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CANTORIAN TABLEAUX REVISITED

Michel Mendès France

À Jean-Marc Deshouillers, en toute amitié

Abstract: This article is a discussion of Cantor’s famous diagonal proof showing the existence
of transcendental numbers. We study three questions raised in a previous joint paper [1].
Keywords: transcendental numbers, Cantor’s diagonal, continued fractions.

1. Introduction and definitions

We start out with a very simple and yet beautiful idea of Cantor’s [2] that dates
back to 1891.

Fix a basis of numeration s > 2. Consider the infinite tableau T where each
row is the s -expansion of a real algebraic number in the unit interval [0, 1[ with
the convention that to rational numbers a/sb (a > 0, b > 0 integers) corresponds
two rows, one with a tail 0∞ and one with a tail (s− 1)∞ . Assume all algebraic
numbers in [0, 1[ actually appear in the tableau T .
Let

T =




a11 a12 a13 · · ·
a21 a22 a23 · · ·
a31 a32 a33 · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·




where aij ∈ [s] := {0, 1, 2, . . . , s−1} . Cantor’s goal was to establish the existence of
transcendental numbers. He argued as follows. For every n , define bn 6= ann, bn ∈
[s]. Then obviously the number

b = .b1b2b3 · · ·

cannot be a row of T since if it where, then it would appear at some rank say i ,
and we would conclude that bi = aii which is absurd. Therefore the number b is
transcendental.
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In [1] we actually show that the diagonal number

a = .a11a22a33 · · ·

is itself transcendental; no need to perturb the diagonal. The proof goes as follows.
First observe that to each algebraic number

αi = .ai1ai2 · · · ain · · ·

corresponds at least one algebraic number

αk = .ak1ak2 · · · akn · · ·

such that for all n , akn 6= ain . For example, in basis 2, αk = 1− αi and in basis
s > 3, αk = αi + 1/(s− 1) (mod 1).

Now if a was algebraic, it would appear at some row i of the tableau T , so
a = αi . Let αk as above. Then akk is the k -th digit of αi and therefore akk = aik ,
which contradicts akn 6= ain for n = k . This establishes the transcendency of a .

Permuting the rows of T creates new diagonals and hence new transcendental
numbers. Define the permanent of T , P (T ), to be the set of all the diagonals when
permuting the rows in all possible ways. In [1] we showed that for s = 2, P (T )
is the set of all transcendental numbers in the unit interval. Actually R. Gray
[3] established before us a similar result concerning the disturbed diagonals but
clearly for s = 2 this is really the same result as ours!

Now for s > 3 the situation is quite different. In [1] we established that the
transcendental numbers in P (T ) contain each infinitely many times each one of
the s-digits 0, 1, 2, . . . , s− 1. Liouville transcendental numbers

∞∑
n=0

1/sn!

are therefore missing.
Let V be the family of those transcendental numbers which each contain

infinitely many times each one of the digits 0, 1, 2, . . . , s − 1. The question arises
whether P (T ) = V or P (T ) & V . We shall prove here (Theorem 3) that it is the
second possibility that holds.

We now extend our definitions. T will be a finite or infinite square tableau
on an alphabet A = {a1, a2, . . . , as} which at the very end of our paper, may well
become infinite. Let L(T ) be the set of words (resp. sequences) formed by the
rows. The permanent P (T ) is as before the set of the diagonals of T and of all
the tableaux obtained by permuting the rows. In Cantor’s example above, L(T ) is
the family of algebraic numbers (or rather their s-expansions) in [0, 1[ and P (T )
is a subset of transcendental numbers. Then of course L(T ) ∩ P (T ) = ∅ .



Cantorian tableaux revisited 331

In the general case we agree to say that T is a Cantorian tableau if L(T ) ∩
P (T ) = ∅ . A theorem becomes a definition. Here are a few examples. Choose
A = {a, b} . Easily seen, the two tableaux

(
a b
b a

) 

a b a
b a b
b a b




are Cantorian. In the second one the two last rows are equal; this is not prohibited.
The next tableau 


a b a
a a a
b b b




is not Cantorian since L(T ) ∩ P (T ) 3 aba (permute rows 2 and 3).
Denote by C(n, s) the number of Cantorian tableaux of size n × n on an

alphabet with s letters. Obviously

C(n, s) 6 sn
2
.

