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THE FLOATING BODY IN REAL SPACE FORMS

Florian Besau∗ & Elisabeth M. Werner†

Abstract

We carry out a systematic investigation on floating bodies in
real space forms. A new unifying approach not only allows us to
treat the important classical case of Euclidean space as well as the
recent extension to the Euclidean unit sphere, but also the new
extension of floating bodies to hyperbolic space.

Our main result establishes a relation between the derivative of
the volume of the floating body and a certain surface area measure,
which we called the floating area. In the Euclidean setting the
floating area coincides with the well known affine surface area, a
powerful tool in the affine geometry of convex bodies.

1. Introduction

Two important closely related notions in affine convex geometry are
the floating body and the affine surface area of a convex body. The
floating body of a convex body is obtained by cutting off caps of volume
less or equal to a fixed positive constant. Taking the right-derivative
of the volume of the floating body gives rise to the affine surface area.
This was established for all convex bodies in all dimensions by Schütt
and Werner in [47]. More results on floating bodies can be found in
e.g., [5, 29].

The affine surface area was introduced by Blaschke in 1923 [8]. Due
to its important properties, which make it an effective and powerful
tool, it is omnipresent in geometry. The affine surface area and its gen-
eralizations in the rapidly developing Lp and Orlicz Brunn–Minkowski
theory are the focus of intensive investigations (see e.g. [36, 52, 53, 14,
50]).
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A first characterization of affine surface area was achieved by Ludwig
and Reitzner [33] and had a profound impact on valuation theory of
convex bodies. They started a line of research (see e.g. [34, 32]) leading
up to the very recent characterization of all centro-affine valuations by
Haberl and Parapatits [22].

There is a natural inequality associated with affine surface area, the
affine isoperimetric inequality, which states that among all convex bod-
ies, with fixed volume, affine surface area is maximized for ellipsoids.
This inequality has sparked interest into affine isoperimetric inequalities
with a multitude of results (see e.g. [36, 55, 56, 52]).

There are numerous other applications for affine surface area, such
as, the approximation theory of convex bodies by polytopes [19, 20,
30, 10, 9, 44, 48, 49, 42], affine curvature flows [2, 3, 24, 26, 25],
information theory [12, 11, 13, 4, 54, 39, 40] and partial differential
equations [37].

In this paper we introduce the floating bodies for spaces of constant
curvature, i.e., real space forms. Our considerations lead to a new sur-
face area measure for convex bodies, which we call the floating area.
This floating area is intrinsic to the constant curvature space and not
only coincides with affine surface area in the flat case, but also has
similar properties in the general case. Namely, the floating area is a
valuation and upper semi-continuous.

We lay the foundation for further investigations of floating bodies and
the floating area of convex bodies in more general spaces. The authors
believe that both notions are of interest in its own right and will, in
particular, be useful for applications, such as, isoperimetric inequali-
ties and approximation theory of convex bodies in spaces of constant
curvature.

1.1. Statement of principal results. A real space form is a simply
connected complete Riemannian manifold with constant sectional cur-
vature λ. For λ ∈ R and n ∈ N, n ≥ 2, we denote by Spn(λ) the real
space form of dimension n and curvature λ. This includes the special
cases of the sphere Sn = Spn(1), hyperbolic space Hn = Spn(−1) and
Euclidean space Rn = Spn(0). A compact (geodesically) convex set K
is called a convex body. The set of convex bodies in Rn with non-empty
interior is denoted by K0(Rn), or K0(A) if we consider convex bodies
contained in an open subset A ⊂ Rn. The set of convex bodies in a
space form with non-empty interior is denoted by K0(Spn(λ)), K0(Sn)
or K0(Hn). For further details we refer to Section 3.

A hyperplane in a real space form Spn(λ) is a totally geodesic hy-
persurface. It is isometric to Spn−1(λ). Hyperplanes split the space
into two open and connected parts which are half-spaces. We denote by
H+ and H− the closed half-spaces bounded by the hyperplane H. The
standard volume measure on Spn(λ) is volλn.
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Definition 1.1 (λ-Floating Body). Let λ ∈ R and K ∈ K0(Spn(λ)).
For δ > 0 the λ-floating body Fλδ K is defined by

Fλδ K =
⋂{

H− : volλn
(
K ∩H+

)
≤ δ

n+1
2

}
.

The main theorem of this article is the following:

Theorem 1.2. Let n ≥ 2. If K ∈ K0(Spn(λ)), then the right-

derivative of volλn(Fλδ K) at δ = 0 exists. More precisely, we have

lim
δ→0+

volλn(K)− volλn(Fλδ K)

δ
= cnΩλ(K),

where cn = 1
2 ((n+ 1)/κn−1)2/(n+1) and

Ωλ(K) =

∫
bdK

Hλ
n−1(K,x)

1
n+1 dvolλbdK(x).

We call Ωλ(K) the λ-floating area of K.

Here volλbdK denotes the natural boundary measure with respect to
Spn(λ) and Hλ

n−1(K,x) denotes the (generalized) Gauss–Kronecker cur-
vature on bdK, the boundary of K, with respect to Spn(λ) (see Section
3 for details). Furthermore, κn is the volume of the Euclidean unit Ball
Bn
e (0, 1) in Rn, i.e., κn = volen(Bn

e (0, 1)).
For λ = 0, i.e. Euclidean space, Theorem 1.2 was first proved in

this form by Schütt and Werner [47]. For λ = 1, the theorem was
established only very recently by the authors [7]. In this article we now
prove the complete form for all λ ∈ R with a new unifying approach. In
Section 2, we recall important notions from Euclidean convex geometry.
In particular, we investigate the weighted floating body. In Section 3,
we recall basic facts from hyperbolic geometry. We use the projective
Euclidean model and relate hyperbolic convex bodies with Euclidean
convex bodies. It is well-known that real space forms admit Euclidean
models. We make use of this fact to generalize our results in Subsection
3.2 to real space forms. The Euclidean models and the results on the
weighted floating body are the main tool to prove Theorem 1.2 in Section
4. In Section 5, we investigate the floating area and also the surface area
measure of Euclidean convex bodies related to it. In particular, we show
the following.

Theorem 1.3. Let λ ∈ R and n ∈ N, n ≥ 2. Then the λ-floating
area Ωλ : K(Spn(λ))→ R is

(a) upper semi-continuous,
(b) a valuation, that is, for K,L ∈ K(Spn(λ)) such that K ∪ L ∈
K(Spn(λ)) we have that

Ωλ(K) + Ωλ(L) = Ωλ(K ∪ L) + Ωλ(K ∩ L),
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(c) and invariant under isometries of Spn(λ). For λ = 0, Ω0 coin-
cides with the affine surface area and is invariant not only under
isometries, but all (equi-)affine transformations of Rn.

All the properties in Theorem 1.3 are well known for the affine surface
area, that is, λ = 0, see e.g. [45, 31, 35, 29]. Also, in the spherical case,
λ = 1, we were able to establish similar results [7].

Finally, in Subsection 5.2, we briefly consider an isoperimetric in-
equality for the floating area.

Acknowledgments. The authors would like to thank Andreas Bernig
for valuable comments and the referee for the careful reading.

2. The weighted floating body

In this section, we recall the notion of weighted floating bodies in-
troduced in [51]. It will serve as a unifying framework for dealing with
Euclidean, spherical and hyperbolic floating bodies. In the following we
also recall facts from Euclidean convex geometry. For a general refer-
ence we refer to [21, 17, 43]. The final goal of this section is to establish
Lemma 2.9, which is a crucial step in the proof of our main Theorem
1.2 in Section 4.

We denote the Euclidean volume by volen. If a σ-finite Borel measure
µ is absolutely continuous to another σ-finite Borel measure ν on an
open set D ⊆ Rn, then we write µ�D ν. The measure µ is equivalent
to ν on D, µ ∼D ν, if and only if µ �D ν and ν �D µ. Evidently, by
the Radon–Nikodym Theorem, for a σ-finite Borel measure µ we have
that µ ∼D volen if and only if there is Borel function fµ : D → R such
that dµ(x) = fµ(x)dx and volen({fµ = 0}) = 0. For a convex body
K ∈ K0(Rn) we consider σ-finite measures µ such that µ ∼intK volen,
where intK denotes the interior of K. Thus, without loss of generality,
we may assume µ to be a σ-finite Borel measure on Rn with support K
and for any measurable set A we have

µ(A) =

∫
A∩ intK

fµ(x) dvolen(x).

Definition 2.1 (Weighted Floating Body [51]). Let K ∈ K0(Rn)
and let µ be a finite non-negative Borel measure on intK such that
µ ∼intK volen. For δ > 0, we define the weighted floating body Fµδ K, by

Fµδ K =
⋂{

H− : µ(H+ ∩K) ≤ δ
n+1

2

}
,

where H± are the closed half-spaces bounded by the hyperplane H.

We will see that the weighted floating body is non-empty, if δ is small
enough. Since it is an intersection of closed half-spaces, it is a convex
body contained in K.
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Example 2.2. For µ = volen we retrieve the Euclidean floating body,
denoted by Feδ K. In the literature different normalizations appear. For
instance, in [47] the convex floating body is defined as

Kt =
⋂
{H− : volen(H+ ∩K) ≤ t},

which is equivalent to our notion since

F0
δ K = Kδ(n+1)/2 .

We denote by · the Euclidean scalar product and by ‖.‖ the Euclidean
norm in Rn. A convex body is uniquely determined by its support
function hK defined by

hK(x) = max{x · y : y ∈ K}, x ∈ Rn.
The geometric interpretation of the support function is the following:
For a fixed point x ∈ Rn and a normal direction v ∈ Sn−1, we denote
the hyperplane parallel to the hyperplane through x with normal v at
distance α ∈ R by Hx,v,α, i.e.,

Hx,v,α = {y ∈ Rn : y · v = α+ x · v} = H0,v,α+x·v.

For a given direction v ∈ Sn−1, the support function hK(v) measures the
distance of a supporting hyperplane in direction v to the origin. That
is, H0,v,hK(v) is a supporting hyperplane of K in direction v and K is
given by

K =
⋂

v∈Sn−1

H−0,v,hK(v),(2.1)

where H−x,v,α = {y ∈ Rn : y · v ≤ α+ x · v}.
A closed Euclidean ball of radius r and center x ∈ Rn is denoted

by Bn
e (x, r). For K ∈ K(Rn) the set of points of distance r from K is

Bn
e (K, r). For K,L ∈ K(Rn), the Hausdorff distance δe is defined by

δe(K,L) = inf {r ≥ 0 : K ⊆ Bn
e (L, r) and L ⊆ Bn

e (K, r)} .
Equivalently, we have that

δe(K,L) = sup
v∈Sn−1

‖hK(v)− hL(v)‖ .

