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PLURISUBHARMONIC ENVELOPES AND
SUPERSOLUTIONS

Vincent Guedj, Chinh H. Lu & Ahmed Zeriahi

Abstract

We make a systematic study of (quasi-)plurisubharmonic en-
velopes on compact Kähler manifolds, as well as on domains of Cn,
by using and extending an approximation process due to Berman
[Ber19]. We show that the quasi-plurisubharmonic envelope of
a viscosity super-solution is a pluripotential super-solution of a
given complex Monge–Ampère equation. We use these ideas to
solve complex Monge–Ampère equations by taking lower envelopes
of super-solutions.

Introduction

Weak subsolutions and supersolutions to complex Monge–Ampère
equations play a central role in the development of complex analysis
and geometry. These have been studied extensively, in the pluripoten-
tial sense, since the fundamental works of Bedford and Taylor [BT76,
BT82].

The notions of viscosity sub/super/solutions to complex Monge–Am-
père equations

(CMA) (θ + ddcu)n = eufdV

have been introduced in [HL09, EGZ11, W12, HL13]. It has been
notably shown in [EGZ11, Theorem 1.9 and Proposition 1.11] that an
u.s.c. function is a viscosity subsolution if and only if it is plurisubhar-
monic and a pluripotential subsolution. The connection between viscos-
ity and pluripotential supersolutions has however remained mysterious
so far. Our first main result gives a satisfactory answer to [DGZ16,
Question 40]:

Theorem A. Let v be a viscosity supersolution to a complex Monge–
Ampère equation (CMA). The (quasi-)plurisubharmonic envelope P (v)
is a pluripotential supersolution to (CMA).
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The envelope P (v) depends on the context (local/global) (see Sec-
tion 2). We refer the reader to section 3 for the definition of viscosity
supersolutions and to Theorems 3.5 and 3.9 for more precise statements.

The proof of this result relies on an approximation scheme which is
of independent interest. This method has been introduced by Berman
(see [Ber19, Theorem 1.1]) when v is smooth. We need to extend it
here in order to deal with functions v which are less regular, proving in
particular the following:

Theorem B. Let (X,ω) be an n-dimensional compact Kähler man-
ifold and fix µ an arbitrary non-pluripolar positive measure. Let v :
X → R be a bounded Borel-measurable function. Let ϕj ∈ E1(X,ω) be
the unique solution to the complex Monge–Ampère equation

(ω + ddcϕj)
n = ej(ϕj−v)µ.

Then (ϕj) converges in capacity to the (ω, µ)-envelope Pω,µ(v), where

Pω,µ(v) = (sup{ϕ ∈ PSH(X,ω) : ϕ ≤ v µ-a.e. on X})∗ .

When µ is a volume form on X and u is quasi-upper-semicontinuous
on X, the ω-psh upper (ω, µ)-envelope is just the usual ω-psh envelope
(see Proposition 2.11).

Recall that a function v is quasi-continuous (resp. quasi-usc) if for all
ε > 0, there exists an open subset U with capacity less than ε such that
the restriction of v to the complement X \ U is continuous (resp usc).
Quasi-psh functions form a large class of quasi-continuous functions.
We use here the Monge–Ampère capacity whose definition is recalled in
Section 1.2.

It is classical that the minimum min(u, v) of two viscosity superso-
lutions u, v is again a viscosity supersolution. Note however that the
minimum of two psh functions is no longer psh. It follows nevertheless
from (an extension of) Theorem A that P (min(u, v)) is both psh and
a pluripotential supersolution. We extend this observation in Lemma
4.1 far beyond the viscosity frame (which deals with continuous densi-
ties), and use it to solve complex Monge–Ampère equations. We show
in particular the following:

Theorem C. Let (X,ω) be a compact Kähler manifold and µ a non-
pluripolar Radon measure in some open subset of X. Assume there
exists a finite energy subsolution u0 ∈ E(X,ω), i.e. such that

(ω + ddcu0)n ≥ eu0µ, in Ω.

Then the envelope of supersolutions

ϕ := P
(

inf{ψ : ψ ∈ E(X,ω) and (ω + ddcψ)n ≤ 1Ωe
ψµ}

)
is the unique pluripotential solution of (ω + ddcϕ)n = 1Ωe

ϕµ.
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The inequality (ω + ddcψ)n ≤ 1Ωe
ψµ is understood in the sense that

the measure (ω+ddcψ)n is concentrated in Ω where this inequality holds
in the sense of positive Borel measures.

This result could be restated in the more familiar form: if there exists
a subsolution, then there exists a solution. Let us emphasize here that
the measure µ is not necessarily a Radon measure in all of X. A partic-
ular case of interest in complex differential geometry is when µ = fdVX
is a volume form whose density is smooth and positive in some Zariski
open set Ω, but does not belong to L1. The existence of a subsolution
insures that f does not blow up too fast near ∂Ω and is easy to check in
many concrete examples: we thus provide an alternative proof of the ex-
istence of Kähler–Einstein metrics on varieties with negative first Chern
class and semi log-canonical singularities, a result first obtained by dif-
ferent techniques by Berman–Guenancia [BG14] which generalizes the
famous results of Yau [Yau78], and Aubin [Au78].

On our way to proving the above theorems, we establish several other
results of independent interest: we show in particular that

• the finite energy functional Ip satisfies a quasi-triangle inequality
for any p > 0 (Theorem 1.6 largely extends [BBEGZ19, Theorem
1.8]);
• generalized capacities are all quantitatively comparable (see The-

orem 1.11 which generalizes [DNL15, Theorem 2.9]).

Organization of the paper. We introduce the main pluripotential
tools in Section 1, providing simplifications and extensions of some use-
ful results (see Theorems 1.6 and 1.11). We make a systematic study
of (q)psh envelopes in Section 2 and establish Theorem B. Inspired by
this convergence result we prove Theorem A in Section 3. Theorem C
is proved in Section 4 while other applications are given in Section 5.

Acknowledgement. We warmly thank Robert Berman for fruitful dis-
cussions concerning his convergence method. We thank the referee for
useful comments which improve the presentation of the paper.

1. Preliminaries

We review recent results in pluripotential theory and establish a few
extensions of the latter that are needed in this paper. We refer the
reader to [BT82, Kol98, GZ05, BEGZ10] and the references therein
for more details.

In the whole paper, (X,ω) is a compact Kähler manifold of dimension
n ∈ N∗, and θ is a closed smooth (1, 1)-form on X.

1.1. Pluripotential theory in big cohomology classes. A function
u is called quasi-plurisubharmonic on X (qpsh for short) if in any local
holomorphic coordinates it can be written as u = ρ+ϕ where ρ is smooth
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and ϕ is plurisubharmonic. It is called θ-plurisubharmonic (θ-psh for
short) if it additionally satisfies

θ + ddcu ≥ 0

in the weak sense of currents. We let PSH(X, θ) denote the set of all
θ-psh functions on X which are not identically −∞.

By definition the class [θ] is big if there exists ψ ∈ PSH(X, θ) such
that θ + ddcψ ≥ εω for some small constant ε > 0.

A function u has analytic singularities if it can locally be written as

u(z) = c log
k∑
j=1

|fj(z)|2 + h(z),

where the f ′js are local holomorphic functions and h is smooth.

By the fundamental approximation theorem of Demailly [Dem92]
any quasi-plurisubharmonic function u can be approximated from above
by a sequence (uj) of (α+εjω)-psh functions with analytic singularities,
where α is a closed smooth (1, 1)-form such that α+ddcu ≥ 0. Applying
this result to the potential ψ of the Kähler current θ + ddcψ, it follows
that there exists θ-psh functions with analytic singularities.

Following [Bou04, BEGZ10] the ample locus of {θ} is defined to be
the set of all x ∈ X such that there exists a θ-psh function on X with
analytic singularities which is smooth in a neighborhood of x.

A θ-psh function u is said to have minimal singularities if it is less
singular than any other θ-psh function on X, more precisely if for any
v ∈ PSH(X, θ) there exists a constant C = C(u, v) such that u ≥ v−C.
The function

Vθ := sup{ϕ : ϕ ∈ PSH(X, θ) and ϕ ≤ 0}

has minimal singularities.
If u1, ..., uk are θ-psh functions with minimal singularities on X, then

they are locally bounded in the ample locus Ω := Amp({θ}). By the
seminal work of Bedford–Taylor [BT76, BT82] the current θu1∧...∧θuk
is well defined, and positive in Ω. As the total mass is bounded, one
can extend it trivially to the whole of X. It was proved in [BEGZ10]
that the current obtained by this trivial extension is closed. In par-
ticular, when k = n and u1 = ... = un this procedure defines the
(non-pluripolar) Monge–Ampère measure of u.

For a general θ-psh function u, the approximants uj := max(u, Vθ−j)
have minimal singularities. One can show that the sequence of positive
Borel measures 1{u>Vθ−j}(θ + ddcuj)

n is increasing in j. Its limit

MAθ(u) := lim↗ 1{u>Vθ−j}(θ + ddcuj)
n

(in the strong sense of Borel measures) is the non-pluripolar Monge–
Ampère measure of u. We denote it by MA(u) if the form θ is fixed.
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The volume of the class [θ] is given by the total mass of the Monge–
Ampère measure of Vθ (see [Bou02, BEGZ10]).

A set E ⊂ X is called pluripolar if locally it is contained in the −∞
locus of some plurisubharmonic function. It was shown in [GZ05] that
E is pluripolar if and only if E ⊂ {φ = −∞} for some φ ∈ PSH(X,ω).
One can replace the Kähler form ω by any big form θ. Indeed if θ is
big then there exists ψ ∈ PSH(X, θ) such that θ + ddcψ ≥ εω for some
positive constant ε. The function ψ′ := εφ+ψ is θ-psh and its −∞-locus
contains E.

1.2. Convergence in capacity. Following [BT82], [Kol03], [GZ05],
[BEGZ10] we consider the Monge–Ampère capacity with respect to the
form θ,

Capθ(E) := sup

{∫
E

MA(u) : u ∈ PSH(X, θ), Vθ − 1 ≤ u ≤ Vθ
}
.

A sequence (uj) is said to converge in capacity to u if for any ε > 0,

lim
j→+∞

Capθ(|uj − u| > ε)→ 0.

The definition does not depend on θ because Capθ and Capθ′ are
comparable for any big form θ′. Indeed, it was proved in [DDL18,
Theorem 2.3] that there exists a constant C = C(θ, θ′) ≥ 1 such that

C−1Capnθ ≤ Capθ′ ≤ CCap
1/n
θ .

The following lemma will be used several times in this paper:

Lemma 1.1. Assume that a sequence (uj) in PSH(X, θ) has uni-
formly minimal singularities (i.e. there exists C > 0 such that uj ≥
Vθ − C for all j) and converges in capacity to u. Then MA(uj) weakly
converges to MA(u). Moreover, if ϕ1, ϕ2 are quasi-plurisubharmonic
functions then

lim inf
j→+∞

1{ϕ1<ϕ2}MA(uj) ≥ 1{ϕ1<ϕ2}MA(u),

and lim supj→+∞ 1{ϕ1≤ϕ2}MA(uj) ≤ 1{ϕ1≤ϕ2}MA(u).

Proof. The weak convergence of MA(uj) to MA(u) on each relatively
compact open subset U of the ample locus Ω follows from [X96, Theo-
rem 1]. The complement X \ U can be chosen to have arbitrarily small
capacity, as X \ Ω is pluripolar. This justifies the weak convergence of
the Monge–Ampère measures on the whole of X. The second statement
follows since {ϕ1 < ϕ2} is open and {ϕ1 ≤ ϕ2} is closed in the plurifine
topology (see [BT87]). q.e.d.