Estimating C(n, s) seems in general quite difficult. We shall show (Theorems 1
and 2) that

C(2, s) = s2(s− 1)2,

and that, as n grows to infinity,

C(n, 2) > 2{.61+o(1)}n2
.

The inequality improves a result of [1] where we had shown the exponent to be
bounded by below by { 1

2 + o(1)}n2.
It would obviously be interesting to know the value of

lim
n→∞

logC(n, 2)/ log 2n
2

if it exists. Our result shows that the corresponding liminf is greater than .61 . . .
(actually we’ll show that the lower bound is larger than .6169). Comparing with
numerical evidence leads to the conjecture

lim
n→∞

logC(n, 2)
log 2n2 = .6169 . . .

n 2 3 4 5 6 7 8 9 10 11

103 logC(n, 2)
log 2n2 500 509 673 657 675 656 651 632 626 610
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2. The value of C(2, s)C(2, s)C(2, s)

Theorem 1. The number of 2× 2 Cantorian tableaux on an s letter alphabet is

C(2, s) = s2(s− 1)2

Proof. The theorem is a consequence of a slightly more general result. Let N(n, s)
be the number of non-Cantorian tableaux of size n×n . Then C(n, s) +N(n, s) =
sn

2
. Let M(n, s) be the number of n×n tableaux T such that the diagonal of T

appears among the rows. Obviously

M(n, s) 6 N(n, s).

M(n, s) is easily computed. Indeed, first note that the number of tableaux such
that row 1 and the diagonal coincide is sn

2−n+1. Row 1 plays no special role so
that the number of tableaux T such that row i = diagonal is also 2n

2−n+1. In
terms of probability, denoting by Ai the event that row i is equal to the diagonal,
we thus obtain

Prob(Ai) =
sn

2−n+1

sn2 =
1

sn−1 .

Now, it is easy to see that the events Ai are independent. Therefore

Prob(∪16i6nAi) =
(
n

1

)
1

sn−1 −
(
n

2

)(
1

sn−1

)2

+
(
n

3

)(
1

sn−1

)3

− · · ·

= 1−
(

1− 1
sn−1

)n
.

Therefore

M(n, s) = sn
2
[
1−

(
1− 1

sn−1

)n]
= sn

2 − (sn − s)n.

Unfortunately the inequality N(n, s) > M(n, s) does not convey much information
on the size of N(n, s) as n→∞.

We now specialize to n = 2 :

M(2, s) = s4 − (s2 − s)2.

In this very particular case, observe that

N(2, s) = M(2, s),

so that C(2, s) = s4 −M(2, s) = (s2 − s)2.
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3. A lower bound for C(n, 2)C(n, 2)C(n, 2)

Theorem 2.

lim
n→∞

inf
logC(n, 2)

log 2n2 > .6169486436 . . .

Proof. Let 3 6 k 6 n. Consider the following n × n tableau T on the alphabet
A = {a, b} .
• Row 1 contains only b ’s.
• Row 2, row 3, . . . , row k − 1 contain each k occurrences of b .
• The last n− k + 1 rows contain only a ’s.

Such a tableau is necessarily Cantorian since the number of occurrences of b in
each word of the permanent P (T ) is at least 1 and at most k − 1. Therefore
P (T ) ∩ L(T ) = ∅ .

Now count the number of such T for a given k . For each row 2, 3, . . . , k− 1
there are

(
n
k

)
possibilities, hence

(
n
k

)k−2
possible tableaux. Therefore

C(n, 2) > max
k

(
n

k

)k−2

.

To approximate this lower bound, put k = αn, 0 < α < 1. As n→∞ , we have

log
(
n
αn

)αn−2

log 2n2 → φ(α)

where

φ(α) =
(
α2 log

1
α

+ α(1− α) log
1

1− α
) /

log 2.

Numerical computation shows that

max
0<α<1

φ(α) ≈ .6169486436.

At this point one may justly ask what can be said about C(n, s) for s > 2.
In Section 1, we mentioned the following property. A sufficient condition for a
tableau, be it finite or not, to be Cantorian is that to each row corresponds at
least one row which differs from it coordinate-wise. As a consequence, it is easy to
see that

C(n, s) > {s(s− 1)}n[n/2]

and therefore

lim inf
n→∞

logC(n, s)
log(sn2)

> 1
2

(
1 +

log(s− 1)
log s

)
.