Given a continuous function f : Sn−1 → R the Wulff shape [f ] (also
called Aleksandrov body, see [16, Sec. 6]) of f is, unless it is the empty
set, the convex body defined by

[f ] =
⋂

v∈Sn−1

H−0,v,f(v).(2.2)

For a positive continuous function f the Wulff shape is a convex body
containing the origin in its interior. For a convex body K we have
K = [hK ], i.e., the Wulff shape associated with hK is K itself. The
concept of Wulff shapes has many applications, see e.g. [43, Sec. 7.5]
for a short exposition.
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The weighted floating body is a Wulff shape.

Proposition 2.3. Let K ∈ K0(Rn), µ be a finite non-negative Borel

measure on intK such that µ ∼intK volen and δ ∈
(

0, µ(K)
2

n+1

)
. For

v ∈ Sn−1, there exists a unique sδ(v) ∈ R determined by

µ
(
K ∩H+

0,v,hK(v)−sδ(v)

)
= δ

n+1
2 .

In particular, sδ(v) = s(δ, v) is continuous on
(

0, µ(K)
2

n+1

)
× Sn−1

and strictly increasing in δ. Moreover, the weighted floating body Fµδ K
exists if and only if the Wulff shape [hK − sδ] exists and in this case we
have that

Fµδ K = [hK − sδ].(2.3)

Proof. We consider G : Sn−1 × R→ [0, µ(K)] defined by

G(v,∆) = µ
(
K ∩H+

0,v,hK(v)−∆

)
.

Since µ is a non-negative Borel measure equivalent to voln, we can find
a Borel function fµ : Rn → [0,∞) such that fµ > 0 almost everywhere
on intK and fµ = 0 else. We can, therefore, write

G(v,∆) =

∫
H+

0,v,hK (v)−∆

fµ(x) dx =

hK(v)∫
hK(v)−∆

∫
v⊥

fµ(w + tv) dw dt.

For the second equality we used Fubini’s theorem and the substitution
x = w + tv, where w ∈ v⊥ = {y ∈ Rn : y · v = 0} and t ∈ R are
uniquely determined by x. Thus, G is strictly increasing in ∆ for ∆ ∈
(0, hK(v) + hK(−v)) from 0 to µ(K). To see that G is continuous,
first note that K(v,∆) := K ∩ H+

0,v,hK(v)−∆ depends continuously on

(v,∆) ∈ Sn−1 × R with respect to the Hausdorff distance δe. This
follows, since hK is continuous and the map (v, λ) → H+

0,v,λ ∩ K is

continuous in v ∈ Sn−1 and λ ∈ R. Now, since volen is continuous on
K0(Rn), see [43, Thm. 1.8.20], and since µ ∼intK volen, we conclude that
µ is continuous on K0(Rn)∩K and, therefore, µ(K(v,∆)) = G(v,∆) is
continuous in v.

Hence, for δ ∈
(

0, µ(K)
2

n+1

)
there is a unique sδ(v) ∈ (0, hK(v) +

hK(−v)) such that

δ
n+1

2 = G(v, sδ(v)),

which is strictly increasing in δ and continuous.
To prove (2.3), we first consider a fixed v ∈ Sn−1. For t1 < t2,

we have that H+
0,v,hK(v)−t1 ⊆ H+

0,v,hK(v)−t2 . The maximal t such that
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G(v, t) ≤ δ
n+1

2 is t = sδ(v). Hence, we have that⋂{
H−0,v,hK(v)−t : t ∈ R such that G(v, t) ≤ δ

n+1
2

}
= H−0,v,hK(v)−sδ(v).

Finally, we conclude that

Fµδ K =
⋂{

H−0,v,hK(v)−t : v ∈ Sn−1, t ∈ R such that G(v, t) ≤ δ
n+1

2

}
=

⋂
v∈Sn−1

H−0,v,hK(v)−sδ(v) = [hK − sδ]. q.e.d.

For a convex body K ∈ K0(Rn) and a boundary point x ∈ bdK
we define the set of normal vectors σ(K,x) of K in x, also called the
spherical image of K at x (see [43, p. 88]), by

σ(K,x) = {v ∈ Sn−1 : Hx,v,0 is a supporting hyperplane to K in x}.

A boundary point x is called regular if σ(K,x) is a single point, that
is, K has a unique outer unit normal vector Nx at x. Note that for
a convex body almost all boundary points are regular (see [43, Thm.
2.2.5]). A boundary point x is exposed if and only if there is a support
hyperplane H such that K ∩H = {x}.

A subset S ⊆ Sn−1 is a spherical convex body if and only if the
positive hull posS = {λs : λ ≥ 0, s ∈ S} is a closed convex cone in
Rn. The spherical image at a boundary point x is a spherical convex
body and the closed convex cone generate by it is the normal cone
N(K,x) = posσ(K,x). If K has non-empty interior, then σ(K,x) is
proper for any boundary point, that is, the normal cone does not contain
any linear subspace.

The spherical Hausdorff distance δs is a metric on spherical convex
bodies induced by the spherical distance

ds(x, y) = arccos(x · y)(2.4)

on Sn−1 in the following way: For a subset A ⊂ Sn−1 we denote by Aε
the ε-neighborhood of A, i.e., Aε = {a ∈ Sn−1 : ds(a,A) < ε}. Then,
for spherical convex bodies S and T , we have that

δs(S, T ) = inf{ε ≥ 0 : S ⊆ Tε and S ⊆ Tε}.

The spherical Hausdorff distance induces a metric on the closed con-
vex cones with apex at the origin via the positive hull pos. Hence, we
say that a sequence of closed convex cones Ci converges to a closed
convex cone C if and only if the sequence of spherical convex bodies
Ci ∩ Sn−1 converges to C ∩ Sn−1 with respect to δs.

Fix z ∈ Sn−1 and let (Ci)
∞
i=1 be a sequence of closed convex cones

contained in the open half-space intH+
0,z,0. Then Ci converges to a closed

convex cone C contained in the same open-half space with respect to δs

if and only if the sections of the convex cones with the affine hyperplane
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H0,z,1 converge with respect to the Euclidean Hausdorff metric δe in
H0,z,1.

We define the gnomonic projection gz : intH+
0,z,0 → z⊥ ∼= Rn−1 by

gz(x) = (x · z)−1x− z.(2.5)

Then gz maps closed convex cones contained in the open half-space
intH+

0,z,0 to convex bodies in z⊥ ∼= Rn−1. By the previous statement we
find, that the gnomonic projection induces an homeomorphism between
the space of closed convex cones in intH+

0,z,0 with respect to the δs and

the space of convex bodies in z⊥ ∼= Rn−1 with respect to δe. Compare
also [6, Cor. 4.5].

By Proposition 2.3, sδ(v) = s(δ, v) is continuous as a function in
(δ, v). It converges point-wise to 0 as δ → 0+. By the compactness
of Sn−1, we have that sδ(.) converges uniformly to 0 as δ → 0+. This
implies the convergence of [hK − sδ] to [hK ] = K, see e.g. [43, Lem.
7.5.2]. We conclude

lim
δ→0+

Fµδ K = K.(2.6)

Our next goal is to show that the convergence of the weighted float-
ing body is locally determined. This fact and, therefore, most of the
following lemmas are probably known for the most part. However, since
we were only able to find references in particular cases, for instance, see
e.g. [49] for related results, and also for the convenience of the reader,
we include proofs for the following.

We consider a regular boundary point x ∈ bdK and investigate the
behavior of Fµδ K near x for δ → 0+. The shape of Fµδ K near x is
determined by a neighborhood of directions of the unique normal Nx

of K at x. For s < t, we have that Fµs K ⊇ Fµt K. In particular, if
0 ∈ intFµt K, then for all δ ∈ (0, t) we have 0 ∈ intFµδ K. In this case

we define xKδ as the unique intersection point of bdFµδ K with the ray

pos {x}. Hence, limδ→0+ xKδ = x. We use xδ to control the limit process
Fµδ K → K near x as δ → 0+.

The first step is to consider a convergent sequence of Wulff shapes
[fi] → [f ], where (fi)i∈N and f are positive continuous functions on
Sn−1. Thus, 0 ∈ int [fi] and 0 ∈ int [f ]. We show that, for any regular
boundary point x ∈ bd [f ] and any neighborhood of directions around
the normal Nx of [f ] at x, there is i0 ∈ N such that, for all i > i0,
xi := bd [fi] ∩ pos{x} is determined by the values of fi in that neigh-
borhood.

Lemma 2.4 (Local dependence of a convergent sequence of Wulff
shapes). Let fi : Sn−1 → (0,∞), i ∈ N, be a sequence of positive con-
tinuous functions uniformly convergent to f : Sn−1 → (0,∞). Then for
x ∈ reg [f ] and ε > 0 there exists i0 ∈ N such that, for all i > i0, we
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have that

[fi] ∩ pos{x} =
⋂{

H−0,v,fi(v) : ds(v,Nx) < ε
}
∩ pos{x},

where Nx is the unique outer unit normal of [f ] at x.

Since the weighted floating body can be viewed as a Wulff shape and
converges to K as δ → 0+ we obtain the following corollary. We write
conv(x, y) for the convex hull of two points x, y ∈ Rn, i.e., conv(x, y) is
the closed affine line segment between x and y.

Corollary 2.5 (Locality of the weighted floating body). Let K ∈
K0(Rn) be such that 0 ∈ intK. Then for x ∈ regK and ε > 0 there
exists δε > 0 such that for all δ < δε, we have 0 ∈ intFµδ K and

conv(xKδ , 0) = Fµδ K ∩ pos {x}

=
⋂{

H−0,v,hK(v)−sδ(v) : ds(v,Nx) < ε
}
∩ pos {x},(2.7)

where sδ(v) is uniquely determined by

δ
n+1

2 = µ
(
K ∩H+

0,v,hK(v)−sδ(v)

)
.

