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UNIFORM HYPERBOLICITY OF INVARIANT
CYLINDER
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Abstract

For a positive definite Hamiltonian system H = h(p)+ εP (p, q)
with (p, q) ∈ R

3 × T
3, large normally hyperbolic invariant cylin-

ders exist along the whole resonant path, except for the ε
1
2+d-

neighborhood of finitely many double resonant points. It allows
one to construct diffusion orbits to cross double resonance.

1. Introduction and the main result

In this paper, we study small perturbations of integrable Hamilton
systems with three degrees of freedom

(1.1) H(p, q) = h(p) + εP (p, q), (p, q) ∈ R
3 × T

3,

where ∂2h(p) is positive definite, both h and P are Cr-functions with
r ≥ 6. In the energy level set H−1(E) with E > minh, we search for
invariant cylinders along resonant path. An irreducible integer vector
k′ ∈ Z

3\{0} determines a resonant path
Γ′ = {p ∈ h−1(E) : 〈∂h(p), k′〉 = 0}.

A point p′′ ∈ Γ′ is called double resonant if ∃ another irreducible vector
k′′ ∈ Z

3\{0}, independent of k′, such that 〈k′′, ∂h(p′′)〉 = 0 holds as
well. There are infinitely many double resonant points, but only strong
double resonance causes trouble. A double resonance is called strong if
|k′′| is not so large.
To make things simpler we introduce a symplectic coordinate trans-

formation

M : u =M tq, v =M−tp,
where the matrix is made up by three integer vectors M = (k′′, k′, k3).
As both k′ and k′′ are irreducible, ∃ k3 ∈ Z

3 such that detM = 1.
There are infinitely many choices for k3, we choose that k3 so that |k3|
is the smallest one. For simplicity of notation, we assume that the
Hamiltonian of (1.1) is already under such transformation and denote
the canonical coordinates by (p, q) still. So we have ∂h(p′′) = (0, 0, ω3).
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To get a normal form around a double resonance, we introduce a
coordinate transformation ΦεF which is defined as the time-2π-map
ΦεF = Φt

εF |t=2π of the Hamiltonian flow generated by the function
εF (p, q). This function solves the homological equation

(1.2)
〈∂h
∂p
(p′′),

∂F

∂q

〉
= −P (p, q) + Z(p, q),

where

Z(p, q) =
∑

�∈Z3,�3=0

P�(p)e
i(�1q1+�2q2),

in which P� represents the Fourier coefficient of P , � = (�1, �2, �3). Ex-
panding F into Fourier series and comparing both sides of the equation
we obtain

F (p, q) =
∑

�∈Z3,�3 �=0

iP�(p)

〈�, ∂h(p′′)〉e
i〈�,q〉.

Under the transformation ΦεF we obtain a new Hamiltonian

Φ∗εFH =h(p) + εZ(p, q) + ε
〈∂h
∂p
(p)− ∂h

∂p
(p′′),

∂F

∂q

〉

+
ε2

2

∫ 1

0
(1− t){{H,F}, F} ◦ Φt

εFdt.

To solve Equation (1.2), we do not have the problem of small divisor
because |〈�, ∂h(p′′)〉| = |�3ω3|, where ω3 = ∂3h(p

′′) �= 0 since h(p′′) >
minh.
The function Φ∗εFH(p, q) determines its Hamiltonian equation

(1.3)
dq

dt
=

∂

∂p
Φ∗εFH,

dp

dt
= − ∂

∂q
Φ∗εFH.

For this equation we introduce another transformation (call it homoge-
nization)

G̃ε =
1

ε
Φ∗εFH, ỹ =

1√
ε

(
p− p′′

)
, x̃ = q, s =

√
εt,

with x̃ = (x, x3), ỹ = (y, y3), x = (x1, x2), y = (y1, y2). In the new
canonical variables (x̃, ỹ) and the new time s, Equation (1.3) turns out
to be the Hamiltonian equation with the generating function as the
following:

(1.4) G̃ε =
1

ε

(
h(p′′ +

√
εỹ)− h(p′′)

)
− V (x) +

√
εR̃ε(x̃, ỹ),
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where V = −Z(p′′, x) and

(1.5)

R̃ε = R̃1 + R̃2 + R̃3,

R̃1 =
1√
ε

[
Z(p′′ +

√
εỹ, x)− Z(p′′, x)

]
,

R̃2 =
1√
ε

〈∂h
∂p

(
p′′ +

√
εỹ
)
− ∂h

∂p
(p′′),

∂F

∂q

〉
,

R̃3 =

√
ε

2

∫ 1

0
(1− t){{H,F}, F} ◦ Φt

εFdt.

To choose the neighborhood where we study the normal form (1.4), we
notice the following two points.

1) there are finitely many double resonant points {p′′i } ⊂ Γ′ such
that Γ′ is covered by the disks {‖p−p′′i ‖ < K−1

i εσ
′}, where σ′ < 1

6 ,

Ki ≤ K0ε
− 1

3
(1−3σ′) is the period of the double resonance at p′′i , i.e.,

Ki∂h(p
′′
i ) ∈ Z

3 and K∂h(p′′i ) /∈ Z
3 for any K < Ki (see Chapter

3 of [Lo]). Therefore, the size of each disk is between O(ε
1
7 ) and

O(ε
1
3 );

2) one is unable to use the KAM technique in K
√
ε-neighborhood

of strong double resonance to obtain invariant cylinder, even with
large K > 0.

Therefore, we will study the normal form (1.4) in the domain

Ωε =
{
(x̃, ỹ) : |ỹ| ≤ εσ−

1
2 , x̃ ∈ T

3
}
, with 0 < σ <

1

2
,

where the term |√εR̃i|Cr−2 is bounded by a small number of order O(εσ)
(for i = 1, 2, 3). If we introduce a symplectic coordinate transformation
further

(1.6) S : I =
ω3√
ε
y3, θ =

√
ε

ω3
x3,

then ∂G̃ε
∂I = 1 + O(εσ) holds in the domain SΩε. Therefore, there is a

unique function I = −Gε(x, y, θ) which solves the equation

(1.7) G̃ε

(
x,

ω3√
ε
θ, y,−

√
ε

ω3
Gε(x, y, θ)

)
= 0,

where we use the fact that h(p′′) = E. Since the Hamiltonian (1.4) is
nearly integrable, we shall see later that the function Gε(x, y, θ) takes
the form

(1.8) Gε(x, y, θ) = Ḡε(x, y) + εσRε(x, y, θ), for ‖y‖ ≤ O(εσ−
1
2 ),

where Ḡε solves the equation h(p′′ +
√
ε(y,−

√
ε

ω3
Ḡε(x, y))) − h(p′′) =

εV (x). By assuming minV = 0, the energy of Ḡε ranges from zero to

very high level E′ε2σ−1. Restricted on the energy level set G̃−1ε (0), the
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dynamics of G̃ε is equivalent to the dynamics of Gε where θ plays the
role of time. Let Φθ

Gε
denote the Hamiltonian flow of Gε.

To state our results, we introduce some notations. A manifold with
boundary is called cylinder if it is homeomorphic to the standard cylin-
der T× [0, 1]. A typical case is the cylinder made up by periodic orbits
of an autonomous Hamiltonian system where different orbit lies in dif-
ferent energy level set. The cylinder is denoted by ΠE1,E2,g if all orbits
are associated with the same first homology class g and they lie in the
level set with energy E1 to the set with E2. The cylinder is invariant
for the Hamiltonian flow. If the system is under small time-periodic
perturbation, the time-periodic map generated by the Hamiltonian flow
is a small perturbation of the original map. The cylinder will survive
small perturbations of the map with small deformation, denoted by

Πε
E1,E2,g

= Πε,θ
E1,E2,g

|θ=0. Let Π̃ε
E1,E2,g

= ∪θ∈T(Π
ε,θ
E1,E2,g

, θ), the small
deformation of ΠE1,E2,g × T. We also call it cylinder.
The Tonelli Hamiltonian Gε determines a Tonelli Lagrangian through

the Legendre transformation. So, the α- and β-function are well defined,
denoted by αGε and βGε , respectively. They define the Legendre–Fenchel
duality LβGε

between the first homology and the first cohomology: a
first cohomology class c ∈ LβGε

(g) if αGε(c)+βGε(g) = 〈c, g〉. By adding
a constant to Gε we can assume minαGε = 0. Once a Lagrangian L is
fixed, we also use LβL

to denote the Legendre–Fenchel duality.
The Hamiltonian Gε produces a map LGε : T ∗T2 × T → TT2 × T:

(x, y, θ) → (x, ẋ, θ) where ẋ = ∂yGε(x, y, θ). In this paper, a set in
T ∗T2 × T as well as its time-2π-section is called Mather set (Aubry set
or Mañé set) if its image under the map LGε is a Mather set (Aubry
set or Mañé set) in the usual definition. Let NHIC be the abbreviation
of normally hyperbolic invariant cylinder, the following theorem is the
main result of this paper:

Theorem 1.1. For a class g ∈ H1(T
2,R), there is an open-dense set

V ⊂ Cr(T2,R) (r ≥ 5). For each V ∈ V, there exists ε0 > 0 such that
for each ε ∈ (0, ε0)

1) there are finitely many NHICs for the map Φ2π
Gε
: Πε

εd,E0+δ,g
,

Πε
E0−δ,E1+δ,g · · ·Πε

Ei0−1−δ,Ei0
+δ,g, Π

ε
Ei0

−δ,ε2σ−1,g where the integer

i0, the numbers Ei0 > · · · > E1 > E0 > 0, the small numbers
δ, d > 0 and the normal hyperbolicity of each cylinder are all in-
dependent of ε;

2) for each c ∈ LβGε
(λg) with λ > 0

• ∃ N > 1 such that if αGε(c) ∈ (Nεd, E0), the Aubry set lies on
Πε

εd,E0+δ,g
;

• if αGε(c) ∈ (Ei, Ei+1), the Aubry set lies on Πε
Ei−δ,Ei+1+δ,g

where the subscript i ranges over the set {0, 1, · · · , i0 − 1};
• if αGε(c)∈ (Ei0 , ε

2σ−1), the Aubry set lies on Πε
Ei0

−δ,ε2σ−1,g;
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• if αGε(c) = Ei, the Aubry set has two connected components,
one is on Πε

Ei−1−δ,Ei+δ,g and another one is on Πε
Ei−δ,Ei+1+δ,g.

Let us see what the theorem implies for the Hamiltonian H if
we return back to the original coordinates. Since h is integrable,
Lβh

(∂h(Γ′)) ⊂ H1(T3,R) is a smooth curve. Through the Legendre–
Fenchel duality induced by βH , the β-function for H, one obtains a
channel LβH

(∂h(Γ′)) ⊂ H1(T3,R). If we denote a-neighborhood of the
set S by S + a = {x : d(x, S) ≤ a}, it follows from Theorem 1.1 that

Theorem 1.2. Given a resonant path Γ′ ⊂ h−1(E) and a potential
V ∈ V, some small numbers ε0, d > 0 exist such that for each ε ∈
(0, ε0), only finitely many frequencies {ωk ∈ Γ′} need to be treated as
strong double resonance, the number is independent of ε. For each class

c ∈ LβH
(∂h(Γ′))\ ∪ (LβH

(ωk) + ε
1
2
+d) the Aubry set Ã(c) lies on some

NHIC. The number of NHICs is finite, independent of ε, these NHICs

extend to ε
1
2
+d-neighborhood of strong double resonant points.

The result in [CZ2] plays important role in this paper. It is for the
minimal periodic orbit of Tonelli Lagrangian of two degrees of freedom.
Let L be a Tonelli Lagrangian and let M(L) be the set of Borel prob-
ability measures on TT2, which are invariant for the Lagrange flow φt

L
produced by L. Each μ ∈ M(L) is associated with a rotation vector
ρ(μ) ∈ H1(T

2,R) s.t. for every closed 1-form η on T
2 one has

〈[η], ρ(μ)〉 =
∫

ηdμ.

Let Mω(L) = {μ ∈ M(L) : ρ(μ) = ω}, an invariant measure μ is called
minimal with the rotation vector ω if∫

Ldμ = inf
ν∈Mω(L)

∫
Ldν.

A rotation vector ω ∈ H1(T
2,R) is called resonant if there exists a non-

zero integer vector k ∈ Z
2 such that 〈ω, k〉 = 0. For two-dimensional

torus, it uniquely determines an irreducible element g ∈ H1(T
2,Z) and

a positive number λ > 0 such that ω = λg if ω is resonant. Each orbit
in the support of minimal measure μ is periodic if and only if ρ(μ) is
resonant. Let E = α(LβL

(λg)), such periodic orbit is called (E, g)-
minimal. The following result (Theorem 2.1 of [CZ2]) has been proved
for Tonelli Lagrangian with two degrees of freedom L : TT2 → R:

Theorem 1.3. Given a class g ∈ H1(T
2,Z) and two positive numbers

E′′ > E′ > 0, there exists an open-dense set V ⊂ Cr(T2,R) with r ≥ 5
such that for each V ∈ V, it holds simultaneously for all E ∈ [E′, E′′]
that every (E, g)-minimal periodic orbit of L+ V is hyperbolic. Indeed,
except for finitely many Ei ∈ [E′, E′′], there is only one (E, g)-minimal
orbit for E �= Ei and there are two (E, g)-minimal orbits for E = Ei.
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Therefore, these (E, g)-minimal periodic orbits make up finitely many
pieces of NHICs.