We now provide a simple criterion insuring that a sequence converges
in capacity (recall that convergence in L1 does not imply convergence
of the Monge–Ampère measures [Ceg83]):
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Lemma 1.2. Assume that (uj) ∈ PSH(X, θ)N converges to u ∈
PSH(X, θ) in L1(X). If uj ≥ u + εjψ for any j ∈ N, where ψ is
quasi-plurisubharmonic and (εj) decreases to 0, then (uj) converges in
capacity towards u.

The result may be well-known to experts. The (sketch of) the proof
is given below for the reader’s convenience.

Proof. By multiplying ω with some big constant A > 0 we can assume
that uj , u, ψ are ω-psh. We can also assume that all functions involved
here are negative. By [GZ05, Proposition 3.6] we have

Capω(ϕ < −t) ≤ C

t
,∀t > 0,

where C > 0 depends on
∫
X ϕω

n. It thus suffices to prove that
max(uj ,−t) converges to max(u,−t) in capacity for any t > 0. For
this reason we can now assume that uj , u are bounded.

Classical arguments show that the sequence vj := max(uj , u) con-
verges in capacity to u. Thus it remains to show that for a fixed ε > 0,

lim
j→+∞

Capω(uj ≤ u− ε) = 0.

The proof is completed by noting that

{uj ≤ u− ε} ⊂
{
ψ ≤ − ε

εj

}
.

q.e.d.

1.3. Finite energy classes. Finite energy classes have been intro-
duced in [GZ07] and further studied in [BEGZ10, DDL18]. They
provide a very convenient frame to study convergence properties of θ-
psh potentials.

Definition 1.3. A function u ∈ PSH(X, θ) belongs to E(X, θ) if the
total mass of MA(u) is equal to the volume of θ.

It is proved in [DDL18] building on [Dar16] that the singularity
type of functions in E(X, θ) is the same as that of θ-psh functions with
minimal singularities (in particular they have the same Lelong numbers
at every point).

Definition 1.4. For p > 0, the set Ep(X, θ) consists of functions u
in E(X, θ) such that

∫
X |u− Vθ|

pMA(u) < +∞.

More generally, a weight is a smooth increasing function χ : R → R
such that χ(−∞) = −∞. The class Eχ(X, θ) consists of functions u ∈
E(X, θ) such that ∫

X
|χ(u)|MA(u) < +∞.
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The (unnormalized) Monge–Ampère energy of a θ-psh function u with
minimal singularities is

E(u) :=
1

n+ 1

n∑
k=0

∫
X

(u− Vθ)(θ + ddcu)k ∧ (θ + ddcVθ)
n−k.

One extends the definition to arbitrary θ-psh functions by

E(ϕ) := inf{E(u) : u ∈ PSH(X, θ) with minimal singularities, u ≥ ϕ}.

It is shown in [BEGZ10, BBGZ13] that ϕ ∈ E1(X, θ) if and only if
E(ϕ) is finite. Moreover E is increasing, concave along affine curves in
E1(X, θ) and upper semicontinuous with respect to the L1-topology.

We need the following generalization of [BEGZ10, Proposition 2.10]:

Lemma 1.5. Fix p > 0. Assume that (uj) is a decreasing sequence
of θ-psh functions with minimal singularities and ϕ ∈ Ep(X, θ) is such
that

sup
j∈N∗

∫
X
|uj − ϕ|pMA(uj) < +∞.

Then u := limj uj belongs to Ep(X, θ).

Proof. If p = 1 we can use the concavity of the Monge–Ampère energy
E. It follows from the assumption and from [BBGZ13, proposition 2.1]
that

E(uj)− E(ϕ) ≥
∫
X

(uj − ϕ)MA(uj) ≥ −C,

for some C > 0. Hence Proposition 2.10 in [BEGZ10] gives the con-
clusion.

We now deal with the general case p > 0. If θ is additionally semi-
positive, and p > 1, it follows from [DNG18] (see [Dar17, Dar15] for
the Kähler case) that the functional

Ip(u, v) :=

∫
X
|u− v|p(MA(u) + MA(v))

satisfies a quasi-triangle inequality. From this observation and the as-
sumption we get a uniform bound on Ip(uj , 0), hence limj uj belongs
to Ep(X, θ). For an arbitrary θ, and p > 0, we use the quasi-triangle
inequality from Theorem 1.6 below. q.e.d.

The following quasi-triangle inequality insures that Ip induces a uni-
form structure on Ep(X, θ):

Theorem 1.6. Let p > 0 and u, v, ϕ ∈ PSH(X, θ) with minimal
singularities. There exists a uniform constant C > 0 depending on p, n
such that

Ip(u, v) ≤ C(Ip(u, ϕ) + Ip(v, ϕ)).
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As indicated above, this result was already known when θ is semi-
positive. The proof given here covers the general case and also provides
a simpler proof of the previous cases.

Proof. Observe that for a positive measure µ and a non-negative mea-
surable function f on X the integral

∫
X fdµ can be expressed as

(1.1)

∫
X
fdµ =

∫ +∞

0
µ(f > t)dt.

Using this and a change of variable t = (2s)p we can write∫
X
|u− v|pMA(u) =

∫ +∞

0
MA(u)(|u− v|p > t)dt

= 2pp

∫ +∞

0
sp−1MA(u)(|u− v| > 2s)ds.(1.2)

For s > 0 we observe that the following inclusion holds

(ϕ− s ≤ u < v − 2s) ⊂
(
ϕ <

u+ 2v

3
− s

3

)
.

Hence, using this and the trivial inclusion

(u < v − 2s) ⊂ (u < ϕ− s) ∪ (ϕ− s ≤ u < v − 2s)

we can write

MA(u)(u < v − 2s) ≤ MA(u)(u < ϕ− s)

+ MA(u)

(
ϕ <

u+ 2v

3
− s

3

)
.

Using this, the inequality MA(u) ≤ 3nMA((u+ 2v)/3) and the compar-
ison principle, we obtain

MA(u)

(
ϕ <

u+ 2v

3
− s

3

)
≤ 3nMA(ϕ)

(
ϕ <

u+ 2v

3
− s

3

)
.

The comparison principle also yields

MA(u)(v < u− 2s) ≤ MA(v)(v < u− 2s).

We then use the same argument as above to get

MA(u)(|u− v| > 2s) ≤ MA(u)(u < ϕ− s) + MA(v)(v < ϕ− s)

+ 3nMA(ϕ)

(
ϕ <

u+ 2v

3
− s

3

)
+ 3nMA(ϕ)

(
ϕ <

v + 2u

3
− s

3

)
.
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From this and (1.1) we thus obtain∫ +∞

0
psp−1MA(u)(|u− v| > 2s) ≤

∫ +∞

0
psp−1MA(u)(u < ϕ− s)ds

+

∫ +∞

0
psp−1MA(v)(v < ϕ− s)ds

+ 3n
∫ +∞

0
psp−1MA(ϕ)

(
ϕ <

u+ 2v

3
− s

3

)
ds

+ 3n
∫ +∞

0
psp−1MA(ϕ)

(
ϕ <

2u+ v

3
− s

3

)
ds

≤
∫
X
|u− ϕ|pMA(u) +

∫
X
|v − ϕ|pMA(v)

+ 3n+p

∫
X

∣∣∣∣ϕ− u+ 2v

3

∣∣∣∣p MA(ϕ)

+ 3n+p

∫
X

∣∣∣∣ϕ− 2u+ v

3

∣∣∣∣p MA(ϕ).

Using this, (1.2) and the elementary inequality

(a+ b)p ≤ max(2p−1, 1)(ap + bp)

for a, b > 0, p > 0, we arrive at∫
X
|u− v|pMA(u) ≤ 2p

∫
X
|u− ϕ|pMA(u) + 2p

∫
X
|v − ϕ|pMA(v)

+ 3n22p+1

∫
X

(|ϕ− u|p + |ϕ− v|p) MA(ϕ).

We then proceed similarly to treat the term
∫
X |u−v|

pMA(v) and arrive
at the conclusion. q.e.d.

1.4. Convergence in energy. Monotone convergence implies conver-
gence in capacity, which insures convergence of the Monge–Ampère op-
erator, as indicated above. A stronger notion of convergence has been
introduced in [BBGZ13, BBEGZ19]:

Definition 1.7. A sequence (uj) ∈ E1(X, θ)N converges in energy to
u ∈ E1(X, θ) if

0 ≤ I(uj , u) :=

∫
X

(uj − u)(MA(u)−MA(uj))→ 0.

The functional I is well adapted to normalized potentials. For un-
normalized ones, one should use

I1(uj , u) =

∫
X
|uj − u| (MA(uj) + MA(u)) .

We let the reader check that if a sequence (uj) ∈ E1(X, θ)N is normalized
by supX uj = 0, it converges in energy to u if and only if I1(uj , u)→ 0.
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It is shown in [BBGZ13] that convergence in energy implies conver-
gence in capacity. The converse is however not true as the following
example shows:

Example 1.8. Assume ω is a Kähler form and ϕ is an ω-psh function
which locally near a point z0 (identified with zero in a local coordinate
chart) is defined by ϕ(z) = a log |z|2, for some a > 0 small enough.
Then the ω-psh function ϕ has a Dirac Monge–Ampère mass at 0.

Define

uj :=
1

j
ϕj ; ϕj := max(ϕ,−jn+2).

We let the reader check that uj converges to u = 0 in capacity. For
any j ∈ N we have MA(ϕj)(ϕ ≤ −jn+2) ≥ c > 0. In fact, we only
need to know that ϕ 6∈ E(X,ω) and c is the loss of the total mass of the
non-pluripolar Monge–Ampère measure of ϕ. Then the energy of uj is
computed by∫

X
|uj |MA(uj) ≥

∫
{ϕ≤−jn+2}

|uj |MA(uj)

≥ jn+1

∫
{ϕ≤−jn+2}

j−nMA(ϕj) ≥ jc.

This shows that (uj) does not converge to 0 in energy.

The next result says that these convergences are equivalent if the
sequence is bounded from below by a finite energy function.

Proposition 1.9. Let uj , u ∈ Ep(X, θ), p > 0, and assume that
uj converges in capacity to u. If there exists ϕ ∈ Ep(X, θ) such that
uj ≥ ϕ,∀j, then uj converges to u with respect to the quasi-distance Ip,
i.e. ∫

X
|uj − u|p(MA(uj) + MA(u))→ 0.

Conversely one can show that if uj converges in energy to u, then
up to extracting and relabeling, there exists ϕ ∈ Ep(X, θ) such that
uj ≥ ϕ,∀j.

Proof. The idea of the proof is essentially contained in [GZ07],
[BDL15]. It costs no generality to assume that uj ≤ 0 which also
implies that u ≤ 0. By dominated convergence it suffices to prove that

lim
j→+∞

∫
X
|uj − u|pMA(uj) = 0.

By using a truncation argument as in [GZ07, Theorem 2.6] one can
show that MA(uj) converges weakly to MA(u). We claim that

lim
s→+∞

∫
{uj≤u−s}

|uj − u|pMA(uj) = 0
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uniformly in j. Indeed the comparison principle in E(X, θ) shows that∫
{uj≤u−s}

|uj − u|pMA(uj) = p

∫ +∞

s
tp−1MA(uj)(uj < u− t)dt

≤ 2np

∫ +∞

s
tp−1MA

(
uj + u

2

)(
ϕ <

uj + u

2
− t

2

)
dt

≤ 2np

∫ +∞

s
tp−1MA(ϕ)(ϕ < Vθ − t/2)dt.

The last term converges to zero as s→ +∞ because ϕ ∈ Ep(X, θ). Thus
the claim is proved. One can also show that

lim
s→+∞

∫
{u≤uj−s}

|uj − u|pMA(uj) = 0

uniformly in j.
Therefore, it remains to show that

lim
j→+∞

∫
{|uj−u|≤s}

|uj − u|pMA(uj) = 0

for any fixed s > 0. But the latter follows from Theorem 1.11 below.
q.e.d.

