J. DIFFERENTIAL GEOMETRY
106 (2017) 1-43

UNIFORM HYPERBOLICITY OF INVARIANT
CYLINDER

CHONG-QING CHENG

Abstract

For a positive definite Hamiltonian system H = h(p) + e¢P(p, q)
with (p,q) € R?® x T3, large normally hyperbolic invariant cylin-
ders exist along the whole resonant path, except for the e3td
neighborhood of finitely many double resonant points. It allows
one to construct diffusion orbits to cross double resonance.

1. Introduction and the main result

In this paper, we study small perturbations of integrable Hamilton
systems with three degrees of freedom

(1.1) H(p.q) = h(p) + €P(p,q),  (p.q) € R® x T3,

where 9h(p) is positive definite, both h and P are C"-functions with
r > 6. In the energy level set H!(E) with E > minh, we search for
invariant cylinders along resonant path. An irreducible integer vector
k' € Z3\{0} determines a resonant path

I"={peh (E): (Oh(p),k) = 0}.

A point p” € T” is called double resonant if 3 another irreducible vector
K" € 73\{0}, independent of k', such that (k" Oh(p")) = 0 holds as
well. There are infinitely many double resonant points, but only strong
double resonance causes trouble. A double resonance is called strong if
|k”| is not so large.

To make things simpler we introduce a symplectic coordinate trans-
formation

m : u=M'q, v=M"p,

where the matrix is made up by three integer vectors M = (k" k', k3).
As both k' and k” are irreducible, 3 k3 € Z? such that detM = 1.
There are infinitely many choices for k3, we choose that k3 so that |ks]
is the smallest one. For simplicity of notation, we assume that the
Hamiltonian of (1.1) is already under such transformation and denote
the canonical coordinates by (p, ¢) still. So we have dh(p") = (0,0, ws).
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To get a normal form around a double resonance, we introduce a
coordinate transformation ®.r which is defined as the time-27-map
P = @iF|t:2ﬂ of the Hamiltonian flow generated by the function
eF(p,q). This function solves the homological equation

(1.2)

<8h 8F>=—P(p,Q)+Z(p,q),

op ("), 9
where

Zp.q)= Y, PRipelhatte)
LeZ3 £3=0

in which Py represents the Fourier coefficient of P, ¢ = (¢1,02,/(3). Ex-
panding F' into Fourier series and comparing both sides of the equation
we obtain

5 iP(p) g
F(p7 q) = Vi el 4 °
vz zozg (L ORP"))

Under the transformation ®.r we obtain a new Hamiltonian

N Oh oh oF
PieH =h(p) + Z(p,a) + {5 () = 5 ("), )

62 1 ,
+ 2/0 (1 - t){{H, F},F} o & dt.

To solve Equation (1.2), we do not have the problem of small divisor
because [(¢,0h(p"))| = |lsws|, where ws = Jsh(p”) # 0 since h(p”) >
min h.

The function ®¥,H (p,q) determines its Hamiltonian equation

dg 0 _, dp 0 _,
(1.3) E —_— %@GFH7 a —_— ai(JQGFH.

For this equation we introduce another transformation (call it homoge-
nization)

- 1 1
Gezfq)* Ha ~:7< - //)7 r = ’ = t,
- %er AU T=q, s=\/e
with & = (z,z3), ¥ = (y,y3), * = (x1,22), ¥ = (y1,y2). In the new
canonical variables (Z,7) and the new time s, Equation (1.3) turns out
to be the Hamiltonian equation with the generating function as the
following;:

(1) Go= (" + V) ~ ") - V(&) + VeR ()
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where V = —Z(p", x) and
REZR1+R2+R31

R = (207 + Veia) - 200 ).

€ 1
Rs = ‘2//0 (1—t){{H,F},F}o®!.dt.

To choose the neighborhood where we study the normal form (1.4), we
notice the following two points.
1) there are finitely many double resonant points {p/} C I' such
that I is covered by the disks {|[p—p/| < K; '¢”'}, where o’ < L,
K; < Koe_%(l_?"’/) is the period of the double resonance at p/, i.e.,
K;0h(pl!) € Z3 and KOh(p!) ¢ Z? for any K < K; (see Chapter
3 of [Lo]). Therefore, the size of each disk is between O(e%) and
O(es);
2) one is unable to use the KAM technique in K./e-neighborhood

of strong double resonance to obtain invariant cylinder, even with
large K > 0.

Therefore, we will study the normal form (1.4) in the domain
1
O, = {(;e,g) |l < 73,5 € T3}, with 0 <o <2,

where the term |\/eR;|cr—2 is bounded by a small number of order O(e?)
(for i = 1,2, 3). If we introduce a symplectic coordinate transformation
further

w3 €
23, 0 — Ve
\ﬁ w3

then 65’}1‘_ = 14 O(€?) holds in the domain &€,. Therefore, there is a

unique function I = —G(z,y, ) which solves the equation

6’ Y, *ﬁGe(l‘a Y, 6)) = Oa
w3

(1.6) (G I =

w3
Ve
where we use the fact that h(p”) = E. Since the Hamiltonian (1.4) is

nearly integrable, we shall see later that the function G (x,y,0) takes
the form

(1.8)  Ge(w,y,0) = Ge(x,y) + " Re(z,y,0), for [jy| < O(eo_%),
where G, solves the equation h(p” + ﬁ(y,—zj/—jée(:ﬁ,y))) — h(p") =

€V (x). By assuming min V' = 0, the energy of G ranges from zero to
very high level E'¢?°~L. Restricted on the energy level set G-1(0), the

(1.7) G. (m
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dynamics of G, is equivalent to the dynamics of G. where 0 plays the
role of time. Let CI’OGe denote the Hamiltonian flow of G..

To state our results, we introduce some notations. A manifold with
boundary is called cylinder if it is homeomorphic to the standard cylin-
der T x [0,1]. A typical case is the cylinder made up by periodic orbits
of an autonomous Hamiltonian system where different orbit lies in dif-
ferent energy level set. The cylinder is denoted by Ilg, g, 4 if all orbits
are associated with the same first homology class g and they lie in the
level set with energy F7 to the set with Es. The cylinder is invariant
for the Hamiltonian flow. If the system is under small time-periodic
perturbation, the time-periodic map generated by the Hamiltonian flow
is a small perturbation of the original map. The cylinder will survive
small perturbations of the map with small deformation, denoted by
05, gy = U5 g lo—o. Let 1% o = Uper(ITg 5 .6), the small
deformation of llg, g, o X T. We also call it cylinder.

The Tonelli Hamiltonian G, determines a Tonelli Lagrangian through
the Legendre transformation. So, the a- and S-function are well defined,
denoted by aq, and g, , respectively. They define the Legendre-Fenchel
duality Zp, between the first homology and the first cohomology: a
first cohomology class c € L3, (9) if ag, (c)+Bc.(9) = (¢, g). By adding
a constant to G, we can assume min ag, = 0. Once a Lagrangian L is
fixed, we also use .3, to denote the Legendre—Fenchel duality.

The Hamiltonian G, produces a map Zg.: T*T? x T — TT? x T:
(z,y,0) = (x,2,0) where & = 0,Gc(z,y,0). In this paper, a set in
T*T? x T as well as its time-27-section is called Mather set (Aubry set
or Mané set) if its image under the map %, is a Mather set (Aubry
set or Mané set) in the usual definition. Let NHIC be the abbreviation
of normally hyperbolic invariant cylinder, the following theorem is the
main result of this paper:

Theorem 1.1. For a class g € H1(T? R), there is an open-dense set
U C C"(T%,R) (r > 5). For each V € U, there exists g > 0 such that
for each € € (0, €)

1) there are finitely many NHICs for the map @é’i: HEd7E0+&g,

H%O_(;’Eﬁ&g '--HeEi071_5’Eio+67g, HGEZ-O—&EQ"”,Q where the integer
19, the numbers E;, > --- > E1 > Eg > 0, the small numbers
0,d > 0 and the normal hyperbolicity of each cylinder are all in-
dependent of €;

2) for each c € ZLp._(Ng) with A >0

e 3 N > 1 such that if ag,(c) € (Ne?, Ey), the Aubry set lies on

et 5yvog7
o if ag (c) € (Ei, Fit1), the Aubry set lies on HEEZ'—(S,EH—I‘HS,Q
where the subscript i ranges over the set {0,1,--- ,ig — 1};

e if ag.(c) € (B, 271, the Aubry set lies on HEiO 201 gi
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e if ag.(c) = E;, the Aubry set has two connected components,

. € y €
oneis onIly 5 p s, and another one is on 0, 55,1169

Let us see what the theorem implies for the Hamiltonian H if
we return back to the original coordinates. Since h is integrable,
%3, (Oh(I")) € HY(T3,R) is a smooth curve. Through the Legendre—
Fenchel duality induced by B, the g-function for H, one obtains a
channel 3, (0h(I")) € H*(T3,R). If we denote a-neighborhood of the
set S by S+a={x:d(z,S)<a}, it follows from Theorem 1.1 that

Theorem 1.2. Given a resonant path I' C h™'(E) and a potential
V € U, some small numbers ey, d > 0 exist such that for each € €
(0,€0), only finitely many frequencies {wy € I} need to be treated as
strong double resonance, the number is independent of €. For each class
c € La, (OMI)\ U (Lpy (wi) + e%+d) the Aubry set A(c) lies on some
NHIC. The number of NHICs is finite, independent of €, these NHIC's

extend to e%+d—neighborhood of strong double resonant points.

The result in [CZ2] plays important role in this paper. It is for the
minimal periodic orbit of Tonelli Lagrangian of two degrees of freedom.
Let L be a Tonelli Lagrangian and let 9t(L) be the set of Borel prob-
ability measures on TT?, which are invariant for the Lagrange flow oy
produced by L. Each p € (L) is associated with a rotation vector
p(i) € Hi(T? R) s.t. for every closed 1-form 1 on T? one has

([ p12)) = / ndp.

Let M, (L) = {pn € M(L) : p(n) = w}, an invariant measure  is called
minimal with the rotation vector w if

/Ld,u,: inf /Ldu.
veMy, (L)

A rotation vector w € Hy(T? R) is called resonant if there exists a non-
zero integer vector k € Z2 such that (w,k) = 0. For two-dimensional
torus, it uniquely determines an irreducible element g € Hy(T?,Z) and
a positive number A > 0 such that w = A\g if w is resonant. Each orbit
in the support of minimal measure p is periodic if and only if p(u) is
resonant. Let £ = a(Z3,()\g)), such periodic orbit is called (E,g)-
minimal. The following result (Theorem 2.1 of [CZ2]) has been proved
for Tonelli Lagrangian with two degrees of freedom L : TT? — R:

Theorem 1.3. Given a class g € H1(T?,Z) and two positive numbers
E" > E' > 0, there exists an open-dense set 0 C C"(T?,R) with r > 5
such that for each V € 9, it holds simultaneously for all E € [E', E"]
that every (E, g)-minimal periodic orbit of L +V is hyperbolic. Indeed,
except for finitely many E; € [E’, E"], there is only one (E, g)-minimal
orbit for E # E; and there are two (E, g)-minimal orbits for E = F;.
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Therefore, these (E, g)-minimal periodic orbits make up finitely many
pieces of NHICs.

Applying this theorem to the Hamiltonian G, in (1.8), one immedi-
ately obtains the existence of NHICs which extend from the level set
with energy of order O(1) to the level set with very high energy £ > 1
but independent of e. In Section 2, we show the NHICs which extend
from the level set with energy of order O(1) to the level set with very
lower energy E = O(e?) and show in Section 3 the NHICs which ex-
tends from level set with high energy F > 1 to extremely high energy
E = O(e?*~1). Although we are searching for NHICs ranging from the
level with very lower energy to the level with energy approaching infin-
ity as e — 0, in Section 4, we show that, for generic potential V', the
number of the NHICs is finite, independent of €. It allows us to apply
the theorem of normally hyperbolic invariant manifold to obtain the
existence of NHICs for the time-periodic map of @5, = <I>9G€| b=y L2 e
Since these cylinders may be overflow, we show in Section 5 which Aubry
sets remain in these cylinders.
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2. NHIC around double resonant point

The main result in this section is Theorem 2.3. It verifies that a NHIC
for the map ®¢, extends from e?-neighborhood of the double resonant
point to a place which is of order O(1)-away from the double resonant
point.