Applying this theorem to the Hamiltonian Ḡε in (1.8), one immedi-
ately obtains the existence of NHICs which extend from the level set
with energy of order O(1) to the level set with very high energy E � 1
but independent of ε. In Section 2, we show the NHICs which extend
from the level set with energy of order O(1) to the level set with very
lower energy E = O(εd) and show in Section 3 the NHICs which ex-
tends from level set with high energy E � 1 to extremely high energy
E = O(ε2σ−1). Although we are searching for NHICs ranging from the
level with very lower energy to the level with energy approaching infin-
ity as ε → 0, in Section 4, we show that, for generic potential V , the
number of the NHICs is finite, independent of ε. It allows us to apply
the theorem of normally hyperbolic invariant manifold to obtain the
existence of NHICs for the time-periodic map of ΦGε = Φθ

Gε
|θ=ω−1

3 2π
√
ε.

Since these cylinders may be overflow, we show in Section 5 which Aubry
sets remain in these cylinders.
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2. NHIC around double resonant point

The main result in this section is Theorem 2.3. It verifies that a NHIC
for the map ΦGε extends from εd-neighborhood of the double resonant
point to a place which is of order O(1)-away from the double resonant
point.
We do not try to find a formulation of Gε in (1.8) which is valid for the

whole region Ωε. Instead, we are satisfied with getting a local expression
when it is restricted on {|p−p′i| ≤ O(

√
ε)} where p′i ∈ Γ′∩{|p−p′′| ≤ εσ}.

Along the path Γ′ ∩ {|p − p′′| ≤ εσ} we choose points {p′i} such that
p′0 = p′′, ∂1h(p′i) = Ki

√
ε, where K > 0 is an integer, independent of ε.

Let ω3,i = ∂3h(p
′
i), we introduce coordinate rescaling and translation

(2.1)
(
y,

√
ε

ω3,i
I
)
=

1√
ε
(p− p′i), θ =

√
ε

ω3,i
x3.
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Let Ki = Ωi, we expand G̃ε of (1.4) in O(
√
ε) neighborhood of p′i and

get
(2.2)

G̃ε =I +Ωiy1 +
1

2

〈
Ãi

(
y,

√
ε

ω3,i
I
)
,
(
y,

√
ε

ω3,i
I
)〉

− V (x) +
√
εR̃h

(
y,

√
ε

ω3,i
I
)
+

√
εR̃ε

(
x,

ω3,i√
ε
θ,
(√

εy,
ε

ω3,i
I
)
+ p′i

)
,

where Ãi =
∂2h
∂p2

(p′i) and term R̃h represents the Taylor remainder

R̃h =
1√
ε
3

{
h
(
p′i +

(√
εy,

ε

ω3,i
I
))

−
[
h(p′i) + I +Ωiy1 +

1

2

〈
Ãi

(
y,

√
ε

ω3,i
I
)
,
(
y,

√
ε

ω3,i
I
)〉]}

.

For |p′i| ≤ O(εσ), |y| ≤ O(1) and |I| ≤ O( ω3√
ε
) both

√
εR̃h and

√
εR̃ε

are bounded by a quantity of order O(εσ) in Cr−2-topology, where θ

variable is not taken derivatives. From the expression of G̃ε in (2.2) we
get a local solution of the equation (cf. Equation 1.7)

(2.3) G̃ε

(
x,

ω3,i√
ε
θ, y,−

√
ε

ω3,i
Gε,i(x, y, θ)

)
= 0,

which takes the form

(2.4)

Gε,i(x, y, θ) = Gi(x, y) + εσRε,i(x, y, θ),

Gi(x, y) = Ωiy1 +
1

2
〈Ay, y〉 − V (x),

where A is a 2×2 matrix obtained from Ã0 by eliminating the third row
and the third column. At first view, the matrix A should come from Ãi

in the same way. However, using the property |p′i − p′′| ≤ O(εσ) we can
put the difference term into the remainder.
Let us compare the Hamiltonian Gε,i of (2.4) with the Hamiltonian

Gε of (1.8). It follows from the transformations (1.6) and (2.1) that for√
εy − p̂′i ≤ O(

√
ε) one has

(2.5)
ω3,i

ω3
Gε

(
x, y− 1√

ε
(p̂′′− p̂′i),

ω3,i

ω3
θ
)
− ω3,i

ε
(p′′3−p′i,3) = Gε,i(x, y, θ),

where the notations p′′ = (p′′1, p′′2, p′′3) = (p̂′′, p′′3), p′i = (p′i,1, p
′
i,2, p

′
i,3) =

(p̂′i, p
′
i,3) are used. So, up to a translation, we have

(2.6) ΦGε := Φθ
Gε
|
θ=

√
ε

ω3
2π
= Φθ

Gε,i
|
θ=

√
ε

ω3,i
2π
:= ΦGε,i .

Therefore, we only need to study the Hamiltonian map ΦGε,i determined

by Gε,i when y is restricted in the domain where
√
εy − p̂′i ≤ O(

√
ε).

If we ignore the small term εσRε,i in (2.4), the truncated system Gi

has two degrees of freedom only. Let Li be the Lagrangian obtained
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from Gi by the Legendre transformation, we get periodic orbit with
rotation vector λg by searching for the minimizer γ(·, E, g, x) of the
Lagrange action

(2.7) Fi(x,E, g) = inf
γ(0)=γ( 2π

λ
)=x

[γ]=g

∫ 2π
λ

0
Li(γ(t), γ̇(t))dt,

where g ∈ H1(T
2,Z) is irreducible, E = α(LβL

(λg)). If Fi(·, E, g)
reaches its minimum at x∗, then (γ(·, E, g, x∗), γ̇(·, E, g, x∗)) is the min-
imal periodic orbit we are looking for [CZ2].
Let us study the case i = 0 in this section, i.e., the system is re-

stricted in K
√
ε-neighborhood of the double resonant point, in which

the Hamiltonian takes the special form

(2.8)

Gε,0(x, y, θ) = G0(x, y) + εσRε,0(x, y, θ),

G0(x, y) =
1

2
〈Ay, y〉 − V (x).

A minimizer γ(·, E, g, x∗) of F0(·, E, g) determines a periodic orbit
zE,g(t) = (xE,g(t), yE,g(t)) of the Hamiltonian flow Φt

G0
, where xE,g(t) =

γ(t, E, g, x∗), yE,g(t) = ∂ẋL(γ(t, E, g, x∗), γ̇(t, E, g, x∗)). As the Hamil-
tonian is autonomous, the orbit zE,g(t) lies in the energy level G

−1
0 (E).

When the energy E decreases, λ also decreases. We assume minV = 0,
then there are two possibilities:
(1), λ ↓ λ0 > 0 as E ↓ 0. In this case, certain periodic orbit z∗(t) ⊂

G−10 (0) such that zE,g(t) → z∗(t). It is possible, we have an example.
Let

L =
1

2
ẋ21 +

1

2
ẋ22 + V (x),

where V satisfies the conditions: x = 0 is the minimal point of V only;
there exist two numbers d > d′ > 0 such that for any closed curve γ:
[0, 1]→ T

2 passing through the origin with [γ] �= 0 one has∫ 1

0
V (γ(s))ds ≥ d;

V = d′+(x2− a)2 when it is restricted a neighborhood of circle x2 = a.

For g = (1, 0), λ ↓ √
2d′ as E ↓ 0, z∗(t) = ( t√

2d′
, a). No problem of

double resonance appears in this case.
(2), λ ↓ 0 as E ↓ 0. It is typical that V attains its minimum at

one point which correspond a fixed point of the Hamiltonian flow Φt
G0
.

As the period 2λ−1π approaches infinity, the orbit zE,g(t) approaches
homoclinic orbit(s) as E approaches zero. It is possible that there are
two irreducible classes g1, g2 ∈ H1(T

2,Z) and two non-negative integers
k1, k2 such that g = k1g1 + k2g2. It is a difficult part of the problem
of double resonance, {zE,g}E>0 makes up a cylinder which takes ho-
moclinic orbits as its boundary. The cylinder cannot survive any small
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perturbation. In this section, we are going to study how close some
invariant cylinder of ΦGε,0 of (2.6) can extend to the double resonant
point.

2.1. Hyperbolicity of minimal periodic orbit around double
resonant point. At the double resonant point we have p′0 = p′′ and
ω′1 = ∂h(p′0) = 0. In this case, the Lagrangian determined by G0 takes
the form

L0 =
1

2
〈A−1ẋ, ẋ〉+ V (x).

For Hamiltonian system G0, the minimal point of V determines a sta-
tionary solution which corresponds to a minimal measure of the La-
grangian L0. Up to a translation of coordinates x → x + x0, it is
open-dense condition that
(H1): V attains its minimum at x = 0 only, the Hessian matrix of

V at x = 0 is positive definite. All eigenvalues of the matrix(
0 A

∂2
xV 0

)
are different: −λ2 < −λ1 < 0 < λ1 < λ2.
If we denote by Λ+

i = (Λxi,Λyi) the eigenvector corresponding to
the eigenvalue λi, where Λxi and Λyi are for the x- and y-coordinate
respectively, then the eigenvector for −λi will be Λ

−
i = (Λxi,−Λyi).

By the assumption (H1), the fixed point z = (x, y) = 0 has its stable
manifold W+ and its unstable manifold W−. They intersect each other
along homoclinic orbit. Since each homoclinic orbit entirely stays in the
stable and the unstable manifolds, the intersection cannot be transversal
in the standard definition, but in the sense that

TzW
− ⊕ TzW

+ = TzG
−1
0 (0)

holds for any point z along homoclinic orbit. Without danger of confu-
sion, we also call the intersection transversal.
Being treated as a closed curve, a homoclinic orbit (γ(t), γ̇(t)) is as-

sociated with a homological class [γ] = g ∈ H1(T
2,Z). A homoclinic

orbit (γ, γ̇) is called minimal if∫ ∞

−∞
LG0(γ(t), γ̇(t))dt = inf

[ζ]=[γ]

∫ ∞

−∞
LG0(ζ(t), ζ̇(t))dt.

For convenience, we call γ homoclinic curve if (γ, γ̇) is a homoclinic
orbit.
We claim that each g ∈ H1(T

2,Z) is associated with an open-dense set
in Og ⊂ Cr(M,R) such that for each V ∈ Og there is only one minimal
homoclinic curve γ with [γ] = g. In fact, for a minimal homoclinic curve
γ1 one constructs a potential δV1 ≥ 0 so that suppδV1 is away from the
point x = 0 and suppδV1 looks like a tubular neighborhood of a piece
of the homoclinic curve γ1. Since all minimal homoclinic curves with
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the same class do not cross each other, all minimal homoclinic curve
of the perturbed system L − δV1 must pass through suppδV1. Pick up
a minimal homoclinic orbit γ2 of the perturbed system, one introduces
δV2 so that suppδV2 lies in a more narrow tubular neighborhood of
γ2. Step by step, one obtains a sequence of potential perturbations δVi

and a sequence of curves γi such that γi → γ∞, suppδVi shrinks to
a piece of γ∞ and γ∞ is the unique minimal homoclinic curve of the
Lagrangian L− ΣδVi such that [γ∞] = g and ΣδVi is small. Therefore,
a residual set R = ∩gOg exists such that for each V ∈ R, there is only
one minimal homoclinic orbit for each class in g ∈ H1(T

2,Z), although
there are infinitely many homoclinic orbits associated with the same
class [Z2, CC]. So, some residual set R ⊂ Cr(M,R) exists such that
for each V ∈ R one has
(H2): The stable manifold intersects the unstable manifold transver-

sally along each minimal homoclinic orbit. These minimal homoclinic
orbits approach the fixed point along the direction Λ1: γ̇(t)/‖γ̇(t)‖ → Λx1

as t → ±∞.
Once fixing the homological class g, we denote the periodic curve

xE(t) = xE,g(t) which determines a periodic orbit zE = (xE , yE) in the

phase space. As it stays in the energy level set G−10 (E), let us show how
the period TE is related to the energy E.

Lemma 2.1. Assume the hypothesis (H2). For g = k1g1 + k2g2 and
suitably small E > 0, the period TE of the orbit zE is related to the
energy E through the formula

(2.9) TE = T (E, g) = τE,g − 1

λ1
(k1 + k2) lnE,

where τE,g is uniformly bounded as E ↓ 0.
Proof. By the condition, there are two minimal homoclinic curves

γ1(t), γ2(t) such that [γ1] = g1, [γ2] = g2. Let z1(t), z2(t) denote the
homoclinic orbit determined by γ1, γ2 in the Hamiltonian formalism,
zj(t) = (γj(t), ∂ẋL(γj(t), γ̇j(t))) (j = 1, 2), the periodic orbit zE(t) ap-
proaches these homoclinic orbits as E ↓ 0. By the hypotheses (H1,
H2), these homoclinic orbits approach the fixed point z = 0 along the
direction Λ±1 .
Let Bδ be a sphere centered at z = 0 with small radius δ > 0.