Before we prove Lemma 2.4, we recall some common notation. For
u ∈ Sn−1, F (K,u) = K∩H0,u,hK(u) is the exposed face of K in direction
u. The following is an easy observation.

Lemma 2.6 (Convergence of exposed faces). Let Ki → K in K0(Rn)
with respect to the Hausdorff distance δe. If u∈Sn−1 such that F (K,u) =
{x} is an exposed point of K, then F (Ki, u)→ {x}.

Proof. Since Ki converges to K with respect to δe, any sequence
xi ∈ F (Ki, u) ⊆ Ki has a convergent subsequence with limit y ∈ K, see
e.g. [43, Thm. 1.8.7]. Let R > 0 be such that K ∪

⋃
i∈NKi ⊆ Bn

e (0, R).
Then xi ∈ F (Ki, u) ⊆ H0,u,h(Ki,u) ∩ Bn

e (0, R) and also H0,u,h(Ki,u) ∩
Bn
e (0, R) → H0,u,h(K,u) ∩ Bn

e (0, R). Hence, for the limit point y of the
convergent subsequence, we also have y ∈ H0,u,h(K,u) and, therefore,
y ∈ K ∩H0,u,h(K,u) = F (K,u) = {x}. q.e.d.

We denote the set of convex bodies with 0 in the interior by K(0)(Rn).
For K ∈ K(0)(Rn), K◦ = {y ∈ Rn : x · y ≤ 1} is the polar body of K.
For x ∈ bdK, set x̂ = {y ∈ K◦ : x · y = 1}. Then N(K,x) = pos x̂, see
[43, Lem. 2.2.3]. For x ∈ bdK, we have hK◦ (x/‖x‖) = 1/‖x‖. Hence,
x̂ = F (K◦, x/‖x‖), or equivalently

N(K,x) = posF (K◦, x/‖x‖) .(2.8)

For a proof of the following fact see, e.g., [18, Lem. 2.3.2].

Lemma 2.7 (Continuity of the polar map). Let (Ki)i∈N be a sequence
in K(0)(Rn) converging to K ∈ K(0)(Rn) with respect to the Hausdorff
distance δe. Then also K◦i → K◦.
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By (2.8), the normal cone N(K,x) at a boundary point x is re-
lated to the exposed face of the polar body K◦ in direction x/‖x‖.
Using the continuity of the polar map, Lemma 2.7, and the convergence
of the exposed faces, Lemma 2.6, we now obtain the convergence of
the normal cones in regular boundary points. Note that for a regular
boundary point x ∈ regK, Nx/(Nx · x) is an exposed point of K◦, i.e.,
F (K◦, x/‖x‖) = {Nx/(Nx · x)}.

Lemma 2.8 (Convergence of the normal cone). Let fi be a sequence
of positive continuous functions on Sn−1, uniformly convergent to a pos-
itive continuous function f . For x ∈ reg [f ] we set {xi} = pos{x} ∩
bd [fi]. Then

lim
i→∞

N([fi], xi) = N([f ], x).

In particular, we have that

lim
i→∞

σ([fi], xi) = lim
i→∞

N([fi], xi) ∩ Sn−1 = N([f ], x) ∩ Sn−1 = {Nx}.

Proof. We set z = x/‖x‖ = xi/‖xi‖. By (2.8),

pos {Nx} = N([f ], x) = posF ([f ]◦, z),

or equivalently F ([f ]◦, z) = {Nx/(Nx·x)}. With Lemma 2.7 and Lemma
2.6, we conclude that

lim
i→∞

F ([fi]
◦, z) = {Nx/(x ·Nx)} .(2.9)

Since 0 ∈ int [fi]
◦ the exposed face in direction z has a positive distance

ai from the origin. Therefore, ai = hF ([fi]◦,z)(z) > 0, F ([fi]
◦, z) ⊆

H0,z,ai . Also hF ([f ]◦,z)(z) = 1/‖x‖ > 0 and limi→∞ ai = 1/‖x‖. Hence,
the convex cone generated by the exposed face does not contain any
linear subspace, or equivalently, Si := (posF ([fi]

◦, z)) ∩ Sn−1 as well as
(posF ([f ]◦, z)) ∩ Sn−1 = {Nx} are contained in the open hemisphere
with center in z.

We have to show that Si converges to {Nx} with respect to spher-
ical Hausdorff distance δs. This is equivalent to the convergence of
gz(Si) to gz(Nx) in z⊥ with respect to the Euclidean Hausdorff dis-
tance. Here, gz is the gnomonic projection in z, see (2.5). We obtain
gz(Si) = (1/ai)F ([fi]

◦, z) − z and gz(Nx) = Nx/(Nx · z) − z. Since
ai → 1/‖x‖ and F ([fi]

◦, z) → F ([f ]◦, z) = {Nx/(Nx · x)}, we conclude
that gz(Si)→ gz(Nx). This yields that Si → {Nx}, or equivalently, the
convex cones generated by the exposed faces converge, i.e.,

lim
i→∞

posF ([fi]
◦, z) = lim

i→∞
posSi = pos {Nx} = posF ([f ]◦, z).

By (2.8), this concludes the proof. q.e.d.

We are now ready to prove Lemma 2.4.
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Proof of Lemma 2.4. Assume the opposite. Then there exists x ∈
reg [f ] and ε > 0 such that, for all i ∈ N, we have(⋂{

H−0,v,fi(v) :v ∈Sn−1, ds(v,Nx)<ε
}
∩pos {x}

)
\ ([fi] ∩ pos {x}) 6= ∅.

By definition, [fi] = {y ∈ Rn : y · v ≤ fi(v) ∀v ∈ Sn−1}, therefore, for
{xi} = bd [fi]∩ pos {x}, there exists zi ∈ Sn−1 such that xi · zi = fi(zi).
This yields zi ∈ σ([fi], xi) and we conclude

[fi] ∩ pos {x} = conv(xi, 0) = H−xi,zi,0 ∩ pos {x}
= H−0,zi,zi·xi ∩ pos {x} = H−0,zi,fi(zi) ∩ pos {x}.

Thus, ds(zi, Nx) ≥ ε > 0 for all i. By compactness of Sn−1, there
is a convergent subsequence of (zi)i∈N with limit z 6= Nx. This is a
contradiction, since σ([fi], xi)→ σ([f ], x) = {Nx} by Lemma 2.8. q.e.d.

By Corollary 2.5, the weighted floating body is locally determined
near any regular boundary point x. If x is also exposed, then a neigh-
borhood of x in K already determines the shape of Fµδ K near x for
δ → 0+.

Lemma 2.9 (Approximation of the weighted floating body). Let K ∈
K0(Rn) and x ∈ bdK be a regular and exposed point, that is, there is
a unique outer unit normal Nx and K ∩Hx,Nx,0 = {x}. For ε > 0 set
K ′ = K ∩ Bn

e (x, ε). Then x ∈ bdK ′ is a regular and exposed point of
K ′. Furthermore:

(i) There exists ∆ε > 0 such that for all ∆ < ∆ε we have

K ′ ∩H+
x,Nx,−∆ = K ∩H+

x,Nx,−∆.

(ii) There exists ξε > 0 and ηε > 0 such that, for all v ∈ Sn−1 with
ds(v,Nx) < ξε and ∆ < ηε, we have

K ′ ∩H+
x,v,−∆ = K ∩H+

x,v,−∆.

(iii) Let 0 ∈ intK ′. There exists δε > 0 such that, for all δ < δε,

we have 0 ∈ int(Fµδ K
′ ∩ Fµδ K) and xK

′
δ = xKδ , where {xK∗δ } =

bdFµδ K
∗ ∩ pos {x}.

Proof. (i): Assume that the statement is false. Then there exists
ε > 0 such that for all ∆ > 0, we have

∅ 6=
(
K ∩H+

x,Nx,−∆

)
\
(
K ′ ∩H+

x,Nx,−∆

)
= (K\Bn

e (x, ε)) ∩H+
x,Nx,−∆

⊆ (K\intBn
e (x, ε)) ∩H+

x,Nx,−∆.

For ∆1 ≤ ∆2, we have

(K\intBn
e (x, ε)) ∩H+

x,Nx,−∆1
⊆ (K\intBn

e (x, ε)) ∩H+
x,Nx,−∆2

.

By compactness, we conclude that ∅ 6= (K\intBn
e (x, ε))∩H+

x,Nx,0
. This

is a contradiction, since K ∩H+
x,Nx,0

= {x}.
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(ii): Let ε > 0. By (i), there exists ∆ε/2 such that ∆ε/2 < ε/2 and

(K\intBn
e (x, ε/2)) ∩H+

x,Nx,−∆ε/2
= ∅.(2.10)

We set ηε = (1/2)∆ε/2 and

ξε =
√

2 + (2/ε)∆ε/2 −
√

2 + (1/ε)∆ε/2.

Then ηε < ε/4 and ξε > 0. We show that for all v ∈ Sn−1 with
ds(v,Nx) < ξε, we have that

(K\intBn
e (x, ε)) ∩H+

x,v,−ηε = ∅,(2.11)

which yields K ′ ∩H+
x,v,−∆ = K ∩H+

x,v,−∆ for all ∆ < ηε.

Assume that (2.11) is not true. Then there exists z∈(K\intBn
e (x, ε))∩

H+
x,v,−ηε . Since K is convex, the segment conv(z, x) is contained in K.

Furthermore, since ‖z−x‖ > ε, there exists z′ ∈ bdBn
e (x, ε)∩conv(z, x).

We will show that z′ ∈ H+
x,Nx,−∆ε/2

, i.e., z′ ·Nx ≥ x ·Nx−∆ε/2. This

will be a contradiction to (2.10), since z′ ∈ K\intBn
e (x, ε/2).

Since z′ ∈ bdBn
e (x, ε), we have z′ = x + ε‖z′ − x‖−1(z′ − x) and,

therefore, z′ ·Nx = x ·Nx + ε‖z′−x‖−1(z′−x) ·Nx. Since z′ ∈ H+
x,v,−ηε ,

we obtain z′ · v ≥ x · v − ηε or ‖z′ − x‖−1(z′ − x) · v ≥ −ε−1ηε. Put
w = ‖z′ − x‖−1(z′ − x). Then

‖w − v‖2 = 2− 2(w · v) ≤ 2
(
1 + ε−1ηε

)
.