We do not try to find a formulation of G¢ in (1.8) which is valid for the
whole region €).. Instead, we are satisfied with getting a local expression
when it is restricted on {|p—p}| < O(y/€)} where p, € IT"N{|p—p"| < €7 }.
Along the path IV N {|p — p”| < €7} we choose points {p,} such that
py =1, O1h(p;) = Kiy/e, where K > 0 is an integer, independent of e.
Let ws; = 03h(p}), we introduce coordinate rescaling and translation

Je

Ve o1 / _
(21) (ya w3, I) - \ﬁ(p _pi)7 0= ws.; xs3.
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Let Ki = €, we expand G. of (1.4) in O(y/€) neighborhood of p] and
get

(2.2)
Ge=1+ -+ 3 (A 1), (0. 251))
Vi) + m(y, YEI) VR (s, <520, (Ve 1) + 50
where A; = (p ) and term Ry, represents the Taylor remainder

\“Q’\

(ot + (Ve 1))
— [P + T+ Quyr + %@- (v, ﬁf) (v, ve )}

W3i W35

S

For |p;| < O(€?), ly| < O(1) and |I] < O(%) both \/eR;, and /eR.
are bounded by a quantity of order O(e”) in CT_2—topol~ogy, where 6

variable is not taken derivatives. From the expression of G, in (2.2) we
get a local solution of the equation (cf. Equation 1.7)

5 Wig Ve _
(23) GE <'I7 WH’ Y, UJ37@' Ge,l(xa Y, 9)) - 07

which takes the form
Ge,i(l'a Y, 9) = Gl(x7 y) + GURE z($ Y, ‘9)7

(2.4)
Gi(z,y) = Qy1 + 5 <Ay y) —V(z),

where A is a 2 x 2 matrix obtained from Ag by eliminating the third row
and the third column. At first view, the matrix A should come from A;
in the same way. However, using the property [p, —p”| < O(e?) we can
put the difference term into the remainder.

Let us compare the Hamiltonian G¢; of (2.4) with the Hamiltonian
G of (1.8). It follows from the transformations (1.6) and (2.1) that for

Vey — pi < O(y/€) one has

W3i Loy g w3
2.5 ’G€<,—— _ ), LB
(2.5) ~“Ge(my ﬁ(p pi)

where the notations p” = (pf,p4,p%) = (0", p5), P} = (V1. P2 Pi3) =
(P}, ;. 3) are used. So, up to a translation, we have

[ 0
(26) ¢Ge = (DG5|9:£27T = ¢G571‘|9:£2ﬂ- = @Ge,i'
w3 w3,i

Therefore, we only need to study the Hamiltonian map @, , determined
by G.,; when y is restricted in the domain where /ey — p} < O(y/e).

If we ignore the small term €’ R, ; in (2.4), the truncated system G;
has two degrees of freedom only. Let L; be the Lagrangian obtained

w34
9) B %(pg—%,?») = Geilz,9,9),
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from G; by the Legendre transformation, we get periodic orbit with
rotation vector A\g by searching for the minimizer (-, F,g,x) of the
Lagrange action

A
@1 ReBg- ol 7 LGoA0
7(0)=7(F)=z J0
=g

where g € Hy(T?,Z) is irreducible, E = a(%3, (\g)). If Fi(-,E,9)
reaches its minimum at z*, then (v(-, E, g, 2*),%(-, E, g,2*)) is the min-
imal periodic orbit we are looking for [CZ2].

Let us study the case ¢ = 0 in this section, i.e., the system is re-
stricted in K/e-neighborhood of the double resonant point, in which
the Hamiltonian takes the special form

Geo(z,y,0) = Go(x,y) + € Reo(z,y,0),

Golar,y) = 5{Ay.y) ~ V(z).

A minimizer (-, E,g,2*) of Fy(-,F,g) determines a periodic orbit
2p4(t) = (xp4(t), yEg(t)) of the Hamiltonian flow @, , where xp 4(t) =
v(t, E,g,2%), yg,¢(t) = 0z L(v(t, E, g,2*),5(t, E,g,2*)). As the Hamil-
tonian is autonomous, the orbit zf 4(¢) lies in the energy level G'(E).
When the energy E decreases, A also decreases. We assume min V' = 0,
then there are two possibilities:

(1), Al Ao >0 as E | 0. In this case, certain periodic orbit z*(¢) C
Gy '(0) such that 2 4(t) — 2z*(t). It is possible, we have an example.
Let

(2.8)

1. 1.
L= §x% + 556% + V(z),
where V' satisfies the conditions: « = 0 is the minimal point of V' only;

there exist two numbers d > d’ > 0 such that for any closed curve ~:
[0,1] — T? passing through the origin with [y] # 0 one has

/0 V(y(s))ds > d

V = d + (x5 — a)? when it is restricted a neighborhood of circle x5 = a.

For g = (1,0), A | v2d' as E | 0, z*(t) = (\/27,0,). No problem of

double resonance appears in this case.

(2), N L 0as E | 0. It is typical that V attains its minimum at
one point which correspond a fixed point of the Hamiltonian flow @60.
As the period 2\~'7 approaches infinity, the orbit 2p,q¢(t) approaches
homoclinic orbit(s) as E approaches zero. It is possible that there are
two irreducible classes g1, g2 € H1(T?,Z) and two non-negative integers
k1, ko such that g = k1g1 + koge. It is a difficult part of the problem
of double resonance, {zg 4} Er>0 makes up a cylinder which takes ho-
moclinic orbits as its boundary. The cylinder cannot survive any small
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perturbation. In this section, we are going to study how close some
invariant cylinder of ®¢, , of (2.6) can extend to the double resonant
point.

2.1. Hyperbolicity of minimal periodic orbit around double
resonant point. At the double resonant point we have p; = p” and
wi = Oh(py) = 0. In this case, the Lagrangian determined by Gy takes
the form

1
Lo = 5(,4*15;,@ + V(z).

For Hamiltonian system Gy, the minimal point of V' determines a sta-
tionary solution which corresponds to a minimal measure of the La-
grangian Lg. Up to a translation of coordinates x — x + xg, it is
open-dense condition that

(H1): V attains its minimum at © = 0 only, the Hessian matriz of
V at x = 0 is positive definite. All eigenvalues of the matriz

0 A
o2V 0

are different: —do < —A1 <0 < A1 < Aa.

If we denote by A = (A, Ay;) the eigenvector corresponding to
the eigenvalue \;, where A;; and A,; are for the z- and y-coordinate
respectively, then the eigenvector for —\; will be A, = (Agi, —Ay;).

By the assumption (H1), the fixed point z = (x,y) = 0 has its stable
manifold W and its unstable manifold W ~. They intersect each other
along homoclinic orbit. Since each homoclinic orbit entirely stays in the
stable and the unstable manifolds, the intersection cannot be transversal
in the standard definition, but in the sense that

T.W- o T,W =T.G;(0)

holds for any point z along homoclinic orbit. Without danger of confu-
sion, we also call the intersection transversal.

Being treated as a closed curve, a homoclinic orbit (v(t),7(t)) is as-
sociated with a homological class [y] = g € H1(T?,Z). A homoclinic
orbit (v,7) is called minimal if

| tatosna = it [ Lo <.

For convenience, we call v homoclinic curve if (,) is a homoclinic
orbit.

We claim that each g € Hy(T?,7Z) is associated with an open-dense set
in O, C C"(M,R) such that for each V € O, there is only one minimal
homoclinic curve v with [y] = g. In fact, for a minimal homoclinic curve
~1 one constructs a potential V] > 0 so that suppdV; is away from the
point x = 0 and suppdV; looks like a tubular neighborhood of a piece
of the homoclinic curve ;. Since all minimal homoclinic curves with
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the same class do not cross each other, all minimal homoclinic curve
of the perturbed system L — dV; must pass through suppdVy. Pick up
a minimal homoclinic orbit 5 of the perturbed system, one introduces
0Va so that suppdVs lies in a more narrow tubular neighborhood of
9. Step by step, one obtains a sequence of potential perturbations 6V;
and a sequence of curves ; such that v; — 7o, suppdV; shrinks to
a piece of v and v is the unique minimal homoclinic curve of the
Lagrangian L — X0V, such that [y»] = g and X0V} is small. Therefore,
a residual set ;¢ = NyO, exists such that for each V' € R, there is only
one minimal homoclinic orbit for each class in g € Hy(T?,Z), although
there are infinitely many homoclinic orbits associated with the same
class [Z2, CC]. So, some residual set )& C C"(M,R) exists such that
for each V' € R one has

(H2): The stable manifold intersects the unstable manifold transver-
sally along each minimal homoclinic orbit. These minimal homoclinic
orbits approach the fixed point along the direction Ay: 4 (t)/||7(t)|| = Az
as t — £oo.

Once fixing the homological class g, we denote the periodic curve
2g(t) = xp,¢(t) which determines a periodic orbit zg = (g, yg) in the
phase space. As it stays in the energy level set Gy L(E), let us show how
the period T is related to the energy E.

Lemma 2.1. Assume the hypothesis (H2). For g = kig1 + kaga and
suitably small E > 0, the period Tg of the orbit zp is related to the
energy E through the formula

1

(29) TE = T(E,g) = TE,g /\1

(k1 + k2)In E,

where Tg 4 s uniformly bounded as E | 0.

Proof. By the condition, there are two minimal homoclinic curves
Y1(t),y2(t) such that [v1] = g1, [y2] = g2. Let z1(t), z2(t) denote the
homoclinic orbit determined by 1,72 in the Hamiltonian formalism,
zj(t) = (Vj(t)aaiL(Wj(t)fyj(t))) (] =1, 2)7 the periodic orbit ZE(t) ap-
proaches these homoclinic orbits as E | 0. By the hypotheses (H1,
H2), these homoclinic orbits approach the fixed point z = 0 along the
direction Af

Let Bs be a sphere centered at z = 0 with small radius § > 0.
Since zp approaches the homoclinic orbits, it passes through the ball if
E > 0 is small. Denote by tg}i the time when zp enters the ball, tp,
the subsequent time when zp leaves the ball, namely, zp(t) € Bj for
t € [th gl and zg(t) ¢ Bs fort € (tg,,th ). Since g = kig1+kaga,
we have

+ - + + - + ot
tp1 <tp1<tpo < <lppiik <UEkithy <lUEkithot1 =1 T 1B
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Recall the notation zg(t) = (zg(t),ye(t)). As the minimal homoclinic
orbits approach the fixed point z =0 along the direction A{E.

(2.10)

H HxE oy HA 1l H

holds if £ > 0,6 > 0 are sultably small.
In a suitably small neighborhood of z = 0, we use a Birkhoff normal
form

Go = =(yf — Aiz]) + — \323) + Ps(,y),

+ 55
where P3(z,y) = O(|(z,9)|?). In such coordinates, the eigenvector for
the eigenvalue +\; is Aic = (1,0,£A1,0) and that for the eigenvalue
4+ reads AF = (0,1,0,+),).

By the method of variation of constants, we obtain the solution of

the Hamilton equation generated by Gg
(2.11) ze(t) =e~ (b + ) + M (bf + F),
‘ ye(t) = = Xee M (b + Fy) + e (b + F),

where £ =1, 2, bzt are constants determined by boundary condition and

D T AW
FZ :27)\6 6)% ()\faygpi} + axgp?))(x(s)? y(S))dS,
1 t
FZ_ :27)\@ eiAes(Aéang?) _ 8WP3)($(5), y(s))ds.

Substituting (z,y) with the formula (2.11) into Gy we obtain a con-
straint condition for the constants bEt:
(2.12)

Go(a(t), (1)) = ~2(X3by b + A3 b5) + Pa((b + b)), Melbf — b)),
If (z(£7),y(£T)) € 0Bs, we obtain from the theorem of Grobman—
Hartman that
2o(=T) =b; M 4 bfe T 4 0(6),

zo(T) =b; e M + bfeM + o(9).