Since zE approaches the homoclinic orbits, it passes through the ball if
E > 0 is small. Denote by t+E,i the time when zE enters the ball, t−E,i

the subsequent time when zE leaves the ball, namely, zE(t) ∈ Bδ for
t ∈ [t+E,i, t

−
E,i] and zE(t) /∈ Bδ for t ∈ (t−E,i, t

+
E,i+1). Since g = k1g1+k2g2,

we have

t+E,1 < t−E,1 < t+E,2 < · · · < t+E,k1+k2
< t−E,k1+k2

< t+E,k1+k2+1 = t+E,1 + TE .
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Recall the notation zE(t) = (xE(t), yE(t)). As the minimal homoclinic
orbits approach the fixed point z = 0 along the direction Λ±1 .

(2.10)
∥∥∥ ẋE(t

±
E,i)

‖ẋE(t±E,i)‖
− Λ±x1

‖Λ±x1‖
∥∥∥ <

1

4

holds if E > 0, δ > 0 are suitably small.
In a suitably small neighborhood of z = 0, we use a Birkhoff normal

form

G0 =
1

2
(y21 − λ2

1x
2
1) +

1

2
(y22 − λ2

2x
2
2) + P3(x, y),

where P3(x, y) = O(|(x, y)|3). In such coordinates, the eigenvector for
the eigenvalue ±λ1 is Λ

±
1 = (1, 0,±λ1, 0) and that for the eigenvalue

±λ2 reads Λ
±
2 = (0, 1, 0,±λ2).

By the method of variation of constants, we obtain the solution of
the Hamilton equation generated by G0

(2.11)
x�(t) =e

−λ�t(b−� + F−� ) + eλ�t(b+� + F+
� ),

y�(t) =− λ�e
−λ�t(b−� + F−� ) + λ�e

λ�t(b+� + F+
� ),

where � = 1, 2, b±� are constants determined by boundary condition and

F−� =
1

2λ�

∫ t

0
eλ�s(λ�∂y�P3 + ∂x�

P3)(x(s), y(s))ds,

F+
� =

1

2λ�

∫ t

0
e−λ�s(λ�∂y�P3 − ∂x�

P3)(x(s), y(s))ds.

Substituting (x, y) with the formula (2.11) into G0 we obtain a con-
straint condition for the constants b±� :
(2.12)
G0(x(t), y(t)) = −2(λ2

1b
−
1 b

+
1 + λ2

2b
−
2 b

+
2 ) + P3((b

+
� + b−� ), λ�(b

+
� − b−� )).

If (x(±T ), y(±T )) ∈ ∂Bδ, we obtain from the theorem of Grobman–
Hartman that

(2.13)
x�(−T ) =b−� e

λ�T + b+� e
−λ�T + o(δ),

x�(T ) =b
−
� e
−λ�T + b+� e

λ�T + o(δ).

Let xE(t) = (xE,1(t), xE,2(t)). As Formula (2.10) holds for (xE , yE), the
first component of xE(t) satisfies

(2.14) |xE,1(t
±
E,i)| ≥

δ

2
√
1 + λ2

1

, i = 1, · · · , k1 + k2.

Let 2T = t−E,i − t+E,i. The time translation, t
+
E,i → −T induces t−E,i →

T . For sufficiently large T > 0, it deduces from Equation (2.13) and
Assumption (2.14) that

δ

3
√
1 + λ2

1

e−λ1T ≤ |b±1 | ≤ 2e−λ1T , |b±2 | ≤ 2δe−λ2T ,
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and

b−1 b
+
1 < 0, |P3((b

+
� + b−� ), λ�(b

+
� − b−� ))| ≤ Ce−3λ1T ,

where the constant C depends only on the function P3. So, for suitably
small δ > 0 and sufficiently large |t−E,i− t+E,i|, we obtain from (2.12) that

E ≥ 2λ2
1δ

2

9(1 + λ2
1)
e−λ1|t−E,i−t+E,i| − 8λ2

2δ
2e−λ2|t−E,i−t+E,i| − Ce−3λ1|t−E,i−t+E,i|/2

≥ λ2
1δ

2

9(1 + λ2
1)
e−λ1|t−E,i−t+E,i|.

The quantity |t−E,i−t+E,i| becomes sufficiently large if E > 0 is sufficiently
small. On the other hand, E is obviously upper bounded by

E ≤8λ2
1δ

2e−λ1|t−E,i−t+E,i| + 8λ2
2δ

2e−λ2|t−E,i−t+E,i| + Ce−3λ1|t−E,i−t+E,i|/2

≤9λ2
1δ

2e−λ1|t−E,i−t+E,i|.

Therefore, we find the dependence of speed on the energy

(2.15) |t−E,i − t+E,i| =
1

λ1
| lnE| − 2

λ1
| ln δ|+ τE,i,

where τE,i is uniformly bounded for each i ≤ k1 + k2:

1

λ1

(
2 lnλ1 + ln

1

9(1 + λ2
1)

)
≤ τE,i ≤ 1

λ1
(2 lnλ1 + 3 ln 3).

For t ∈ (t−E,i, t
+
E,i+1), the point zE(t) does not fall into the ball Bδ. So,

the quantity t+E,i+1 − t−E,i is uniformly bounded as E ↓ 0. Set

τE,g =

k1+k2∑
i=1

(
τE,i + (t+E,i+1 − t−E,i)−

2

λ1
| ln δ|

)
,

we obtain the formula (2.9). q.e.d.

Next, we study the hyperbolicity of the periodic orbit zE(t) = (xE(t),
yE(t)). Since the Hamilton flow Φt

G0
preserves the energy, we take a two-

dimensional section ΣE ⊂ G−10 (E), which is transversal to the periodic
orbit zE(t) at zE,0 in the sense that

TzE,0G
−1
0 (E) = span{J∇G0(zE,0), TΣE}.

The Hamiltonian flow produces a Poincaré map, for which zE,0 is peri-
odic point (the orbit intersects the section at several points). We study
the hyperbolicity of periodic point for the Poincaré map. If a periodic
orbit is associated with the homological class g and it stays in the energy
level of E, we call it (E, g)-periodic orbit.
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Lemma 2.2. Assume the hypotheses (H1, H2). Given a class g ∈
H1(T

2,Z) we assume that, as E ↓ 0, there is (E, g)-periodic orbit zE(t)
approaching the minimal homoclinic orbits z1 and z2 such that g =
k1[γ1] + k2[γ2]. Then, there exists small E′ > 0 such that for each E ∈
(0, E′], there is a two-dimensional disk ΣE ⊂ G−10 (E) which intersects
the orbit zE(t) transversally. Restricted on the section, the Hamiltonian
flow Φt

G0
induces a Poincaré return map ΦE: ΣE → ΣE, and there

exists some λ > 1, C > 1 independent of E ≤ E′ such that

‖DΦE(zE,0)v
−‖ ≥ CE−λ‖v−‖, ∀ v− ∈ TzE,0W

−
E ;

‖DΦE(zE,0)v
+‖ ≤ C−1Eλ‖v−‖, ∀ v+ ∈ TzE,0W

+
E ,

where zE,0 is the point where the periodic orbit intersects ΣE, W
±
E de-

notes the stable (unstable) manifold of the periodic orbit.

Proof. To study the dynamics around the homoclinic orbits (γj(t),
γ̇j(t)), we use new canonical coordinates (x, y) such that, restricted in
a small neighborhood of z = 0, one has the form

G0 =
1

2
(y21 − λ2

1x
2
1) +

1

2
(y22 − λ2

2x
2
2) + P3(x, y),

with P3(x, y) = O(‖x, y‖3). In such coordinates, we use zj = (xj , yj)
to denote the homoclinic orbit (j = 1, 2). We can assume xj,1(t) ↓ 0 as
t → −∞, xj,1(t) ↑ 0 as t → ∞ and ẋj(t)/‖ẋj(t)‖ → (1, 0) as t → ±∞.
Here the notation is taken as granted: xj = (xj,1, xj,2). We choose

2-dimensional disk lying in G−10 (E)

Σ∓E,δ = {(x, y) ∈ R
4 : ‖(x, y)‖ ≤ d,G0(x, y) = E, x1 = ±δ}.

Because of the special form of G0, one has the disk lying on G−10 (0) as

Σ∓0,δ = {x1 = ±δ, y21 + y22 − λ2
2x

2
2 = λ2

1δ
2 − 2P3(±δ, x2, y), ‖(x, y)‖ ≤ d}.

Let W− (W+) denote the unstable (stable) manifold of the fixed point
which entirely stays in the energy level set G−10 (0). If P3 = 0, the
tangent vector of W− ∩ Σ−0,δ has the form (0,±1, 0,±λ2). Then, for

general P3 �= 0, the tangent vector of W− ∩ Σ−0,δ takes the form
v−δ = (vx1 , vx2 , vy1 , vy2) = (0,±1, y1,δ,±λ2 + y2,δ) ∈ Tz−δ

(W− ∩ Σ−0,δ),
where both y1,δ and y2,δ are small.

Let T±δ,j be the time when the homoclinic orbit zj(t) passes through
Σ±0,δ. Because ∂y1G0 > 0 holds at the point zj(t) ∩ {x1 = ∓δ}, both
homoclinic orbits z1(t) and z2(t) approach the fixed point in the same di-
rection, the section Σ±0,δ intersects these two homoclinic orbits transver-
sally. Let z±δ,j denote the intersection point. In a small neighborhood

Bε(z
−
δ,j) of the point z

−
δ,j , one obtains a map Ψ0,δ: Σ

−
0,δ ∩Bε(z

−
δ,j)→ Σ+

0,δ

in following way, starting from a point z in this neighborhood, there is a



14 C.-Q. CHENG

unique orbit which moves along zj(t) and comes to a point Ψ0,δ(z) ∈ Σ+
0,δ

after a time approximately equal to T+
δ,j − T−δ,j .

Let us fix small D > 0, the quantities such as T±D,j , z
±
D,j , Σ

±
E,D and

Ψ0,D are well-defined in the same way as the quantities T±δ,j , z
±
δ,j , Σ

±
E,δ

and Ψ0,δ are defined. There exists C1 > 1 (depending on D) such that

C−11 ≤ ‖DΨ0,D(z
−
D,j)|T (W−∩Σ−0,D)‖, ‖DΨ−10,D(z

+
D,j)|T (W+∩Σ+

0,D)‖ ≤ C1

holds for j = 1, 2. Clearly, one has C1 → ∞ as D → 0.
As the homoclinic curves approach to the origin in the direction of

(1, 0) in x-space, for δ � D, there is a constant μ1 > 0 with μ1 � λ1

such that μ1 ↓ 0 as D → 0 and

(2.16)
1

λ1 + μ1
ln

(D
δ

)
≤ T−D,j − T−δ,j , T

+
δ,j − T+

D,j ≤
1

λ1 − μ1
ln

(D
δ

)
.

The Hamiltonian flow Φt
G0

defines two maps Ψ−0,δ,D: Σ−0,δ → Σ−0,D,
Ψ+

0,δ,D: Σ+
0,D → Σ+

0,δ: emanating from a point in Σ−0,δ (Σ+
0,D) there

exists a unique orbit which arrives Σ−0,D (Σ+
0,δ) after a time bounded by

the last formula.
Restricted in a small neighborhood of the origin z = 0, we consider

the variational equation of the flow Φt
G0

along the orbit zj(t). It follows
from the normal form of the Hamiltonian G0 that the tangent vector
(Δx,Δy) = (Δx1,Δx2,Δy1,Δy2) satisfies the variational equation

(2.17)

Δẋ� = Δy� +

2∑
k=1

( ∂2P

∂xk∂y�
Δxk +

∂2P

∂yk∂y�
Δyk

)
,

Δẏ� = λ2
�Δx� −

2∑
k=1

( ∂2P

∂xk∂x�
Δxk +

∂2P

∂yk∂x�
Δyk

)
, � = 1, 2.

For the initial value Δz(T+
D,j) = (Δx(T+

D,j),Δy(T+
D,j)) satisfying the

condition

|〈Δz(T+
D,j), v

−
δ 〉| ≥

2

3
‖Δz(T+

D,j)‖‖v−δ ‖
(v−δ = (0,±1, y1,δ,±λ2 + y2,δ)) one obtains from the hyperbolicity that

C−12 e(λ2−μ1)(T
+
δ,j−T+

D,j) ≤ ‖Δz(T+
δ,j)‖

‖Δz(T+
D,j)‖

≤ C2e
(λ2+μ1)(T

+
δ,j−T+

D,j)

holds for some constant C2 > 1 depending on λ1, λ2 and on P . Thus,
for each vector v ∈ Tz+D

Σ+
0,D nearly parallel to Tz+D

(W− ∩ Σ+
0,D) in the

sense that |〈v, v′〉| ≥ 2
3‖v‖‖v′‖ holds for v′ ∈ Tz+D

(W− ∩Σ+
0,D) we obtain

from the last formula and (2.16) that

C−12

(D
δ

)λ2
λ1
−μ2 ≤ lim

‖v‖→0

‖DΨ+
0,δ,D(z

+
D,�)v‖

‖v‖ ≤ C2

(D
δ

)λ2
λ1

+μ2

,
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where μ2 > 0 and μ2 → 0 as D → 0. Similarly, one has

C−13

(D
δ

)λ2
λ1
−μ2 ≤ ‖DΨ−0,δ,D(z−δ,�)|T

z−
δ
(W−∩Σ−0,δ)‖ ≤ C3

(D
δ

)λ2
λ1

+μ2

,

where C3 > 1 also depends on λ1, λ2 and on P .
By the construction, the 2-dimensional disk Σ−0,δ intersects the unsta-

ble manifold W− along a curve. Let Γ−δ,j ⊂ W− ∩ Σ−0,δ be a very short
segment of the curve, passing through the point z−δ,j . Pick up a point

z∗j on the homoclinic orbit zj far away from the fixed point and take a

2-dimensional disk Σ∗j ⊂ G−10 (0) containing the point z∗j and transversal
to the flow Φt

G0
in the sense that Tz∗jG

−1
0 (0) = span(Tz∗jΣ

∗
j , J∇G0(z

∗
j )).