1.5. Generalized capacities. Let (X,ω) be a compact Kähler mani-
fold of dimension n and fix θ a smooth closed (1, 1)-form such that [θ]
is big.

Definition 1.10. For ϕ,ψ ∈ PSH(X, θ) such that ϕ < ψ the (ϕ,ψ)-
capacity is defined by

Capϕ,ψ(E) := sup

{∫
E

MA(u) : u ∈ PSH(X, θ), ϕ ≤ u ≤ ψ
}
, E ⊂ X.

When θ is Kähler these generalized Monge–Ampère capacities were
introduced in [DNL17, DNL15]. When ϕ = ψ−1 = Vθ−1 we recover
the Monge–Ampère capacity Capθ.

It was observed by Di Nezza [DN15] that for each t ≥ 1, setting
ϕ = Vθ − t, ψ = Vθ, one has

Capθ(E) ≤ Capϕ,ψ(E) ≤ tnCapθ(E), ∀E ⊂ X.

When θ is Kähler all (ϕ,ψ)-capacities with ϕ ∈ E(X, θ) are comparable
[DNL15]. We generalize this result in the context of big classes.

Theorem 1.11. Assume that 0 ≥ ϕ ∈ Eχ(X, θ) for some convex
weight χ : R− → R−. Then there exists a continuous function Fχ :
R+ → R+ such that Fχ(0) = 0 and for all E ⊂ X,

Capϕ,ψ(E) ≤ Fχ(Capθ(E)).
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Proof. We can assume without loss of generality that supX ψ = 0.
Then ψ ≤ Vθ, hence

Capϕ,ψ(E) ≤ Capϕ,Vθ(E).

It thus suffices to treat the case ψ = Vθ.
Fix E ⊂ X a non-pluripolar Borel subset. We can assume Capθ(E) <

1. Fix a constant t > 1, a θ-psh function u such that ϕ ≤ u ≤ Vθ and
set ut := max(u, Vθ − t). Observe that Vθ − t ≤ ut ≤ Vθ hence

Vθ − 1 ≤ t−1ut + (1− t−1)Vθ ≤ Vθ.
It follows that for all E ⊂ X,∫

E
MA(ut) ≤ tn

∫
E

MA(t−1ut + (1− t−1)Vθ) ≤ tnCapθ(E).

On the other hand by the comparison principle we also have∫
{u≤Vθ−t}

MA(u) ≤ 2n
∫
{ϕ≤(u+Vθ−t)/2}

MA((u+ Vθ − t)/2)

≤ 2n
∫
{ϕ≤Vθ−t/2}

MA(ϕ)

≤ 2n

|χ(−t/2)|

∫
X
|χ(ϕ− Vθ)|MA(ϕ).

Thus there is a constant C > 0 depending on Eχ(ϕ) such that∫
E

MA(u) ≤ tnCapθ(E) +
C

|χ(−t/2)|
.

We can choose t = (Capθ(E))−1/(n+1) and get the conclusion. q.e.d.

1.6. Degenerate Monge–Ampère equations. Given a non pluripo-
lar positive Radon measure µ on X, it is useful to consider the equations

(1.3) MA(ϕ) = eλϕµ,

where λ ∈ R is a constant. When λ = 0 a normalization condition
µ(X) = Vol(θ) should be imposed. We will use the following result
obtained by a variational method in [BBGZ13]:

Theorem 1.12. Assume that λ > 0. Then there exists a unique
ϕ ∈ E1(X, θ) solving (1.3).

The main idea of the proof in [BBGZ13] is to maximize the func-
tional

Fλ(ψ) = E(ψ) +
1

λ
log

(∫
X
eλψdµ

)
.

The continuity and the coercivity of the functional Fλ is automatic
when λ > 0. When λ = 0 the problem is more subtle and the resolution
so far relies on a regularity result of Vθ obtained in [BD12]: one uses
the fact that MA(Vθ) has bounded density with respect to Lebesgue
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measure. The latter is a direct consequence of our Theorem A (see
Proposition 5.2). An alternative proof of Proposition 5.2 has been given
recently in [Ber19], [DDL18] using ideas from the viscosity theory in
[EGZ11].

We will also need the domination principle which, in the context of
big classes, was first established in [BEGZ10] for θ-psh functions with
minimal singularities. The result still holds for functions in E(X, θ) as
follows from an argument due to Dinew (see [BL12, DDL18]).

Proposition 1.13 ([BEGZ10, DDL18]). Let ϕ,ψ be θ-psh func-
tions on X and assume that ϕ ∈ E(X, θ). If MA(ϕ)(ϕ < ψ) = 0 then
ϕ ≥ ψ on X.

We will occasionally use the following version of the comparison prin-
ciple, which follows from the domination principle (see [DDL18]):

Proposition 1.14. Let ϕ,ψ ∈ E(X, θ), µ be a non-pluripolar positive
measure and f be a Borel measurable function on X such that

MA(ϕ) ≥ eβϕe−fµ ; MA(ψ) ≤ eβψe−fµ,
where β > 0 is a constant. Then ϕ ≤ ψ.

2. Envelopes

Upper envelopes are classical objects in Potential Theory. They were
used in the Perron method for solving the Dirichlet problem for the
Poisson equation as well as the free boundary problems for the Laplace
operator.

Upper envelopes of psh functions were considered by Bremermann,
Walsh, Siciak, and Bedford and Taylor to solve the Dirichlet problem for
the complex Monge–Ampère equation in strictly pseudo-convex domains
(see [BT76]).

We consider here envelopes of quasi-psh functions on compact Kähler
manifolds, following [GZ05, Ber19].

2.1. Usual envelopes. Let X be a compact Kähler manifold of com-
plex dimension n and let θ be a closed smooth real (1, 1)-form on X
whose cohomology class is big.

Definition 2.1. Given a Lebesgue measurable function h : X → R
which is bounded from below, we define the θ-psh envelope of h as
follows

Pθ(h) := (sup{u ∈ PSH(X, θ) : u ≤ h in X})∗ ,
where the star means that we take the upper semi-continuous regular-
ization.

We will also denote by P (h) the envelope Pθ(h) if the form θ is fixed.
In this section we start a systematic study of these envelopes.
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When h = −1E is the negative characteristic function of a subset E
then P (h) = h∗E is the so called relative extremal function of E [GZ05].

When h = 0 then P (0) = Vθ was introduced in [DPS01] as an
example of a θ-psh function with minimal singularities. When h is
smooth Berman and Demailly have shown in [BD12] that P (h) has
locally bounded laplacian in Amp(θ). In particular Vθ = P (0) has
locally bounded laplacian and the Monge–Ampère measure of Vθ can be
described as

MA(Vθ) = 1{Vθ=0}θ
n.

In the case when the class [θ] is big and nef, a PDE proof of this re-
sult was given by Berman in [Ber19]. The fundamental observation of
Berman is that the envelope can be obtained as the limit of solutions to
a one-parameter family of complex Monge–Ampère equations (this idea
has been recently used in [LN15], [KN16], [BL18]). By establishing a
uniform laplacian estimate for this family of solutions Berman showed
that Pθ(h) has locally bounded laplacian in the ample locus.

In particular, when the cohomology class of θ is Kähler then Pθ(h) has
bounded laplacian on X. The optimal C1,1 regularity of Pθ(h), conjec-
tured by Berman, has recently been confirmed by Tosatti [Tos18] and
independently by J. Chu and B. Zhou [CZ17] using the C1,1 estimate
in [CTW17] and the convergence method of Berman [Ber19].

We need here to study these envelopes for functions h that are less
regular. When h = 0 on E and +∞ on X \ E then P (h) is the global
extremal θ-psh function of E that was considered in [GZ05, BEGZ10].
It follows from [GZ05, BEGZ10] that if h is finite on a non-pluripolar
set then P (h) is a well-defined θ-psh function on X.

Proposition 2.2.
1. If h : X → R is a bounded measurable function then P (h) is a θ-

psh function with minimal singularities which satisfies P (h) ≤ h quasi
everywhere in X. Moreover

P (h) := sup{u ∈ PSH(X, θ) : u ≤ h quasi everywhere in X}.
2. If (hj) is a decreasing sequence of bounded measurable functions

which converge pointwise to h in X, then P (hj) decreases to P (h) in
X.

3. If (hj) is an increasing sequence of bounded quasi-lsc functions
converging pointwise to h, then P (hj) increases to P (h) quasi every-
where.

4. If h is continuous and θ is Kähler then Pθ(h) is continuous in X.

In these statements quasi everywhere means outside a pluripolar set.

Proof. Assume that h is a bounded Lebesgue measurable function on
X. The fact that P (h) is a θ-psh function with minimal singularities
follows directly from the definition. The set {x ∈ X : P (h)(x) > h(x)}
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is negligible. It follows from a classical result in pluripotential theory
[BT82] that negligible sets are pluripolar, thus P (h) ≤ h quasi every
where on X.

We now prove the identity in the first statement. Let ϕ denote the
function on the right-hand side. It is obvious that P (h) ≤ ϕ. As a
countable union of pluripolar sets is also pluripolar, by Choquet’s lemma
and the same argument as above we see that ϕ ≤ h quasi everywhere
on X. The equality follows if we can show that P (h1) = P (h2) for two
bounded functions such that {h1 6= h2} is pluripolar. Indeed, the set

E := {P (h1) > h1} ∪ {h1 6= h2}
is also pluripolar. Hence there exists φ ∈ PSH(X, θ) such that φ = −∞
on E. Now for any λ ∈ (0, 1) the function λφ + (1 − λ)P (h1) is θ-
psh on X and bounded from above by h2. Letting λ → 0 one sees
that P (h1) ≤ P (h2) off a pluripolar set, hence the inequality holds
everywhere. Conversely one can show that P (h2) ≤ P (h1), completing
the proof of the claim, hence the first statement is proved.

The second statement is straightforward. We now prove the third
one. Assume that (hj) is a sequence of bounded quasi-lsc functions that
increase pointwise to a bounded function h. Then P (hj) also increase
quasi everywhere to some ϕ ∈ PSH(X, θ) with minimal singularities.
One observes immediately that ϕ ≤ P (h). It follows from Lemma 2.3
that MA(P (hj)) vanishes in {P (hj) < hj}. As P (hj) ≤ ϕ and hj ↗ h
it follows that MA(ϕ) also vanishes in {ϕ < P (h)}. The domination
principle (Proposition 1.13) insures that ϕ = P (h).

One can prove the last statement by approximation. Let (hj) be
a sequence of smooth functions on X converging uniformly to h. It
follows from [Ber19] that P (hj) has bounded laplacian, in particular
it is continuous. As P (hj) uniformly converges to P (h) the conclusion
follows. q.e.d.

The following result is an analogue of the corresponding result of
Bedford and Taylor [BT82, Corollary 9.2]:

Lemma 2.3. Let h : X → R be a bounded Lebesgue measurable
function on X and let L(h) be the lower semi-continuity set of h. Then
MA(P (h)) puts no mass on the set L(h) ∩ {P (h) < h}. In particular if
Cap∗ω(X \ L(h)) = 0, then∫

X
(P (h)− h)MA(P (h)) = 0.

Proof. The proof proceeds as in the classical case using a balayage
argument (see [BT82, Corollary 9.2]). We repeat it here for the conve-

nience of the reader. For notational convenience we set ĥ := P (h). Fix

a point x0 ∈ L(h) ∩ {ĥ < h}. Observe that by lower semi-continuity

at x0, the point x0 lies in the interior of the set {ĥ < h}. Indeed, fix
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δ > 0 such that ĥ(x0) − h(x0) ≤ −2δ. By upper semi-continuity of ĥ
and lower semi-continuity of h at x0 there exists a small ball B of center
x0 such that maxB̄ ĥ < minB̄ h− δ.