Let 2p(t) = (zg1(t), zE2(t)). As Formula (2.10) holds for (zg, yg), the
first component of zg(t) satisfies

1)
2.14 rpl(tt )] > ———, i=1,--- ki + ko
( ) | ) (E,z)‘ 2m
Let 2T =t — tJbCZ.. The time translation, tJEri — —T induces tg, —
T. For sufficiently large 7' > 0, it deduces from Equation (2.13) and
Assumption (2.14) that

4]

3V 1+ M

(2.13)

e—)xlT S ‘b:lt‘ S 26_)\1T, ‘b§t| S 26€—>\2T
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and
by b <0, |P3((bf +b;), Ae(bf —b,))| < Ce M7,

where the constant C' depends only on the function P3. So, for suitably
small § > 0 and sufficiently large |5 ; —t£ .|, we obtain from (2.12) that

252 _ _
_%efAHt};iftgﬂ _ 802022l Bathal _ e Bl thil/2
9(1+ A7)
N it
=91+ A9

The quantity [t ;—t} ;| becomes sufficiently large if E > 0 is sufficiently
small. On the other hand, E is obviously upper bounded by

E §8)\%526_M|t5i_t5i| + 8)\3526_’\2“577%1" + Ce_S’\l‘tE»i_tEiW
<oRPeNiE T,
Therefore, we find the dependence of speed on the energy
1 2
(2.15) ltp, —th:l = —|ImE|— —|Ind| + 75,
K J )\1 )\1 s
where 7g ; is uniformly bounded for each i < ky + ka:

1
N <2ln)\1—|—ln

1
— )STEZ§7(2ID)\1+31H3)
1 "M

1
9(1+ \?3)

For t € (tii,tgiﬂ), the point zg(t) does not fall into the ball Bs. So,
the quantity tJEFJ. 41— tg,ls uniformly bounded as E | 0. Set

k1+k2 9
TE.g = Z (TEJ + (tJ}E,iH - tE,i) - )\T’ ln(5|),
i=1
we obtain the formula (2.9). q.e.d.

Next, we study the hyperbolicity of the periodic orbit zg(t) = (zg(t),
yg(t)). Since the Hamilton flow <I>tGO preserves the energy, we take a two-
dimensional section X C G, L(E), which is transversal to the periodic
orbit zg(t) at zg o in the sense that

T..oGo ' (E) = span{JVGo(zp,), TEE}

The Hamiltonian flow produces a Poincaré map, for which zg o is peri-
odic point (the orbit intersects the section at several points). We study
the hyperbolicity of periodic point for the Poincaré map. If a periodic
orbit is associated with the homological class g and it stays in the energy
level of E, we call it (E, g)-periodic orbit.
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Lemma 2.2. Assume the hypotheses (H1, H2). Given a class g €
H1(T?,7Z) we assume that, as E | 0, there is (E, g)-periodic orbit zp(t)
approaching the minimal homoclinic orbits z1 and zo such that g =
ki[y1] + ka[y2]. Then, there exists small E' > 0 such that for each E €
(0, E'], there is a two-dimensional disk X C Gy'(FE) which intersects
the orbit zg(t) transversally. Restricted on the section, the Hamiltonian
flow CIDEO induces a Poincaré return map ®p: g — Xg, and there
exists some X > 1,C > 1 independent of E < E’ such that

|ID®(2p,0)v” || = CE v~ |, Voo €T Wg;
|ID®p(zpo)vt|| < CTEMuT|, Vol eT., Wi,

where zg o is the point where the periodic orbit intersects Y, Wg de-
notes the stable (unstable) manifold of the periodic orbit.

Proof. To study the dynamics around the homoclinic orbits (v;(t),
4;(t)), we use new canonical coordinates (z,y) such that, restricted in
a small neighborhood of z = 0, one has the form

1 1

Go = i(y% — Axf) + B

with P3(z,y) = O(||z,y||*). In such coordinates, we use z; = (z;,y;)
to denote the homoclinic orbit (j = 1,2). We can assume z;1(t) | 0 as
t — —o0, zj1(t) T 0 as t — oo and &;(t)/||Z;(t)|| — (1,0) as t — +oo.
Here the notation is taken as granted: z; = (xj1,2;2). We choose

(43 — A323) + Ps(,y),

2-dimensional disk lying in G *(F)

She={(xy) €R : |[(2,y)]| < d,Golz,y) = E,z1 = £6}.
Because of the special form of Gy, one has the disk lying on G 1(0) as
Sis = {1 = £6,07 + 13 — A3z3 = M6 — 2P3(£6,29,y), || (z, )| < d}.

Let W~ (W™) denote the unstable (stable) manifold of the fixed point
which entirely stays in the energy level set Gj'(0). If P3 = 0, the
tangent vector of W~ N X s has the form (0,41,0,£A2). Then, for

general P3 # 0, the tangent vector of W™~ N X 5 takes the form

U(;_ — (prvxza UylaUyz) = (07 :l:lv Y1,65 :l:)\2 + y2,6) c ng— (W_ N Z(I(;)a
where both ¥ 5 and 2 5 are small.

Let T(Sij be the time when the homoclinic orbit z;(t) passes through
2(3)5,5' Because 0y, Gy > 0 holds at the point z;(t) N {x1 = F¢}, both

homoclinic orbits z;(¢) and z5() approach the fixed point in the same di-
rection, the section ZSE s intersects these two homoclinic orbits transver-

sally. Let z(sij denote the intersection point. In a small neighborhood
Bg(z({j) of the point 25 ;» one obtains a map Wo5: g 5 ﬂBs(zgj) — 23:5
in following way, starting from a point z in this neighborhood, there is a
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unique orbit which moves along z;(t) and comes to a point ¥ 5(z) € E(Té

after a time approximately equal to T;'j - T(s_j.

Let us fix small D > 0, the quantities such as ng, zﬁj, 2% p and

V. p are well-defined in the same way as the quantities Taij, 25 s EE 5
and Uy s are defined. There exists C; > 1 (depending on D) such that

Cl < HD\IJO,D(ZDJ”T(mezaD)Hv ”D\IJO7D(ZD7]')|T(W+023'D)|| <y

holds for j = 1,2. Clearly, one has C; — co as D — 0.

As the homoclinic curves approach to the origin in the direction of
(1,0) in z-space, for § < D, there is a constant p; > 0 with up < A\
such that puy | 0 as D — 0 and

(2.16) Amltm In (%) < Ty~ T Ty~ Ty < 5 1 1o <§>.

The Hamiltonian flow ®f, defines two maps Uosp' Zos — Zop

\IIE{(;,D: Z(J)F,D — Eafd: emanating from a point in ¥ (EO p) there
exists a unique orbit which arrives ¥ (Zai s) after a time bounded by
the last formula.

Restricted in a small neighborhood of the origin z = 0, we consider
the variational equation of the flow <I>tGO along the orbit z;(t). It follows
from the normal form of the Hamiltonian Gy that the tangent vector
(Az, Ay) = (Azy, Axo, Ayl, Ayg) satisfies the variational equation

: 0?P
Azp = Ayy + Z ( kaye kTt mAyk>7

(2.17) ,

o*pP o*pP
1) — 2 —_ =
Ayz = )\éAxg kgl <a$ka$g A.Tk + Gyk&w Ayk>, l 1, 2.

For the initial value Az(ng) = (Ax(ng),Ay(ng)) satisfying the
condition

(A(T5 ), v5)] > % HAZ( s |
(vy = (0,£1,y15,£A2 + y2,6)) one obtams from the hyperbolicity that

C;le(Az—Ml)(ng_T+ < M C’ >‘2+M1)(T6+,j_TI+>,j)

IA(TH )~
holds for some constant Cy > 1 dependmg on A, Ay and on P. Thus,
for each vector v € T% E(J)F,D nearly parallel to TZ$(W_ N ZE{D) in the
sense that [(v,v')| > 2||v||[|v/|| holds for v € ng(W_ NYg ) we obtain
from the last formula and (2.16) that

A n N )\
cgl(D)Af—w < tim P¥spChAl 02<D>§+u2
0 [lv]|—0 o]l ;

?
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where po > 0 and po — 0 as D — 0. Similarly, one has
(D %2_ 2 - _ D ;J-i-uz
= 1(3) 1 = HD\I}O»&D(ZM)’TZ_(W—ngé)” < (s (E) !
; ,

where C'3 > 1 also depends on A1, Ay and on P.
By the construction, the 2-dimensional disk % s intersects the unsta-

)

ble manifold W~ along a curve. Let L ; C W™ NXgs be avery short
segment of the curve, passing through the point 25 ;- Pick up a point
z; on the homoclinic orbit z; far away from the fixed point and take a
2-dimensional disk X7 C G 1(0) containing the point z; and transversal
to the flow @, in the sense that T Gy l(0) = span(TZ; Y%, IVGo(2])).
The Hamiltonian flow <I>tGO brings a point of FEJ to this disk provided
it is close to Z5 i In this way, one obtains a map \116_]* 2&5 — E;-‘.
Let T' g]* = \Ilg;*ng. According to the assumption (H2), one has
TZ;Gal(O) = span(T: W™, T.:W~). Thus, one also has TZ;Gal(O) =
span(TZ;fWJr,Tz;I‘;j’.*). It follows from the A-lemma that Wos(T';;)
keeps C''-close to W~ N Eaf(; at the point zgj and \I/(I}(F;{j) keeps C'-
close to W+ N Z& s at the point Z5; provided & > 0 is sufficiently small.
As W5 = \II(I(;’D oW¥gpo \IIE{&,D, one obtains

)

Ao N
D\ 2(3F—h2) D*x
1 5.
o <5) < HD\IIO’(;(Z(M”Tz;j(W*mzaé)H <Cy <6>

i

Ao N
4+ (D 2(X5—H2) - 5 2032 411
04 1 <5> < ’|D\Ifo,(15(z;:j)‘Tz+ (W+mgar§)|| < (4 <5>
8, ’

where Cy = C1C2C3 > 1. See Figure 1.

By the definition, E:Et’ 5 is a two-dimensional disk lying in the energy
level set G ' (E). For E > 0 sufficiently small, EEJ is O™ 1-close to Eafé,
respectively. Let zg(t) = (xg(t),yr(t)) be the minimal periodic orbit
staying in the energy level set G 1(E), it approaches to the homoclinic
orbit as E decreases to zero. Thus, for sufficiently small E > 0, it passes
through the section 2575 as well as 255 k1 + ko times for one period.
We number these points as zii (1t =1,2,--- k1 + k2) by the role that

emanating from the point z ., the orbit reaches to the point Z;E i+ after

time Atg,’i = tE,i—‘rl —1tp;, then to the point 2R it and so on. Note that

Atii remains bounded uniformly for any F > 0. Restricted on small
neighborhoods of these points, denoted by B. (zgcz), the flow @EO defines
a local diffeomorphism Vps: Xp s O Be(2p,;) — EE,&' Because of the
smooth dependence of ODE solutions on initial data, a small d > 0 exists
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l‘L — b D\ | 1‘;]
w(ry,) ~/ Nt 4T

| "
i Dy

Figure 1. The unstable manifold (in purple) intersects
the stable manifold (in blue) along the homoclinic orbit
(in red).

such that, for the vector v* d-parallel to ngt (Wiﬁﬂa—L 5) in the sense that
|(vE, v* )| > (1 — d)|JvE|||[v**] holds for some v** € Tzéi W+ N5,

we obtain from the hyperbolicity of Wy s (see the formulae above the
figure) that

A — _ 22
;! <D>2(*3_“3) - 1DV g5z )0 |l <Cs D 251 )
N [o~| -

J

I

J

-~ <D><> ARO[ <D>2<if+u3>
>\ R Y
where C5 > Cy > 1,0 < pug — 0 as D — 0. If the vector v~ is chosen
d-parallel to Tzé_ (W™NX s) then the vector DV 5(z , )v™ is d-parallel
to TZ;-(WJ’_ N E(J)r,é)‘

For E > 0, the Hamiltonian flow <I>tGO defines a local diffeomorphism
\IJE’M: 22575 D Bg(z;ﬁ’i) — 21_5,5' To make sure \IJE’(;’(S(B‘E(ZEJ)) - 2575
one has ¢ — 0 as £ — 0. According to Formula (2.15), starting from
ZE 5> the periodic orbit comes to 257 5 after a time approximately equal

to
1 52
7= ()] +
" n i + 75
in which 75 is uniformly bounded as § — 0. Given a vector v, we

use vy denote the (xy,ys)-component. For a vector v™ d-parallel to
TZ;@(W_ N g ) with small d > 0, there is C' > 0 such that [jv) || >
2J ’

9
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Cllvy||. From Eq. (2.17) one obtains
o lee T < DU 525,005 || < o [l 4T,
o e =0T <IDWE (= Jof | < o e 0T,

where 0 < pug — 0 as § — 0, Ao > Ay > 0. It follows that the vector
D\PE76’5(szri)v+ is d-parallel to TZ;j (W~ NXy) and

(2.18)

)

o <52)—u5 - |’D‘I’E,5,5(Zg,i)v+” CG<(52),\1+M5
°\E - [ ]] E

where Cg > 1 and us | 0 as § | 0. Similarly, for a vector v~ d-parallel to

TZJ(; (W+ﬂ2675), one sees that the vector D\I/E(w(zgyi)_lv_ is d-parallel

to ngj (W™ NX;,) and

-1, _ .\ _
C_l((52>§f—us - HD‘I’E,M (ZE,@')” | - 6(52> A1+ﬂ5
o \E o =\

The composition of these two maps is a Poincare map ®p 5 = \I'JEr 55°

Vg s, it maps a small neighborhood of the point 2z, in ¥}, 5 to a small
neighborhood of the point z ;. in ¥ ;. For a vector v~ d-parallel to
TZ&& (W™NX, 5) the vector D®p,s(zp ;)v™ is still d-parallel to TZ;]_ (W=
X)) and

' E [0~ | - \E ’

and for a vector vt d-parallel to T,- (W N X;5) the vector
D& (2 vt is still d-parallel to T.- (T/VJr N¥,s) and

Lo IDegeE | (o
e ()" s ()

holds for each i, where A > C5Cs > 1,0 < pug — 0 as D — 0. Therefore,
each point 2g is a hyperbolic fixed point for the map @%}k{ {ZEz :
i =1,--- ki + ko} is a hyperbolic orbit of ®g ;. It will be proved in
[C17] that these points are uniquely ordered, ki + ko is the minimal
period. We complete the proof. q.e.d.