The Hamiltonian flow Φt
G0

brings a point of Γ−δ,j to this disk provided
it is close to z−δ,j . In this way, one obtains a map Ψ−,∗δ,j : Σ

−
0,δ → Σ∗j .

Let Γ−,∗δ,j = Ψ−,∗δ,j Γ
−
δ,j . According to the assumption (H2), one has

Tz∗jG
−1
0 (0) = span(Tz∗jW

+, Tz∗jW
−). Thus, one also has Tz∗jG

−1
0 (0) =

span(Tz∗jW
+, Tz∗j Γ

−,∗
δ,j ). It follows from the λ-lemma that Ψ0,δ(Γ

−
δ,j)

keeps C1-close to W− ∩ Σ+
0,δ at the point z

+
δ,j and Ψ

−1
0,δ(Γ

+
δ,j) keeps C

1-

close to W+ ∩Σ−0,δ at the point z−δ,j provided δ > 0 is sufficiently small.

As Ψ0,δ = Ψ−0,δ,D ◦Ψ0,D ◦Ψ+
0,δ,D, one obtains

C−14

(
D

δ

)2(
λ2
λ1
−μ2)

≤ ‖DΨ0,δ(z
−
δ,j)|T

z−
δ,j

(W−∩Σ−0,δ)‖ ≤ C4

(
D

δ

)2(
λ2
λ1

+μ2)

,

and

C−14

(
D

δ

)2(
λ2
λ1
−μ2)

≤ ‖DΨ−10,δ(z
+
δ,j)|T

z+
δ,j

(W+∩Σ+
0,δ)

‖ ≤ C4

(
D

δ

)2(
λ2
λ1

+μ2)

,

where C4 = C1C2C3 > 1. See Figure 1.
By the definition, Σ±E,δ is a two-dimensional disk lying in the energy

level setG−10 (E). For E > 0 sufficiently small, Σ±E,δ is C
r−1-close to Σ±0,δ,

respectively. Let zE(t) = (xE(t), yE(t)) be the minimal periodic orbit
staying in the energy level set G−10 (E), it approaches to the homoclinic
orbit as E decreases to zero. Thus, for sufficiently small E > 0, it passes
through the section Σ−E,δ as well as Σ

+
E,δ k1 + k2 times for one period.

We number these points as z±E,i (i = 1, 2, · · · k1 + k2) by the role that

emanating from the point z−E,i, the orbit reaches to the point z
+
E,i+1 after

time Δt−E,i = t+E,i+1− t−E,i, then to the point z
−
E,i+1 and so on. Note that

Δt−E,i remains bounded uniformly for any E > 0. Restricted on small

neighborhoods of these points, denoted by Bε(z
±
E,i), the flow Φt

G0
defines

a local diffeomorphism ΨE,δ: Σ
−
E,δ ⊃ Bε(z

−
E,i) → Σ+

E,δ. Because of the

smooth dependence of ODE solutions on initial data, a small d > 0 exists
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Figure 1. The unstable manifold (in purple) intersects
the stable manifold (in blue) along the homoclinic orbit
(in red).

such that, for the vector v± d-parallel to Tz±δ
(W±∩Σ±0,δ) in the sense that

|〈v±, v∗±〉| ≥ (1 − d)‖v±‖‖v∗±‖ holds for some v∗± ∈ Tz±δ
(W± ∩ Σ±0,δ),

we obtain from the hyperbolicity of Ψ0,δ (see the formulae above the
figure) that

C−15

(
D

δ

)2(
λ2
λ1
−μ3)

≤ ‖DΨE,δ(z
−
E,k)v

−‖
‖v−‖ ≤ C5

(
D

δ

)2(
λ2
λ1

+μ3)

,

and

C−15

(
D

δ

)2(
λ2
λ1
−μ3)

≤ ‖DΨ−1E,δ(z
+
E,k)v

+‖
‖v+‖ ≤ C5

(
D

δ

)2(
λ2
λ1

+μ3)

,

where C5 ≥ C4 > 1, 0 < μ3 → 0 as D → 0. If the vector v− is chosen
d-parallel to Tz−δ

(W−∩Σ−0,δ) then the vector DΨE,δ(z
−
E,k)v

− is d-parallel
to Tz+δ

(W+ ∩ Σ+
0,δ).

For E > 0, the Hamiltonian flow Φt
G0

defines a local diffeomorphism

Ψ+
E,δ,δ: Σ

+
E,δ ⊃ Bε(z

+
E,i) → Σ−E,δ. To make sure Ψ

+
E,δ,δ(Bε(z

+
E,i)) ⊂ Σ−E,δ

one has ε → 0 as E → 0. According to Formula (2.15), starting from
Σ+
E,δ, the periodic orbit comes to Σ

−
E,δ after a time approximately equal

to

T =
1

λ1

∣∣∣ ln(δ2
E

)∣∣∣+ τδ,

in which τδ is uniformly bounded as δ → 0. Given a vector v, we
use v� denote the (x�, y�)-component. For a vector v+ d-parallel to
Tz+δ,j

(W− ∩ Σ+
0,δ) with small d > 0, there is C > 0 such that ‖v+2 ‖ ≥
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C‖v+1 ‖. From Eq. (2.17) one obtains

(2.18)
‖v+2 ‖e(λ2−μ4)T ≤‖DΨ+

E,δ,δ(z
+
E,i)v

+
2 ‖ ≤ ‖v+2 ‖e(λ2+μ4)T ,

‖v+1 ‖e(λ1−μ4)T ≤‖DΨ+
E,δ,δ(z

+
E,i)v

+
1 ‖ ≤ ‖v+1 ‖e(λ1+μ4)T ,

where 0 < μ4 → 0 as δ → 0, λ2 > λ1 > 0. It follows that the vector
DΨ+

E,δ,δ(z
+
E,i)v

+ is d-parallel to Tz−δ,j
(W− ∩ Σ−δ ) and

C−16

(δ2
E

)λ2
λ1
−μ5 ≤ ‖DΨ+

E,δ,δ(z
+
E,i)v

+‖
‖v+‖ ≤ C6

(δ2
E

)λ2
λ1

+μ5

,

where C6 > 1 and μ5 ↓ 0 as δ ↓ 0. Similarly, for a vector v− d-parallel to

Tz−0,δ
(W+∩Σ−0,δ), one sees that the vectorDΨ+

E,δ,δ(z
−
E,i)

−1
v− is d-parallel

to Tz−δ,j
(W− ∩ Σ−0,δ) and

C−16

(δ2
E

)λ2
λ1
−μ5 ≤ ‖DΨ+

E,δ,δ
−1
(z−E,i)v

−‖
‖v−‖ ≤ C6

(δ2
E

)λ2
λ1

+μ5

.

The composition of these two maps is a Poinćare map ΦE,δ = Ψ+
E,δ,δ ◦

ΨE,δ, it maps a small neighborhood of the point z
−
E,i in Σ

−
E,δ to a small

neighborhood of the point z−E,i+1 in Σ
−
E,δ. For a vector v

− d-parallel to

Tz−0,δ
(W−∩Σ−0,δ) the vectorDΦE,δ(z

−
E,i)v

− is still d-parallel to Tz−δ,j
(W−∩

Σ−0,δ) and

(2.19) Λ−1
(
D2

E

)λ2
λ1
−μ6

≤ ‖DΦE,δ(z
−
E,i)v

−‖
‖v−‖ ≤ Λ

(
D2

E

)λ2
λ1

+μ6

,

and for a vector v+ d-parallel to Tz−0,δ
(W+ ∩ Σ−0,δ) the vector

DΦ−1E,δ(z
−
E,k)v

+ is still d-parallel to Tz−0,δ
(W+ ∩ Σ−0,δ) and

(2.20) Λ−1
(
D2

E

)λ2
λ1
−μ6

≤ ‖DΦ−1E,δ(z
−
E,i)v

+‖
‖v+‖ ≤ Λ

(
D2

E

)λ2
λ1

+μ6

holds for each i, where Λ ≥ C5C6 > 1, 0 < μ6 → 0 as D → 0. Therefore,
each point z−E,i is a hyperbolic fixed point for the map Φk1+k2

E,δ , {z−E,i :

i = 1, · · · , k1 + k2} is a hyperbolic orbit of ΦE,δ. It will be proved in
[C17] that these points are uniquely ordered, k1 + k2 is the minimal
period. We complete the proof. q.e.d.

Corollary 2.1. The (E, g)-minimal periodic orbit lying in the energy
level set G−10 (E) with E ≤ E′ has a continuation of hyperbolic periodic
orbits which approach the homoclinic orbits z1 and z2. They make up
an invariant cylinder which takes the homoclinic orbits as its boundary.

Proof. According to Lemma 2.2, the hyperbolicity of (E, g)-minimal
orbit becomes very strong when E ↓ 0. Such hyperbolic property is
gained if the periodic orbit approaches the homoclinic orbits, the min-
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imal property is not used. By the theorem of implicit function, this
(E, g)-minimal orbit has a continuation of hyperbolic periodic orbits
arbitrarily close to the homoclinic orbits z1 and z2. q.e.d.

Let E′1 = h(p′1). As we increase the energy from E′ to E′1, it follows
from Theorem 1.3 that there are finitely many Ei ∈ [E′, E′1] only such
that for E ∈ [E′, E′1]\{Ei}, the energy level G−10 (E) contains only one

(E, g)-minimal orbit and G−10 (Ei) contains two minimal periodic orbits.
We call these {Ei} bifurcation points. Therefore, these hyperbolic orbits
make up finitely many pieces of invariant cylinder, normally hyperbolic
for the time-2π-map Φ2π

G0
, produced by the Hamiltonian flow Φt

G0
.

In the next step, we study whether these cylinders survive the map
ΦGε,0 defined in (2.6), induced by the flow Φt

Gε,0
, where Gε,0, defined in

(2.8), is a small time-periodic perturbation of G0.

2.2. Invariant splitting of the tangent bundle: near double
resonance. As shown in the last section, there is a cylinder made up
by periodic orbits (xE(t), yE(t)) of Φ

t
G0

which extends from the energy

level G−10 (E′) to the homoclinic orbits, denoted by

Π0,E′,g = {(xE(t), yE(t)) : [xE ] = g,E ∈ (0, E′], t ∈ R}.
Let T (E) denote the period of the periodic orbit in G−10 (E), for any
0 < a < b ≤ E′ one has∫

Πa,b,g

ω =

∫ b

a

∫ T (E)

0
dE ∧ dt > 0.

The cylinder might be slant and crumpled, we want to know how the
symplectic area is related to the usual area of the cylinder. We notice
that the cylinder is made up by periodic orbits {zE(t)}. If the orbit zE(t)
intersects the section x1 = δ at the point (δ, y1(E), x2(E), y2(E)), then
(x2(E), y2(E)) is a fixed point of the Poincaré return map ΦE,δ, i.e.,

ΦE,δ(x2(E), y2(E), y1) = (x2(E), y2(E)) and Φ−1E,δ(x2(E), y2(E), y1) =

(x2(E), y2(E)). Since ∂y1G0 > 0, the value of y1 uniquely determines

the energy level set G−10 (E) where the periodic orbit lies. Write ΦE,δ =
(ΦE,δ,x2 ,ΦE,δ,y2), then we have

(2.21)

(
ME − id

)(∂x2
∂y1

,
∂y2
∂y1

)t
= −∂ΦE,δ

∂y1
,

(
M−1

E − id
)(∂x2

∂y1
,
∂y2
∂y1

)t
= −∂Φ−1E,δ

∂y1
,

where
∂ΦE,δ

∂y1
= (

∂ΦE,δ,x2
∂y1

,
∂ΦE,δ,y2

∂y1
)t and

ME =

[
∂ΦE,δ,x2

∂x2

∂ΦE,δ,x2
∂y2

∂ΦE,δ,y2
∂x2

∂ΦE,δ,y2
∂y2

]
.
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Since the Hamiltonian flow preserves the symplectic structure, the ma-
trix ME is area-preserving. One eigenvalue is large, denoted by σ1,
bounded by (2.19), another will be σ2 = σ−11 . Let ζ� be the eigenvector
of ME for the eigenvalue σ� for � = 1, 2, then ζ1 is the eigenvector of
M−1

E for the eigenvalue σ2 = σ−11 and ζ2 is the eigenvector of M
−1
E for

the eigenvalue σ1. Let
∂ΦE,δ

∂y1
= a1ζ1+a2ζ2 be a decomposition, where ζ1

and ζ2 are normalized ‖ζ1‖ = ‖ζ2‖ = 1, one obtains from the equations
in (2.21) that

(σ1 − 1)a1ζ1 +
( 1

σ1
− 1

)
a2ζ2 = −∂ΦE,δ

∂y1
,

( 1

σ1
− 1

)
a1ζ1 + (σ1 − 1)a2ζ2 = −∂Φ−1E,δ

∂y1
.