Let ρ be a smooth local potential of θ in a neighborhood D of B̄.
Shrinking the ball if necessary we can assume that oscB̄ρ < δ. Then

u := ĥ+ρ is psh in D. By Bedford and Taylor (see [BT82, Proposition
9.1]) there exists a psh function v in D such that v = u in D \B, v ≥ u
in D and (ddcv)n = 0 in B.

Since v = u in ∂B, the comparison principle insures v ≥ u in B̄. On
the other hand on ∂B, we have

v = ĥ+ ρ ≤ max
B̄

ĥ+ max
B̄

ρ.

By the classical maximum principle we get v ≤ maxB̄ ĥ+ maxB̄ ρ in B̄,
hence v − ρ ≤ h− δ + oscB̄ρ ≤ h in B.

Therefore since v−ρ = ĥ in ∂B, the function w defined by w := v−ρ
in B and w = ĥ in X \ B is θ-psh in X and satisfies w ≤ h in B and

w = ĥ ≤ h quasi everywhere in X \B. This yields w ≤ ĥ in X.

By construction we have w := v−ρ ≥ u−ρ = ĥ in B and then w = ĥ
in B and (θ + ddcĥ)n = (ddcv)n = 0 in B. q.e.d.

The result above extends to any function h which is quasi lower semi-
continuous in the sense that for any δ > 0 there exists a compact set
K ⊂ X such that Capω(X \K) ≤ δ and the restriction h|K is a lower
semi-continuous function.

We need the following fact which follows from the Tietze–Urysohn
lemma.

Lemma 2.4. Let h be a quasi lower semi-continuous function in X.
Then there exists a decreasing sequence (hj) of lower semi-continuous
functions in X which converges to h in capacity and quasi everywhere
in X.

Proof. By definition there exists a sequence of compact sets (K`)
such that Capω(X \K`) ≤ 2−` and the restriction h|K` is a lower semi-

continuous function in K`. Take K̃j := ∪1≤`≤jK` instead of (Kj), we
can assume that the sequence (Kj) is increasing.

Since a lower semi-continuous function on a compact set is the limit
of an increasing sequence of continuous functions, it follows from the
Tietze–Urysohn Lemma that there exists a lower semi-continuous func-
tion Hj in X such that Hj |Kj = h|Kj .

Let hj := sup{H` : ` ≥ j}. Then (hj) is a decreasing sequence of
lower semi-continuous functions in X such that hj = h in Kj , hence it
converges to h in F := ∪jKj . Since Cap∗ω(X \ F ) = 0 it follows that hj
converges to h quasi everywhere in X.
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We claim that (hj) converges to h in capacity. Indeed let δ > 0 be
fixed and set for j ∈ N, Ej := {x ∈ X : hj ≥ h+δ}. Since hj = h in Kj ,
it follows that Ej ⊂ X \Kj . Hence Cap∗ω(Ej) ≤ Cap∗ω(X \Kj) ≤ 2−j ,
and then

lim
j→+∞

Cap∗ω({x ∈ X : hj ≥ h+ δ}) = 0,

which proves our claim. q.e.d.

Proposition 2.5. Let h be a bounded quasi lower semi-continuous
function in X and set ĥ = Pθ(h) the θ-psh envelope of h. Then MAθ(ĥ)

puts no mass on the set {ĥ < h} i.e.∫
X

(ĥ− h)MA(ĥ) = 0.

Proof. By the previous lemma there exists a decreasing sequence (hj)
of lsc functions in X such that (hj) converges to h in capacity.

From Lemma 2.3 we know that
∫
X(hj − ĥj)MA(ĥj) = 0 for any j.

We also know by Lemma 2.2 that (ĥj) decreases to ĥ. In particular the
convergence holds in energy, hence

lim
j→+∞

∫
X
ĥjMA(ĥj) =

∫
X
ĥMA(ĥ).

On the other hand the functions hj are lower semi-continuous, uniformly
bounded and converge to h in capacity, hence (see [GZ, DDL18])∫

X
hMA(ĥ) ≤ lim inf

j→+∞

∫
X
hMA(ĥj) = lim inf

j→+∞

∫
X
hjMA(ĥj).

This implies that MA(ĥ) puts no mass on the set {ĥ < h}. q.e.d.

The orthogonal relation
∫
X(P (u) − u)MA(P (u)) = 0 does not hold

in general, as the following example shows:

Example 2.6. Assume X = CPn is the complex projective space
equipped with the Fubini–Study metric θ = ωFS . Let B denote the
unit ball in Cn ⊂ CPn and consider u to be −1 on B and 0 elsewhere.
Then P (u) is the relative extremal function (see [GZ05]) of B which
takes values −1 on the boundary ∂B: we let the reader check that for
z ∈ Cn,

P (u)(z) + log
√

1 + |z|2 = max

{
log
√

1 + |z|2 − 1; log |z|+ log 2

2
− 1

}
,

thus MA(P (u)) does not vanish on ∂B ⊂ {P (u) < u}.

Proposition 2.5 generalizes to any upper bounded Borel function h
which admits a subextension ψ ∈ E(X, θ) i.e. ψ ≤ h in X.
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Theorem 2.7. Let h be a quasi lower semi-continuous function
bounded from above in X. Assume there exists ψ ∈ E(X, θ) s.t. ψ ≤ h
in X. Then

1. ĥ = Pθ(h) ∈ E(X, θ) and ĥ ≤ h quasi everywhere in X.

2. MAθ(ĥ) puts no mass on the set {ĥ < h}.

Proof. We may assume that h ≤ 0 in X. Since ψ ∈ E(X, θ) there
exists a convex increasing weight χ : R− → R− such that ψ ∈ Eχ(X, θ)
(see [GZ07, BEGZ10]). Since ψ ≤ h, we conclude from the definition

that ψ ≤ ĥ in X, hence ĥ ∈ E(X, θ) by [GZ07, BBEGZ19].

Set hj := max(h,−j), by the previous theorem MA(ĥj) is carried by

the set {ĥj = hj}. Hence for any j,∫
X

min(hj − ĥj , 1)MA(ĥj) = 0.

Since hj = h off the set {h < −j} ⊂ {ψ < −j} and Capω({ψ <
−j}) → 0 as j → +∞, it follows that hj → h in capacity in X. Hence

φj := min(hj−ĥj , 1) converges to φ := min(h−ĥ, 1) in capacity. Lemma
2.8 insures

lim
j→+∞

∫
X
|φj − φ|MA(ĥj) = 0.

On the other hand since φ is bounded and lower semi-continuous on
X it follows from convergence property of the complex Monge–Ampère
operator that ∫

X
φMA(ĥ) ≤ lim inf

j→+∞

∫
X
φMA(ĥj).

As φ ≥ 0 we thus get
∫
X φMA(ĥ) = 0, finishing the proof. q.e.d.

Lemma 2.8. Fix 0 ≥ ϕ ∈ E(X, θ) and let (fj) be a sequence of
positive uniformly bounded measurable functions on X which converges
in capacity to 0. Then

lim
j→+∞

sup

{∫
X
fjMA(ψ) : ψ ∈ PSH(X, θ), ϕ ≤ ψ ≤ 0

}
= 0.

Proof. Fix ψ ∈ E(X, θ) such that ϕ ≤ ψ ≤ 0. Since fj is uniformly
bounded, we have fj ≤ C for any j. Now for fixed ε > 0 we have∫
X
fjMA(ψ) ≤ C

∫
{fj≥ε}

MA(ψ)+εVol(θ) ≤ CCapϕ,Vθ(fj ≥ ε)+εVol(θ).

It follows from Theorem 1.11 that Capϕ,Vθ(fj ≥ ε) converges to 0 as
j → +∞. The conclusion follows by letting ε→ 0. q.e.d.
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2.2. Envelopes with respect to a measure. Let µ be a positive
measure on X which does not charge pluripolar sets.

Definition 2.9. The (θ, µ)-envelope of a measurable function u :
X → R is defined by

Pθ,µ(u) := (sup{ϕ ∈ PSH(X, θ) : ϕ ≤ u µ− a.e.})∗ .
This notion generalizes the one introduced in Definition 2.1.

Proposition 2.10. Assume that u is bounded from below and there
is b > 0 such that µ(u < b) > 0. Then Pθ,µ(u) is a well-defined θ-
psh function with minimal singularities. Moreover, Pθ,µ(u) ≤ u holds
µ-almost everywhere.

If (hj) is a decreasing sequence of bounded measurable functions which
converge pointwise to h in X, then Pθ,µ(hj) decreases to Pθ,µ(h) in X.

Proof. We first prove that Pθ,µ(u) is bounded from above. Indeed,
fix an arbitrary θ-psh function ϕ such that ϕ ≤ u µ-a.e. Set

K := {x ∈ X : ϕ(x) < b},
so that µ(K) > 0. Then ϕ−b ≤ V ∗θ,K , where V ∗θ,K is the global extremal

θ-psh function of K. It follows from Theorem 1.11 that Capθ(ϕ < b) ≥
c > 0, where c does not depend on ϕ. Indeed, since µ is non pluripolar
we can find ψ ∈ E(X, θ) with supX ψ = −1 such that MA(ψ) = µ.
Hence by definition of the capacity,

Capψ,Vθ(ϕ < b) ≥ µ(ϕ < b) ≥ µ(u < b) =: c1 > 0.

By Theorem 1.11 we know that F (Capθ(E)) ≥ Capψ,Vθ(E) for every
Borel subset E. The function F is continuous and increasing, hence
Capθ(ϕ < b) ≥ F−1(c1) =: c2 > 0.

Since the set K has capacity ≥ c, it follows from [GZ05, BEGZ10]
that supX ϕ ≤ C, where C depends only on c.

Now, since the family defining Pθ,µ(u) is uniformly bounded from
above, the sup envelope is well defined as a θ-psh function with minimal
singularities. It follows from Choquet’s lemma that Pθ,µ(u) ≤ u holds
µ-almost everywhere on X.

The proof of the last assertion is straightforward. q.e.d.

Proposition 2.11. If µ is a volume form and u is bounded and quasi
upper semi-continuous on X, then Pθ,µ(u) = Pθ(u).

Proof. Fix an arbitrary function ϕ ∈ PSH(X, θ) such that ϕ ≤ u
almost everywhere with respect to Lebesgue measure. Assume that u is
upper semi-continuous. Fix x0 ∈ X and consider a local chart around
x0. Let ρ be a smooth local potential of θ in this chart. The sub-mean
value inequality yields

ϕ(x0) + ρ(x0) ≤ lim sup
ε→0

∫
B(x0,ε)

(u(x) + ρ(x))dV (x) ≤ u(x0) + ρ(x0),
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where the last inequality holds because u is upper semicontinuous and
ρ is continuous on X.

Assume now that u is quasi upper semi-continuous on X. For each
fixed j ∈ N there exists a compact set Kj ⊂ X such that Capω(X\Kj) ≤
2−j and the restriction of u on Kj is upper semi-continuous. We can also
assume that Kj is increasing in j. Let uj be a bounded function on X
which is upper semi-continuous and uj = u on Kj . We can impose that
(uj) is increasing in j. It follows from the sub-mean value inequality
that

ϕ(x0) ≤ lim sup
ε→0

∫
B(x0,ε)

u(x)dV (x)

≤ lim sup
ε→0

∫
B(x0,ε)

(u(x)− uj(x))dV (x) + lim sup
ε→0

∫
B(x0,ε)

uj(x)dV (x)

≤ 2−j sup
X

(u− uj) + uj(x0).