Corollary 2.1. The (E, g)-minimal periodic orbit lying in the energy
level set Gal(E) with E < E' has a continuation of hyperbolic periodic
orbits which approach the homoclinic orbits z1 and zo. They make up
an invariant cylinder which takes the homoclinic orbits as its boundary.

Proof. According to Lemma 2.2, the hyperbolicity of (F, g)-minimal
orbit becomes very strong when E | 0. Such hyperbolic property is
gained if the periodic orbit approaches the homoclinic orbits, the min-
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imal property is not used. By the theorem of implicit function, this
(E, g)-minimal orbit has a continuation of hyperbolic periodic orbits
arbitrarily close to the homoclinic orbits z; and zo. q.e.d.

Let Ef = h(p)). As we increase the energy from E’ to Ef, it follows
from Theorem 1.3 that there are finitely many E; € [E’, E'] only such
that for E € [F', B{]\{E;}, the energy level G;'(E) contains only one
(E, g)-minimal orbit and Gy (E;) contains two minimal periodic orbits.
We call these { E; } bifurcation points. Therefore, these hyperbolic orbits
make up finitely many pieces of invariant cylinder, normally hyperbolic
for the time-27-map @%’L, produced by the Hamiltonian flow <I>tGO.

In the next step, we study whether these cylinders survive the map
®¢, o defined in (2.6), induced by the flow <I>’5GE70, where G, defined in

(2.8), is a small time-periodic perturbation of Gy.

2.2. Invariant splitting of the tangent bundle: near double
resonance. As shown in the last section, there is a cylinder made up
by periodic orbits (zg(t), ye(t)) of @, which extends from the energy

level G5! (E') to the homoclinic orbits, denoted by
1_IO,E’,g = {($E(t)7yE(t)) : [l'E] = gaE € (07E,]7t € R}
Let T(E) denote the period of the periodic orbit in Gy'(E), for any

0 <a<b< E one has
b T(E)
w—// dE N dt > 0.
a 0

J

The cylinder might be slant and crumpled, we want to know how the
symplectic area is related to the usual area of the cylinder. We notice
that the cylinder is made up by periodic orbits {zg(t)}. If the orbit zg(t)
intersects the section x; = § at the point (§,y1(E), z2(E), y2(FE)), then
(x2(E),y2(E)) is a fixed point of the Poincaré return map ®pgy, ie.,
(I)E,ts(m?(E)ayQ(E)vyl) = (x2(E)7y2(E)> and (DE‘,IJ(:U2(E>7y2(E)7y1) =
(x2(E),y2(E)). Since 9y, Gy > 0, the value of y; uniquely determines
the energy level set G, 1(E) where the periodic orbit lies. Write ® ES§ =
(PE 5,20, PE,5,y,), then we have

(M5 —ia) (% ay?)t __2%ms

ab,g

Oy’ 0 0
(2.21) Y1 oy yjl
(M_l . )(31}02 5y2)t 8©E,6
po—id) (5=, 5~ ) =— ,
Oy1” Oy o
P OPp 5.0, OPp.s,
where ayEl’é = ( BEyj 2 gyj 223t and

8<I)E,6,w2 6¢E,6,x2
Mg = Oy Oy2

8‘1>E76,y2 8¢’E,5,y2
Oz 0y
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Since the Hamiltonian flow preserves the symplectic structure, the ma-
trix ME is area-preserving. One eigenvalue is large, denoted by o,
bounded by (2.19), another will be o9 = Jfl. Let (y be the eigenvector
of Mg for the eigenvalue oy for £ = 1,2, then (; is the eigenvector of
Mg ! for the eigenvalue oy = o] Land ¢ is the eigenvector of Mgl for

the eigenvalue o1. Let agzi"s = a1(1 +as(s be a decomposition, where (;

and (2 are normalized [|(1|| = ||(2|| = 1, one obtains from the equations
n (2.21) that

1 0%ps

(o1 —1)a1¢1 + <*1 - 1>a2C2 = o
1 8@53
(;1 — 1)a1C1 + (01— 1)az@e = — oy

90 ," 22
If both HM)E‘SH and ||—,2*| are bounded by CrE x .

one obtains from the (2.19) that both |a;| and |az| are bounded by
205 A D22/ M—pe) p=(uetu7) if [ > ( is suitably small. Therefore, to
make sure that there exists a constant Cg > 0 such that

Oxy | |0y2
391

(2.22) < CsE~ (M6+M7)

E6

let us study the quantity H =[|. To do it, we recall Figure 1. Emanat-

ing from a point (6, y1, z2, yg) E Gy L(E) the orbit reach a point z in the
section {x; = —d} after a time T(E, J). Let z* € {1 = —d} be the point
corresponding to (8, yf, z2,y2) € Gy (E*), obtained in the same way.
Since 7(F,d) remains bounded as F | 0, the difference of the (x3,ys2)-
coordinate of z and z* is bounded by do|y1 — yi| where dy depends on
T(E,0). Let (Ax, Ay) be the solution of the variational Equation (2.17)
along the (E, g)-minimal periodic solution (xg(t),yp(t)), let tg < t1 be
the time such that zg 1 (t9) = —d and 2 1(t1) = J if we use the notation
zp = (Tp1,%E2), the quantity ¢ — ¢y is bounded by (2.15). In virtue
of the formula (2.18), some constant Cy > 0, small p7 > 0 exists so that
the following holds for suitably small £ > 0

(A2, Ay)(t)]] < P2 taE=0)|[(Az, Agy)(to)]|
A
< CoE~ 2 M||(Ax, Ay)(to)])

where 0 < u7 — 0 as 6 — 0. It implies that certain constant Cy > 0
exists such that

Ha(I)Eé wE i1 THT

holds for suitably small E > 0, as |(Az,Ay)(t; + 7(E,9))||||(Az,
Ay)(t1))|| ! is uniformly bounded as E decreases to zero, which fol-
lows from the fact that 7(E,0) is uniformly bounded. This estimate
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0% s
Y1
timate (2.22), which provides a lower bound for the symplectic area
w‘HE,b,g = Ydxy A dy€|HE,b,g with respect to the usual area S of the

cylinder Ilgp 4
(2.23) lw| > Cp EWetH| g,

where C1; > 0 is independent of £ when E > 0 is suitably small.

Next, we study the invariant splitting of the tangent bundle over the
cylinder I1y g 4, where E' > 0 is the energy so that Lemma 2.2 holds.
Recall Tg defined in (2.9) denotes the period of minimal periodic orbit
lying on G (E)

Theorem 2.1. Let E; € (0, E’). With the hypotheses (H1), (H2),
the invariant cylinder g, g 4 is normally hyperbolic for the map ®¢,
provided s > Tg,. The tangent bundle of T2 over g, g admits the
wmvariant splitting:

T.TT? = T.N* & T.llp, g & TN~
some Ay > 1, A9 > 1 and small v > 0 exist such that Aa/A\1 —v > 1+v

obviously holds for || | also. It guarantees the validity of the es-

e ID®g ()] 1w
Al Ed+ <W <A1Ed s VUETzHEd,E’,m
D®%, (z)v 2
(2.24) W <MEM T, YwveT,NT,
DP?, (2)v 32+
1026, =)0l ‘fgﬁ l >A'E, Y VweTlN

Proof. The cylinder Il g 4 is a 2-dimensional symplectic sub-mani-
fold, invariant for the Hamiltonian flow ®¢,,- However, it is not clear
whether this cylinder admits the invariant splitting such that Formula
(2.24) holds for the time-2m-map ®¢, = g, [s=2x- It is possible that

m(D¥c,lriy, ) =inf{|DBe,v] s v € Tl pr g o] = 1} < 1.
HD(I)G()’THEGI,EI,QH > 1,

and we do not know the norm of D®g, when it acts on the normal
bundle.

By Formulae (2.19) and (2.20), one sees that the smaller the energy
reaches, the stronger hyperbolicity the map ®g s obtains. The strong
hyperbolicity is obtained by passing through small neighborhood of the
fixed point. However, on the other hand, the smaller the energy de-
creases, the longer the return time becomes.

For small £ > 0, emanating from any point z on the minimal periodic
orbit zp(s) and after a time T, ®¢ (2) passes through a neighborhood
of the fixed point at least once. Therefore, the map ®¢, [s>7,, obtains
strong hyperbolicity on normal bundle such as (2.19) and (2.20).
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To see how the map D®g, acts on the tangent bundle, let us study
how it elongates or shortens small arc of the periodic orbit zg(t). To
pass through d-neighborhood of the origin along the orbit zg(t), it
needs a time approximately equal to ])\l_lln 5 2E|. Restricted in -
neighborhood of the origin, there exists small pug > 0 such that

[2(0)]e= M < Ja(t)] < a(0) e,

Therefore, it follows from (2.15) that the variation of the length of short
arc is between O(E1T#8) and O(E~17#8) where ug | 0 as § | 0. Because
of the relation (2.23) between the symplectic area w and the usual area
S, the variation of ||[D®g, [, restricted on the tangent bundle of the
cylinder, is between O(ETHsTHTTH6) and O(E~17H8~HT=H6)  where we
use the property that Hamiltonian flow preserves the symplectic struc-
ture. Due to periodicity, this lower and upper bound is independent of
s. Therefore, the theorem is proved if we set v = ug + pu7 + pg.  q.e.d.

Let By = O(1) > E'. For cylinder Ilg, g, , 4 with B/ < E; < Ej 1 <
1, the normal hyperbolicity is obvious.

Theorem 2.2. For E' < E; < E;11 < E| and typical V, there exists
si > 0 depending on E', E{ and V, such that the tangent bundle over
the invariant cylinder g, g, g admits D®g, -invariant splitting

T-M=T.Nt"®Tlg, g, DTN
some Ao > A1 > 1 such that the following hold for s > s;

D®Z, (z2)v
Al_l < W < A]_’ V NS TZHEi,Ei+17g7
D®%, (z)v
(2.25) HIIG(W <Ay  VveTl.NT,

v

D®%, (z)v

HIIGW >A;l,  VYweeT,N~.

)

Proof. The cylinder is a symplectic sub-manifold, made up by mini-
mal periodic orbits. Therefore, some A; > 1 exists such that

ATl < 19, (ze®)vll < Aol

holds for any s > 0 if v is a vector tangent to zp at zg(t). Since the
Hamiltonian flow preserves the symplectic form w, restricted on the
cylinder which is an area element. Clearly, |w| is lower bounded by
usual area element |S|. It follows that the last formula holds for any
vector tangent to the cylinder at zg(t) which implies the first formula
in (2.25). Let ¥, C Gy'(E) be a two-dimensional disk, transversally
intersects the periodic orbit zg(t). The flow ®¢, ~defines a Poincaré
return map ®g, the fixed point corresponds to the periodic orbit. Let
A1,e and Ao g be the eigenvalues of the matrix D®g, it depends on the
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energy E. According to Theorem 1.3, each of these orbits is hyperbolic,
namely, some A > 1 exists such that

min{]/\LE\, |/\2,E‘} < )\_1 <A < max{\)\LE], ’)\Q’E’}, VEe [Ei,Ei—i-l]-

Let Ay = )\([%] + 2), then Ay > A;. Let T be the period of the orbit
zp(t) and set

Ay
2.26 = T <[7} 2),
( ) y EG[%;?%’(H—I] e A +
the second and the third formulae in (2.25) hold for ®¢, with s > s;.
q.e.d.