Note that ds(v,Nx) ≤ ξε implies that ‖v − Nx‖ ≤ ξε. This, together
with the definition of ξε, implies that

w ·Nx = 1− ‖w −Nx‖2

2
≥ 1− (‖w − v‖+ ‖v −Nx‖)2

2

= w · v − ‖w − v‖‖v −Nx‖ −
‖v −Nx‖2

2

≥ −ηε
ε
−
√

2 +
2ηε
ε
ξε −

ξ2
ε

2
= 1−

(√
1 +

ηε
ε

+
ξε√

2

)2

= −
∆ε/2

ε
.

Hence, z′ ·Nx ≥ x ·Nx −∆ε/2.

(iii): By Proposition 2.3, we can write Fµδ K
′=
⋂
v∈Sn−1 H

−
x,v,−sK′ (δ,v)

.

Here −sK′(δ, v) is uniquely determined by

δ(n+1)/2 = µ
(
K ′ ∩H+

x,v,−sK′ (δ,v)

)
and is continuous in both arguments. By (ii), there exist ξε and ηε such
that for all v ∈ Sn−1 with ds(v,N

K
x ) < ξε, we have

µ
(
K ′ ∩H+

x,v,−∆

)
= µ

(
K ∩H+

x,v,−∆

)
,

for all ∆ < ηε. Hence, there exists δ1 > 0 such that for all δ < δ1 and
ds(v,N

K
x ) < ξε we have sK(δ, v) = sK

′
(δ, v).
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By Corollary 2.5 applied to K and K ′ with ε = ξε there exist δ2 and δ3

such that for all δ < min{δ1, δ2, δ3} we have 0 ∈ intFµδ K
′, 0 ∈ intFµδ K

and

(Fµδ K)∩pos {x}=
⋂{

H−
x,v,−sK(δ,v)

:v ∈ Sn−1, ds(v,N
K
x )<ξε

}
∩pos {x}

=
⋂{

H−
x,v,−sK′ (δ,v)

:v ∈ Sn−1, ds(v,N
K
x )<ξε

}
∩pos {x}

= (Fµδ K
′) ∩ pos {x}.

This implies in particular that xK
′

δ = xKδ since it is the unique intersec-
tion point of pos {x} with the boundary of the floating body Fµδ K

′, or
Fµδ K. q.e.d.

3. Hyperbolic convex geometry

In the theory of Riemannian manifolds, hyperbolic n-space Hn is the
simply-connected, complete Riemannian manifold of constant sectional
curvature −1. Hyperbolic convex bodies are compact subsets such that
for any two points in the set, the geodesic segment between them is con-
tained in the set. Hyperbolic convex geometry is the study of intrinsic
notions of hyperbolic convex bodies.

In his famous Erlangen program Felix Klein characterized geometries
based on their symmetry groups. In the spirit of this approach, we may
view Euclidean convex geometry as the study of notions on Euclidean
convex bodies that are invariant under the group of rigid motions. In
the projective model (also known as Beltrami–Cayley–Klein model) of
hyperbolic space, that is, in the open unit ball Bn, hyperbolic convex
geometry can be viewed as the study of notions on Euclidean convex
bodies K ∈ K(Bn), invariant under hyperbolic motions.

In the following we recall basic facts about the projective model of
hyperbolic space. For a rigorous exposition see, e.g., [1] or [41].

We consider Bn together with the Riemannian metric tensor gh which
defines a scalar product in tangent space TpBn for any point p ∈ Bn by

ghp (Xp, Yp) =
Xp · Yp

1− ‖p‖2
+

(Xp · p) (Yp · p)
(1− ‖p‖2)2 , Xp, Yp ∈ TpBn.

Here and in the following we use the natural identification of TpBn =

TpRn with Rn. Then (Bn, gh) is a simply-connected, complete Rie-
mannian manifold with constant sectional curvature −1 and, therefore,
isometric to Hn.

The Euclidean metric tensor is ge and it is induced naturally by
gep(Xp, Yp) = Xp · Yp for Xp, Yp ∈ TpRn ∼= Rn. When p = 0, then

gh(X0, Y0) = X0 · Y0 = ge(X0, Y0)(3.1)

and, therefore, the Euclidean metric tensor at the origin agrees with
the hyperbolic metric tensor. Geodesic curves in (Bn, gh) are straight
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lines in Rn intersected with Bn and the geodesic distance, or hyperbolic
distance, dh(p, q) between p, q ∈ Bn is, see, for example, [1, Sec. 1.5] and
[41, Ch. 6],

cosh dh(p, q) =
1− p · q√

1− ‖p‖2
√

1− ‖q‖2
.(3.2)

Note that

(3.3) tanh dh(p, 0) = ‖p‖.

Isometries of the projective model are also called motions and the
group of motions is M(Bn). The group of motions M(Bn) is isomorphic
to the restricted Lorentz group SO+(n, 1) and hyperbolic n-space is
characterized by M(Bn) in the following sense: the homogeneous space
SO+(n, 1)/SO(n) is isomorphic to Hn, see e.g. [1, Ch. 1, §2]. Note that,
in the projective model, a hyperbolic motion extends to a uniquely
determined collineation of the projective closure of Rn and conversely
any collineation that maps Bn to Bn restricts to an hyperbolic motion
on Bn.

Geodesics in (Bn, gh) are the chords of Bn. More general, any totally
geodesic subspace of dimension k, called a k-plane of (Bn, gh), is the
intersection of an affine subspace of Rn with Bn. Hence, a line is a
1-plane or chord of Bn and a hyperplane is a (n− 1)-plane.

The (hyperbolic) exponential map exphp in a point p ∈ Bn maps any
tangent vector Xp ∈ TpBn to the uniquely determined point q in Bn such
that dh(p, q) = ‖Xp‖. For the unit speed geodesic path γ : [0, ‖Xp‖] →
Bn from p to q we have γ′(0) = ‖Xp‖−1Xp. By (3.3),

(3.4) exph0(X0) =
tanh ‖X0‖
‖X0‖

X0, X0 ∈ T0Bn ∼= Rn.

An affine hyperplane H restricted to Bn can be viewed as an object of
hyperbolic space or Euclidean space, depending on whether we choose
the hyperbolic metric tensor gh or the Euclidean metric tensor ge. The
normal vector in any point p ∈ H also depends on the metric we choose
and, therefore, we distinguish between the hyperbolic unit normal vector
Nh
p and the Euclidean unit normal vector N e

p . To be more precise,

Nh
p ∈ TpBn is a unit vector with respect to gh and N e

p is a unit vector
with respect to ge. The normal vectors are related and we include a
proof of the following fact for the reader’s convenience.

Lemma 3.1. Let p ∈ Bn, X1, . . . , Xn−1 ∈ TpBn be linearly indepen-
dent and let H be the linear subspace that is spanned by {X1, . . . , Xn−1}.
Then there are unique Nh

p , N
e
p ∈ TpBn such that:

(a) Nh
p is orthonormal to H with respect to gh and N e

p is orthonormal
to H with respect to ge.
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(b) The frames (X1, . . . , Xn−1, N
h
p ) and (X1, . . . , Xn−1, N

e
p ) are posi-

tive oriented.
(c) We have that

(3.5) Nh
p =

√
1− ‖p‖2

1− (p ·N e
p )2

(N e
p − (p ·N e

p )p).

Proof. Let g be a positive definite linear form on TpBn. Then there
is a uniquely determined vector v ∈ TpBn, up to sign, such that H is
orthonormal to v with respect to g, i.e., for i = 1, . . . , n − 1, we have
that g(Xi, v) = 0 and g(v, v) = 1. The sign of v is determined by the
condition that (X1, . . . , Xn−1, v) is a positive frame, which means that
det(X1, . . . , Xn−1, v) > 0.

To conclude the proof, we only need to show (c). We define v as the
vector obtained by the right-hand side of (3.5) and verify that v satisfies
(a) and (b) for gh. Since Nh

p is uniquely determined by these properties

we conclude Nh
p = v. q.e.d.

A hyperbolic ball Bn
h (p, r), is the set of all points q ∈Bn with dh(q, p) ≤

r. For p = 0 and by (3.3), we have

Bn
h (0, r) = {q ∈ Bn : dh(q, 0) ≤ r} = Bn

e (0, tanh r).(3.6)

Hence, the hyperbolic balls with center in the origin are also Euclidean
balls in the projective model. For a hyperbolic motion m such that
m(0) = x we have Bn

h (p, r) = m(Bn
h (0, r)) = m(Bn

e (0, tanh r)). So
hyperbolic balls in Bn are images of Euclidean balls with center 0 under
hyperbolic motions and, therefore, ellipsoids.

A subset C ⊆ Bn is hyperbolic convex if and only if C is convex in the
Euclidean sense as a subset of Rn. Planes and open, as well as closed,
half-spaces are hyperbolic convex subsets. A (hyperbolic) convex body
is a compact convex subset of Bn. Recall that K0(Bn) denotes set of
convex bodies with non-empty interior contained in Bn.

For a measurable subset A ⊂ Bn, the hyperbolic volume volhn(A) in
the projective model is

volhn(A) =

∫
A

(1− ‖x‖2)−
n+1

2 dvolen(x).(3.7)

The hyperbolic Hausdorff distance δh between hyperbolic convex bodies
K,L ∈ K(Bn) is defined by

δh(K,L) = max

{
sup
p∈K

inf
q∈L

dh(p, q), sup
q∈L

inf
p∈K

dh(p, q)

}
and the hyperbolic volume difference metric θh is

θh(K,L) = volhn(K\L) + volhn(L\K), K, L ∈ K0(Bn).
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Hyperbolic convex geometry can be viewed as study of notions on convex
bodiesK0(Bn) that are invariant under the group of motions M(Bn). For

instance, the hyperbolic volume volhn, the hyperbolic Hausdorff distance
δh and the volume difference metric θh, are all invariant with respect
to hyperbolic motions and are, therefore, intrinsic notions of hyperbolic
convex geometry.

The Euclidean support function hK(.) of a convex body K measures
for any direction u ∈ Sn−1 the signed distance of a supporting hyper-
plane in direction u to K and the origin. Equivalently, one can use the
orthogonal projection K|`u of K to the line `u through the origin in
direction u. Then

K|`u = conv(−hK(−u)u, hK(u)u).(3.8)

We will define the hyperbolic support function in a similar way, but
first we have to recall some further facts about hyperbolic space and the
projective model. For a closed convex subset A ⊂ Hn and a point p ∈ Hn

there is a unique point q ∈ A that minimizes the distance dh(p, q). The
metric projection pA : Hn → A assigns to each point p this unique point.
Hence,

dh(p, pA(p)) = min
q∈A

dh(p, q).