Thus for x ∈ ∪jKj we have that ϕ(x) ≤ u(x). Since X \ ∪jKj is
pluripolar, it follows that ϕ ≤ u quasi everywhere on X, thus ϕ ≤ Pθ(u).

q.e.d.

In general the (θ, µ)-envelope is different from the usual one as the
following example shows:

Example 2.12. Take a non-pluripolar set E ⊂ X which has zero
Lebesgue measure. Let u be the function that takes value −1 on E and
0 on X \ E. Take µ = ωn and θ = ω. Then the (θ, µ)-envelope of u
is identically 0 while its usual envelope Pω(u) is the relative extremal
function of E which is not identically zero because E is non-pluripolar.

We will see later on that for any constant C > 0, the function u
defined in the example above cannot be a viscosity supersolution of the
equation

−(ω + ddcu)n + Cωn = 0.

2.3. Approximation of envelopes and proof of Theorem B. Fix
a probability measure µ on X which does not charge pluripolar sets.
For each j ∈ N∗ it follows from [BEGZ10, BBGZ13] that there exists
a unique θ-psh function ϕj with minimal singularities such that

(2.1) MA(ϕj) = ej(ϕj−u)µ.

If µ is a smooth volume form and u is smooth on X, Berman proved
in [Ber19] that (ϕj) converges in energy toward the Monge–Ampère
envelope Pθ(u)1 . The purpose of this section is to relax the regularity
assumption on µ and u. We first observe the following

1The convergence result in [Ber19] has been recently generalized to measures
satisfying the Bernstein–Markov condition.
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Lemma 2.13. Let φ be the unique function in E1(X, θ) such that
MAθ(φ) = eφµ. Then

(2.2) ϕj ≥
(

1− 1

j

)
Pθ,µ(u) +

φ

j
+

1

j
(−n log j + inf

X
u).

Proof. Denote by ψj the right-hand side of (2.2) and note that ψj ∈
E1(X, θ). Using the fact that Pθ,µ(u) ≤ u holds µ-a.e. on X, one can
check that ψj is a pluripotential subsolution of (2.1). It thus follows
from the pluripotential comparison principle that ϕj ≥ ψj . q.e.d.

Theorem 2.14. Assume that µ is a non-pluripolar positive measure
and u is a bounded Borel measurable function. Then the sequence (ϕj)
converges in energy to the envelope Pθ,µ(u).

Proof. In view of Lemma 1.9, Lemma 2.13 and Lemma 1.2 it suffices
to prove that (ϕj) converges to Pθ,µ(u) in L1.

We claim that the sequence (supX ϕj) is bounded. Indeed, assume
this is not the case. After extracting and relabeling we can assume
that supX ϕj ↗ +∞. The sequence ψj := ϕj − supX ϕj is contained in
a compact set of L1(X,ωn). We can thus extract a subsequence, still
denoted by (ψj) that converges to ψ ∈ PSH(X, θ) in L1(X,ωn). The
set

P := {x ∈ X : sup
j
ϕj(x) < +∞}

is contained in {ψ = −∞}, hence it is pluripolar.
By assumption on u there exists s > 0 such that u ≤ s onX. Consider

Aj := {x ∈ X : ϕj > 2s}.

As u ≤ s in X, using (2.1) we obtain µ(Aj) ≤ e−jsVol({θ}). Thus for j
large enough,

µ

⋃
k≥j

Ak

 ≤ e−sjVol({θ})
1− e−s

< µ(X).

Now the complement of
⋃
k≥j Ak in X is contained in P , a pluripolar

set which is negligible with respect to µ, a contradiction. Thus the claim
is proved, i.e. supX ϕj is bounded.

It follows now from compactness properties of θ-psh functions (see
[GZ05]) that the sequence (ϕj) is relatively compact in L1. It suffices to
prove that any cluster point of this sequence coincides with Pθ,µ(u). Let
ϕ be such a cluster point. Extracting and relabeling we can assume that
ϕj converges in L1 to ϕ. It follows from Lemma 2.13 that ϕ ≥ Pθ,µ(u).
Consider

ϕ̃j :=

(
sup
k≥j

ϕj

)∗
.
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Then ϕ̃j decreases pointwise to ϕ. Fix ε > 0 and set

Uj := {x ∈ X : ϕj(x) > u(x) + ε} ; Ũj := {x ∈ X : ϕ̃j(x) > u(x) + ε}.
As negligible sets are also pluripolar and µ does not charge these sets
we get

µ(Ũj) ≤
∑
k≥j

µ(Uk) ≤
Vol({θ})e−jε

1− e−ε
.

Thus µ(U) = 0 where U := ∩j∈N∗Ũj ⊃ {ϕ > u + ε}. Letting ε → 0 we
obtain µ(ϕ > u) = 0 hence ϕ ≤ Pθ,µ(u), finishing the proof. q.e.d.

3. Viscosity vs pluripotential supersolutions

Let (X,ω) be a compact Kähler manifold of dimension n and fix θ
a smooth closed (1, 1)-form on X which represents a big cohomology
class.

3.1. Background on viscosity solutions. Let f : X → R+ be a
continuous function.

Definition 3.1. Let u : X → R∪{−∞} be an upper semicontinuous
function. An upper test function for u at x0 is a function q : Vx0 → R
defined in a neighborhood Vx0 of x0 such that u ≤ q in Vx0 with u(x0) =
q(x0).

One can define similarly lower tests. Upper test functions are used
to define the notion of viscosity subsolutions:

Definition 3.2. Let u be a real-valued upper semi-continuous func-
tion in an open set U ⊂ X. We say that the inequality

(θ + ddcu)n ≥ eufdV
holds in the viscosity sense in U if u is finite on U and if for any x0 ∈ U
and any C2 upper test function q of u at x0 the inequality (θ+ddcq)n ≥
eqfdV holds at x0.

We shall equivalently say that u is a viscosity subsolution of the
equation (θ + ddcu)n = eϕfdV .

The notion of viscosity supersolution is defined similarly with a subtle
twist that we emphasize now:

Definition 3.3. Let u be a real-valued lower semi-continuous func-
tion in an open set U ⊂ X. We say that the inequality

(θ + ddcu)n ≤ eufdV
holds in the viscosity sense in U if u is finite in U and if for any x0 ∈ U
and any C2 lower test function q of u at x0 the inequality

(θ + ddcq)n+ ≤ eqfdV
holds at x0.
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Here α+ = α if the (1, 1)-form α is semipositive and α+ = 0 otherwise.
We shall equivalently say that u is a viscosity supersolution of the

equation (θ + ddcϕ)n = eϕfdV .

Definition 3.4. A viscosity solution is a function that is both a
viscosity subsolution and a viscosity supersolution in the ample locus of
[θ].

We refer the reader to [EGZ11, W12, Ze13] for basic properties
of viscosity sub/super-solutions to degenerate complex Monge–Ampère
equations. We stress that viscosity subsolutions are θ-psh [EGZ11] and
admit upper tests at almost every point by [DD19]. The analogous
properties for viscosity supersolutions are far less obvious.

3.2. The global context. Consider the following Monge–Ampère
equation

(3.1) (θ + ddcu)n = eufωn,

where f is a non-negative continuous function on X.

3.2.1. Envelope of viscosity supersolutions.

Theorem 3.5. If u is a viscosity super-solution of (3.1) then Pθ(u)
is a pluripotential super-solution of (3.1).

This connection has been observed in [EGZ11, Lemma 4.7.3] when
u is C2-smooth. The key idea of the proof given here is to approximate
the Monge–Ampère envelope Pθ(u) as in Theorem 2.14.

Proof. For each β > 0 let ϕβ be the unique θ-psh function with
minimal singularities such that

(3.2) (θ + ddcϕβ)n = eβ(ϕβ−u)eϕβfωn

holds in the pluripotential sense. The existence and uniqueness of the
solution ϕβ with minimal singularities follows from the main result of
[BEGZ10, BBGZ13]. As shown in [EGZ11, EGZ17] equation (3.2)
holds in the viscosity sense in Ω := Amp(θ) (the ample locus of {θ}) as
well.

Step 1. We claim that ϕβ ≤ u in Ω, for all β > 0. Recall that u is a
viscosity super-solution of (3.1). Thus the claim would follow if we could
apply the viscosity comparison principle [EGZ11, EGZ17]. However,
the density in the second term of (3.2), e−βuf , is not continuous in Ω,
hence one cannot directly apply the results from [EGZ11, EGZ17].

To prove the claim we proceed by approximation. Fix β > 0 and let
(uj) be an increasing sequence of continuous functions converging to u.
Such a sequence exists because u is lower semicontinuous. For each j let
ϕβ,j be the unique θ-psh function with minimal singularities such that

(3.3) (θ + ddcϕβ,j)
n = eβ(ϕβ,j−uj)eϕβ,jfωn.
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As uj ≤ u one can check that u is a viscosity super-solution of (3.3).
Indeed

(θ + ddcu)n+ ≤ eufωn ≤ eβ(u−uj)eufωn.

Moreover, the density function e−βujf is continuous on X. Hence by
the viscosity comparison principle [EGZ17] it follows that ϕβ,j ≤ u in
Ω. For j > k, as uj ≥ uk we have

(θ + ddcϕβ,k)
n = eβ(ϕβ,k−uk)eϕβ,kfωn ≥ eβ(ϕβ,k−uj)eϕβ,kfωn

in the pluripotential sense. In other words, ϕβ,k is a pluripotential sub-
solution of (3.3). It follows therefore from the pluripotential comparison
principle (Proposition 1.14) that j 7→ ϕβ,j is increasing. The increasing
limit is a θ-psh function with minimal singularities which solves equa-
tion (3.2) (recall that the Monge–Ampère operator is continuous along
monotonous sequences). By uniqueness it follows that this limit is ϕβ.
This proves the claim since ϕβ,j ≤ u in Ω.

Step 2. We now claim that ϕβ increases towards P (u), as β → +∞.
Since ϕβ ≤ u, we observe that ϕγ is a subsolution to (3.2)β if γ ≤ β,
hence β 7→ ϕβ is increasing. It converges almost everywhere to some
function ϕ ∈ PSH(X, θ) with minimal singularities such that ϕ ≤ u in
Ω. Since X \ Ω is pluripolar we infer ϕ ≤ Pθ(u) on X.

We now show that ϕ ≥ Pθ(u). Using the domination principle it
suffices to prove that MA(ϕ) vanishes in {ϕ < Pθ(u)}. Fix δ > 0. Using
(3.2) and observing that

{ϕ < P (u)− δ} ⊂ {ϕβ < u− δ},

we obtain ∫
{ϕ<P (u)−δ}

MA(ϕβ) ≤ e−βδ
∫
X
eP (u)fdV, ∀β > 1.

Since MA(ϕβ) weakly converges to MA(ϕ) as β → +∞, it follows from
Lemma 1.1 that∫

{ϕ<P (u)−δ}
MA(ϕ) ≤ lim inf

β→+∞

∫
{ϕ<P (u)−δ}

MA(ϕβ) = 0.

Letting δ → 0 insures that MA(ϕ) vanishes in {ϕ < P (u)}.
Conclusion. Recall that

(θ + ddcϕβ)n ≤ eϕβfωn

in the pluripotential sense. Since ϕβ increases to Pθ(u), the continuity of
the Monge–Ampère operator along monotonous sequences insures that

(θ + ddcP (u))n ≤ eP (u)fωn

in the pluripotential sense, as desired. q.e.d.
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Remark 3.6. Recall that a partial converse to this implication has
been given in [EGZ11, Lemma 4.7]: if ψ is a bounded pluripotential
supersolution, then its lower semi-continuous regularization ψ∗ is a vis-
cosity super-solution.