The cylinder Iy g, may extend to the energy level Gy (E; + A),
where IIg/ g, 4 is made up by (FE,g)-minimal orbits for E € [E', E],
Formula (2.25) instead of Formula (2.24) applies to Ilg/ g+ ,4. One
can see that the whole cylinder Ilg, g, +A 4 is normal hyperbolic for
Do¢, for s > max{Tp,,s'} where s" is defined so that (2.25) holds for

HE’,E1+A,g (Cf (226))

2.3. Bifurcation point. Let F; < E;;1 be two adjacent bifurcation
points, then each G ' (E) contains only one (E, g)-minimal orbit for E €
(E;, Eit+1), denoted by zg. Let zp, = limg|p, 2k, zgiﬂ = limgyg,,, 2E.
These orbits make up an invariant cylinder

HEi,EH-hg = {(xE(t)’yE(t)) : [$E] =g F € [EiaEi+1]7t € R}'

In typical case, at the bifurcation point Ej;, there exist two minimal
periodic orbits lying in the energy level G (E;), denoted by za (t) and
zp. (t). The orbit zgl_ (t) makes up the upper boundary of Ilg, | g, 4 and
the orbit 2, () makes up the lower boundary of Ilg, f,,, 4. Because of
the implicit function theorem, there is a continuation of hyperbolic peri-
odic orbits which extends from zgi (t) to higher energy, denoted by 2} (t),
and hyperbolic orbits extending from 2, (t) to lower energy, denoted by
2 (t). Those orbits {z5(t), 24 (t)} are not in the Mather set unless
E = FEj;, the action along these orbits reaches local minimum instead
of global minimum. In this way, we get two cylinders Ilg, | _s5g,+5,4,
g, 5.5, +69 Which ranges from the energy level Gal(Ei_l — ) to
Gy (E; +6), from the energy level Gy (E; — ) to Gy (Fiy1 + 6), re-
spectively. The normally hyperbolic invariant splitting (2.25) applies to
the extended cylinders Ilg, | s 5,164 and Ug, 55,1454

By the definition of F in (2.7), we have 2£ (:):El 0),E;) >
g—g(xgi (0), E;). It is obviously a generic condition that

(H3): 95 ( (0), Ey) > §5(25,(0), Ei).
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2.4. Persistence of NHICs: near double resonance. We apply
the theorem of normally hyperbolic manifold [HPS] to obtain NHIC
for the Hamiltonian G¢ of (2.8). We need the following preliminary
lemma.

Lemma 2.3. Let the equation 2 = F(z,t) be a perturbation of
Z = Fy(z,t), let ®¢ and ®f denote the flow determined by these two
equations, respectively. Then

|®! — bl < E(leAt 4 l)esAt
e ol =4\3 2)"
where A = maxy x—¢0 || Fx(-,t)||c2 and B = maxy ||(Fe — Fo)(-,t)]|c1-

Proof. Let z\(t) be the solution of the equations Z = Fy(z,t) for
A = ¢,0, respectively. Along each orbit z)(t), the differential of the flow
@’ satisfies the equation

d

aqu = 0.F\(2x(t),t) DD}, A=¢0.
Therefore, for each tangent vector v attached to z)(0) one has
(2.27) ID@S| < [lvfle.

To study the differential of ®! — @}, we consider the equation of sec-
ondary variation. If §z) solves the variational equation 0z, =
0. Fx(zx(t),t)0z) for A = €, 0, respectively, let Adz(t) = dz(t) — dzo(t),
Az(t) = z(t) — z0(t). Then

d
A0z = 0:F(2c(t), ) A0z + O2F.(20(t) + v(t)(2(t)
— 20(t)), 1) Az(t)d020(t) + 0 (Fe — Fo)(20(t), 1)dz0(2),
where v(t) € (0,1), Az(t) solves the equation
Az =0.F((vao+ (1 —v)ze)(t), t) Az + (Fe — Fo)(2(t), 1),

with the initial condition Az(0) = 0.

To obtain an estimate on ||Adz(t)||, we recall the method of variation
of constants to solve ODE. For a linear ODE 2 = C(t)z + f(t) with
z € R™ with the initial condition z(0) = 0, one has the solution

t
(2.28) 2(t) = elo Cle)ds / e Jo €T f(5)ds.
0
Applying this formula to the equation just above, we find that

B
|Az()] < e

By Formula (2.27) one has ||62(t)|| < [|020(0)||e*t. Using Formula
(2.28) for Adz(t), it follows dz.(0) = 6z(0) that

Bl a1\ sa
< i -
|40l < 1820(0)[1 5 (56 + 5 ) €4

It completes the proof. q.e.d.
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Let us apply this lemma to study the invariant cylinders of the Hamil-
tonian G¢. A sub-manifold N is called overflowing invariant for a flow
o if, for each z € intV, the orbit ®°(z) either stays in N forever, or
by passing through 0N to leave. We use ®° to denote the map from
the time sg-section to the time s-section. A sub-manifold N’ is called a
d-deformation of another sub-manifold N if dgy(N,N') < 4, where dy
denotes Hausdorff distance.

Recall the Poincaré return map defined in (2.6), one has

Theorem 2.3. In the extended phase space T*T? x %;T, the Hamil-
tonian  flow  Pg, o0 admits  overflowing invariant  cylinders

€ 16 ; o ;
HE el By 1 +o—ed,g and Hed,E1+6—ed,g’ which are the €?-deformation of

Ve Ve - ;
Hp, _stped By 45—ed g ¥ w—gT and Il g 45 ci g ¥ LT;;T’ respectively, if

(2.29) 0<d< min{ M : 1}a,
24 max, /[|A[]2 + [[92V]? 4

and € > 0 is sufficiently small. The cylinder I admits nor-

e, B1+6—€d g
mally hyperbolic invariant splitting of (2.24) for the map <I> 06’5 with

Q(kl + k2) | In 63d|‘
A1 ’

admits normally hyperbolic invariant

S — S0 =

the cylinder HE bed By 16—l
splitting o or ®5° where s — sg is given by (2.26), independen

litti 2.25 @296 her S g by (2.26), ind dent
of €.

Proof. Let G be the Hamiltonian defined in (2.8). Considering R, o
as the function of (x,y) and treating € as parameter, we find that there
exists some constant C1a = maxg || Reo(+,0)| o1 such that

max | JVGeo — JVGo|cr < Crae’.

Let O3 = max, /|| A]]2 + [|02V]|?, for s — sp = )\%|lne3d| one obtains
from Lemma 2.3 that

Cha g_%i%l.

C13

If the condition 0 < d < 22‘5:3 holds, then [|®g>° — @2':?()”01 — 0 as
e — 0.

On the other hand, let E; = ¢3?. By the definition of (2.9), one
has s — sg > Tg, if € > 0 is suitably small. So, Theorem 2.1 holds,
which allows one to apply the theorem of normally hyperbolic invariant
manifold to obtain the existence of invariant cylinder.

We consider a piece of hyperbolic cylinder Ilg, g, 154 C Ilo g 45,9
Since Gy is autonomous, CDZ?O’S = q)sG;so. Note that Ilg, g, 44,4 is a cylin-

12675 — e < ==

der with boundary, normally hyperbolic and invariant for <I>SG_03°, we do
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not expect that the whole cylinder survives small perturbation, it may
lose some part close to the boundary.

As the first step to measure how much the cylinder survives, we mod-
ify the Hamiltonian G.g. Let p be a C%-function such that p(u) = 1

for u > 1 and p(u) =0 for p < 0 and let py =1 — p(GO(x’y)_E(fl+5_€d)),
p1(x,y) = p(QM). We introduce

ed—2¢3d

GO + 60101]%6,07 if G()(ZL‘, y) [ da ;Ed]
(2.30) /670 =cGo+ EapgReyo, if GQ(I‘, y) € [E1 + 6 — Ed, FEi+ 5],
Gep, elsewhere.

Clearly, ||GLo — Gollc> < 1if d < 0 and ¢ < 1. Tt follows that the
cylinder 1lg, g, 154 survives the perturbation CIDSO’ — @2} and the
€,0

S .
9% The survived

boundary of Ilg, g, 45, remains unchanged for (I>

cylinder in the extended phase space T? x R? x F\CT is denoted by

]:[EE‘dvEl—’—(S?g. _
Since G0 = G5 when the~y are restricted on I, 5 N {(z,y,0) :
Go € [e%, By + 6 — €]} and HEEifé,EHﬁé,g N{(x,y,0) : Go € [E; — 0 +

¢, E; 11+ 6 — €7}, one then obtains the overflowing invariant cylinders
sz,E1+6—ed, and HE bed By g +o—ed for @sGe,o‘ The normally hyper-
bolic invariant splitting of the 1nvar1ant cylinders is an application of
the theorem of normally hyperbolic invariant manifold. q.e.d.

3. Transition of NHIC from double to single resonance

Along the resonant path IV N {|p — p”| < €} we have chosen the
points {p}} such that p) = p”, O1h(p;) = Ki\/c, where K € Z. As 9*h
is positive definite, the number of such points is bounded by a quantity
of O(IK _16"7%]). What we studied in the last section is about the
disk which is centered at p = p”, the double resonant point, where the
normal hyperbolicity is obtained for the Poincaré return map. In this
section, we consider the disks which are “quite away from” the double
resonant point in the sense that Ki > 1. Let K¢ = €);, we recall the
Hamiltonian of (2.4) G;(x,y,0) = G-(m y) + € Rei(x,y,0) where

We are going to show that the invarlant cylinders in the such disks look
more and more like the cylinders in the case of single resonance when
Qi — 0.

As the first step, we consider the Hamiltonian G;. Applying The-
orem 1.3 proved in [CZ2]|, we find that all (E,g)-minimal periodic
orbits make up some pieces of NHIC. However, it is not enough to
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study the persistence of these NHICs under the small perturbation
G; — Ge; = G; + €?Re;, because the number of cubes approaches
infinity as € — 0. We need to show that, for a typical potential V', the
normal hyperbolicity of all cylinders are uniformly lower bounded away
from zero.

For a function V € C"(T?%, R), we define

1

T2

2
(3.2) [V](I‘Q) /0 V(xl,a:g)da:l.

A set Yo, C C"(T?,R) is defined such that ¥ V € U, the function [V]
2
V] (x2) >0

holds at its minimal point. Obviously, the set U, is open-dense in
C"(T?,R) with » > 2.
To denote a cylinder for G; and for G¢;, respectively, we add su-

Te
Ha,b,g —

has a unique minimal point which is non-degenerate, i.e.

perscript * and ©' to the notation of cylinder Iy p.4,11

i €,1 rT€,0
Ha7b,g’ Ha,b,g’ Ha,by‘

€
a,b,g’

Theorem 3.1. Given a potential V € Vo and a number K > 1,
there exists some suitably large * > 0 so that for Q; > QF, the Hamil-

tonian flow ‘I)tGi of (3.1) admits a unique invariant cylinder Hé,f(m,g

made up by (E, g)-minimal orbits which lie on the energy level G;I(EQi)
with E € [0, K].
Moreover, the tangent bundle of T? over I1

)

0.8 admits the invariant

splitting:
TzTT2 = TZNJr b TZHO,I_(Qiﬂ STN",

some numbers A > X\ > 1, and an integer k > 1 exist such that

Aol < [IDRET (2)oll < Allvll, Vv e T g s
(3.3) |IDRE™(2)v]| < A7 Hv||, VwveT.NT,
]\D@%ﬁ”(z)v” > Aljv]|, VoeT,N™.

holds for any large Q; > Q.