If both ‖∂ΦE,δ

∂y1
‖ and ‖∂Φ−1

E,δ

∂y1
‖ are bounded by C7E

−λ2
λ1
−μ7 ,

one obtains from the (2.19) that both |a1| and |a2| are bounded by

2C7ΛD
−2(λ2/λ1−μ6)E−(μ6+μ7) if E > 0 is suitably small. Therefore, to

make sure that there exists a constant C8 > 0 such that

(2.22)
∣∣∣∂x2
∂y1

∣∣∣, ∣∣∣∂y2
∂y1

∣∣∣ ≤ C8E
−(μ6+μ7),

let us study the quantity ‖∂ΦE,δ

∂y1
‖. To do it, we recall Figure 1. Emanat-

ing from a point (δ, y1, x2, y2) ∈ G−10 (E) the orbit reach a point z in the
section {x1 = −δ} after a time τ(E, δ). Let z∗ ∈ {x1 = −δ} be the point
corresponding to (δ, y∗1, x2, y2) ∈ G−10 (E∗), obtained in the same way.
Since τ(E, δ) remains bounded as E ↓ 0, the difference of the (x2, y2)-
coordinate of z and z∗ is bounded by d0|y1 − y∗1| where d0 depends on
τ(E, δ). Let (Δx,Δy) be the solution of the variational Equation (2.17)
along the (E, g)-minimal periodic solution (xE(t), yE(t)), let t0 < t1 be
the time such that xE,1(t0) = −δ and xE,1(t1) = δ if we use the notation
xE = (xE,1, xE,2), the quantity t1 − t0 is bounded by (2.15). In virtue
of the formula (2.18), some constant C9 > 0, small μ7 > 0 exists so that
the following holds for suitably small E > 0

‖(Δx,Δy)(t1)‖ ≤ e(λ2+μ4)(t1−t0)‖(Δx,Δy)(t0)‖
≤ C9E

−λ2
λ1
−μ7‖(Δx,Δy)(t0)‖,

where 0 < μ7 → 0 as δ → 0. It implies that certain constant C10 > 0
exists such that ∥∥∥∂ΦE,δ

∂y1

∥∥∥ ≤ C10E
−λ2

λ1
−μ7

holds for suitably small E > 0, as ‖(Δx,Δy)(t1 + τ(E, δ))‖‖(Δx,
Δy)(t1))‖−1 is uniformly bounded as E decreases to zero, which fol-
lows from the fact that τ(E, δ) is uniformly bounded. This estimate
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obviously holds for ‖∂Φ−1
E,δ

∂y1
‖ also. It guarantees the validity of the es-

timate (2.22), which provides a lower bound for the symplectic area
ω|ΠE,b,g

= Σdx� ∧ dy�|ΠE,b,g
with respect to the usual area S of the

cylinder ΠE,b,g

(2.23) |ω| ≥ C11E
(μ6+μ7)|S|,

where C11 > 0 is independent of E when E > 0 is suitably small.
Next, we study the invariant splitting of the tangent bundle over the

cylinder Π0,E′,g, where E′ > 0 is the energy so that Lemma 2.2 holds.
Recall TE defined in (2.9) denotes the period of minimal periodic orbit
lying on G−10 (E)

Theorem 2.1. Let Ed ∈ (0, E′). With the hypotheses (H1), (H2),
the invariant cylinder ΠEd,E′,g is normally hyperbolic for the map Φs

G0

provided s ≥ TEd
. The tangent bundle of T2 over ΠEd,E′,g admits the

invariant splitting:

TzTT
2 = TzN

+ ⊕ TzΠEd,E′,g ⊕ TzN
−

some Λ1 ≥ 1, Λ2 ≥ 1 and small ν > 0 exist such that λ2/λ1 − ν > 1+ ν

(2.24)

Λ−11 E1+ν
d <

‖DΦs
G0
(z)v‖

‖v‖ < Λ1E
−1−ν
d , ∀ v ∈ TzΠEd,E′,g,

‖DΦs
G0
(z)v‖

‖v‖ ≤ Λ2E
λ2
λ1
−ν

d , ∀ v ∈ TzN
+,

‖DΦs
G0
(z)v‖

‖v‖ ≥ Λ−12 E
−λ2

λ1
+ν

d , ∀ v ∈ TzN
−.

Proof. The cylinder Π0,E′,g is a 2-dimensional symplectic sub-mani-
fold, invariant for the Hamiltonian flow Φs

G0
. However, it is not clear

whether this cylinder admits the invariant splitting such that Formula
(2.24) holds for the time-2π-map ΦG0 = Φs

G0
|s=2π. It is possible that

m(DΦG0 |TΠEd,E
′,g) = inf{|DΦG0v| : v ∈ TΠEd,E′,g, |v| = 1} < 1,

‖DΦG0 |TΠEd,E
′,g‖ > 1,

and we do not know the norm of DΦG0 when it acts on the normal
bundle.
By Formulae (2.19) and (2.20), one sees that the smaller the energy

reaches, the stronger hyperbolicity the map ΦE,δ obtains. The strong
hyperbolicity is obtained by passing through small neighborhood of the
fixed point. However, on the other hand, the smaller the energy de-
creases, the longer the return time becomes.
For small E > 0, emanating from any point z on the minimal periodic

orbit zE(s) and after a time TE , Φ
s
G0
(z) passes through a neighborhood

of the fixed point at least once. Therefore, the map Φs
G0

|s≥TE
obtains

strong hyperbolicity on normal bundle such as (2.19) and (2.20).
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To see how the map DΦs
G0

acts on the tangent bundle, let us study
how it elongates or shortens small arc of the periodic orbit zE(t). To
pass through δ-neighborhood of the origin along the orbit zE(t), it
needs a time approximately equal to |λ−11 ln δ−2E|. Restricted in δ-
neighborhood of the origin, there exists small μ8 > 0 such that

|x(0)|e−(λ1+μ8)t ≤ |x(t)| ≤ |x(0)|e(λ1+μ8)t.

Therefore, it follows from (2.15) that the variation of the length of short
arc is between O(E1+μ8) and O(E−1−μ8) where μ8 ↓ 0 as δ ↓ 0. Because
of the relation (2.23) between the symplectic area ω and the usual area
S, the variation of ‖DΦs

G0
‖, restricted on the tangent bundle of the

cylinder, is between O(E1+μ8+μ7+μ6) and O(E−1−μ8−μ7−μ6), where we
use the property that Hamiltonian flow preserves the symplectic struc-
ture. Due to periodicity, this lower and upper bound is independent of
s. Therefore, the theorem is proved if we set ν = μ6 + μ7 + μ8. q.e.d.

Let E′1 = O(1) > E′. For cylinder ΠEi,Ei+1,g with E′ ≤ Ei < Ei+1 ≤
E′1, the normal hyperbolicity is obvious.

Theorem 2.2. For E′ ≤ Ei < Ei+1 ≤ E′1 and typical V , there exists
si > 0 depending on E′, E′1 and V , such that the tangent bundle over
the invariant cylinder ΠEi,Ei+1,g admits DΦs

G0
-invariant splitting

TzM = TzN
+ ⊕ TzΠEi,Ei+1,g ⊕ TzN

−

some Λ2 > Λ1 ≥ 1 such that the following hold for s ≥ si

(2.25)

Λ−11 <
‖DΦs

G0
(z)v‖

‖v‖ < Λ1, ∀ v ∈ TzΠEi,Ei+1,g,

‖DΦs
G0
(z)v‖

‖v‖ ≤ Λ2, ∀ v ∈ TzN
+,

‖DΦs
G0
(z)v‖

‖v‖ ≥ Λ−12 , ∀ v ∈ TzN
−.

Proof. The cylinder is a symplectic sub-manifold, made up by mini-
mal periodic orbits. Therefore, some Λ1 ≥ 1 exists such that

Λ−11 ‖v‖ ≤ ‖Φs
G0
(zE(t))v‖ ≤ Λ1‖v‖

holds for any s > 0 if v is a vector tangent to zE at zE(t). Since the
Hamiltonian flow preserves the symplectic form ω, restricted on the
cylinder which is an area element. Clearly, |ω| is lower bounded by
usual area element |S|. It follows that the last formula holds for any
vector tangent to the cylinder at zE(t) which implies the first formula
in (2.25). Let ΣE,z ⊂ G−10 (E) be a two-dimensional disk, transversally
intersects the periodic orbit zE(t). The flow Φs

G0
defines a Poincaré

return map ΦE , the fixed point corresponds to the periodic orbit. Let
λ1,E and λ2,E be the eigenvalues of the matrix DΦE , it depends on the
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energy E. According to Theorem 1.3, each of these orbits is hyperbolic,
namely, some λ > 1 exists such that

min{|λ1,E |, |λ2,E |}≤λ−1<λ≤ max{|λ1,E |, |λ2,E |}, ∀ E ∈ [Ei, Ei+1].

Let Λ2 = λ([Λ1
λ ] + 2), then Λ2 > Λ1. Let TE be the period of the orbit

zE(t) and set

(2.26) si = max
E∈[Ei,Ei+1]

TE

([Λ1

λ

]
+ 2

)
,

the second and the third formulae in (2.25) hold for Φs
G0

with s ≥ si.
q.e.d.

The cylinder Π0,E′,g may extend to the energy level G−10 (E1 + Δ),
where ΠE′,E1,g is made up by (E, g)-minimal orbits for E ∈ [E′, E1],
Formula (2.25) instead of Formula (2.24) applies to ΠE′,E1+Δ,g. One
can see that the whole cylinder ΠEd,E1+Δ,g is normal hyperbolic for
DΦs

G0
for s ≥ max{TEd

, s′} where s′ is defined so that (2.25) holds for
ΠE′,E1+Δ,g (cf. (2.26)).

2.3. Bifurcation point. Let Ei < Ei+1 be two adjacent bifurcation
points, then each G−10 (E) contains only one (E, g)-minimal orbit for E ∈
(Ei, Ei+1), denoted by zE . Let z

−
Ei
= limE↓Ei

zE , z
+
Ei+1

= limE↑Ei+1
zE .

These orbits make up an invariant cylinder

ΠEi,Ei+1,g = {(xE(t), yE(t)) : [xE ] = g,E ∈ [Ei, Ei+1], t ∈ R}.
In typical case, at the bifurcation point Ei, there exist two minimal
periodic orbits lying in the energy level G−10 (Ei), denoted by z+Ei

(t) and

z−Ei
(t). The orbit z+Ei

(t) makes up the upper boundary of ΠEi−1,Ei,g and

the orbit z−Ei
(t) makes up the lower boundary of ΠEi,Ei+1,g. Because of

the implicit function theorem, there is a continuation of hyperbolic peri-
odic orbits which extends from z+Ei

(t) to higher energy, denoted by z+E (t),

and hyperbolic orbits extending from z−Ei
(t) to lower energy, denoted by

z−E (t). Those orbits {z−E (t), z+E (t)} are not in the Mather set unless
E = Ei, the action along these orbits reaches local minimum instead
of global minimum. In this way, we get two cylinders ΠEi−1−δ,Ei+δ,g,

ΠEi−δ,Ei+1+δ,g which ranges from the energy level G−10 (Ei−1 − δ) to

G−10 (Ei + δ), from the energy level G−10 (Ei − δ) to G−10 (Ei+1 + δ), re-
spectively. The normally hyperbolic invariant splitting (2.25) applies to
the extended cylinders ΠEi−1−δ,Ei+δ,g and ΠEi−δ,Ei+1+δ,g.

By the definition of F in (2.7), we have ∂F
∂E (x

+
Ei
(0), Ei) ≥

∂F
∂E (x

−
Ei
(0), Ei). It is obviously a generic condition that

(H3): ∂F
∂E (x

+
Ei
(0), Ei) >

∂F
∂E (x

−
Ei
(0), Ei).
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2.4. Persistence of NHICs: near double resonance.We apply
the theorem of normally hyperbolic manifold [HPS] to obtain NHIC
for the Hamiltonian Gε,0 of (2.8). We need the following preliminary
lemma.

Lemma 2.3. Let the equation ż = Fε(z, t) be a perturbation of
ż = F0(z, t), let Φt

ε and Φt
0 denote the flow determined by these two

equations, respectively. Then

‖Φt
ε − Φt

0‖C1 ≤ B

A

(1
3
eAt +

1

2

)
e3At,

where A = maxt,λ=ε,0 ‖Fλ(·, t)‖C2 and B = maxt ‖(Fε − F0)(·, t)‖C1.

Proof. Let zλ(t) be the solution of the equations ż = Fλ(z, t) for
λ = ε, 0, respectively. Along each orbit zλ(t), the differential of the flow
Φt
λ satisfies the equation

d

dt
DΦt

λ = ∂zFλ(zλ(t), t)DΦ
t
λ, λ = ε, 0.

Therefore, for each tangent vector v attached to zλ(0) one has

(2.27) ‖DΦt
λv‖ ≤ ‖v‖eAt.