For s = 2, this lower bound is not as good as our Theorem 2. Note however that
it tends to 1 as s increases to infinity.
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4. Infinite tableaux

We restrict ourselves to the most striking case namely when the rows are the
s−expansions of the algebraic numbers in the unit interval. We know that P (T )
represents the s−expansions of transcendental numbers. Let V be those trans-
cendental numbers whose s−expansion contains infinitely often each one of the
s−digits 0, 1, . . . , s− 1. For s = 2, V is the family of all the transcendental num-
bers in [0, 1[, and we already mentioned that in that case P (T ) = V (see [1] and
[3]). If s > 3 we also know that P (T ) ⊂ V (see [1]).

Theorem 3. Suppose s > 3 . Then

P (T ) & V

Proof. Let x ∈ [0, 1[

x = .x1x2x3 · · · xj ∈ [s].

We define the shell of x to be the set σ(x) of numbers

y = .y1y2y3 · · · yj ∈ [s]

such that for all j, yj 6= xj . Obviously y ∈ σ(x)⇔ x ∈ σ(y). Numbers should be
associated to their s−expansion and conversely so that those rationals with two
different expansions should be considered as distinct numbers.

Cantor’s initial argument using perturbed diagonals states that if

d = .a11a22a33 · · ·

is the diagonal of T , then σ(d) consists of transcendental numbers and more
generally, σ(P (T )) also.

Let x be any algebraic number the s−expansion of which contains at least
two digits each one infinitely often, for example x = s

s2−1 . Consider the set σ(x).
Since s > 3, σ(x) is uncountable and sufficiently large so that σ(x)∩V 6= ∅ .
We claim that P (T ) ∩ σ(x) ∩ V = ∅ . If this is true then there exists z ∈ V

(actually z ∈ V ∩ σ(x)) such that z /∈ P (T ). As a matter of fact all numbers in
V ∩ σ(x) would share that property. The theorem would then be established.

So we are left to prove P (T ) ∩ σ(x) ∩ V = ∅ . Suppose that on the contrary
P (T ) ∩ σ(x) ∩ V 6= ∅ . Let y ∈ P (T ) ∩ σ(x) ∩ V . In particular y ∈ P (T ) and
by Cantor’s argument σ(y) only contains transcendental numbers. On the other
hand y ∈ σ(x) so that x ∈ σ(y) this is absurd; since x is algebraic.
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5. A final remark

Instead of s−expansions one could consider for example continued fraction expan-
sions of real irrational numbers in [0, 1[.

[0, a1, a2, a3, · · ·]
The partial quotients aj belong to N = {1, 2, 3, . . .} so the alphabet we now
consider is infinite. Suppose we wished to mimic some of our previous results. We
would consider an infinite tableau each row being the sequence of partial quotients
of an irrational algebraic number in ]0, 1[. If we were to prove that the diagonal
of this tableau represents the continued fraction expansion of a transcendental
number, we would need the following unknown (?) property:

To each algebraic irrational number

α = [0, a1, a2, a3, · · ·]
corresponds at least one algebraic irrational number β

β = [0, b1, b2, b3, · · ·]
such that for all i, bi 6= ai .

This is obviously true if α is quadratic . . . but this is the only case I know
of. Allow me to call this a conjecture.

Curiously enough this is trivial in another context. Let k be a finite field
with characteristic p 6= 0. k((X−1)) represents the field of Laurent series with
coefficients in k . Elements α(X) ∈ k((X−1)) have continued fraction expansions

α(X) = [a0(X), a1(X), a2(X), · · ·]
where the partial quotients are polynomials and j > 1⇒ degree aj(X) > 1.

Algebraic elements in k((X−1)) are naturally defined. Let T be a tableau
whose rows are the continued expansions of the algebraic irrational elements α(X)
”in the unit interval” i.e. for which a0(X) = 0.

Claim. The diagonal of T is the continued fraction expansion of a transcendental
elements in k((X−1)) .

Proof. To every algebraic element

α(X) = [0, a1(X), a2(X), · · ·]
corresponds an algebraic element

β(X) = α(Xp) = [0, a1(Xp), a2(Xp), · · ·]
and trivially, ∀i, ai(Xp) 6= ai(X). Then conclude as in Section 1.

L’auteur tient remercier Jean Creignou et Gérald Tenenbaum pour leur aide.
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