Proof. For large €);, the energy of the Hamiltonian G; ranges over
from almost zero to order O(£;) if ||y| < O(1). Under the coordinate
transformation

X
(34) ($17x27y17y2) — *17332,(2%/17292 )
Q<

7

let A;; be the ij-th entry of the matrix A in (2.4), the Hamiltonian G;
turns out to be
1

’_
(3-5) Gi=y+ 2912

Anyi + q, N2t §A22y§ - V(Qﬂl, 1‘2),
7
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The equation G}(z1,z2,y1(z1, 22, y2),y2) = EY; is solved by the func-
tion

(3.6)
02 A1
“aot (e grm) +VA)
U AL { ( Q, + VA
1 1
=B — 5 AnE - *A22y§ — ApEys + V(Qiwy, x2) + Q' Ry,
where A = <1 + A12y ) — —(Agng — 2V —2EQ;), E ranges over an

interval [0, K| where K is 1ndependent of Q;, the remainder Q; 'Ry is
of order O(Q;l) in C"-topology. Let 7 = x1 be the new “time”, the
Hamiltonian —y; produces a Lagrangian up to an additive constant

1 dl’z 2 A12E d{L‘g 1
245, ( dr ) A ar VTt
where Ry, is C"-bounded for any large §2;. The periodic orbit with rota-
tion vector (v,0) for <I>tGi is converted to be periodic orbit of ¢} . Since
Q; € N, the hyperbolicity of such minimal periodic orbit is uniquely
determined by the nondegeneracy of the minimal point of the following
function (see [CZ2])

2m

Fa®B) = int [ Li(3(0),9(0). ur B ar
7(0)=y(2m)=z2 Jo

Let v, g(T,z2) be the minimizer of F(x9,€;, E), i.e., along which the

action is equal to F'(xg, Y, E). Then, |, g(T, z2)| is uniformly bounded

for any large €2;. Since the system has one degree of freedom, ?2—7:—

1=

periodical in 7, the minimum of F determines an %—periodic curve
K2
Y6, p» because each minimal periodic curve does not intersect its k?z—“—
3 7

translation. We shall see later that | p(7)] — 0 as Q; — occ.
’ ApRE
Aoo

Because of the condition 7(0) = v(27) = 2, the term &9 does

not contribute to F' (it is an exact form), so it can be dropped

Although the potential V' and then the Lagrangian L, depend on €;
in a singular way as {2; — oo, the function F' appears regular in Qi_l
Q; — oco. To see it let us decompose the action

1
F(x2,Q, FE) = Fo(z2, %, E) + EFR@?% O, E),

where [V] is defined in (3.2) and

27

Ro= [ (g G (ra))? + V(o a) )
27

Fr— /0 UV — [V]) (=0T, 0, (7, 22))dr

27
+/ Rr(v,,B(T, 22), Y, B(T, 2), QT)dT.
0
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Lemma 3.1. Assume the potential V € C*(T? R). Then, Fg is
uniformly bounded in C?-topology as ; — oo when 3 is restricted in a
small neighborhood F~(min F).

Proof. As the first step, we show that Fg is uniformly C°-bounded.
For the first integral of Fr, we expand V into a Fourier series
V(=Qir,x) = [V](z2) + Y _ Vis(a)e® 7.
k0
With the periodic boundary condition vo, £(0, z2) = Yo, £(27, z2), the
condition that V' € C" (r > 4) and doing integration by parts we obtain,

|The first integral of Fp|

‘Q Z/ Vi(ve,, (T, 22)) szdeT‘
kA0

|5 [ s Vo, sl a0
k40

2m
|M/rwmmw<BZWW
ko0 k#0

where B = ||V|¢r max, Yo, g(7,22)]. As 7o, p is a minimizer,
|¥,,E(7, z2)| keeps uniformly bounded as ; — oo. The second in-
tegral of Fg is obviously bounded in C°-topology. It finishes the proof
of the first step. q.e.d.

Proposition 3.1. Let x5 be a minimal point of F(-,;, E), then,
the minimal curve v, p(-,x2) of F(x2,$, E) approaches the constant
solution in C-topology: as Q; — co we have

0, B(Ts@2) — 32| =0, 4, p(7,22)] = 0.

Proof. As each minimizer determines a solution of the equation pro-
duced by (3.5)

7 i1 =1+ Gy + G, =Yg
(3 ) Fo = A12 A 0 — OV
2= N + 2242, Y2 = iy

the second derivative of Z9 in 21 is bounded for any large €2;, as one has
the following calculation

A d@ﬂ_ c%“m+hm )4
—_— = — | x
dz?  dt ! dt\1 + Allyl + Aw !

A1 OV Ao OV \d
(A12 0w + Ago 3332) ( Qu Ox1 + Qlf %)ﬁ

(1+ A“yl + ’?{23/2)
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By adding a constant to V, we assume min[V] = 0. In this case, the
action of Ly along x5 = x3 with 23 € [V]71(0) is bounded by the quan-
tity O(Q%) Consequently, the action along the minimizer ¢, p(7q,,z2)
approaches to zero as ); — oo. If there exists d > 0 as well as some
q, such that |94 (7o, 22)] > d > 0 holds for any large ;, the action
of Fy along the curve g (7, 22) would be lower bounded away from
zero as §); — oo. It is guaranteed by that |C§T€2\ is uniformly bounded
for large §2;. q.e.d.

Continued proof of Lemma 3.1. To show the boundedness of 8§2FR
for £ = 1,2, let us study the dependence of vo, p(T, z2) and Yo, g (T, z2)
on z3. The Hamiltonian equation generated by (3.6) is the following:

dry _ Ar ( gt ) L (A — Audn)ys

(3 8) dT N ZTH \/Z AH\/E '
' dy, 1 0V
dr A0z

Treating the term €;(1 — \/Z_l) as a function y, and V| we see that it
remains bounded in C2-topology as €; — co. Therefore, the right hand
side of Equation (3.8) is smooth and bounded in C?-topology for any
large €2; and bounded y5».

It is proved in [CZ2] that there is a small neighborhood of the
minimal point of F(-,€;, £) where the minimal curve ~q, (-, z2) is
uniquely determined by x3. Since Equation (3.8) is equivalent to the
Lagrange equation determined by Li, it implies that boundary value
problem {x2(0) = x2(27) = x4} of Equation (3.8) is well defined pro-
vided zf is in the neighborhood. Therefore, there is a smooth depen-
dence of ya = y2(a%) such that the solution of the initial value problem
{22(0) = 2%, 92(0) = ya(xh)} is the same as the boundary value prob-
lem. Applying the theorem of the smooth dependence of solution of
ODE on its initial value, we find the first and the second derivatives
of (v, B(T,22), 0z, L1 (70, B(T, 22), Y, E(T, x2), 7)) with respect to x2 is
smooth and bounded for any large €2;. As L; is positive definite in s,
the first and the second derivatives of 4, g(7,z2) in x9 is also bounded.

By direct calculations (doing integration by parts) we find:

OFgp o d2Vk 3’79 E. Vi, 0%, E\ ik
A »LTd
Ory Z zk:/ S dre 0Oxo ) g

6%"2 8.7}2 (9162 6952

H? Fr _ /27r A3V 879, E>2_ dVi, %40, B\ ira,
(%) QZ’E + N (3 >e’L ZTdT
8x2 kzﬂ) ik $§ 0x9 dxo 81‘%

ORy 0%q. ORy 0vq.
+/ ( I mz,EJr I ’YQZ,E)dT,
0
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2m 32 < 2

d°V 8 . 0%q, v, E . ik,

/ k Y0, E 0V, E mg’Emi, )ezkﬂl‘f‘dT
k27£0 ik dxz 8:102 0x9 Ox5

o O’Ryr, 00, 1\ 2 0’Ry, 0vQ,.E\ 2
+/0 (81:% ( 0o ) + Ox2 ( 0o ) )dT
+ / 7 (3RL %0,k L 9B 9,5

0 (9:7;‘2 856% (9:132 8m%

O*Ry, 0¥, a’YQi,E>dT
89028:’62 8$2 8952 '

It follows from these formulae that Fg is C*-bounded if V € C*. q.e.d.

Let us calculate the second derivative of Fyy with respect to zs:

O’ Fy ol (9a,p\2, d 0, B\ 2
- = _ ) . * iy d
el Pdee  d N

The second integral approaches zero as ); — oo if yo, 5 = 75, p- In-

deed, it follows from Proposition 3.1 that [, z(7)[ — 0 and |751E(7') -
x5 — 0 as Q; — oo, where x3 is a minimal point of [V]. Therefore,
Ccll[xvz] (v, 2(7)) — 0 as @ — oo. To estimate the first integral, we
note that the minimizer Y, (7) stays in a small neighborhood of the
minimal point of [V] provided ; is sufficiently large. Given a generic
V € Yo, certain d > 0 exists such that %[V] (76, z) = d holds for all

7 € [0, 27]. The linearized variational equation of (3.8) with the bound-

o M, ova, . . .
ary condition '(%Q’E (0) = 78212"? (2m) = 1 admits a unique solution

0 0 0L )
(%VQZE(T T3), Dy Oy (’YQME(T x2), 'YQZ-,E(TJ?2)77')>7

and the right hand side of (3.8) is C2-smooth and uniformly bounded for
any large ;. Therefore, certain T' > 0 exists, uniformly lower bounded

for any large €;, such that “m E( ) > 3 forall 7 € [0, T|U[2r — T, 27].
As the minimizer is Q—i—perlodlc, we find agQT;’E(T) > 1 for all 7 € [0, 27]
for large €2;. These arguments lead to the conclusion that certain g > 0
and suitably large 2* > 0 exist such that 8§2F0('y;2 £(0),Q, E) > 2p if
Q; > Q. As the function of action F' is a O( ) perturbation of Fy we
have
82
03
Let 23 be the minimal point of F(-,;, F). In this case we have
F(x,9, B) — F(23,%, E) > p(x — 23)°,

F(v$, £0),Q, E) > p, Q; > Q"



UNIFORM HYPERBOLICITY OF INVARIANT CYLINDER 31

if |y — a}] is suitably small, Let Bg := v~ — ut denote the barrier
function where u® are the backward and forward weak KAM solutions,
as it was shown in [CZ2], one has

Bp(xz) — Bp(zy) > F(x2,8%, E) — F(x5,Q, E).

As barrier function is semi-concave, there exists a number Cr, > 2u such
that

Bp(x2) — Bp(xy) < Cp(xs — a3)”.
It follows that the hyperbolicity of the minimizer is not weaker than
1-1- é—’z Let us assume the contrary, denote by (v5(7),¥5(T))

the minimal periodic orbit and denote by (yF(7),4* (7)) the orbit such
that v~ (0) = v"(0) and they asymptotically approaches to the orbit
(v*(7),4*(7)) as T — +oo, we then have

M) — 7= ()] > (G — 1)~ 76 - D)),

if |7%(0) —~%(0)| is suitably small. The computation below leads to a
contradiction:

CL(7(0) = 750)) = Bo(v+(0)) - Bp(15(0))
>3 (PO (=) = FOp0) + (FO () = F(r(0)))
j=1

+ N 2
OCO RO _ ¢y 3%(0) - 10002

We observe a fact that such hyperbolicity holds for all E € [0, K]. There-
fore, these (F, g)-minimal periodic orbits make up a cylinder Hé, R

Let us return back to the coordinates before the transformation (3.4).
That the new coordinate x1 goes around the circle T once amounts to
that the old coordinate x; sweeps out an angle of 2;. In the original
coordinate system, we have ‘% = Q; + O(1). Therefore, the normal
hyperbolicity we obtain for 7 = 27-map is almost the same as the time

0 = 2m-map determined by the Hamiltonian flow CIJ%Z,.

> 24

To investigate whether the tangent space of T? over the cylinder ad-

mits an invariant splitting, we consider the tangent bundle of Hé R
67 RQ.g is two dimensional, spanned
by the a vector v, tangent to the minimal orbit passing through this

point and an orthogonal vector, denoted by v”. Because the map CI%’Z

The tangent space at a point z € Il

i
0,K%4,9
ant symplectic sub-manifold made up by periodic orbits, there exists a
number A > 1 such that

A7l || < [IDRET, (2)vs]| < Alfo:|

preserves the symplectic structure, the cylinder II is an invari-
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holds for any v, € Span(v.,v”) and for any k € Z. Let A = x* with
k = [2] + 1, then Formula (3.3) holds. From (3.7) we see that the
number A is uniformly bounded for any large €2;. This completes the
proof of Theorem 3.1. q.e.d.

Although the Hamiltonian equation for G.; contains one term 2;
which appears to be singular as €; — oo

1 = Qi + Ay + Arayz + €70y, Re U1 = % — €703, Re 4,
&g = Aroy1 + A2y + €70y, Re 4, U2 = é% — €70z, Re s,

that term does not contribute to the variational equation. The right
hand side of its variational equation

. aQGe,i
Az=J 9.2
is uniformly bounded in C'-topology as Q; — co. It allows us to apply

the theorem of normally hyperbolic invariant manifold to the Hamil-
tonian flow @%e .- Thus, there exists €, > 0 such that for € < ¢, the

map @, , defined in (2.6) also admits a NHIC H(E)’Z'fm- , Which is a small

AZ, = (iL‘,y)

)

perturbation of HO,[_{Qi,g'

4. Finiteness of invariant cylinders

Recall that along the resonant path IV N {|p — p”"| < €} we choose
points {p;} so that p{, = p”, 01h(p]) = Ki\/e, where K € Z. We claim
that there exists a positive constant K; > 0, independent of €, such that
(4.1) P51 — pill < Kiv/e.