To study the differential of Φt
ε −Φt

0, we consider the equation of sec-
ondary variation. If δzλ solves the variational equation δżλ =
∂zFλ(zλ(t), t)δzλ for λ = ε, 0, respectively, let Δδz(t) = δzε(t)− δz0(t),
Δz(t) = zε(t)− z0(t). Then

d

dt
Δδz = ∂zFε(zε(t), t)Δδz + ∂2

zFε(z0(t) + ν(t)(zε(t)

− z0(t)), t)Δz(t)δz0(t) + ∂z(Fε − F0)(z0(t), t)δz0(t),

where ν(t) ∈ (0, 1), Δz(t) solves the equation

Δż = ∂zFε((νz0 + (1− ν)zε)(t), t)Δz + (Fε − F0)(z(t), t),

with the initial condition Δz(0) = 0.
To obtain an estimate on ‖Δδz(t)‖, we recall the method of variation

of constants to solve ODE. For a linear ODE ż = C(t)z + f(t) with
z ∈ R

n with the initial condition z(0) = 0, one has the solution

(2.28) z(t) = e
∫ t
0 C(s)ds

∫ t

0
e−

∫ s
0 C(τ)dτf(s)ds.

Applying this formula to the equation just above, we find that

‖Δz(t)‖ ≤ B

A
e2At.

By Formula (2.27) one has ‖δz0(t)‖ ≤ ‖δz0(0)‖eAt. Using Formula
(2.28) for Δδz(t), it follows δzε(0) = δz(0) that

‖Δδz(t)‖ ≤ ‖δz0(0)‖B
A

(1
3
eAt +

1

2

)
e3At.

It completes the proof. q.e.d.
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Let us apply this lemma to study the invariant cylinders of the Hamil-
tonian Gε,0. A sub-manifold N is called overflowing invariant for a flow
Φs if, for each z ∈ intN , the orbit Φs(z) either stays in N forever, or
by passing through ∂N to leave. We use Φs0,s to denote the map from
the time s0-section to the time s-section. A sub-manifold N ′ is called a
δ-deformation of another sub-manifold N if dH(N,N ′) ≤ δ, where dH
denotes Hausdorff distance.
Recall the Poincaré return map defined in (2.6), one has

Theorem 2.3. In the extended phase space T ∗T2 ×
√
ε

ω3
T, the Hamil-

tonian flow Φs
Gε,0

admits overflowing invariant cylinders

Π̃ε
Ei−δ+εd,Ei+1+δ−εd,g and Π̃ε

εd,E1+δ−εd,g, which are the εσ-deformation of

ΠEi−δ+εd,Ei+1+δ−εd,g ×
√
ε

ω3
T and Πεd,E1+δ−εd,g ×

√
ε

ω3
T, respectively, if

(2.29) 0 < d < min
{ λ1

24maxx
√‖A‖2 + ‖∂2V ‖2 ,

1

4

}
σ,

and ε ≥ 0 is sufficiently small. The cylinder Π̃ε
εd,E1+δ−εd,g admits nor-

mally hyperbolic invariant splitting of (2.24) for the map Φs0,s
Gε

with

s− s0 =
2(k1 + k2)

λ1
| ln ε3d|;

the cylinder Π̃ε
Ei−δ+εd,Ei+1+δ−εd,g admits normally hyperbolic invariant

splitting of (2.25) for Φs0,s
Gε

where s− s0 is given by (2.26), independent
of ε.

Proof. Let Gε,0 be the Hamiltonian defined in (2.8). Considering Rε,0

as the function of (x, y) and treating θ as parameter, we find that there
exists some constant C12 = maxθ ‖Rε,0(·, θ)‖C1 such that

max
θ

‖J∇Gε,0 − J∇G0‖C1 ≤ C12ε
σ.

Let C13 = maxx
√‖A‖2 + ‖∂2V ‖2, for s − s0 =

2
λ1
| ln ε3d| one obtains

from Lemma 2.3 that

‖Φs0,s
Gε,0

− Φs0,s
G0

‖C1 ≤ C12

C13
ε
σ− 24C12d

λ1 .

If the condition 0 < d < λ1σ
24C13

holds, then ‖Φs,s0
G0

− Φs,s0
Gε,0

‖C1 → 0 as

ε → 0.
On the other hand, let Ed = ε3d. By the definition of (2.9), one

has s − s0 ≥ TEd
if ε > 0 is suitably small. So, Theorem 2.1 holds,

which allows one to apply the theorem of normally hyperbolic invariant
manifold to obtain the existence of invariant cylinder.
We consider a piece of hyperbolic cylinder ΠEd,E1+δ,g ⊂ Π0,E1+δ,g.

Since G0 is autonomous, Φ
s0,s
G0

= Φs−s0
G0

. Note that ΠEd,E1+δ,g is a cylin-

der with boundary, normally hyperbolic and invariant for Φs−s0
G0

, we do
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not expect that the whole cylinder survives small perturbation, it may
lose some part close to the boundary.
As the first step to measure how much the cylinder survives, we mod-

ify the Hamiltonian Gε,0. Let ρ be a C2-function such that ρ(μ) = 1

for μ ≥ 1 and ρ(μ) = 0 for μ ≤ 0 and let ρ2 = 1− ρ(G0(x,y)−(E1+δ−εd)
εd

),

ρ1(x, y) = ρ(2G0(x,y)−ε3d
εd−2ε3d ). We introduce

(2.30) G′ε,0 =

⎧⎪⎨
⎪⎩
G0 + εσρ1Rε,0, if G0(x, y) ∈ [ε3d, 12ε

d],

G0 + εσρ2Rε,0, if G0(x, y) ∈ [E1 + δ − εd, E1 + δ],

Gε,0, elsewhere.

Clearly, ‖G′ε,0 − G0‖C2 � 1 if d < σ and ε � 1. It follows that the

cylinder ΠEd,E1+δ,g survives the perturbation Φs0,s
G0

→ Φs0,s
G′ε,0

and the

boundary of ΠEd,E1+δ,g remains unchanged for Φs0,s
G′ε,0

. The survived

cylinder in the extended phase space T
2 × R

2 ×
√
ε

ω3
T is denoted by

Π̃ε
Ed,E1+δ,g.

Since Gε,0 = G′ε,0 when they are restricted on Π̃ε
Ed,E1+δ,g ∩ {(x, y, θ) :

G0 ∈ [εd, E1 + δ − εd]} and Π̃ε
Ei−δ,Ei+1+δ,g ∩ {(x, y, θ) : G0 ∈ [Ei − δ +

εd, Ei+1 + δ − εd]}, one then obtains the overflowing invariant cylinders
Π̃ε

εd,E1+δ−εd,g and Π̃ε
Ei−δ+εd,Ei+1+δ−εd,g for Φ

s
Gε,0

. The normally hyper-

bolic invariant splitting of the invariant cylinders is an application of
the theorem of normally hyperbolic invariant manifold. q.e.d.

3. Transition of NHIC from double to single resonance

Along the resonant path Γ′ ∩ {|p − p′′| ≤ εσ} we have chosen the
points {p′i} such that p′0 = p′′, ∂1h(p′i) = Ki

√
ε, where K ∈ Z. As ∂2h

is positive definite, the number of such points is bounded by a quantity

of O([K−1εσ−
1
2 ]). What we studied in the last section is about the

disk which is centered at p = p′′, the double resonant point, where the
normal hyperbolicity is obtained for the Poincaré return map. In this
section, we consider the disks which are “quite away from” the double
resonant point in the sense that Ki � 1. Let Ki = Ωi, we recall the
Hamiltonian of (2.4) Gε,i(x, y, θ) = Gi(x, y) + εσRε,i(x, y, θ) where

(3.1) Gi(x, y) = Ωiy1 +
1

2
〈Ay, y〉 − V (x).

We are going to show that the invariant cylinders in the such disks look
more and more like the cylinders in the case of single resonance when
Ωi → ∞.
As the first step, we consider the Hamiltonian Gi. Applying The-

orem 1.3 proved in [CZ2], we find that all (E, g)-minimal periodic
orbits make up some pieces of NHIC. However, it is not enough to
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study the persistence of these NHICs under the small perturbation
Gi → Gε,i = Gi + εσRε,i, because the number of cubes approaches
infinity as ε → 0. We need to show that, for a typical potential V , the
normal hyperbolicity of all cylinders are uniformly lower bounded away
from zero.
For a function V ∈ Cr(T2,R), we define

(3.2) [V ](x2) =
1

2π

∫ 2π

0
V (x1, x2)dx1.

A set V∞ ⊂ Cr(T2,R) is defined such that ∀ V ∈ V∞, the function [V ]
has a unique minimal point which is non-degenerate, i.e., d2

dx2
2
[V ](x2) > 0

holds at its minimal point. Obviously, the set V∞ is open-dense in
Cr(T2,R) with r ≥ 2.
To denote a cylinder for Gi and for Gε,i, respectively, we add su-

perscript i and ε,i to the notation of cylinder Πa,b,g,Π
ε
a,b,g, Π̃

ε
a,b,g →

Πi
a,b,g,Π

ε,i
a,b,g, Π̃

ε,i
a,b,g.

Theorem 3.1. Given a potential V ∈ V∞ and a number K̄ > 1,
there exists some suitably large Ω∗ > 0 so that for Ωi ≥ Ω∗, the Hamil-
tonian flow Φt

Gi
of (3.1) admits a unique invariant cylinder Πi

0,K̄Ωi,g

made up by (E, g)-minimal orbits which lie on the energy level G−1i (EΩi)
with E ∈ [0, K̄].

Moreover, the tangent bundle of T2 over Πi
0,K̄Ωi,g

admits the invariant

splitting:

TzTT
2 = TzN

+ ⊕ TzΠ0,K̄Ωi,g
⊕ TzN

−,

some numbers Λ > λ ≥ 1, and an integer k ≥ 1 exist such that

(3.3)

λ−1‖v‖ < ‖DΦ2kπ
Gi

(z)v‖ < λ‖v‖, ∀ v ∈ TzΠ
i
0,K̄Ωi,g

,

‖DΦ2kπ
Gi

(z)v‖ ≤ Λ−1‖v‖, ∀ v ∈ TzN
+,

‖DΦ2kπ
Gi

(z)v‖ ≥ Λ‖v‖, ∀ v ∈ TzN
−.

holds for any large Ωi ≥ Ω∗.

Proof. For large Ωi, the energy of the Hamiltonian Gi ranges over
from almost zero to order O(Ωi) if ‖y‖ ≤ O(1). Under the coordinate
transformation

(3.4) (x1, x2, y1, y2)→
(x1
Ωi

, x2,Ωiy1, y2

)
,

let Aij be the ij-th entry of the matrix A in (2.4), the Hamiltonian Gi

turns out to be

(3.5) G′i = y1 +
1

2Ω2
i

A11y
2
1 +

A12

Ωi
y1y2 +

1

2
A22y

2
2 − V

(
Ωix1, x2

)
,
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The equation G′i(x1, x2, y1(x1, x2, y2), y2) = EΩi is solved by the func-
tion
(3.6)

y1 =
Ω2
i

A11

{
−

(
1 +

A12

Ωi
y2

)
+

√
Δ
}

=EΩi − 1

2
A11E − 1

2
A22y

2
2 −A12Ey2 + V (Ωix1, x2) + Ω−1i RH ,

where Δ =
(
1 + A12

Ωi
y2

)2 − A11

Ω2
i
(A22y

2
2 − 2V − 2EΩi), E ranges over an

interval [0, K̄] where K̄ is independent of Ωi, the remainder Ω
−1
i RH is

of order O(Ω−1i ) in Cr-topology. Let τ = x1 be the new “time”, the
Hamiltonian −y1 produces a Lagrangian up to an additive constant

L1 =
1

2A22

(dx2
dτ

)2 − A12E

A22

dx2
dτ

+ V +
1

Ω i
RL,

where RL is C
r-bounded for any large Ωi. The periodic orbit with rota-

tion vector (ν, 0) for Φt
Gi

is converted to be periodic orbit of φτ
L1
. Since

Ωi ∈ N, the hyperbolicity of such minimal periodic orbit is uniquely
determined by the nondegeneracy of the minimal point of the following
function (see [CZ2])

F (x2,Ωi, E) = inf
γ(0)=γ(2π)=x2

∫ 2π

0
L1

(
γ̇(τ), γ(τ),Ωiτ, E

)
dτ.

Let γΩi,E(τ, x2) be the minimizer of F (x2,Ωi, E), i.e., along which the
action is equal to F (x2,Ωi, E). Then, |γ̇Ωi,E(τ, x2)| is uniformly bounded
for any large Ωi. Since the system has one degree of freedom, 2π

Ωi
-

periodical in τ , the minimum of F determines an 2π
Ωi
-periodic curve

γ∗Ωi,E
, because each minimal periodic curve does not intersect its k 2π

Ωi
-

translation. We shall see later that |γ̇∗Ωi,E
(τ)| → 0 as Ωi → ∞.

Because of the condition γ(0) = γ(2π) = x2, the term
A12E
A22

ẋ2 does

not contribute to F (it is an exact form), so it can be dropped.
Although the potential V and then the Lagrangian L1 depend on Ωi

in a singular way as Ωi → ∞, the function F appears regular in Ω−1i as
Ωi → ∞. To see it let us decompose the action

F (x2,Ωi, E) = F0(x2,Ωi, E) +
1

Ωi
FR(x2,Ωi, E),

where [V ] is defined in (3.2) and

F0 =

∫ 2π

0

( 1

2A22
(γ̇Ωi,E(τ, x2))

2 + [V ](γΩi,E(τ, x2))
)
dτ,

FR =

∫ 2π

0
Ωi(V − [V ])(−Ωiτ, γΩi,E(τ, x2))dτ

+

∫ 2π

0
RL(γΩi,E(τ, x2), γ̇Ωi,E(τ, x2),Ωiτ)dτ.
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Lemma 3.1. Assume the potential V ∈ C4(T2,R). Then, FR is
uniformly bounded in C2-topology as Ωi → ∞ when x2 is restricted in a
small neighborhood F−1(minF ).