3.2.2. More general RHS. We consider the following generalization.

Theorem 3.7. Assume that F : X × R→ R+ is a continuous func-
tion which is non-decreasing in t ∈ R. Let u be a viscosity supersolution
of the equation

(3.4) (θ + ddcu)n = F (x, u)ωn.

Then the envelope Pθ(u) is a pluripotential supersolution of (3.4).

Proof. The proof, similar to that of Theorem 3.5, is left to the reader.
q.e.d.

3.2.3. Continuity of envelopes. Let θ be a semi-positive and big
form on X. We want to investigate conditions under which the envelope
Pθ(u) is continuous in X when h is continuous in X. We say that (X, θ)
satisfies the approximation property (AP ) if any ϕ ∈ PSH(X, θ) can be
approximated by a decreasing sequence of continuous θ-psh functions.

Theorem 3.8. The following properties are equivalent
(i) For any h ∈ C0(X), its envelope Pθ(h) is continuous on X;
(ii) (X, θ) satisfies the approximation property (AP );
(iii) For any density 0 ≤ f ∈ L∞(X,R) with

∫
X fθ

n =
∫
X θ

n, the
unique solution to the complex Monge–Ampère equation

(θ + ddcϕ)n = fdV, max
X

ϕ = 0,

is continuous on X.

The approximation property has been introduced in [EGZ09] where
it is proved that (ii) =⇒ (iii) holds. (AP ) is known to hold when {θ}
is a Kähler class [Dem92, BK07, Ber19], or when it is a Hodge class
on a singular variety [CGZ13].

Proof. (i) =⇒ (ii). Assume that ϕ ∈ PSH(X, θ). Let (hj) be a
sequence of smooth functions decreasing to ϕ on X. Then using (i)
we conclude that (P (hj)) is a decreasing sequence of continuous θ-psh
functions in X that converges to ϕ.

(ii) =⇒ (iii). This property follows from [EGZ09].
(iii) =⇒ (i). Assume first that h is smooth on X. Then (θ+ddch)n+ =

fdV , where f is a continuous function on X. Then h is a viscosity
supersolution to the complex Monge–Ampère equation

(θ + ddcφ)n = eφ−h(θ + ddch)n+ = eφe−hfdV,

where fe−h is a continuous density on X.
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By Theorem A, P (h) is then a pluripotential supersolution of the
same equation. Therefore (θ + ddcP (h))n ≤ fdV , in the weak sense,
hence there exists a function g ∈ L∞(X) such that (θ+ddcP (h)) = gdV
weakly on X. Hence by (iii), P (h) is continuous on X.

The general case follows by approximation. Let h ∈ C0(X,R) then
approximate h by a decreasing sequence of smooth functions hj in X.
Since |P (hj)−P (h)| ≤ supX |hj −h|, it follows that P (hj) converges to
P (h) uniformly on X, hence P (h) is continuous on X. q.e.d.

3.3. The local context. Let D b Cn be a bounded hyperconvex do-
main. By definition D admits a continuous negative plurisubharmonic
exhaustion ρ. The domain D is said to be strictly pseudoconvex if the
exhaustion function ρ can be chosen strictly plurisubharmonic in D. Let
0 ≤ f be a continuous function in D and dV be the Euclidean volume
form on D.

For a bounded function u in D, the upper envelope PD(u) of u in D
is defined by

PD(u) := (sup{ϕ ∈ PSH(D) : ϕ ≤ u})∗ .
We will also need to consider the following envelope which takes care of
the boundary values:

PD̄(u) := (sup{ϕ ∈ PSH(D) : ϕ∗ ≤ u on D̄})∗,
where u is defined on D̄ and ϕ∗ is the upper semicontinuous extension
of ϕ to D̄ defined by

ϕ∗(ξ) := lim
r→0+

sup
B(ξ,r)∩D

ϕ, ξ ∈ ∂D.

Note that the extension of ϕ to D̄ is upper semicontinuous on D̄.
If u is continuous on D̄ then PD(u) = PD̄(u) on D. This does not

hold in general as the example in Remark 3.12 below shows.
We now state and prove the local version of Theorem A:

Theorem 3.9. Let D b Cn be a bounded pseudoconvex domain.
Assume that a bounded lower semi-continuous function u is a viscosity
super-solution of the equation

(3.5) (ddcu)n = fdV,

in D. Then PD(u) is a pluripotential super-solution of (3.5) in D.

Proof. We first assume that D is strictly pseudoconvex and u is con-
tinuous in D̄ and prove that PD(u) is a pluripotential super-solution of
(3.5). For each β > 0, let ϕβ be the unique function in PSH(D)∩C0(D̄)
such that

(ddcϕβ)n = eβ(ϕβ−u)fdV in D

with boundary values u i.e. ϕβ = u in ∂D [BT76].
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Using the local viscosity comparison principle [EGZ11], we deduce
that ϕβ ≤ u in D̄ for any β > 0. Arguing as in Step 2 of the proof of
Theorem 3.5, we can prove that ϕβ increases to PD(u) a.e. in D as β
increases to +∞. Therefore by letting β → +∞ in the above equation,
we conclude that (ddcPD(u))n ≤ fdV in D.

Now assume that D b Cn is a pseudoconvex domain and u is contin-
uous in D. Then the result follows by taking an exhaustive sequence of
strictly pseudoconvex domains Dj b D (in view of the lemma below)
and applying what have been done above.

For the general case when u is merely lower-semi continuous, we ap-
proximate u by inf-convolution i.e. we consider

uj(z) := inf{u(ζ) + j|z − ζ|2}, z ∈ Dj , j ∈ N∗,

where (Dj) is an exhaustive sequence of pseudoconvex domains con-
verging to D. Then we know that (uj) is an increasing sequence of
continuous functions converging to u in D and for each j, the function
ujj is a supersolution of

(ddcv)n = fjdV, in Dj ,

where fj is continuous in Dj and the sequence (fj) decreases to f in D
(see [CIL92, CC95]).

Fix any pseudoconvex domain B b D. The previous result insures
that for j > 1 large enough so that B ⊂ Dj , the function PB(uj)
satisfies (ddcPB(uj))n ≤ fj in the pluripotential sense in B. Applying
Lemma 3.10 below we obtain at the limit that the differential inequality
(ddcPB̄(u))n ≤ f holds in the pluripotential sense on B.

Again taking an exhaustive sequence (Bj) of pseudoconvex domains
converging to D and applying Lemma 3.11 below we obtain the required
result. q.e.d.

Lemma 3.10. Assume that (uj) is an increasing sequence of lower
semicontinuous functions on D̄ which converges pointwise to u. Then
PD̄(uj) increases almost everywhere to PD̄(u). As a consequence, if uj
is continuous on D̄ for all j, then PD(uj) increases almost everywhere
to PD̄(u).

Proof. Let ϕ be an arbitrary psh function in D such that ϕ ≤ u on
D̄.

Fix ε > 0. We will show that uj ≥ ϕ − ε on D̄, for j large enough.
Assume that this was not the case. Then we can find a sequence (xj) ⊂
D̄ such that uj(xj) < ϕ(xj)− ε. For k ∈ N fixed and j > k we have

uk(xj) ≤ uj(xj) ≤ ϕ(xj)− ε.
We can assume that xj → x ∈ D̄. Since uk is lsc and ϕ is usc on D̄ it
follows that uk(x) ≤ ϕ(x) − ε. Since this is true for any k we deduce
that u(x) ≤ ϕ(x)− ε ≤ u(x)− ε, a contradiction.
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We thus have that PD̄(uj) ≥ ϕ−ε, for j large enough. By letting j →
+∞ and then ε → 0 we conclude that (limPD̄(uj))

∗ ≥ ϕ, ultimately
giving (limPD̄(uj))

∗ ≥ PD̄(u). The reverse inequality is obvious. q.e.d.

Lemma 3.11. Let (Dj) be an increasing sequence of relatively com-
pact bounded domains in D such that ∪Dj = D. Let u be a lower semi-
continuous function in D. Then PD̄j (u) decreases pointwise to PD(u).

Proof. Set ϕj = PD̄j (u) and note that this is a psh function in Dj .

Clearly, ϕj is decreasing in j. The decreasing limit limj ϕj is psh in any
Dk. As (Dk) is an exhaustive sequence of D, these limits define a psh
function ϕ in D.

We need to prove that ϕ = PD(u). Indeed, if v is a psh function in
D such that v ≤ u in D then v is also a candidate defining PD̄j (u), thus

ϕj ≥ v. We then get ϕ ≥ PD(u). On the other hand, ϕ is psh in D and
ϕ ≤ u quasi everywhere in D, i.e. there exists E ⊂ D a pluripolar set
such that ϕ ≤ u in D \ E. By Josefson theorem [GZ, Corollary 4.41]
there exists a negative psh function ψ in D such that ψ 6≡ −∞ and
ψ = −∞ on E. For any δ > 0 observe that ϕ+ δψ ≤ u in D. Therefore
ϕ+ δψ ≤ PD(u) for all δ > 0. Letting δ → 0+ we get ϕ ≤ PD(u) quasi
everywhere hence everywhere in D. q.e.d.

Remark 3.12. We stress that the envelopes PD(u) and PD̄(u) are
in general different if u is not continuous near the boundary. Indeed,
take the function u defined on D̄ by u = 0 in D and −1 in ∂D. Then u
is lower semi-continuous in D̄, PD(u) = 0 in D while PD̄(u) = −1 in D.

4. The minimum principle

4.1. The minimum principle. The following property is inspired by
the fact that the minimum of two viscosity supersolutions is again a
viscosity supersolution (see Section 3).

Lemma 4.1. Let u, v ∈ E(X, θ) and set ϕ := Pθ(min(u, v)). Then
ϕ ∈ E(X, θ) and

MA(ϕ) ≤ 1{ϕ=u}MA(u) + 1{ϕ=v}MA(v).

When θ is semipositive and u, v have bounded laplacian the result
follows from Darvas’ work [Dar17, Dar15] which uses a strong regu-
larity result on the Monge–Ampère envelope. Our proof is inspired by
the convergence method of Berman [Ber19].

Proof. The fact that ϕ belongs to E(X, θ) follows from [DDL18].
Without loss of generality we can assume that u, v have minimal singu-
larities.

For each j ∈ N∗ it follows from Lemma 4.2 below that there exists a
unique ϕj ∈ PSH(X, θ) with minimal singularities such that

MA(ϕj) = ej(ϕj−u)MA(u) + ej(ϕj−v)MA(v).
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As both u and v are pluripotential supersolutions of the above equation
it follows that ϕj ≤ ϕ. By the pluripotential comparison principle we
also have that ϕj increases almost everywhere to ϕ∞ ∈ E(X, θ).

We first prove that ϕ∞ = ϕ. For each fixed ε > 0 one has∫
{ϕ∞<ϕ−ε}

MA(ϕj) ≤
∫
{ϕj<ϕ−ε}

MA(ϕj) ≤ 2Vol(θ)e−jε → 0.

Letting j → +∞ we obtain that MA(ϕ∞) vanishes in {ϕ∞ < ϕ}. Ap-
plying the domination principle, Proposition 1.13, gives ϕ∞ = ϕ.

Now we prove the inequality in the statement of the lemma. For each
fixed A > 0 and j > A, since ϕj ≤ min(u, v) we have

MA(ϕj) ≤ eA(ϕj−u)MA(u) + eA(ϕj−v)MA(v).

Since MA(ϕj) converges to MA(ϕ), by dominated convergence theorem
we obtain

MA(ϕ) ≤ eA(ϕ−u)MA(u) + eA(ϕ−v)MA(v).

Now, letting A→ +∞ we obtain the result. q.e.d.

Lemma 4.2. Assume that u, v are θ-psh functions with minimal sin-
gularities and fix β > 0. Then there exists a unique θ-psh function ϕ
with minimal singularities such that

MA(ϕ) = eβ(ϕ−u)MA(u) + eβ(ϕ−v)MA(v).