Indeed, because

9%h  _9%h
det [8133 8?28173] _ h oh

Oh Oh | T Hp2
Op2 Jps Op 2 Ops

holds along the resonant path I, it follows from the implicit func-
tion theorem that there are smooth functions pa(p1) and ps(p1) which
solve the equations h(p1, p2(p1),p3(p1)) = constant and dah(p1, p2(p1),
p3(p1)) = 0, where the notation p = (p1,p2,p3) is used. Let p; be
the derivative of p; in p; for j = 2,3, it follows from the equation
h(p1,p2(p1),p3(p1)) = constant that ps = 0 holds at the double reso-
nant point p = p”.

Consider the variation of 0h = w along the resonant path. Let w; be
the derivative of w; in p; for j =1, 2,3, one has

w1 92h 1
wo| = == | P2
) o2 |°

ws P~ 1 ps
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Since wy = 0 and p3 = 0 holds at the double resonant point, one has
w1 # 0 at p = p” otherwise one would have 0 = (&, p) = (0?hp, p) which
contradicts the fact 92h is positive definite, where & = (w1, W, w3) and
p = (1,p2,p3). As we are restricted on the domain {[p — p"| < €7}, one
obtains (4.1) from the relations 91 h(pj, ;) — 02h(p;) = K+/€, w1(p") # 0,
P, —p"| < €% and Oh(p,,) — Oh(p}) = O*h(p}; + APy — 1)) (Piy — DF)
for A € (0,1).

Around the K./e-neighborhood of p, (K is independent of €), the
Hamiltonian is resaled to the form G ;(z,y,0) = Gi(x,y)+€’ Re i(x,y,0)
with

Gile,) = Kiys + 5{Ay,y) — Vi(a).
The subscript @ ranges from 0 to i; = O([%e"‘é]). We fix a potential
V € Y. By the result of the last section, there is iy independent of
€ such that, for each i > i, Ki > Q* holds and the Hamiltonian flow
q)GGi admits a unique normally hyperbolic invariant cylinder fo g
of (2.4).

We claim that for all ¢ > 4y, each cylinder Hé, R is just a part
of some large cylinder. Indeed, for two adjacent subscripts i,7 + 1, it
follows from (4.1) that the energy level G; *(K();) is contained in the
set where G;11 > €; provided K is suitably large. To see why, we recall
that the rescaling /ey, = py — pj; (¢ = 1,2) in (2.1) is introduced to
obtain the Hamiltonian G ;.

Due to the normal hyperbolicity, in the region where both G.; and
Gl,i+1 remains valid, there is a unique cylinder ﬁg’}miy N ﬁf)jrlégiﬂ,g
containing the relevant Aubry sets. Due to the coordinate rescaling
(2.1), there exists a unique NHIC of <I>9GE which extends from the energy
level G;I(W3(pg7i0 —p§)e!) to the energy level G (ws(ph;, — p§)e ),
the subscript 71 is chosen so that pél is the largest one satisfying the
condition [p;, — p"| < €7, namely, one has [pj ., — p”| > €. Since

d . 1
ﬁ = 0 holds at the double resonant point p”, one has w3 (p ; —p3)e™" =

O(lpy,, — p|?)et = E'¢2°~1. The tangent space of T? over the whole
H%m, i g admits normally hyperbolic invariant splitting of (3.3). For
1 < 0, the situation is the same, instead of considering the class g, we
consider the class —g.

Back to the original coordinates, for the class g as well as for —g,
there is a NHIC which extends from €;,+/e-neighborhood of the double
resonant point p” to the border of the disk {|p — p"| < €}.

Since ||pj,; — pi|| < Ki/€, there are as many as O([egfé}) points
{p}} along the resonant path I'. Around at most 2ip + 1 points (the
number is independent of €), the situation need to be handled in the
way treated in [CZ2]. For each of them, there is an open-dense set
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U, C C"(T?%,R). For each V € 9;, the Hamiltonian flow <I> admits
NHICs in the domain with certain normal hyperbolicity 1ndependent
of €. Therefore, certain ¢; > 0 exists such that for each ¢ < ¢;, the
cylinders survive the time-periodic perturbation CI%Z_ — ‘I>9GE .- Note the
Hamiltonian G ; is a local expression of G. ’

Now the situation becomes clear. One cylinder extends from G;l(ed)
to G-Y(Ep), another cylinder extends from G71(E;) to GZl(e?~1).
Between the energy level GZ(Ep) and G- Y( z0) there are ﬁmtely many
pieces of NHICs. Each energy level intersects these NHIC’s along one

or two circles. Let
(N B) N,
l7l<io

for each V' € U we choose ey = min{eg, - - , €44,, }. Therefore, the first
part of Theorem 1.1 is proved for V € ¥ and e < ey.

5. Aubry sets along resonant path: near double resonance

Since the NHICs obtained may be overflowing, we need to identify
whether the Aubry sets along resonant path remain in the cylinder.

An irreducible class g € Hi(T?,R) determines a channel of first co-
homology classes

Copo= | (N9, Copgc= {c € Cyc : agle) € [E',Eg]}.
AER+

Theorem 5.1. For the Hamiltonian Gco of (2.8), a class g €
H1(T?,Z) and a large positive number E} > 0, there exists a residual

set ¥ C C"(T?,R) (r > 5). For each V € U there are numbers N > 1,
€p > 0 and d > 0 such that for e < eg it holds for each c € (CNed’Ei’g

that the Aubry set A(c) of Gep lies on the invariant cylinder.
The proof of this theorem is built on the following preliminary works.

Lemma 5.1. For the Hamiltonian Gcg of (2.8), if an orbit z(s) re-
mains in a bounded region @ C T*M for s € [sg,s1], some constant
K > 0 exists, independent of € but may depend on €1, such that the
variation of energy along the orbit z(s) is bounded by

‘G670(Z(81), 81) — GQ()(Z(S()), 80)’ < K’Sl — S0 + 1‘60.

Proof. Along an orbit z(s) of the Hamiltonian flow @%E ,» the varia-
tion of the energy is controlled by
d 0 1 8Re 0

(1) Ceo(=(6),6) = 55Geo(=(6),0) = wye 25 <2,
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where x3 = w;),\%. Recall R is regular and 27-periodic in (;Jg%, see

(1.7), we expend R into Fourier series

w36
09Geo(2,0) = w3e?™ ZRk Ve

k#0
Integrating by parts, we have
S1 . waf o ., w30 s
3 [ Ru(2(0))e™ Ve dp = Z; kRk(z(G))eZk vl
(52) %0 65 S1 Sokw30
— 0))e"™ Ve db
| Rz

Because the perturbation term R is C*-smooth, we have

[ Beollcs 10 Reollcs
2m|k[3 7 27| k|3

Since Z = Jdiag(Ay, dV), by setting
1 ov
K = —— max{||Reollcs. (J4u] + | 5] )19 Reollon | > e

which is independent of e, it follows from (5.1) and (5.2) that,

Geola(s1):51) = Geol=(s0),30)| = | /” (+(6). 6)a5)

w3z |81
< R0 ST / (ORy, %(0))e
‘ kz#o iwsk 50 kz#o w3k Jg,

the right hand side is not bigger than K(s; — so + 1)e”. q.e.d.

| Ry| < |OR| <

Since Ilg, g, 4 is a NHIC, the channel Cg, g, , 4G, admits a foli-
ation of lines (one-dimensional flat), denoted by {Ig}. Restricted on
each Ig, aq, keeps constant, while restricted on a line I'; orthogonal to
these flats, the function is smooth since Gy can be treated as a Hamil-
tonian with one degree of freedom when it is restricted on the cylinder.
Therefore, the function ag, is smooth in Cy g, .G, and Cg, g, ¢,Go-

Proposition 5.1. There exists a number N > 1, independent of e,
s0 that the Aubry set for c € T'y N aé:O(E) with E > Ne? lies in the
NHIC, each orbit in this set does not hit the energy level set G;&(E)
with B < €.

Proof. We only need to prove the conclusion for the Hamiltonian
G of (2. 30) because G ; = G o when it is restricted on the set where
Glo € [e 4 E1]. So, each orbit in the Aubry set lies in the cylinder
forever. If the proposition does not hold, there would exist an orbit
z(s) in the Aubry set for ¢ € I'y N O‘E;’:O(Ned) hitting the energy level
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G;bl(ed) at the time s, i.e., Gt ((2(s0),50) = ¢?. Due to Lemma 5.1,
it returns to a neighborhood of z(sqg) after a time s’ = O(|Ine?|) (cf.
formula (2.9)) and

(5.3) |Gé’0(z(s’ +80),8 + 80) — G;O(z(so), so)| < K(s' +1)e.

As Gy (E)N1lg, g, 4 is an invariant circle for ® ,» the perturbed cylin-
der is O(e7)-close to the original one and the cylinder may be crumpled
but at most up to the order O(e=Hs=#7)) (cf. (2.22)), so there is a
time S = O(|In€?|) and a small number z' = d(ug + p7) > 0 such that
o—u' >0 and

25 + 50) = 2(s0) | < Cra(S +1)e” ™.
Since z(s) is in the Aubry set for the class ¢, the curve z(s) is c-static.

Let ag and ag, denote the a-function for Gé,o and Gy, respectively,
one has

(5 42
+s0 ,
‘ / (LGQ,O (x(s),z(s),s) — (¢, 2(s)) + agr (c))ds| < Ci5(S+1)e” .

As the cylinder Ilg, g, 4 u\;/T,ET is €?-close to ﬁeEd,El @ 3 a ¢-minimal or-

bit 2/(s) of ®F, onIlg, g, 4 such that ag, (/) = ¢* and ||2/(so) —2(s0)|| <
—u! S S’

O(e” ™). Let I'y = UZ(’;S'O (z(s),y(s)) and Ty = Ui‘:go (2'(s),y'(s))

where S’ is the period of 2/(s), we have an estimate on the Hausdorff

distance dp(T'y, Tpr) < O((S + 1)e” ). So,

/ () - [ tda) = 0((5+ 1)),

z!

Because of Go(2'(s),y'(s)) = ag,(c’) we have
S/
0= [ Lal@'(0.4'(0) - (€.(2) + agy ()i
0

S/
[ W) - e
0

Let Z(s) be the lift of z(s) to the universal covering space, it follows
that

S+s0
/ (w(s) — e, (s))ds

S0

S-+so S'+s0
= [ e datonds— [0 - i (s)ds

S0 S0

(5.5) —{c—, (8 + s0) — Z(s0))
:/ (y, dx) / (y,da’"y + O((S + 1)6”_“/)
- Iy

Z,
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—{c—,Z(8+ s0) — Z(s0))
=—{c—,7(S+s9) — Z(s0)) + O((S + 1)60_“,)’

where the last equality follows from the estimate dg(I';,I'y) < O((S +
1)e?=#"). Since G.(2(s0),50) = ag,(c), it follows from (5.3) that, for
all s € [sg, S + so], we have

gy (€)= Glo((s).y(5),5) = ag,(€) = ag, () = O((S + e ™).

Consequently, by using the formulae (5.3) and (5.5) we have
(5.6)

S+so
/ (Lar ,(2(s), (), 8) — (¢, 2(s)) + ag (¢))ds

S0

S+s0
:/ <<y(8) —c,x(s)) + (OéG;’O(c) — G’G’O(w(s),y(s), 3)))033

S0

> (a1, (0) = Gy (¢))S = (e = ¢, (S + 50) = 2(50)) — O((S + 1)),

To derive contradiction between the right-hand-side of above inequal-
ity and (5.4), we note that the function a, keeps constant along each
flat in the channel Cy g, 4,c,- The frequency vector w(c) is, therefore,
parallel to the direction of I'j. To get the norm of w(c), we assume the
general case g = k191 + ka2g2 and consider the Hamiltonian in the finite
covering space M = k1T x ko T where k,,, = k1g1m + kagom for m = 1,2
if we write g; = (gj1,952) for j = 1,2. In T*M there are k; + ko fixed
points for the return map. According to Formula (2.9), for small £ > 0
the period of the frequency \g is Thg = T,y — )\1_1(14:1 + ko) In E where
TE,g is uniformly bounded as F — 0. Since dag, = w = Ag, one has

A1
/\17E79 — (kl + kz) InFE

(5.7) = |w], Veely,.
Let ¢* be the class such that ag,(¢*) = agr (¢), then ag, (¢*)—ag, () =
(N —1)e? > 0. Since ag, is convex and ag,(c*) > ag, ('),

<C* - C/, aaGo (C*» > Qg (C*> — QGy (C/).
Since ¢*, ¢ € I'y, ¢* — is parallel to dag, (c*). It follows from (5.7) and
the relation F = O(e?) that some constant C1g > 0 exists such that

(5.8) e (aGO(c*) - aGO(c’)) > Chee?|Inel].