Proof. As the first step, we show that FR is uniformly C0-bounded.
For the first integral of FR, we expand V into a Fourier series

V (−Ωiτ, x2) = [V ](x2) +
∑
k �=0

Vk(x2)e
ikΩiτ .

With the periodic boundary condition γΩi,E(0, x2) = γΩi,E(2π, x2), the
condition that V ∈ Cr (r ≥ 4) and doing integration by parts we obtain,

|The first integral of FR|

=
∣∣∣Ωi

∑
k �=0

∫ 2π

0
Vk(γΩi,E(τ, x2))e

ikΩiτdτ
∣∣∣

=
∣∣∣∑
k �=0

1

ik

∫ 2π

0
V̇k(γΩi,E(τ, x2))γ̇Ωi,E(τ, x2)e

ikΩiτdτ
∣∣∣

≤
∑
k �=0

1

|k|
∫ 2π

0
|V̇k||γ̇Ωi,E |dτ ≤ B

∑
k �=0

1

|k|r ,

where B = ‖V ‖Cr maxτ |γ̇Ωi,E(τ, x2)|. As γΩi,E is a minimizer,
|γ̇Ωi,E(τ, x2)| keeps uniformly bounded as Ωi → ∞. The second in-
tegral of FR is obviously bounded in C0-topology. It finishes the proof
of the first step. q.e.d.

Proposition 3.1. Let x2 be a minimal point of F (·,Ωi, E), then,
the minimal curve γ∗Ωi,E

(·, x2) of F (x2,Ωi, E) approaches the constant

solution in C1-topology: as Ωi → ∞ we have

|γ∗Ωi,E(τ, x2)− x2| → 0, |γ̇∗Ωi,E(τ, x2)| → 0.

Proof. As each minimizer determines a solution of the equation pro-
duced by (3.5)

(3.7)

{
ẋ1 = 1 + A11

Ω2
i
y1 +

A12
Ωi

y2, ẏ1 = Ωi
∂V
∂x1

,

ẋ2 =
A12
Ωi

y1 +A22y2, ẏ2 =
∂V
∂x2

,

the second derivative of x2 in x1 is bounded for any large Ωi, as one has
the following calculation

d2x2
dx21

=
d

dt

( ẋ2
ẋ1

)
ẋ−11 =

d

dt

( A12
Ωi

y1 +A22y2

1 + A11

Ω2
i
y1 +

A12
Ωi

y2

)
ẋ−11

=
(A12

∂V
∂x1

+A22
∂V
∂x2

)− (A11
Ωi

∂V
∂x1

+ A12
Ωi

∂V
∂x2

)dx2
dx1

(1 + A11

Ω2
i
y1 +

A12
Ωi

y2)2
.
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By adding a constant to V , we assume min[V ] = 0. In this case, the
action of L1 along x2 = x∗2 with x∗2 ∈ [V ]−1(0) is bounded by the quan-
tity O( 1

Ωi
). Consequently, the action along the minimizer γ∗Ωi,E

(τΩi , x2)
approaches to zero as Ωi → ∞. If there exists d > 0 as well as some
τΩi such that |γ̇∗Ωi,E

(τΩi , x2)| ≥ d > 0 holds for any large Ωi, the action

of F0 along the curve γ∗Ωi,E
(τ, x2) would be lower bounded away from

zero as Ωi → ∞. It is guaranteed by that |d2x2
dτ2

| is uniformly bounded
for large Ωi. q.e.d.

Continued proof of Lemma 3.1. To show the boundedness of ∂�
x2
FR

for � = 1, 2, let us study the dependence of γΩi,E(τ, x2) and γ̇Ωi,E(τ, x2)
on x2. The Hamiltonian equation generated by (3.6) is the following:

(3.8)

dx2
dτ

=Ωi
A12

A11

(
− 1 +

1√
Δ

)
+
(A2

12 −A11A22)y2

A11

√
Δ

,

dy2
dτ

=− 1√
Δ

∂V

∂x2
.

Treating the term Ωi(1−
√
Δ
−1
) as a function y2 and V , we see that it

remains bounded in C2-topology as Ωi → ∞. Therefore, the right hand
side of Equation (3.8) is smooth and bounded in C2-topology for any
large Ωi and bounded y2.
It is proved in [CZ2] that there is a small neighborhood of the

minimal point of F (·,Ωi, E) where the minimal curve γΩi,E(·, x2) is
uniquely determined by x2. Since Equation (3.8) is equivalent to the
Lagrange equation determined by L1, it implies that boundary value
problem {x2(0) = x2(2π) = x′2} of Equation (3.8) is well defined pro-
vided x′2 is in the neighborhood. Therefore, there is a smooth depen-
dence of y2 = y2(x

′
2) such that the solution of the initial value problem

{x2(0) = x′2, y2(0) = y2(x
′
2)} is the same as the boundary value prob-

lem. Applying the theorem of the smooth dependence of solution of
ODE on its initial value, we find the first and the second derivatives
of (γΩi,E(τ, x2), ∂ẋ2L1(γΩi,E(τ, x2), γ̇Ωi,E(τ, x2), τ)) with respect to x2 is
smooth and bounded for any large Ωi. As L1 is positive definite in ẋ2,
the first and the second derivatives of γ̇Ωi,E(τ, x2) in x2 is also bounded.
By direct calculations (doing integration by parts) we find:

∂FR

∂x2
= −

∑
k �=0

1

ik

∫ 2π

0

(d2Vk

dx22

∂γΩi,E

∂x2
γ̇Ωi,E +

dVk

dx2

∂γ̇Ωi,E

∂x2

)
eikΩiτdτ

+

∫ 2π

0

(∂RL

∂ẋ2

∂γ̇Ωi,E

∂x2
+

∂RL

∂x2

∂γΩi,E

∂x2

)
dτ,

∂2FR

∂x22
= −

∑
k �=0

1

ik

∫ 2π

0

(d3Vk

dx32

(∂γΩi,E

∂x2

)2
γ̇Ωi,E +

dVk

dx2

∂2γ̇Ωi,E

∂x22

)
eikΩiτdτ
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−
∑
k �=0

1

ik

∫ 2π

0

d2Vk

dx22

(
2
∂γΩi,E

∂x2

∂γ̇Ωi,E

∂x2
+

∂2γΩi,E

∂x22
γ̇Ωi,E

)
eikΩiτdτ

+

∫ 2π

0

(∂2RL

∂ẋ22

(∂γ̇Ωi,E

∂x2

)2
+

∂2RL

∂x22

(∂γΩi,E

∂x2

)2)
dτ

+

∫ 2π

0

(∂RL

∂ẋ2

∂2γ̇Ωi,E

∂x22
+

∂RL

∂x2

∂2γΩi,E

∂x22

+ 2
∂2RL

∂x2∂ẋ2

∂γ̇Ωi,E

∂x2

∂γΩi,E

∂x2

)
dτ.

It follows from these formulae that FR is C2-bounded if V ∈ C4. q.e.d.

Let us calculate the second derivative of F0 with respect to x2:

∂2F0

∂x22
=

∫ 2π

0

( 1

A22

(∂γ̇Ωi,E

∂x2

)2
+

d2

dx22
[V ](γ∗Ωi,E)

(∂γΩi,E

∂x2

)2)
dτ

+

∫ 2π

0

( 1

A22
γ̇Ωi,E

∂2γ̇Ωi,E

∂x22
+

d

dx2
[V ](γ∗Ωi,E)

∂2γΩi,E

∂2x2

)
dτ.

The second integral approaches zero as Ωi → ∞ if γΩi,E = γ∗Ωi,E
. In-

deed, it follows from Proposition 3.1 that |γ̇∗Ωi,E
(τ)| → 0 and |γ∗Ωi,E

(τ)−
x∗2| → 0 as Ωi → ∞, where x∗2 is a minimal point of [V ]. Therefore,
d[V ]
dx2

(γ∗Ωi,E
(τ)) → 0 as Ωi → ∞. To estimate the first integral, we

note that the minimizer γ∗Ωi,E
(τ) stays in a small neighborhood of the

minimal point of [V ] provided Ωi is sufficiently large. Given a generic

V ∈ V∞, certain d > 0 exists such that d2

dx2
2
[V ](γ∗Ωi,E

) ≥ d holds for all

τ ∈ [0, 2π]. The linearized variational equation of (3.8) with the bound-

ary condition
∂γΩi,E

∂x2
(0) =

∂γΩi,E

∂x2
(2π) = 1 admits a unique solution( ∂

∂x2
γΩi,E(τ, x2),

∂

∂x2

∂L1

∂ẋ2

(
γΩi,E(τ, x2), γ̇Ωi,E(τ, x2), τ

))
,

and the right hand side of (3.8) is C2-smooth and uniformly bounded for
any large Ωi. Therefore, certain T > 0 exists, uniformly lower bounded

for any large Ωi, such that
∂γΩi,E

∂x2
(τ) > 1

2 for all τ ∈ [0, T ]∪ [2π−T, 2π].

As the minimizer is 2π
Ωi
-periodic, we find

∂γΩi,E

∂x2
(τ) > 1

2 for all τ ∈ [0, 2π]
for large Ωi. These arguments lead to the conclusion that certain μ > 0
and suitably large Ω∗ > 0 exist such that ∂2

x2
F0(γ

∗
Ωi,E

(0),Ωi, E) ≥ 2μ if

Ωi ≥ Ω∗. As the function of action F is a O( 1
Ωi
)-perturbation of F0 we

have
∂2

∂x22
F (γ∗Ωi,E(0),Ωi, E) ≥ μ, Ωi ≥ Ω∗.

Let x∗2 be the minimal point of F (·,Ωi, E). In this case we have

F (x2,Ωi, E)− F (x∗2,Ωi, E) ≥ μ(x2 − x∗2)
2,
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if |x2 − x∗2| is suitably small, Let BE := u− − u+ denote the barrier
function where u± are the backward and forward weak KAM solutions,
as it was shown in [CZ2], one has

BE(x2)−BE(x
∗
2) ≥ F (x2,Ωi, E)− F (x∗2,Ωi, E).

As barrier function is semi-concave, there exists a number CL > 2μ such
that

BE(x2)−BE(x
∗
2) ≤ CL(x2 − x∗2)

2.

It follows that the hyperbolicity of the minimizer is not weaker than
1
κ =

√
1− 2μ

CL
. Let us assume the contrary, denote by (γ∗E(τ), γ̇

∗
E(τ))

the minimal periodic orbit and denote by (γ±(τ), γ̇±(τ)) the orbit such
that γ−(0) = γ+(0) and they asymptotically approaches to the orbit
(γ∗(τ), γ̇∗(τ)) as τ → ±∞, we then have

|γ∗E(±j)− γ±(±j)| > 1

κ
|γ∗E(±(j − 1))− γ±(±(j − 1))|,

if |γ∗E(0) − γ±(0)| is suitably small. The computation below leads to a
contradiction:

CL(γ
±(0)− γ∗E(0))

2 ≥ BE(γ
±(0))−BE(γ

∗
E(0))

≥
∞∑
j=1

(
F (γ−(−j))− F (γ∗E(0))

)
+

(
F (γ+(j))− F (γ∗E(0))

)

> 2μ
(γ±(0)− γ∗E(0))

2

1− κ2
= CL(γ

±(0)− γ∗E(0))
2.

We observe a fact that such hyperbolicity holds for all E ∈ [0, K̄]. There-
fore, these (E, g)-minimal periodic orbits make up a cylinder Πi

0,K̄Ωi,g
.

Let us return back to the coordinates before the transformation (3.4).
That the new coordinate x1 goes around the circle T once amounts to
that the old coordinate x1 sweeps out an angle of Ωi. In the original
coordinate system, we have dx1

dθ = Ωi + O(1). Therefore, the normal
hyperbolicity we obtain for τ = 2π-map is almost the same as the time
θ = 2π-map determined by the Hamiltonian flow Φθ

Gi
.

To investigate whether the tangent space of T2 over the cylinder ad-
mits an invariant splitting, we consider the tangent bundle of Πi

0,K̄Ωi,g
.

The tangent space at a point z ∈ Πi
0,K̄Ωi,g

is two dimensional, spanned

by the a vector v′z tangent to the minimal orbit passing through this
point and an orthogonal vector, denoted by v′′z . Because the map Φ2π

Gi

preserves the symplectic structure, the cylinder Πi
0,K̄Ωi,g

is an invari-

ant symplectic sub-manifold made up by periodic orbits, there exists a
number λ ≥ 1 such that

λ−1‖vz‖ ≤ ‖DΦ2kπ
GΩi

(z)vz‖ ≤ λ‖vz‖
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holds for any vz ∈ Span(v′z, v′′z ) and for any k ∈ Z. Let Λ = κk with
k = [λκ ] + 1, then Formula (3.3) holds. From (3.7) we see that the
number λ is uniformly bounded for any large Ωi. This completes the
proof of Theorem 3.1. q.e.d.