Proof. The uniqueness follows from the comparison principle.
To prove existence, without loss of generality we can assume that

β = 1. For each j ∈ N set uj = max(u,−j), vj = max(v,−j). As
e−uj + e−vj is bounded on X it follows from [BBGZ13] that there
exists a unique ϕj ∈ E1(X, θ) such that

MA(ϕj) = eϕj−ujMA(u) + eϕj−vjMA(v).

By the comparison principle we know that ϕj is decreasing in j and
ϕj ≥ u+v

2 −C, for some constant C > 0 independent of j. We can thus
pass to the limit j → +∞ and obtain the result. q.e.d.

Lemma 4.3. Let uj , u ∈ Ep(X, θ), p > 0, be such that (uj) converges
to u in energy Ip. Then there exists a subsequence still denoted by (uj)
such that

ϕj := Pθ

(
inf
k≥j

uk

)
↗ u.

The proof is an adaptation of an argument due to Darvas [Dar17,
Dar15].

Proof. After extracting a subsequence we can assume that∫
X
|uj − u|pMAθ(uj) ≤ 2−j , ∀j.
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For each j < k set ϕkj := Pθ (infj≤`≤k u`). It follows from [DDL18] that

ϕkj belongs to Ep(X, θ). It follows from Lemma 4.1 that∫
X
|u− ϕkj |pMA(ϕkj ) ≤

k∑
`=j

∫
X
|u− u`|pMA(u`) ≤ 2−j+1.

It then follows from Lemma 1.5 that the decreasing limit ϕj :=

limk→+∞(ϕkj ) belongs to Ep(X, θ). Moreover the continuity of the Mon-

ge–Ampère operator (see [BEGZ10]) gives∫
X
|u− ϕj |pMA(ϕj) ≤ 2−j+1.

Hence the increasing limit ϕ := limj→+∞ ϕj ≤ u satisfies∫
{ϕ<u}MA(ϕ) = 0. The domination principle then reveals that u = ϕ.

q.e.d.

4.2. Solving complex Monge–Ampère equations. Let (X,ω) be a
compact Kähler manifold and µ a positive non-pluripolar Radon mea-
sure in some open subset Ω of X. Here we allow µ to have infinite total
mass (i.e. µ(Ω) may be +∞).

Let θ be a smooth closed (1, 1)-form on X which represents a big
class. We assume that there exists u0 ∈ E(X, θ), such that

(θ + ddcu0)n ≥ eu0µ, in Ω.

In particular eu0µ extends as a Radon measure in all of X.
We would like to solve the complex Monge–Ampère equation

(4.1) (θ + ddcϕ)n = 1Ωe
ϕµ,

by considering the lower envelope of supersolutions. We first note the
following simple consequence of Lemma 4.1 which is basic to what fol-
lows:

Proposition 4.4. Assume u, v ∈ E(X, θ) are both supersolutions of
(4.1), i.e. MA(u) ≤ 1Ωe

uµ, MA(v) ≤ 1Ωe
vµ. Then P (min(u, v)) is also

a supersolution,

MA(P (min(u, v))) ≤ eP (min(u,v))µ.

Proof. Observe first that since µ is a Radon measure in Ω, µ(u = v+
r) = 0 for almost every r ∈ R. Fix such an r and set ϕr = Pθ(min(u, v+
r)). It follows from Lemma 4.1 that

MA(ϕr) ≤ 1{ϕr=u}MA(u) + 1{ϕr=v+r}MA(v)

≤ 1{ϕr=u}e
uµ+ 1{ϕr=v+r}e

vµ

≤ eϕr+|r|µ.

Proposition 2.2 insures that ϕr decreases pointwise to Pθ(min(u, v)).
The latter belongs to E(X, θ) as follows from [DDL18]. We conclude
by letting r → 0. q.e.d.
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This result guarantees that the families of pluripotential super-solu-
tions is stable under the operation P (min(·, ·)). One can thus hope and
solve the equation by taking the infimum of supersolutions; this is the
contents of Theorem C from the introduction which we now establish:

Theorem 4.5. Assume there exists a subsolution u0 ∈ E(X, θ), i.e.

(θ + ddcu0)n ≥ eu0µ, in Ω.

Then the envelope of supersolutions

ϕ := P
(

inf{ψ : ψ ∈ E(X, θ) and (θ + ddcψ)n ≤ 1Ωe
ψµ}

)
is the unique pluripotential solution of (θ + ddcϕ)n = 1Ωe

ϕµ.

This result largely generalizes the main result of Berman–Guenancia
[BG14, Theorem A]: a projective complex algebraic variety V with
semi-log canonical singularities and ample canonical bundle admits a
unique Kähler–Einstein metric. Constructing the latter indeed boils
down to solving a complex Monge–Ampère equation as above, where

• π : X → V is a resolution of singularities,
• θ = π∗ωV is the pull-back of a Kähler form representing c1(V ),
• µ = fdV is absolutely continuous with respect to Lebesgue mea-

sure with a density 0 ≤ f which is smooth in X \D = π−1V reg,
and blows up near D = (sD = 0) like |sD|−2.

One easily constructs a subsolution in this case (take e.g.
−(− log |sD|−2)a with 0 < a < 1 and sD appropriately normalized).

Remark 4.6. The inequality (ω+ ddcψ)n ≤ 1Ωe
ψµ is understood in

the sense that the measure (ω+ ddcψ)n is concentrated in Ω where this
inequality holds in the sense of positive Borel measures.

Proof. Let K be a compact subset of Ω such that 0 < µ(K) < +∞
and denote by µK the restriction of µ on K, which is a positive non-
pluripolar measure on X. It follows from [BBGZ13] that there exists
ϕK ∈ E(X, θ) such that MA(ϕK) = eϕKµK . Hence ϕK is a supersolu-
tion of (4.1). The family F of supersolutions is thus non-empty, and it
is uniformly bounded from below by the subsolution u0, as follows from
the comparison principle and the domination principle.

It follows from Proposition 4.4 that F is stable by P ◦min(·, ·). Cou-
pled with an analogue of a classical lemma due to Choquet (see Lemma
4.7), this insures that

ϕ := P
(

inf{ψ : ψ ∈ E(X, θ) and (θ + ddcψ)n ≤ 1Ωe
ψµ}

)
is again a supersolution to the equation: this is the minimal supersolu-
tion. Indeed, in view of Proposition 4.4 and Lemma 4.7 one only needs
to check that if ϕj ∈ E(X, θ) decreases to ϕ ∈ E(X, θ) and MA(ϕj) ≤
1Ωe

ϕjµ then MA(ϕ) ≤ 1Ωe
ϕµ. By convergence of the non-pluripolar
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Monge–Ampère measures one has that 1ΩMA(ϕ) ≤ 1Ωe
ϕµ. It remains

to show that MA(ϕ) is concentrated in Ω, and to do this we use the sub-
solution u0. For each A > 0 fixed we set ΩA := {z ∈ Ω : u0(z) > −A}
and define µA to be the extension of 1ΩAµ to X. Since µ(ΩA) < +∞,
µA is a positive Borel measure on X. Moreover,

(4.2) 1{u0>−A}MA(ϕj) ≤ eϕjµA,

in the sense of Borel measures on X. Observe also that the measures
MA(ϕj) are uniformly dominated by the Monge–Ampère capacity Capθ
as follows from Theorem 1.11. Since the set {u0 > −A} is quasi-open
this together with [DDL18, Theorem 2.8] allow us to take the limit as
j → +∞ in (4.2) to get

1{u0>−A}MA(ϕ) ≤ eϕµA,

in the sense of positive Borel measures on X. In particular∫
{u0>−A}∩(X\Ω)

MA(ϕ) = 0.

Finally, it suffices to let A→ +∞.
In order to prove that ϕ is actually the solution it suffices to show

that MA(ϕ) = eϕµ in any small ball B ⊂ Ω ∩ Amp(θ). Fix such a
ball B. We construct a supersolution ψ which is smaller than ϕ and
which solves the equation in B. The classical method to produce such a
supersolution is to solve a local Dirichlet problem in B and glue the local
function with ϕ on the boundary ∂B. This requires a subtle analysis
near the boundary as the functions at hand are not continuous (they
may be even unbounded). We provide rather a global method which is
simpler.

For each j ∈ N we let ψj ∈ E(X, θ) be the unique solution to

MA(ψj) = 1Ω\Be
ψj−max(ϕ,−j)MA(ϕ) + 1Be

ψjµ.

The existence of such a solution follows from [BBGZ13], observing that

νj = 1Ω\Be
−max(ϕ,−j)MA(ϕ) + 1Bµ

is a non pluripolar Radon measure on X. Since MA(ϕ) ≤ 1Ωe
ϕµ, one

can check that u0 is a subsolution of the above equation. It thus follows
from the comparison principle that ψj ≥ u0 decreases to ψ ∈ E(X, θ)
which solves

MA(ψ) = 1Ω\Be
ψ−ϕMA(ϕ) + 1Be

ψµ.

In order to prove this equality one can first use Fatou’s lemma to show
the inequality ≥. For the reverse inequality it suffices to prove that the
masses coincide. To do this one can use a truncation argument with the
help of the subsolution u0 as above.
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Now, one can check that ϕ is a supersolution of the above equation
while ψ is a supersolution of equation (4.1). By the comparison principle
and by minimality of ϕ we have that ϕ = ψ, finishing the proof. q.e.d.

We have used the following analogue of Choquet’s lemma:

Lemma 4.7. Let U be a family of upper semicontinuous functions on
X. Then there exists a countable subfamily N ⊂ U such that infu∈U u =
infu∈N u.

Proof. Replacing each function u ∈ U by u/(1 + |u|), we are reduced
to the case when the family U is uniformly bounded.

Fix a distance d on X (e.g. induced by a Riemann metric on X).
For an upper semicontinuous function v on X we consider the sup-
convolution Φ(v, j) defined by

Φ(v, j)(x) := sup{v(y)− jd(x, y) : y ∈ X}, j ∈ N.
Then for each j ∈ N, Φ(v, j) is continuous on X and as j → +∞ the
sequence Φ(v, j) decreases pointwise to v.

Set u := infv∈U v. By Choquet’s lemma (see e.g. [GZ, Lemma 4.31]),

for each j ∈ N there exists a sequence (ϕjk)k∈N ⊂ U such that

(inf
k

Φ(ϕjk, j))? = ( inf
v∈U

Φ(v, j))?.

Set ϕ := infj,k ϕ
j
k. The lemma is now reduced to showing that ϕ = u.

Indeed, it is obvious that ϕ ≥ u. For each j ∈ N and any v ∈ U , we
have

(Φ(ϕ, j))? ≤ (inf
k

Φ(ϕjk, j))? ≤ Φ(v, j).

We observe also that (Φ(ϕ, j))? = Φ(ϕ, j) for any j. The function
Φ(ϕ, j) is continuous on X. We thus have Φ(ϕ, j) ≤ Φ(v, j) for all
v ∈ U . Note also that ϕ, u are upper semicontinuous on X. Letting
j → +∞ we get ϕ ≤ u completing the proof. q.e.d.

At the end of the proof of Theorem C we could also have used a local
Dirichlet problem and do a gluing process (balayage technique). We
prove in the following that this process works well for measures with
finite masses:

Lemma 4.8. Let u be a θ-psh function with minimal singularities
such that MA(u) ≤ euν, where ν is a non-pluripolar positive Radon
measure on X. Let B be a small ball in the ample locus of θ. Let v be a
bounded θ-psh function in B such that v ≤ u in B, limz→∂B(v−u) ≥ 0,
and MA(v) ≤ evν in B. Set

ψ(x) =

{
u(x) if x ∈ X \B
v(x) if x ∈ B.