If p 6∈ A, then pA(p) ∈ bdA and the line spanned by pA(p) and p
is perpendicular to the boundary of A in pA(p). In particular, in the
projective model Bn the projection K|L of a convex body K ∈ K(Bn)
to a k-plane L through 0 is given by the Euclidean projection of K to L.
This follows, since for any point p ∈ Bn ∼= TpBn the normal directions
Yp ∈ TpBn are determined by

0 = gp(p, Yp) =
p · Yp

1− ‖p‖2
+
‖p‖2(p · Yp)
(1− ‖p‖2)2

=
p · Yp

(1− ‖p‖2)2
.(3.9)

Definition 3.2 (hyperbolic support function). Let p ∈ Hn be a
fixed point and identify the set of unit vectors in TpHn with Sn−1. For
any hyperbolic convex body K ⊂ Hn, the hyperbolic support function
hhp(K, .) : Sn−1 → R of K with respect to p is defined by

K|`p,u = exphp

(
conv

(
−hhp(K,−u)u, hhp(K,u)u

))
,(3.10)

where `p,u = exphp(Ru), i.e., the uniquely determined geodesic line in p
in direction u.

In the projective model the hyperbolic support function for p = 0 is
related to the Euclidean support function in the following way.

Lemma 3.3. Let K ⊂ Bn be a convex body. For u ∈ Sn−1, we have
that

tanh hh0(K,u) = hK(u).(3.11)
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Proof. Since 0 ∈ `0,u we have that the hyperbolic projection of K to
`0,u is the same as the Euclidean projection, see (3.9). Therefore, by
(3.8) and the definition of the hyperbolic support function, (3.10), we
have that

conv (−hK(−u)u, hK(u)u) = exph0

(
conv

(
−hhp(K,−u)u, hhp(K,u)u

))
.

Using (3.4), we obtain (3.11). q.e.d.

3.1. Boundary structure of a convex body. Let K ∈ K0(Bn). The
boundary bdK is a hypersurface that is endowed with a Riemannian
structure depending on the metric used in Bn, i.e. either the Euclidean
metric tensor ge or the hyperbolic metric tensor gh.

The hyperbolic surface area element dvolhbdK is related to the Eu-
clidean surface area element dvolebdK in the following way: The tangent
space TxbdK at a boundary point x is a linear subspace of TxBn and
by our identification of TxBn with Rn it does not depend on the un-
derling metric tensor. By (3.5) and (3.7), we find that the Riemannian
volume form induced by gh and ge on the boundary of K are related,
for X1, . . . , Xn−1 ∈ TxbdK, by

dvolhbdK (X1, . . . , Xn−1) = dvolhn

(
X1, . . . , Xn−1, N

h
x

)
= (1− ‖x‖2)−(n+1)/2dvolen

(
X1, . . . , Xn−1, (N

h
x ·N e

x)N e
x

)
=

√
1− (x ·N e

x)2

(1− ‖x‖2)n
dvolebdK (X1, . . . , Xn−1) .

In particular, for K ∈ K0(Bn) and a measurable function f : bdK → R,
we have that∫

bdK

f(x) dvolhbdK(x) =

∫
bdK

f(x)

√
1− (x ·N e

x)2

(1− ‖x‖2)n
dvolebdK(x).(3.12)

The Riemannian metric induced on the boundary of K is denoted
by ĝhp = ghp |bdK or ĝep = gep|bdK . If 0 ∈ bdK, then, by (3.1), ĝh0 = ĝe0.
Therefore, in the projective model the hyperbolic curvature of bdK in
0 is the same as the Euclidean curvature. In the following theorem
we collect the relations between the hyperbolic notions at a boundary
point and the Euclidean ones in the projective model. This is definitely
well-known and we again include a proof for convenience.

Theorem 3.4. Let M be a smooth orientable manifold of dimension
n − 1 immersed in Bn. We denote the metric induced by gh, resp. ge,
on M by ĝh, resp. ĝe. The unique unit normal vector field along M is
denoted by Nh, resp. N e. For x ∈M , we have

det ĝhx = (1− ‖x‖2)−n(1− (N e
x · x)2).
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Denoting the covariant derivative on Bn by ∇h, resp. ∇e, the second
fundamental form ĥh, resp. ĥe, is determined by

∇∗XY = ∇∗XY + ĥ∗(X,Y )N∗,

where ∇h, resp. ∇e, denotes the induced covariant derivative on M .
Then

ĥhx = ĥex
(
1− ‖x‖2

)−1/2 (
1− (N e

x · x)2
)−1/2

.

Let Shx = (ĝhx)−1ĥhx be the shape operator, i.e., the (1, 1)-tensor equiv-

alent to ĥhx and obtained by raising an index. For the Gauss–Kronecker
curvature H∗n−1(M,x) = detS∗x, we obtain

Hh
n−1(M,x) = He

n−1(M,x)
(
1− ‖x‖2

)n+1
2
(
1− (N e

x · x)2
)−n+1

2 .(3.13)

Proof. Let g∗ be a Riemannian metric tensor of Bn. We identify TxM
with the n − 1 dimensional subspace {Xx ∈ TxBn ∼= Rn : Xx · N e

x =
0}. For Xx, Yx ∈ TxM , the induced metric tensor ĝ∗ is determined by
ĝ∗x(Xx, Yx) = g∗x(Xx, Yx). In particular, for gh we have

ĝhx(Xx, Yx) =
Xx · Yx

1− ‖x‖2
+

(x ·Xx)(x · Yx)

(1− ‖x‖2)2
.

We put x = x − (N e
x · x)N e

x. Then, for Xx ∈ TxM , we have that

x · Xx = x · Xx and ‖x‖ =
√
‖x‖2 − (N e

x · x)2. We define the matrix

A = (1− ‖x‖2)−1Idn + (1− ‖x‖2)−2xx> and obtain

A
x

‖x‖
=

x

‖x‖(1− ‖x‖2)
+

‖x‖2x
‖x‖(1− ‖x‖2)2

=
1− (N e

x · x)2

(1− ‖x‖2)2

x

‖x‖
.

For v ∈ x⊥, we have that Av = (1 − ‖p‖2)−1v. By definition of A,
ĝhx(Xx, Yx) = X>x AYx. We conclude that

det ĝhx = detA = (1− ‖x‖2)−n(1− (N e
x · x)2).

We know that (Bn, gh) and (Bn, ge) have the same (pre-)geodesics.
This implies, see e.g. [15, (40.7)], that there is a function ψ such that

∂ log det(gh)

∂xi
=
∂ log det(ge)

∂xi
+ 2(n+ 1)

∂ψ

∂xi
.

Since log det(gh) = −(n+1) log
(
1− ‖x‖2

)
and det(ge) = 1, we conclude

that ∂ψ
∂xi

= (1 − ‖x‖2)−1xi. Consequently, see e.g. [15, (40.6)], for the
1-form ρ defined by

ρ(Xx) = (1− ‖x‖2)−1(x ·Xx),(3.14)

the covariant derivative with respect to gh can be written as

∇hXY = ∇eXY + ρ(X)Y + ρ(Y )X.(3.15)
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Combining (3.5), (3.14) and (3.15), a straightforward calculation shows
that

ghx

(
(∇hXY )x, N

h
x

)
=
(
1− ‖x‖2

)−1/2 (
1− (x ·N e

x)2
)−1/2

((∇eXY )x ·N e
x) .

This concludes the proof, since ĥ∗x(Xx, Yx) = g∗x((∇∗XY )x, N
∗
x) and (3.13)

follows from detShx = det(ĥhx)/ det(ĝhx). q.e.d.

An immediate consequence of this theorem is, that for smooth con-
vex bodies the hyperbolic Gauss–Kronecker curvature and the Euclidean
Gauss–Kronecker curvature are related by (3.13). This can be general-
ized to general convex bodies with the usual methods: For K ∈ K0(Bn)
we call a boundary point x ∈ bdK normal, if bdK at x can locally be
expressed as the graph of a convex function that is second order dif-
ferentiable in x, see e.g. [23, p. 4]. Hence, in a normal boundary point
the Gauss–Kronecker curvature is defined and since almost all boundary
points are normal, see e.g. [43, Thm. 2.5.5], we obtain a generalized no-
tion of hyperbolic Gauss–Kronecker curvature Hh

n−1(K,x) for arbitrary
convex bodies K ∈ K0(Bn).

Corollary 3.5. Let K ∈ K0(Bn). In a normal boundary point x ∈
bdK, we have

Hh
n−1(K,x) = He

n−1(K,x)

(
1− ‖x‖2

1− (N e
x · x)2

)(n+1)/2

.(3.16)

The following proposition is well-known, see e.g. [47, Lem. 3]. It
is a change of variables formula, where we switch from integration in
Cartesian coordinates to integration along rays from the origin with the
directions parametrized by the boundary of a convex body.

Proposition 3.6 (Euclidean cone volume formula, see [47, Lem. 3]).
Let K,L ∈ K0(Rn) such that L ⊆ K and 0 ∈ intL. For x ∈ bdK we
set {xL} = bdL ∩ pos{x}. Then

volen(K\L) =

∫
bdK

hK(N e
x)

‖x‖n

‖x‖∫
‖xL‖

tn−1 dt dvolebdK(x).

There is an analog of the above in hyperbolic convex geometry.

Proposition 3.7 (Hyperbolic cone volume formula). Let K,L ∈
K0(Bn) such that L ⊆ K and 0 ∈ intL. For x ∈ bdK we set {xL} =
bdL ∩ pos{x}. Then

volhn(K\L) =

∫
bdK

sinh(hh0(K,N e
x))

sinh(dh(x, 0))n

dh(0,x)∫
dh(0,xL)

sinh(t)n−1 dt dvolhbdK(x).

(3.17)
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Proof. By Lemma 3.3, Proposition 3.6 and (3.3),

volhn(K\L) =

∫
bdK

tanh(hh0(K,N e
x))

tanh(dh(x, 0))n

tanh dh(x,0)∫
tanh dh(xL,0)

tn−1

(1− t2)(n+1)/2
dt dvolebdK(x)

=

∫
bdK

tanh(hh0(K,N e
x))

tanh(dh(x, 0))n

dh(x,0)∫
dh(xL,0)

sinh(t)n−1 dt dvolebdK(x).