* C/’ 2 -

[0ag, ()]
To measure the distance between ¢* and ¢, we exploit the convexity of
the a-function and get |c¢ — ¢*||w(c*)| = [(c — ", w(c*))| < |ag,(c*) —
ag, ()| = |ag,.,(c) — ag,(c)| = €. It follows from the fact that the
a-function undergoes small variation: |ar(c) — ap/(c)| < e for small
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perturbation L' — L with ||L' — L||cn < e ([C11]). Therefore, some
number C7 > 0 exists such that

(5.9) |c* — ¢| < C17€7 | In€l).

Be aware that ag, is smooth and strictly convex when it is restricted
on the line T'y, the first cohomology classes ¢/,c¢* € I'y are uniquely
determined so that ag,(¢) = €/, ag,(c*) = Ne? where the number N
is chosen such that

In(N — 1) = 3max{|sup 7,(E)|,1}.
Let ¢’ € T'y such that ag(¢”) = (N — 1)e?, we find that
06y () — aGy (@) > (W — ), aay() - agy(d) > (W& — &),
where w' = dag, (/) and w” = dag, (). Tt follows that
(5.10) G (") — ag, () > (¢ =) + (" = " " = ).
In the way to get (5.8) one obtains that
(5.11) | — '] > Cige?| In e,

where the number Cig depends on N. One obtains from (2.9) that

/i _ / _# _ i
|w “ ’ 7T(N71)6d T
(5.12) - (k1 + ko) In(N — 1) + M (Tea g — T(n_1)ed g)

- MT(y-1yed T
>Co| In €72,

Since (W — W', c* = ') = |W" — W'||¢* — | (restricted on the cylinder,

the system has one degree of freedom, so they are treated as scalers, not
vectors), one obtains

agr ,(€) — oy () — (e — &)

=ag, (") —ag, () — (¢ — W) — (e — c*, W)

e

* /! 14 / * /
>(c" =W =W — (¢ C’w>2020]1ned|’
where the first inequality is obtained by applying (5.10), the second one
is obtained by applying (5.9), (5.11) and (5.12). It follows that the right
hand side of (5.6) is lower bounded by Cs1¢? because S = O(|Ine?|),
where Co; > 0 is a constant. Because p is very small, the formula (5.6)
contradicts (5.4) provided o > d + p’. It completes the proof. q.e.d.

Proposition 5.2. If the Aubry set forc € I'y ﬂa(_;elo(E) is contained
wn the NHIC, and E > 0 is independent of €, each orbit in this set does
1
not hit the energy level set G;& (E +t€37) if € > 0 is sufficiently small.
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Proof. If an orbit z(s) of the Aubry set for c € I'; N a&:O(E) touches

the energy level G;& (E— e%U), following the proof of Proposition 5.1 we
also have (5.4) and (5.6). Again, we are going to show the contradiction
between them.

Let ¢* be the class such that ag,(c*) = ag,,(c) and let ¢’ € T'y such
that ag,(d) = F — €3°, then ag, (¢*) — ag,(d) = €37, Similar to the
way to get (5.8), note the period is of order one, we obtain

(5.13) ¥ — | > Cige3”.

Since ag, is smooth and strictly convex when it is restricted on I'y, one
obtains from (5.13) and (5.9) that

1
g, (") — ag,(d) — (¢ =, W) = §|82OZGO(VC + (1 =v)d)|Id - c*|2

2
> Co3e37,

from which we see that the right hand side of (5.6) is lower bounded by
O(eg"). As i/ is very small, the formula (5.6) contradicts (5.4) provided
o > d+ p'. The proof for E + €37 is the same. q.e.d.

Proof of Theorem 5.1. For the Hamiltonian Gy with V' € 2, there are
at most finitely bifurcation points 0 < Ej, Ea, -+ Ey, < E]. The Aurby
set A(c) for G is a (E, g)-minimal periodic orbit if ¢ € LB, (Ag) and
ag,(c) # E; for i = 1,2,---k. At each bifurcation point the Aubry
set consists of exactly two (F, g)-minimal periodic orbits. These peri-
odic orbits make up several pieces of NHICs which admit a continuation
to the energy level of E; 4= ¢, denoted by Iy g, 154 and Ilg, sz, 15¢
respectively. The continuation is made up by local (E, g)-minimal pe-
riodic orbits. Restricted on the cylinder Ilg, s g, 154, the Hamilton-
ian has one degree of freedom, associated with a smooth a-function
denoted by «;: ¢ € [cz1 — 501,C7i+1 + 0c1] — R. The first cohomol-
ogy class c; determines uniquely a flat I C Cg, g,,, 4, such that
ai(c1) = ag,(Ig) if ¢1 € [¢}, ¢, Indeed, one has ag,(c1,ca) = ai(cr)
if (c1,c2) € Loy (e1,c2) @nd we use certain coordinates so that g = (1,0).
By the definition, we have a;_1(c}) = a;(c}), ai_1(c1) > ay(er) for
c1 € [¢}, ¢t + dc1] and a;(er) < aipi(cr) for ¢; € [ci+1 — 5cl,c§+1]. It
follows from the generic condition (H3) that

d

—a;_1(ch) > —ay(c V.

dCl 1 1( 1) dCl ’L( 1)7
Under the perturbation €’ R, large part of NHICs survive, such as
sz,EﬁéiEd and HEE176+6‘1,E¢+1+576‘1' The former is €%-close to

Ve : Ve
Hea ) ys5-cigx 5T, the latter is €7-close to Ilp, 51 p, 15 cagx 52T
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For the Hamiltonian G and the class ¢ € Cy.co With ag,(c') = E;
the Aubry set consists of two \;g-minimal periodic orbits, the Mané
set contains these two periodic orbits plus some orbits connecting them
(hetroclinic orbits). For the Hamiltonian Ge,o and the class ¢ € Cea gy
so that |ag, ,(c) — Ej| < €7, the Maiié set N(c) stays in a small neigh-
—1—0+ed,Ei+d—ed g and H€Ei_5+€d7Ei+1+5—5dvg' Tt is
due to the upper semi-continuity of Maiié on small perturbations. So, it
follows from the hyperbolic structure that each ergodic minimal measure

for this class has its support in the cylinder either 1I%,

rTe
or HEi—5+€d7Ei+1+(5—ed,9'

Since the energy level set G;& (E) is in ¢”-neighborhood of Gy *(E), we
obtain from Proposition 5.2 and the condition (H3) that for c € Cy .,
such that ag, ,(c) is close to E; we have

Ale) © HEFLE#&%,g - Hj@i—&%,EiHﬂ’
where & > 2max{(d¥‘cllai,1(czl) - d%llai(cll))_l, 1}|R||oo- Since § > 0 is
independent of €, the Aubry set completely lies on the cylinders if € > 0
is suitably small.

To verify that the Aubry set A(c) with ag,,(c) = Ne? is contained in
the cylinder, we apply Theorem 2.3. The invariant cylinder
] for @7, . lies in O(e?)-neighborhood of the cylinder

borhood of cylinders ﬁGE

i—1—0+ed, Bi+d—ed g

E%EdzEl"ré_ed:g
H%Ed’El+57€d’g X g—j'ﬂ‘. By the choice of the number d in (2.29), we
see that Geo(z,0) > € if (2,6) stays in that Aubry set A(c) with
ag,o(c) = Ned. Applying Lemma 5.1, we then complete the proof.

q.e.d.

The second part of Theorem 1.1 follows from Theorem 5.1 and the
result obtained in Section 4 (the finiteness of NHICs).

6. Criterion for strong and weak double resonance

Given a perturbation eP(p, q), it is natural to ask, along the resonant
path IV, how many double resonances need to be treated as strong dou-
ble resonance. The argument below is, in fact, the proof of Theorem 1.2.

Proof of Theorem 1.2. On the path I' the resonance condition
(Oh(p), k') = 0 is always satisfied and at each double resonant point
some other k" € Z?3, independent of k’, exists such that (9h(p), k") =0
holds. Recall the process of KAM iteration, the main part of the reso-
nant term is obtained by averaging the perturbation over a circle deter-
mined by these two resonant relations. It takes the form

Z = Zk’(pa <kj, Q>) =+ Zk’,k” (p7 <k,7 q>’ <k”7 q>)7
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where o
Zy= Y P&,
JEZ\{0}
Zk:’,k” = Z ij’-i-lk” (p)e(j<kl’q>+l<k”7Q>)i‘
(5,1)€22,1#0

Since the perturbation P is C"-function, the coefficient Pjj/ i is
bounded by

| Pjpryane| < 87°(|Pllor || 5K + IE"[| 7"
Therefore, some constant ¥ = J(k’) depending on k" exists such that
(61) 120l < DIPler k"]~
Recall the procedure we did in the second section, after the rescaling

and linear coordinate transformation we obtain the main part of the
system

1
Go = §<AZ/,Z/> — Vi (w2) — Vi o (21, 222).

We assume that V), has a non-degenerate minimal point at z3, i.e.,
Viv(23) = A3 > 0, the system 1(Ay,y) — Vi ((K, g)) possesses a NHIC

I o = {y = Eyo0,€ € R,mp = a3, 11 € T},

where yo solves the equation (1,0)! = Ayy. Applying the normally
hyperbolic invariant manifold theorem, one obtains from the estimate
(6.1) that some positive number 91 = ©¥1(A3) > 0 exists such that ®f,
also admits a normally hyperbolic and invariant cylinder IT ;. close to
H%/,k" provided

I"r—2 19(]{/)
(62 2 =
It is a criterion, if the integer vector k” satisfies this condition, the
double resonance is thought as weak resonance and can be treated in
the way for a priori unstable system.

We notice that the potential V' is obtained by fixing a double resonant
point y = y”. It seems that the non-degeneracy of the minimal point
depends on the position of double resonant point on the resonant path
I/, namely, the number A3 depends on the y € I'. Because the set
of double resonant points is dense along the resonant path, it appears
necessary to ask whether it holds simultaneously for all p € T” that
the minimal point of Zy/(p, ) is non-degenerate when it is treated as a
function of x = (K, ¢). Fortunately, we have the following result [CZ1]

[ditel

Theorem 6.1. Assume M is a closed manifold with finite dimen-
sions, Fr € C"(M,R) with r > 4 for each ¢ € [Co, (1] and F¢ is Lipschitz
in the parameter (. Then, there exists an open-dense set B C C"(M,R)
so that for each V. € 0, it holds simultaneously for all ¢ € [(o, (1] that
the minimal point of Fr +V is non-degenerate. In fact, given V € 0
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there are finitely many ¢; € [Co, C1] such that Fr 4V has only one global
minimal point for ( # (; and has two global minimal point if ¢ = (;.

So, once one has a generic single resonant term Zs, the non-degen-
eracy Az is lower bounded from zero for all double resonant points.
There are finitely many k" € Z3 which do not satisfy the condition
(6.2), thus need to be treated as strong double resonance. Obviously,
the number of such points is independent of e.

It follows from Theorem 6.1 that there are finitely many point p =
p; € I where the single resonant term 7, has two global minimal points
when it is treated as the function (k| ¢). It is clearly generic that the
condition (H3) holds for Zj/. It implies that as one move p along I",
the Mather set varies along one cylinder and jump to another cylinder
when it crosses the point p; which is called bifurcation point. It is also
generic that none of these bifurcation points is strong double resonant
point. q.e.d.

Remark. Given a resonant path determined by a class g € Hy(T?,7Z),
we have a channel Cy = UyZ3, (Ag) C HY(T% R). By the result we
get in this paper, this channel has certain width except the place very
close to the disk F; which corresponds to strong double resonance. For
each ¢ € intC, with d(c,F;) > O(e%+d), the Aubry set is located in
certain NHIC. By using the method of [CY1, CY2, LC], this Aubry
set can be connected to other Aubry set nearby also lying on the cylin-
der. Some local connecting orbit looks like heteroclinic orbit (Arnold’s
mechanism), some other orbits are constructed by using cohomology
equivalence. Because certain Holder modulus continuity of weak KAM
solutions is established in [Z1] for the whole cylinder, not only restricted
on the set of invariant circles, one can always connects such Aubry set
to another one via Arnold’s mechanism.

In conclusion, we find transition chain along the resonant path ex-
cept for finitely many gaps around the strong double resonant points.
The size of the gaps is so small that these pieces of transition chain
are connected by paths of cohomology equivalence on energy levels
slightly above zero around double resonance, shown in a subsequent
paper [C17]. Another way to cross double resonance was suggested in
[Mat], elaborated in [KZ]|, [Mar| using cylinders with holes entering
the negative energy region.
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