Then Pθ(ψ) is a (pluripotential) supersolution of the equation MA(ϕ) =
eϕν on X.
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Proof. The proof uses the machinery we have developed so far. It
consists in showing that Pθ,ν(ψ) is a pluripotential supersolution, which
moreover coincides with Pθ(ψ), by using the Berman approximation
process.

For each β > 1 let ϕβ be the unique function in E1(X, θ) such that
(see [BBGZ13])

MA(ϕβ) = eβ(ϕβ−ψ)eϕβν = e(β+1)(ϕβ−ψ)eψν.

Since ψ ≤ u and MA(u) ≤ euµ one can check that u is a supersolution
of the above equation. It follows from the comparison principle (see
Proposition 1.14) that ϕβ ≤ u, for all β > 0.

We claim that ϕβ ≤ v in B, for all β > 0. This could follow from the
local comparison principle, if we knew that ϕβ belongs by restriction to
a local finite energy class in B. Since the definition and properties of
ϕβ are global in nature, we need to make a technical detour.

Fix β > 0 and let g be a local potential of θ in a neighborhood of B
(i.e. ddcg = θ). Fix ρ a negative strictly psh function in B. Set

φβ,j := g + max(ϕβ, Vθ − j), j ∈ N

and note that (ddcφβ,j)
n converges to (θ + ddcϕβ)n as j → +∞ in the

strong sense of Borel measures on B. Since v is bounded and v = u ≥ ϕβ
on ∂B it follows that, for j big enough, φβ,j ≤ v + g on ∂B. Fix ε > 0
and set

Uβ,ε,j := B ∩ {v + g < ερ+ φβ,j}, Uβ,ε := B ∩ {v < ερ+ ϕβ}.
Observe that Uβ,ε ⊂ Uβ,ε,j b B and {v ≤ ερ + ϕβ} ⊂ {v < ϕβ}. The
comparison principle for bounded psh functions [BT82, Theorem 4.1]
yields ∫

Uβ,ε

[εn(ddcρ)n + (ddcφβ,j)
n] ≤

∫
Uβ,ε,j

(ddc(ερ+ φβ,j))
n

≤
∫
Uβ,ε,j

(ddc(g + v))n.

Letting j → +∞ and using that v is a supersolution we obtain∫
Uβ,ε

[εn(ddcρ)n + eβ(ϕβ−v)eϕβdν] ≤
∫
{v<ϕβ}

evdν.

In Uβ,ε we have ϕβ > v. Thus letting ε→ 0 in the above inequality we
obtain ν(v < ϕβ) = 0. Since ρ is strictly psh we conclude that the set
Uβ,ε, and hence also the set {v < ϕβ}, has Lebesgue measure zero. It is
thus empty, proving the claim.

Thus ϕβ ≤ ψ on X for all β > 0. It follows that MA(ϕβ) ≤ eϕβν.
As β → +∞ Theorem B shows that ϕβ converges in energy to Pθ,ν(ψ)
which satisfies Pθ,ν(ψ) ≤ ψ quasi everywhere on X. Thus Pθ,ν(ψ) ≤
Pθ(ψ). Since the inequality Pθ(ψ) ≤ Pθ,ν(ψ) is always satisfied for a
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non pluripolar measure, we obtain the equality Pθ,ν(ψ) = Pθ(ψ). By
continuity of the Monge–Ampère measure along convergence in energy,
this eventually shows that MA(P (ψ)) ≤ eP (ψ)ν. q.e.d.

5. Further applications

5.1. Controlling the mass of viscosity super-solutions. Let θ be
a smooth closed (1, 1)-form such that [θ] is big.

Proposition 5.1. Let f : X → R+ be a continuous function. There
exists a viscosity super-solution of

(θ + ddcu)n = fωn

if and only if
∫
X fω

n ≥ Vol(θ).

Proof. Assume that
∫
X fω

n ≥ Vol(θ). Let ϕ ∈ PSH(X, θ) be the
unique function with minimal singularities normalized by supX ϕ = 0
such that MA(ϕ) = cfωn where c > 0 is a normalization constant. It
follows from [EGZ11] that ϕ is also a viscosity solution. Since c ≤ 1
the result follows.

Conversely, assume that u is a viscosity supersolution. It follows from
Theorem 3.7 that Pθ(u) is also a pluripotential supersolution, hence the
inequality follows. q.e.d.

The connection between pluripotential and viscosity supersolutions
of complex Monge–Ampère equations allows us to derive the following
interesting inequality:

Proposition 5.2. Assume that θ is a closed smooth (1, 1)-form such
that [θ] is big. Then the envelope Vθ satisfies

MA(Vθ) ≤ 1{Vθ=0}θ
n.

This is a particular case of an important result of Berman and De-
mailly [BD12], which uses strong regularity information on the func-
tion Vθ. We provide a proof of independent interest. A slightly different
proof has recently been given in [Ber19], [DDL18] using the viscosity
theory developed in [EGZ11].

Proof. The function 0 is a viscosity super-solution of the equation

(θ + ddcu)n = euθn+,

where θ+ is defined pointwise to be θ if θ ≥ 0 and zero otherwise. It
follows from Theorem 3.5 that Vθ is a pluripotential super-solution of
the same equation, thus MA(Vθ) ≤ eVθθn+ in the pluripotential sense.
As MA(Vθ) is concentrated on the contact set {Vθ = 0}, the conclusion
follows. q.e.d.
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5.2. Examples of viscosity supersolutions. As the concept of vis-
cosity super-solutions to complex Monge–Ampère equations is relatively
new and still a bit mysterious, it is probably helpful to discuss in some
details a few elementary examples.

Proposition 5.3. Assume that u is a bounded viscosity supersolution
of

(θ + ddcu)n = Cωn,

where C > 0 is a constant. Then Pθ,dV (u) = Pθ(u). In other words,
if a θ-psh function ϕ satisfies ϕ ≤ u almost everywhere with respect to
Lebesgue measure then the inequality holds quasi everywhere.

Proof. We use the convergence method developed in Section 2.3. For
each β > 1 let ϕβ be the unique θ-psh function with minimal singulari-
ties such that

(5.1) MA(ϕβ) = eβ(ϕβ−u)ωn.

We claim that ϕβ ≤ u+ logC
β in the ample locus of θ, for any β > 1.

Indeed, observe that u+ log(C)/β is a viscosity supersolution of (5.1).
Using an approximation argument and the viscosity comparison princi-
ple as in the proof of Theorem 3.5 we can show that ϕβ ≤ u + logC

β in

Amp(θ). But by Theorem 2.14 we know that ϕβ converges in energy to
the modified envelope Pθ,dV (u). It thus follows that Pθ,dV (u) = Pθ(u).

q.e.d.

Proposition 5.4. For n = 1, the viscosity supersolutions

(ddcv)+ ≤ ddc|z|2

are precisely the functions v such that v − |z|2 is super-harmonic.

Proof. Let q be a C2 upper test for |z|2−v at a ∈ C. Then the function
|z|2−q is a lower test for v at a. It follows that (ddc(|z|2−q))+ ≤ ddc|z|2
at a, hence ddcq ≥ 0 at a. It thus follows that |z|2 − v is a viscosity
subsolution, hence it is subharmonic as follows from [Hor, Prop. 3.2.10,
p. 147]. q.e.d.

One could expect a similar property to hold in higher dimension: if

(ddcv)n+ ≤ (ddc|z|2)n

in the viscosity sense, one would like to conclude that v − |z|2 is 1-
concave. This is however not true in general:

Proposition 5.5. Let B be the unit ball in C2 and consider the
function u defined by u(z1, z2) = −1 if |z1| = |z2| and u(z1, z2) = 0
elsewhere. Then u is a viscosity supersolution of the Monge–Ampère
equation

(ddcu)n = 0.



PLURISUBHARMONIC ENVELOPES AND SUPERSOLUTIONS 309

Proof. We set D := {(z1, z2) ∈ B : |z1| = |z2|}. If x0 ∈ B \D then u
is smooth near x0 and the result follows from [EGZ11].

Assume now that x0 = (a, a) ∈ D and q is a lower test function
for u at x0. The function p(z) := q(z, z) is a lower test function for
the constant −1 near a. It follows that ddcp is not positive at a hence
(ddcq)2

+(x0) = 0. Thus u is a viscosity supersolution of the above equa-
tion. q.e.d.

Remark 5.6. We let the reader check that the Monge–Ampère en-
velope PB(u) is identically −1 in B. Its Monge–Ampère measure is thus
identically 0. This is consistent with Theorem 3.9.

The example in Proposition 5.5 indicates that viscosity supersolutions
(in a local context and without boundary constraints) are in general not
quasi-continuous. One can not construct a similar example on a compact
Kähler manifold. More precisely, we have the following:

Lemma 5.7. Let (X,ω) be a compact Kähler manifold of dimension
n and θ be a closed smooth semipositive (1, 1)-form on X such that∫
X θ

n > 0. Let E ⊂ X be a closed subset of X that has zero Lebesgue
measure. If the function u = −1E satisfies

(θ + ddcu)n ≤ Cωn

in the viscosity sense on X, then E is pluripolar.

Proof. Indeed, by Proposition 5.3 we have that Pθ,dV (u) = Pθ(u).
Therefore since u = 0 a.e. in X, it follows that Pθ(u) = 0 in X,
which implies that E is pluripolar since Pθ(u) = h∗E,θ is the relative

θ-plurisubharmonic extremal function of E (see [GZ05]). q.e.d.

Our analysis above motivates the following:

Question 5.8. Assume that u is a bounded lower semicontinuous
function on X such that

(ω + ddcu)n ≤ Cωn

holds in the viscosity sense for some positive constant C. Is u quasi-
continuous on X?

Understanding the regularity properties of viscosity supersolutions is
an important problem. We establish a refined semi-continuity property:

Proposition 5.9. Assume that v is a bounded viscosity supersolution
of −(θ + ddcv)n + evCdV = 0. Then

v(a) = lim inf
x→a,x6=a

v(x)

for all a ∈ X.
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Proof. Assume that it were not the case. Then we can find a ∈ X
and ε > 0 such that

v(a) + ε ≤ lim inf
x→a,x6=a

v(x).

Thus, we can find a small ball B(a, r) in a local coordinate chart around
a such that v(a) + ε ≤ infx∈B(a,r),x 6=a v(x). Now, for any A > 0 the

function qA(z) := A|z− a|2 + v(a) is a smooth sub test of v at a. If A is
large enough then (θ+ddcqA) is positive definite at a and the inequality
(θ + ddcqA)n+ ≤ eqACdV does not hold at a, which is a contradiction.

q.e.d.
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compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63–95. MR0494932,
Zbl 0374.53022.

[BT76] E. Bedford, B.A. Taylor, The Dirichlet problem for a complex Monge–
Ampère equation, Invent. Math. 37 (1976), no. 1, 1–44. MR0445006, Zbl
0356.31007.

[BT82] E. Bedford, B.A. Taylor, A new capacity for plurisubharmonic functions,
Acta Math. 149 (1982), 1–40. MR0674165, Zbl 0547.32012.

[BT87] E. Bedford, B.A. Taylor, Fine topology, Šilov boundary, and (ddc)n, J.
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Reprint of the 1994 edition. Modern Birkhäuser Classics. Birkhäuser
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equations. Annales de la Faculté des Sciences de Toulouse (6) 22 (2013),
no. 4, 843–913. MR3137252, Zbl 1334.32016.
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Université de Toulouse, CNRS

118 route de Narbonne
31400 Toulouse

France

E-mail address: ahmed.zeriahi@math.univ-toulouse.fr


	Introduction
	1. Preliminaries
	2. Envelopes
	3. Viscosity vs pluripotential supersolutions
	4. The minimum principle
	5. Further applications
	References