Since hK(N e
x) = x ·N e

x and by (3.3) and (3.12), we have that

dvolhbdK(x) =
cosh(dh(x, 0))n

cosh(hh0(K,N e
x))

dvolebdK . q.e.d.

3.2. A Euclidean model for real space forms. Similar to the pro-
jective model, we may define a Euclidean model for space forms Spn(λ)
of arbitrary curvature λ. Let

Bn(λ) :=

{(
1/
√
−λ
)
Bn if λ < 0,

Rn else.

Further, define a Riemannian metric gλ on Bn(λ) by

(3.18) gλ(Xp, Yp) =
Xp · Yp

1 + λ‖p‖2
−λ(Xp · p)(Yp · p)

(1 + λ‖p‖2)2
, Xp, Yp ∈ TpBn(λ).

Then (Bn(λ), gλ) is a Riemannian manifold of constant sectional curva-
ture λ. By the Killing–Hopf Theorem there is, up to isometry, only one
simply-connected and complete Riemannian manifold Spn(λ) of con-
stant sectional curvature λ ∈ R, see e.g. [27, Ch. 6], [28, Thm. 1.9] or
[38, Ch. 8, Cor. 25]. Thus, for λ ≤ 0, (Bn(λ), gλ) is isometric to Spn(λ)
and for λ > 0, (Bn(λ), gλ) is isometric to an open hemisphere of Spn(λ).

Geodesics in (Bn(λ), gλ) are Euclidean straight lines intersected with
Bn(λ). Therefore, the set of geodesically convex bodies in (Bn(λ), gλ) is
equivalent to Kn(Bn(λ)), i.e. the Euclidean convex bodies contained in
Bn(λ). Note that in the spherical setting, λ > 0, we define proper convex
bodies as convex bodies contained in an open hemisphere. Hence, when
investigating a fixed proper convex body K ∈ K(Spn(λ)), we may use
the model (Bn(λ), gλ) and identify K with a convex body in K(Bn(λ)).

It is useful to define

tanλ α =


tanh

(√
−λα

)
/
√
−λ if λ < 0,

α if λ = 0,

tan
(√
λα
)
/
√
λ if λ > 0.

Then the geodesic distance dλ between a point p ∈ Bn(λ) and the origin
is given by

tanλ dλ(p, 0) = de(p, 0) = ‖p‖.(3.19)
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For a geodesic ball Bn
λ(0, α) with center at the origin and geodesic radius

α we have Bn
λ(0, α) = Bn

e (0, tanλ α), i.e., geodesic balls with center at
the origin are Euclidean balls.

The volume element in (Bn, gλ) is

(3.20) dvolλn(p) = (1 + λ‖p‖2)−(n+1)/2 dvolen(p).

For a convex body K ⊂ Bn(λ) we define a support function hλp(K, .)
with respect to a fixed point p ∈ Bn(λ) similar to Definition 3.2. If
p = 0, then

tanλ hλ0(K,u) = hK(u), u ∈ Sn−1.(3.21)

For a fixed convex body K ∈ K0(Bn(λ)) and a regular boundary point
x ∈ bdK we can compare the outer unit vector Nλ

x with respect to gλ

with the Euclidean outer unit normal. Analogous to Lemma 3.1 we find
that

(3.22) Nλ
p =

√
1 + λ‖x‖2

1 + λ(x ·N e
x)2

(N e
x + λ(x ·N e

x)x) .

This implies that

(3.23) dvolλbdK(x) =

√
1 + λ(N e

x · x)2

(1 + λ‖x‖2)n
dvolebdK(x).

Finally, we can also adapt Theorem 3.4 and conclude that for normal
boundary points x ∈ bdK,

(3.24) Hλ
n−1(K,x) = He

n−1(K,x)

(
1 + λ‖x‖2

1 + λ(N e
x · x)2

)(n+1)/2

.

For λ = 1, we already obtained (3.20), (3.21), (3.23) and (3.24) in [7,
(4.8), (4.3), (4.11) and (4.14)].

4. The floating body in real space forms

For a convex body K ∈ K0(Spn(λ)) and δ > 0, we define the λ-
floating body by

Fλδ K =
⋂{

H− : volλn(K ∩H+) ≤ δ
n+1

2

}
.(4.1)

In the Euclidean model (Bn(λ), gλ), the λ-floating body is a weighted

floating body, that is, by (3.20), we have Fλδ K = Fµδ K for µ = volλn.
Note that for λ = 0, we obtain the well known Euclidean (convex)
floating body F0

δ K, see e.g. [47]. For λ = 1, we obtain the spherical
floating body F1

δ K introduced in [7]. Finally, for λ = −1 we obtain the

new notion of hyperbolic floating body F−1
δ K.
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By Proposition 2.3 we have that

Fλδ K =
[
hK − sλδ

]
=

⋂
v∈Sn−1

H−
0,v,hK(v)−sλδ (v)

,(4.2)

where sλδ is determined by

δ
n+1

2 = volλn

(
K ∩H+

0,v,hK(v)−sλδ (v)

)
.

The λ-floating body can be bounded by the Euclidean (convex) float-
ing body in the following way.

Lemma 4.1. Let K ∈ K0(Bn(λ)), p ∈ intK and 0 ≤ α < β be such
that Bn

λ(p, α) ⊂ K ⊆ Bn
λ(p, β). We set

δ1 := δ
(

1 + λ tanλ (dλ(0, p)− α)2
)
,

δ2 := δ
(

1 + λ tanλ (dλ(0, p) + β)2
)
.

If δ > 0 is small enough so that Bn
λ(p, α) ⊆ Fλδ K, then{

F0
δ1
K ⊆ Fλδ K ⊆ F0

δ2
K if λ < 0,

F0
δ2
K ⊆ Fλδ K ⊆ F0

δ1
K if λ > 0.

(4.3)

Proof. It will be convenient to use the substitution tanλ s(v, δ) =
hK(v)− sλδ (v) in (4.2) to obtain

Fλδ K =
⋂

v∈Sn−1

H−
0,v,tanλ s(v,δ)

,(4.4)

where s(v, δ) is determined by

δ
n+1

2 = volλn

(
K ∩H+

0,v,tanλ s(v,δ)

)
.(4.5)

Since K ⊆ Bn
λ(p, β) and by (3.19), we conclude that, for all q ∈ K,

‖q‖ ≤ tanλ (dλ(0, p) + β). This implies that(1 + λ‖q‖2)−1 ≤ cosh
(√
−λ(dλ(0, p) + β)

)2
if λ < 0,

(1 + λ‖q‖2)−1 ≥ cos
(√

λ(dλ(0, p) + β)
)2

if λ > 0.

Using this, (3.19) and (4.5), we obtainδ
n+1

2 ≤ cosh
(√
−λ(dλ(0, p) + β)

)n+1
volen

(
K∩H+

0,v,tanλ s(v,δ)

)
if λ < 0,

δ
n+1

2 ≥ cos
(√

λ(dλ(0, p) + β)
)n+1

volen

(
K∩H+

0,v,tanλ s(v,δ)

)
if λ > 0.

For λ < 0, let t (v, δ2) be such that

δ
n+1

2
2 =

(
δ cosh

(√
−λ(dλ(0, p) + β)

)−2
)n+1

2

= volen

(
K ∩H+

0,v,t(v,δ2)

)
.
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Then tanλ s(v, δ) ≤ t (v, δ2) and, therefore,

Fλδ K = [tanλ s(., δ)] ⊆ [t (., δ2)] = F0
δ2 K.

For λ > 0, an analogous argument gives tanλ s(v, δ) ≥ t (v, δ2), which
yields Fλδ K ⊇ F0

δ2
K.

For the other inclusions we first note that Bn
λ(p, α) ⊆ Fλδ K ⊆ K im-

plies ‖q‖ ≥
∣∣tanλ (dλ(0, p)− α)

∣∣, for all q ∈ K\Fλδ K. By an argument
analogous to the above, we find thatδ

n+1
2 ≥ cosh

(√
−λ(dλ(0, p)− α)

)n+1
volen

(
K∩H+

0,v,tanλ s(v,δ)

)
if λ < 0,

δ
n+1

2 ≤ cos
(√

λ(dλ(0, p)− α)
)n+1

volen

(
K∩H+

0,v,tanλ s(v,δ)

)
if λ > 0.

Hence, we have that Fλδ K ⊇ F0
δ1
K, for λ < 0, respectively, Fλδ K ⊆

F0
δ1
K, for λ > 0. q.e.d.

A special case of Lemma 4.1 for λ = 1 has been obtained in [7, Thm.
5.2].

Let K ∈ K0(Bn(λ)) be such that 0 ∈ intK. For x ∈ bdK we denote
by xKδ the uniquely determined intersection point of bdFλδ K with the
ray pos{x}. We obtain the following corollary to Lemma 2.9.

Corollary 4.2. Let K ∈ K0(Bn(λ)) be such that 0 ∈ intK and let x ∈
bdK be a regular and exposed point. For ε > 0 set K ′ = K ∩Bn

λ(x, ε).
Then x ∈ bdK ′ is a regular and exposed point of K ′. Moreover, there
exists δε such that for all δ < δε, we have that xK

′
δ = xKδ .

Proof. We may move K by an isometry of (Bn(λ), gλ) so that 0 ∈
intK ′. Since the geodesic balls Bn

λ(p, α) are ellipsoids, there exists a
small Euclidean ball with the same center p that is contained inBn

λ(p, α).
Hence, without loss of generality, there is η := η(ε, x,K) > 0 such that
0 ∈ int(K ∩Bn

e (x, η)) ⊆ intK ′. We set K ′′ = K ∩Bn
e (x, η).

We apply Lemma 2.9 for µ = volλn and ε = η, and obtain (Fλδ K) ∩
pos{x} = (Fλδ K ′′) ∩ pos{x}, for all δ < δη. Note that K ⊆ L implies
Fµδ K ⊆ F

µ
δ L. This yields

(Fλδ K) ∩ pos{x} = (Fλδ K ′′) ∩ pos{x}

⊆ (Fλδ K ′) ∩ pos{x} ⊆ (Fλδ K) ∩ pos{x}.

