (@) [z €Z}NZ" .

Then S is parametrizable by a k-tuple of integer-valued polynomials, i.e., there
exist g1, ..., gk € Int(Z™) for some m € N such that

S=A{(g1(@),-.,gr(@) [z €Z"} .

Proof of Theorem 1. Let f be as in the statement of the theorem. Then there
exist homogeneous polynomials hy, he, hy € Q[U, V] such that

(X,Y,2) = (m(U, V), ha(U, V), ha(U, V)

defines a birational (projective) isomorphism between Cy and the projective line.
We may assume hq, ha, hs € Z[U, V] and ged(hy, ha, hs) = 1 (see, for instance, [4,
Sect. 2]).

For every Q-rational point (u : v) € PHQ), (hi(u,v) : ha(u,v) : hg(u,v))
is the evaluation of the birational isomorphism at this point. This means that
(h1(u,v) : ha(u,v) : h3(u,v)) is a Q-rational point of Cy and its local ring is
contained in some discrete valuation ring of K of degree 1. Therefore

Lo = {(whl(u,v),whg(u,v),whg(u,v)) ’ U, v, W € (@} =

{(w hl(u,v),whg(u,v),whg(u,v)) ‘ w € Q, u,v € Z with ged(u,v) = 1}

is exactly the set of all rational solutions of (1) except for those corresponding to
points of C}?ad, and L\ C?ad = LoNZ3 is just the set of all integral triples of Lg.

We claim that there exists some d € N such that for all u,v € Z with
ged(u,v) =1 it follows that
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ged (hy(u,v), ha(u,v), hs(u,v)) ‘ d .

Let ged(hy,he) = ¢t € Z[U,V] and put h; = th; with b, € Z[U, V], i = 1,2.
Since R}, hl, are relatively prime, we obtain that Resy (h},h}) = aU? with some
0+#acZand § >0, and polynomials py, ps € Z[U, V] with p1hy + pahge = atU?°.
Since hy, ha, hz were assumed to be relatively prime, ged(atU?®, hs) = cU® with
c € Zand 0 < a < 4. Dividing both atU° and hs by cU® and applying the
same reasoning as above we finally obtain that there are 0 # a1 € Z, §; > 0 and
polynomials ¢1, w2, @3 € Z[U, V] with

©1h1 + paho + @shs = a U . (2)

Using Resy in the same way, we obtain polynomials q,19,%5 € Z[U, V],
0 # a2 € Z and d2 > 0 such that

PYrh + aho + hshs = ax VO . (3)

For any u,v € Z with ged(u,v) =1, (2) and (3) imply that gcd(hl(u, v), ha(u,v),
hs(u, v)) divides both aju® and asv%. It follows that

ged (h (u, v), ha(u, v), hs(u, v)) ‘ lem(aq,a2) :=d .
So we obtain polynomials k; = éhi € Q[U, V] with rational coefficients such that
Ly \L?ad = {(w k1 (u, v), w k2 (u,v), w ks(u,v)) } u, v, w € Z} Nz .
Now we apply Proposition 4, which yields the assertion of Theorem 1. |

Remarks. If the integers aj,as appearing in (2) and (3) in the proof of Theo-
rem 1 are both equal to 1, then k; = h; € Z[U,V] and Ly \ [,?ad can actually be
parametrized by a triple of polynomials with integral coefficients (compare Exam-
ple 2 below).

When applying Proposition 4, we have no information about the number m of
variables of the integer-valued polynomials g; appearing in Theorem 1.

Example 1. This example shows that for n > 3 “bad” singular points may appear.
Consider

f=X34+Y3+X27Z-2Y?Z c7Z[X,Y, 7).

Then (0:0:1) € Cf is a singular point. Only one discrete valuation ring lies over
the local ring Rq.0.1), and this valuation ring has residue class field isomorphic to

Q(v/2). A birational (projective) isomorphism between Cy and the projective line
is given by

(X:Y:2)= ((V(2U2 V) (UQRUE - V) (VR 4 U3)) ,

but there is no Q-rational point (u : v) € P}(Q) corresponding to the singular
point (0: 0 : 1). Indeed, the corresponding point (u : v) = (1 :1/2) is only defined
over Q(v/2).
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Example 2. In contrast to the Pythagorean triples (corresponding to the unit
circle, see [2]), we know that for the equilateral hyperbola the set £; can be
parametrized by a single triple of polynomials with integer coefficients. Let

f=XY -Z?cZ|X,Y,Z].

All Q-rational points of Cy are given by (u? : v? : wv) with (u : v) € PY(Q). If
u,v € Z with ged(u,v) = 1 then also ged(u?, v?, uv) = 1. So the set of all integral
solutions of XY — Z2? = 0 is given by

2

{(v?w, v?w, uvw) | u,v,w € Z} .
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