Hence, (Fλδ K) ∩ pos{x} = (Fλδ K ′) ∩ pos{x} and, therefore, xKδ = xK
′

δ
for all δ < δη =: δε. q.e.d.

4.1. Proof of Theorem 1.2. We are now ready to prove Theorem 1.2.
For a (proper) convex body K ∈ K0(Spn(λ)) we consider the Euclidean
model (Bn(λ), gλ) for Spn(λ) and identify K with an Euclidean convex
body in Bn(λ) such that 0 ∈ intK.
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Analogous to Proposition 3.7 we obtain the following.

Proposition 4.3. Let K,L ∈ K0(Bn(λ)) be such that L ⊆ K and
0 ∈ intL. For x ∈ bdK we set {xL} = bdL ∩ pos{x}. Then

volλn (K\L) =

∫
bdK

x ·N e
x

‖x‖n

‖x‖∫
‖xL‖

tn−1

(1 + λt2)
n+1

2

dt dvolebdK(x).

Let δ > 0 be small enough, so that 0 ∈ intFλδ K. To prove Theorem
1.2 we have to show that

lim
δ→0+

volλn
(
K\Fλδ K

)
δ

= cn

∫
bdK

Hλ
n−1(K,x)

1
n+1 dvolλbdK(x).

By Proposition 4.3, we have

volλn
(
K\Fλδ K

)
δ

=

∫
bdK

x ·N e
x

δ‖x‖n

‖x‖∫
‖xλδ ‖

tn−1

(1 + λt2)
n+1

2

dt dvolebdK(x).(4.6)

We will first show that the integrand is uniformly bounded in δ by
an integrable function.

Lemma 4.4. Let K ∈ K0(Bn(λ)) and 0 ∈ intK. Then there exists
α, β > 0 and δ0 > 0 such that Bn

λ(0, α) ⊆ intFλδ K for all δ ≤ δ0 and
K ⊂ Bn

λ(0, β). Furthermore, for regular boundary points x ∈ bdK and
for 0 < δ < δ0, define

f(x, δ) :=
x ·N e

x

δ‖x‖n

‖x‖∫
‖xλδ ‖

tn−1

(1 + λt2)
n+1

2

dt.(4.7)

Then f(x, δ) is bounded from above for all δ < δ0 by an integrable func-
tion g(x), for almost all x ∈ bdK.

Proof. Since 0 ∈ intK, there is δ0 > 0 such that 0 ∈ intFλδ0 K. Thus,

there exists α > 0 such that Bn
λ(0, α) ⊆ intFλδ0 K and, by monotonicity,

this yields Bn
λ(0, α) ⊆ Fλδ K, for all δ ≤ δ0. Furthermore, since K is

bounded, there exists β > 0 such that K ⊆ Bn
λ(0, β). By (3.19), this

implies that tanλ α ≤ ‖xλδ ‖ ≤ ‖x‖ ≤ tanλ β for all δ < δ0.
We set

δ̃ :=

{
δ cosh(

√
−λα)−2 if λ < 0,

δ cos(
√
λβ)−2 if λ > 0.

(4.8)
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By Lemma 4.1, we have that Fe
δ̃
K ⊆ Fλδ K and, therefore, ‖xe

δ̃
− x‖ ≥

‖xλδ − x‖. For ‖xλδ ‖ ≤ t ≤ ‖x‖, we obtain

1

(1 + λt2)
n+1

2

≤

{
cosh(

√
−λβ)n+1 if λ < 0,

cos(
√
λα)n+1 if λ > 0.

(4.9)

We conclude that

1

δ

(
x

‖x‖
·N e

x

) ‖x‖∫
‖xλδ ‖

(
t

‖x‖

)n−1

(1 + λt2)−
n+1

2 dt(4.10)

≤ C
(

x

‖x‖
·N e

x

) ∥∥∥xe
δ̃
− x
∥∥∥

δ̃
,

where we put, for λ < 0, C := cosh(
√
−λβ)n+1 cosh(

√
−λα)−2, respec-

tively, for λ > 0, C := cos(
√
λα)n+1 cos(

√
λβ)−2.

This concludes the proof, since the right-hand side of (4.10) is the
same integrand we obtain for the Euclidean (convex) floating body and

is, therefore, bounded uniformly in δ̃ by an integrable function for almost
all x ∈ bdK, by [47, Lem. 5 and Lem. 6]. q.e.d.

It only remains to show that (4.7) converges point-wise for almost
all boundary points. Since almost all boundary points are normal, it is
sufficient to show the following.

Lemma 4.5. Let K ∈ K0(Bn(λ)) and 0 ∈ intK. Then, for normal
boundary points x ∈ bdK, we have that

lim
δ→0+

x ·N e
x

δ‖x‖n

‖x‖∫
‖xλδ ‖

tn−1

(1 + λt2)
n+1

2

dt = cn
He
n−1(K,x)

1
n+1

(1 + λ‖x‖2)
n−1

2

,(4.11)

where cn = 1
2 ((n+ 1)/κn−1)2/(n+1).

Proof. A normal boundary point x ∈ bdK has a unique outer unit
normal N e

x and the Gauss–Kronecker curvature He
n−1(K,x) exists. We

first consider the case that He
n−1(K,x) = 0 and show that the left-hand

side of (4.11) converges to 0, for δ → 0+. With δ̃ as defined by (4.8) in
Lemma 4.1, we find again the upper bound (4.10). The function in the
upper bound is the same as the integrand we obtain for the Euclidean

convex floating body and, therefore, it converges to 0, for δ̃ → 0+, by
[47, Lem. 7 and Lem. 10]. This implies that

lim sup
δ→0+

x ·N e
x

δ‖x‖n

‖x‖∫
‖xλδ ‖

tn−1

(1 + λt2)
n+1

2

dt≤C lim sup
δ̃→0+

(
x

‖x‖
·N e

x

) ∥∥∥xe
δ̃
− x
∥∥∥

δ̃
= 0.
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Next, let He
n−1(K,x) > 0. Let ε > 0 be arbitrary and set K ′ =

K∩Bn
λ(x, ε). Furthermore, let p be a point inside K ′ and on the segment

spanned by x and the origin, that is, p ∈ intK ′ ∩ pos{x}. For α = 0
and β = ε define δ1 and δ2 as in Lemma 4.1. Then, for δ small enough,
we have p ∈ intFλδ K ′. Thus, for λ < 0, F0

δ1
K ′ ⊆ Fλδ K ′ ⊆ F0

δ2
K ′,

respectively, for λ > 0, F0
δ1
K ′ ⊇ Fλδ K ′ ⊇ F0

δ2
K ′. Corollary 4.2 implies

that

{xλδ } = bdFλδ K ∩ conv(x, p) = bdFλδ K ′ ∩ conv(x, p).

This yields {
‖x− xeδ1‖ ≥ ‖x− x

λ
δ ‖ ≥ ‖x− xeδ2‖ if λ < 0,

‖x− xeδ1‖ ≤ ‖x− x
λ
δ ‖ ≤ ‖x− xeδ2‖ if λ > 0.

(4.12)

Hence, for λ < 0, we have

x ·N e
x

δ‖x‖n

‖x‖∫
‖xλδ ‖

tn−1

(1 + λt2)
n+1

2

dt ≥
x
‖x‖ ·N

e
x

(1 + λ‖xλδ ‖2)
n+1

2

(
‖xλδ ‖
‖x‖

)n−1
δ2

δ

‖x− xeδ2‖
δ2

,

x ·N e
x

δ‖x‖n

‖x‖∫
‖xλδ ‖

tn−1

(1 + λt2)
n+1

2

dt ≤
x
‖x‖ ·N

e
x

(1 + λ‖x‖2)
n+1

2

δ1

δ

‖x− xeδ1‖
δ1

.

Conversely, if λ > 0, then

x ·N e
x

δ‖x‖n

‖x‖∫
‖xλδ ‖

tn−1

(1 + λt2)
n+1

2

dt ≥
x
‖x‖ ·N

e
x

(1 + λ‖x‖2)
n+1

2

(
‖xλδ ‖
‖x‖

)n−1
δ1

δ

‖x− xeδ1‖
δ1

,

x ·N e
x

δ‖x‖n

‖x‖∫
‖xλδ ‖

tn−1

(1 + λt2)
n+1

2

dt ≤
x
‖x‖ ·N

e
x

(1 + λ‖xλδ ‖2)
n+1

2

δ2

δ

‖x− xeδ2‖
δ2

.

To finish the proof we first notice that the functions that appear
on the right-hand side of the above inequalities are again related to
the integrand that is obtained for the Euclidean convex floating body.
Hence, by [47, Lem. 7 and Lem. 11], for δ∗ ∈ {δ1, δ2},

lim
δ∗→0+

x

‖x‖
·N e

x

‖x− xeδ∗‖
δ∗

= cnH
e
n−1(K,x)

1
n+1 .

By the choice of p, we have |‖x‖ − ε| ≤ ‖p‖ ≤ ‖x‖. For λ < 0, by the
definition of δ1 and δ2, there exist positive constants C1, C2 > 0, such
that

δ1

δ
≤ (1 + λ‖x‖2)(1 + C1ε) and

δ2

δ
≥ (1 + λ‖x‖2)(1− C2ε).
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Therefore,

lim sup
δ→0+

x ·N e
x

δ‖x‖n

‖x‖∫
‖xλδ ‖

tn−1

(1 + λt2)
n+1

2

dt ≤ lim sup
δ→0+

x
‖x‖ ·N

e
x

(1 + λ‖x‖2)
n+1

2

δ1

δ

‖x− xeδ1‖
δ1

≤ cn
He
n−1(K,x)

1
n+1

(1 + λ‖x‖2)
n−1

2

(1 + C1ε),

and, similarly,

lim inf
δ→0+

x ·N e
x

δ‖x‖n

‖x‖∫
‖xλδ ‖

tn−1

(1 + λt2)
n+1

2

dt ≥ cn
He
n−1(K,x)

1
n+1

(1 + λ‖x‖2)
n−1

2

(1− C2ε).

Since ε > 0 was arbitrary, we obtain (4.11), for λ < 0. For λ > 0 the
argument is analogous. q.e.d.

Combining Lemma 4.4, Lemma 4.5, (3.23) and (3.24), we conclude
that

lim
δ→0+

volλn
(
K\Fλδ K

)
δ

= cn

∫
bdK

He
n−1(K,x)

1
n+1

(1 + λ‖x‖2)
n−1

2

dvolebdK(x)(4.13)

= cn

∫
bdK

Hλ
n−1(K,x)

1
n+1 dvolλbdK(x).

This finishes the proof of Theorem 1.2.

5. The floating area in real space forms

We denote the Borel σ-algebra of a metric space (X, d) by B(X). For
K ∈ K0(Bn(λ)) and ω ∈ B(Bn(λ)) we conclude, by Theorem 1.3 and
(4.13), that

lim
δ→0+

volλn
(
(K\Fλδ K) ∩ ω

)
δ

=

∫
(bdK)∩ω

Hλ
n−1(K,x)

1
n+1 dvolλbdK(x).

(5.1)

Definition 5.1. The λ-floating measure Ωλ(.,.) is defined, for K∈
K(Spn(λ)) and ω ∈ B(Spn(λ)), by

Ωλ(K,ω) =

∫
(bdK)∩ω

Hλ
n−1(K,x)

1
n+1 dvolλbdK(x),(5.2)

if intK 6= ∅ and Ωλ(K,ω) = 0 else. The λ-floating area Ωλ(.) of a
convex body K is Ωλ(K) = Ωλ(K,Spn(λ)).
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For λ > 0, we distinguish between proper and non-proper convex
bodies. Recall that a convex body is proper, if and only if it does not
contain two antipodal points. Equivalently, a convex body is proper if
and only if it is contained in an open half-space (open hemisphere). By
(5.1), definition (5.2) makes sense for proper convex bodies. Non-proper
convex bodies K with non-empty interior are either the whole space or
a lune. A k-lune is the convex hull conv(S,L) of a k-dimensional totally
geodesic subspace (k-sphere) S and a proper convex body L in an (n−
k− 1)-dimensional totally geodesic subspace polar to S. Thus, for non-
proper convex bodies we either have K = Spn(λ) and, therefore, bdK =
∅ or K is a lune and the boundary is “flat”, that is, Hλ

n−1(K,x) = 0 for

almost all boundary points x ∈ bdK. Therefore, we set Ωλ(K,ω) = 0
for non-proper convex bodies. See also [7] for more details.

Finally, from the definition (5.2) it is obvious that the λ-floating
area vanishes for “flat” bodies. In particular, the λ-floating area for
polytopes is zero.

5.1. Proof of Theorem 1.3. We first prove the valuation property.
The proof is analogously to the proof for the affine surface area in [45].
Let K,L ∈ K(Spn(λ)) such that K ∪ L ∈ K(Spn(λ)). We have to show

Ωλ(K,ω) + Ωλ(L, ω) = Ωλ(K ∪ L, ω) + Ωλ(K ∩ L, ω).(5.3)

We first assume that K,L ∈ K0(Spn(λ)). We observe

bdK = (bdK ∩ bdL) ∪ (bdK ∩ intL) ∪ (bdK ∩ Lc),
bdL = (bdK ∩ bdL) ∪ (intK ∩ bdL) ∪ (Kc ∩ bdL),

bd(K ∩ L) = (bdK ∩ bdL) ∪ (bdK ∩ intL) ∪ (intK ∩ bdL),

bd(K ∪ L) = (bdK ∩ bdL) ∪ (bdK ∩ Lc) ∪ (Kc ∩ bdL),

where Kc = Spn(λ)\K and Lc = Spn(λ)\L. Then (5.3) reduces to

∫
(bdK ∩ bdL)∩ω

Hλ
n−1(K,x)

1
n+1 +Hλ

n−1(L, x)
1

n+1 dvolλbdL(x)

(5.4)

=

∫
(bdK ∩ bdL)∩ω

Hλ
n−1(K ∪ L, x)

1
n+1 +Hλ

n−1(K ∩ L, x)
1

n+1 dvolλbdL(x).

Locally around any point x ∈ bdK ∩ bdL, we use the Euclidean model
(Bn(λ), gλ). Hence, Hλ

n−1(K,x) and Hλ
n−1(K,x) are related by (3.24)

at normal boundary points x ∈ bdK. With [45, Lem. 5], we conclude
that

Hλ
n−1(K ∪ L, x) = min

{
Hλ
n−1(K,x), Hλ

n−1(L, x)
}
,

Hλ
n−1(K ∩ L, x) = max

{
Hλ
n−1(K,x), Hλ

n−1(L, x)
}
.
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This verifies (5.4) in the case that K,L ∈ K0(Spn(λ)). If intK = intL =
∅, then (5.4) holds trivially. So assume without loss of generality that
intK = ∅ and intL 6= ∅ such that K ∪L ∈ K(Spn(λ)). If λ > 0 then we
may assume that L is proper, because otherwise (5.4) holds trivially. We
use a Euclidean model such that L can be identified with a Euclidean
compact convex body and K is a, possibly unbounded, closed convex
subset of Rn. We want to show, that K ⊆ L. Assume that there is
x ∈ K\L and let C be the convex hull of x and L. By the hyperplane
separation Theorem there is v ∈ Sn−1 and c ∈ R such that

x · v > c > sup
y∈L

y · v.

Hence, int(C\L) 6= ∅ and, therefore, K = conv(K ∪ L)\L ⊇ C\L has
non-empty interior – a contradiction. So necessarily we have K ⊆ L
and, therefore, (5.4) holds. This shows, that Ωλ(., ω) is a valuation on
K(Spn(λ)).

Since Ωλ(., ω) can be seen as a curvature measure on bdK, the proof
of the upper-semicontinuity of Ωλ(., ω) is analogous to the proofs pre-
sented in [31]. We include the following short argument: Let (K`)`∈N
be a sequence of convex bodies converging to K ∈ K(Spn(λ)). By the
valuation property we may assume, for λ > 0, that K ∪

⋃
`∈NK` is con-

tained in an open half-space. We choose a Euclidean model (Bn(λ), gλ)
and identify K` and K with Euclidean convex bodies. Hence,

Ωλ(K,ω) =

∫
(bdK)∩ω

He
n−1(K,x)

1
n+1

(1 + λ‖x‖2)
n−1

2

dvolebdK(x).

The density fλ(x) := (1 + λ‖x‖2)−(n−1)/2 is continuous and

Ω0(K,ω) =

∫
(bdK)∩ω

He
n−1(K,x)

1
n+1 dvolebdK(x)

is the classical affine surface area. Thus, Ω0(., ω) is upper semicontinu-
ous, see e.g., [35]. To finish the proof let ε > 0. By compactness of K
and continuity of fλ, we find a finite partition of bdK ∩ω into measur-
able subsets (ωj)

N
j=0 and points xj ∈ ωj such that |fλ(x)− fλ(xj)| < ε,

for all x ∈ ωj . Therefore,

lim sup
`∈N

Ωλ(K`, ω) ≤
N∑
j=0

(fλ(xj) + ε) lim sup
`∈N

Ω0(K`, ωj)

=
N∑
j=0

(fλ(xj) + ε)Ω0(K,ωj) ≤ Ωλ(K,ω) + ε2NΩ0(K).

Since ε > 0 was arbitrary, this proves the upper semicontinuity of
Ωλ(., ω).
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Finally, the fact that Ωλ(., ω) is invariant under isometries is obvious,
since it is a intrinsic notion. For λ = 0, the equi-affine transformations
are characterized as bijective automorphisms that map lines to lines,
are measurable and preserve volume.

5.2. Isoperimetric inequality. The classical and well-known inequal-
ity associated with the affine surface area can be found, for general
convex bodies, in e.g., [35]. Namely, for K ∈ K0(Rn) we have that

as1(K) ≤ nκ
2

n+1
n volen(K)

n−1
n+1 ,(5.5)

with equality if and only if K is an ellipsoid. A natural question is,
whether an extension of this inequality holds for the λ-floating area.
Inequality (5.5) can be restated as: For all convex bodies of volume α

the ball of radius (α/κn)1/n maximizes the affine surface area, i.e.,

sup
K∈K0(Rn)

{as1(K) : volen(K) = α} = as1

(
Bn
e

(
0, (α/κn)1/n

))
.

Therefore, we define

Cλ(α) := sup
K∈K0(Spn(λ))

{
Ωλ(K) : volλn(K) = α

}
.(5.6)

Then, for λ = 0 and by (5.5), we conclude

C0(α) = nκ
2

n+1
n α

n−1
n+1 .

For λ > 0, K0(Spn(λ)) is compact. Since Ωλ(.) is upper semi-continuous,
there exists K∗ ∈ K0(Spn(λ)) such that Ωλ(K∗) = Cλ(α). We conjec-
ture, that K∗ is a geodesic ball, that is, for arbitrary p ∈ Spn(λ), we
have

Cλ(α)
?
= Ωλ (Bn

λ (p, r)) ,

where r is determined by α = volλn (Bn
λ (p, r)).

For λ < 0, the problem becomes more intricate, since Spn(λ) admits
unbounded closed convex sets with non-empty interior and finite vol-
ume. For example, in hyperbolic space the ideal simplices are among
them. Ideal simplices are simplices with vertices at infinity and they
have finite hyperbolic volume. In the Euclidean model (Bn, gh), such
ideal simplices are just Euclidean simplices inscribed in the sphere at
infinity Sn−1 = bdBn. More generally, any polytope with vertices at
infinity has finite volume. This is immediate by the valuation property
of hyperbolic volume and the fact that any polytopes can be parti-
tioned into simplices. By monotonicity of the hyperbolic volume, we
also conclude that any closed convex subset that is contained in a poly-
tope with vertices at infinity has finite hyperbolic volume. We denote
by K∞0 (Spn(λ)) the space of closed convex subsets of Spn(λ) with non-
empty interior and finite volume. Hence, for λ < 0, the space of convex
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bodies K0(Spn(λ)) endowed with the volume difference metric is not
complete. The closure of K0(Spn(λ)) in the space of all closed convex
subsets of Spn(λ) with non-empty interior is K∞0 (Spn(λ)).

Extremizers of (5.6) could appear in K∞0 (Spn(λ)) for λ < 0, since
any unbounded convex set in K∞0 (Spn(λ)) can be approximated with
respect to the volume difference metric by a sequence of convex bodies
(K`)`∈N in K0(Spn(λ)) such that volλn(K`) = α. However, we conjecture
that also in the hyperbolic setting geodesic balls will be extremal.
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