Although the Hamiltonian equation for Gε,i contains one term Ωi

which appears to be singular as Ωi → ∞{
ẋ1 = Ωi +A11y1 +A12y2 + εσ∂y1Rε,i, ẏ1 =

∂V
∂x1

− εσ∂x1Rε,i,

ẋ2 = A12y1 +A22y2 + εσ∂y2Rε,i, ẏ2 =
∂V
∂x2

− εσ∂x2Rε,i,

that term does not contribute to the variational equation. The right
hand side of its variational equation

Δż = J
∂2Gε,i

∂z2
Δz, z = (x, y)

is uniformly bounded in C1-topology as Ωi → ∞. It allows us to apply
the theorem of normally hyperbolic invariant manifold to the Hamil-
tonian flow Φθ

Gε,i
. Thus, there exists εi0 > 0 such that for ε ≤ εi0 the

map ΦGε,i defined in (2.6) also admits a NHIC Πε,i
0,K̄Ωi,g

which is a small

perturbation of Πi
0,K̄Ωi,g

.

4. Finiteness of invariant cylinders

Recall that along the resonant path Γ′ ∩ {|p − p′′| ≤ εσ} we choose
points {p′i} so that p′0 = p′′, ∂1h(p′i) = Ki

√
ε, where K ∈ Z. We claim

that there exists a positive constant K1 > 0, independent of ε, such that

(4.1) ‖p′i+1 − p′i‖ ≤ K1

√
ε.

Indeed, because

det

[
∂2h
∂p22

∂2h
∂p2∂p3

∂h
∂p2

∂h
∂p3

]
=

∂2h

∂p22

∂h

∂p3
�= 0

holds along the resonant path Γ′, it follows from the implicit func-
tion theorem that there are smooth functions p2(p1) and p3(p1) which
solve the equations h(p1, p2(p1), p3(p1)) ≡ constant and ∂2h(p1, p2(p1),
p3(p1)) ≡ 0, where the notation p = (p1, p2, p3) is used. Let ṗj be
the derivative of pj in p1 for j = 2, 3, it follows from the equation
h(p1, p2(p1), p3(p1)) ≡ constant that ṗ3 = 0 holds at the double reso-
nant point p = p′′.
Consider the variation of ∂h = ω along the resonant path. Let ω̇j be

the derivative of ωj in p1 for j = 1, 2, 3, one has⎡
⎣ω̇1

ω̇2

ω̇3

⎤
⎦ =

∂2h

∂p2

⎡
⎣ 1ṗ2
ṗ3

⎤
⎦ .
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Since ω̇2 ≡ 0 and ṗ3 = 0 holds at the double resonant point, one has
ω̇1 �= 0 at p = p′′ otherwise one would have 0 = 〈ω̇, ṗ〉 = 〈∂2hṗ, ṗ〉 which
contradicts the fact ∂2h is positive definite, where ω̇ = (ω̇1, ω̇2, ω̇3) and
ṗ = (1, ṗ2, ṗ3). As we are restricted on the domain {|p− p′′| ≤ εσ}, one
obtains (4.1) from the relations ∂1h(p

′
i+1)−∂2h(p

′
i) = K

√
ε, ω̇1(p

′′) �= 0,

|p′i − p′′| ≤ εσ and ∂h(p′i+1)− ∂h(p′i) = ∂2h(p′i + λ(p′i+1 − p′i))(p
′
i+1 − p′i)

for λ ∈ (0, 1).
Around the K̄

√
ε-neighborhood of p′i (K̄ is independent of ε), the

Hamiltonian is resaled to the formGε,i(x, y, θ) = Gi(x, y)+εσRε,i(x, y, θ)
with

Gi(x, y) = Kiy1 +
1

2
〈Ay, y〉 − V (x).

The subscript i ranges from 0 to i1 = O([ 1K εσ−
1
2 ]). We fix a potential

V ∈ V∞. By the result of the last section, there is i0 independent of
ε such that, for each i ≥ i0, Ki ≥ Ω∗ holds and the Hamiltonian flow
Φθ
Gi

admits a unique normally hyperbolic invariant cylinder Πi
0,K̄Ωi,g

of (2.4).
We claim that for all i ≥ i0, each cylinder Πi

0,K̄Ωi,g
is just a part

of some large cylinder. Indeed, for two adjacent subscripts i, i + 1, it
follows from (4.1) that the energy level G−1i (K̄Ωi) is contained in the
set where Gi+1 > Ωi provided K̄ is suitably large. To see why, we recall
that the rescaling

√
εy� = p� − p′�,i (� = 1, 2) in (2.1) is introduced to

obtain the Hamiltonian Gε,i.
Due to the normal hyperbolicity, in the region where both Gε,i and

Gε,i+1 remains valid, there is a unique cylinder Π̃i,ε
0,K̄Ωi,g

∩ Π̃i+1,ε
0,K̄Ωi+1,g

containing the relevant Aubry sets. Due to the coordinate rescaling
(2.1), there exists a unique NHIC of Φθ

Gε
which extends from the energy

level G−1ε (ω3(p
′
3,i0

− p′′3)ε−1) to the energy level G−1ε (ω3(p
′
3,i1

− p′′3)ε−1),
the subscript i1 is chosen so that p′i1 is the largest one satisfying the
condition |p′i1 − p′′| ≤ εσ, namely, one has |p′i1+1 − p′′| > εσ. Since
dp3
dp1

= 0 holds at the double resonant point p′′, one has ω3(p
′
3,i1

−p′′3)ε−1 =
O(|p′1,i1 − p′′1|2)ε−1 = E′ε2σ−1. The tangent space of T2 over the whole

Πε
Ei0

,Ei1
,g admits normally hyperbolic invariant splitting of (3.3). For

i < 0, the situation is the same, instead of considering the class g, we
consider the class −g.
Back to the original coordinates, for the class g as well as for −g,

there is a NHIC which extends from Ωi0

√
ε-neighborhood of the double

resonant point p′′ to the border of the disk {|p− p′′| ≤ εσ}.
Since ‖p′i+1 − p′i‖ ≤ K1

√
ε, there are as many as O([εσ−

1
2 ]) points

{p′i} along the resonant path Γ′. Around at most 2i0 + 1 points (the
number is independent of ε), the situation need to be handled in the
way treated in [CZ2]. For each of them, there is an open-dense set



34 C.-Q. CHENG

Vi ⊂ Cr(T2,R). For each V ∈ Vi, the Hamiltonian flow Φθ
Gi

admits
NHICs in the domain with certain normal hyperbolicity independent
of ε. Therefore, certain εi > 0 exists such that for each ε ≤ εi, the
cylinders survive the time-periodic perturbation Φθ

Gi
→ Φθ

Gε,i
. Note the

Hamiltonian Gε,i is a local expression of Gε.

Now the situation becomes clear. One cylinder extends from G−1ε (εd)
to G−1ε (E0), another cylinder extends from G−1ε (Ei0) to G−1ε (ε2σ−1).
Between the energy level G−1ε (E0) and G−1ε (Ei0) there are finitely many
pieces of NHICs. Each energy level intersects these NHIC’s along one
or two circles. Let

V =
( ⋂
|j|<i0

Vj

)
∩V∞,

for each V ∈ V we choose εV = min{ε0, · · · , ε±i0 , }. Therefore, the first
part of Theorem 1.1 is proved for V ∈ V and ε ≤ εV .

5. Aubry sets along resonant path: near double resonance

Since the NHICs obtained may be overflowing, we need to identify
whether the Aubry sets along resonant path remain in the cylinder.
An irreducible class g ∈ H1(T

2,R) determines a channel of first co-
homology classes

Cg,G =
⋃

λ∈R+

LβG
(λg), CE′,E′1,g,G =

{
c ∈ Cg,G : αG(c) ∈ [E′, E′1]

}
.

Theorem 5.1. For the Hamiltonian Gε,0 of (2.8), a class g ∈
H1(T

2,Z) and a large positive number E′1 > 0, there exists a residual
set V ⊂ Cr(T2,R) (r ≥ 5). For each V ∈ V there are numbers N > 1,
ε0 > 0 and d > 0 such that for ε ≤ ε0 it holds for each c ∈ CNεd,E′1,g

that the Aubry set Ã(c) of Gε,0 lies on the invariant cylinder.

The proof of this theorem is built on the following preliminary works.

Lemma 5.1. For the Hamiltonian Gε,0 of (2.8), if an orbit z(s) re-
mains in a bounded region Ω ⊂ T ∗M for s ∈ [s0, s1], some constant
K > 0 exists, independent of ε but may depend on Ω, such that the
variation of energy along the orbit z(s) is bounded by

|Gε,0(z(s1), s1)−Gε,0(z(s0), s0)| ≤ K|s1 − s0 + 1|εσ.
Proof. Along an orbit z(s) of the Hamiltonian flow Φθ

Gε,0
, the varia-

tion of the energy is controlled by

(5.1)
d

dθ
Gε,0(z(θ), θ) =

∂

∂θ
Gε,0(z(θ), θ) = ω3ε

σ− 1
2
∂Rε,0

∂x3
,
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where x3 = ω3
θ√
ε
. Recall Rε,0 is regular and 2π-periodic in ω3

θ√
ε
, see

(1.7), we expend R into Fourier series

∂θGε,0(z, θ) = ω3ε
σ− 1

2

∑
k �=0

Rk(z)e
ik

ω3θ√
ε .

Integrating by parts, we have

(5.2)

εσ−
1
2

∫ s1

s0

Rk(z(θ))e
ik

ω3θ√
ε dθ =

εσ

iω3k
Rk(z(θ))e

ik
ω3θ√

ε

∣∣∣s1
s0

− εσ

iω3k

∫ s1

s0

〈∂Rk, ż(θ)〉eik
ω3θ√

ε dθ.

Because the perturbation term R is C4-smooth, we have

|Rk| ≤ ‖Rε,0‖C3

2π|k|3 , |∂Rk| ≤ ‖∂zRε,0‖C3

2π|k|3 .

Since ż = Jdiag(Ay, ∂V ), by setting

K =
1

ω3π
max
z∈Ω

{
‖Rε,0‖C3 ,

(
|Ay|+

∣∣∣∂V
∂x

∣∣∣)‖∂zRε,0‖C3

}∑
k �=0

1

|k|4 ,

which is independent of ε, it follows from (5.1) and (5.2) that,

|Gε,0(z(s1), s1)−Gε,0(z(s0), s0)| =
∣∣∣ ∫ s1

s0

d

dθ
Gε,0(z(θ), θ)dθ

∣∣∣
≤

∣∣∣∑
k �=0

εσ

iω3k
Rk(z(θ))e

ik
ω3θ√

ε

∣∣∣s1
s0

−
∑
k �=0

εσ

iω3k

∫ s1

s0

〈∂Rk, ż(θ)〉eik
ω3θ√

ε dθ
∣∣∣,

the right hand side is not bigger than K(s1 − s0 + 1)εσ. q.e.d.

Since ΠEi,Ei+1,g is a NHIC, the channel CEi,Ei+1,g,G0 admits a foli-
ation of lines (one-dimensional flat), denoted by {IE}. Restricted on
each IE , αG0 keeps constant, while restricted on a line Γg orthogonal to
these flats, the function is smooth since G0 can be treated as a Hamil-
tonian with one degree of freedom when it is restricted on the cylinder.
Therefore, the function αG0 is smooth in C0,E1,g,G0 and CEi,Ei+1,g,G0 .

Proposition 5.1. There exists a number N > 1, independent of ε,
so that the Aubry set for c ∈ Γg ∩ α−1Gε,0

(E) with E ≥ Nεd lies in the

NHIC, each orbit in this set does not hit the energy level set G−1ε,0 (E)

with E ≤ εd.

Proof. We only need to prove the conclusion for the Hamiltonian
G′ε,0 of (2.30), because G′ε,0 = Gε,0 when it is restricted on the set where

G′ε,0 ∈ [εd, E1]. So, each orbit in the Aubry set lies in the cylinder
forever. If the proposition does not hold, there would exist an orbit
z(s) in the Aubry set for c ∈ Γg ∩ α−1

G′ε,0
(Nεd) hitting the energy level
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G′−1ε,0 (ε
d) at the time s0, i.e., G

′
ε,0(z(s0), s0) = εd. Due to Lemma 5.1,

it returns to a neighborhood of z(s0) after a time s′ = O(| ln εd|) (cf.
formula (2.9)) and

(5.3) |G′ε,0(z(s′ + s0), s
′ + s0)−G′ε,0(z(s0), s0)| ≤ K(s′ + 1)εσ.

As G−10 (E)∩ΠEd,E1,g is an invariant circle for Φ
t
G0
, the perturbed cylin-

der is O(εσ)-close to the original one and the cylinder may be crumpled

but at most up to the order O(εd(−μ6−μ7)) (cf. (2.22)), so there is a
time S = O(| ln εd|) and a small number μ′ = d(μ6 + μ7) > 0 such that
σ − μ′ > 0 and

‖z(S + s0)− z(s0)‖ ≤ C14(S + 1)εσ−μ
′
.

Since z(s) is in the Aubry set for the class c, the curve x(s) is c-static.
Let αG′ε,0 and αG0 denote the α-function for G′ε,0 and G0, respectively,

one has
(5.4)∣∣∣ ∫ S+s0

s0

(LG′ε,0(x(s), ẋ(s), s)−〈c, ẋ(s)〉+αG′ε,0(c))ds
∣∣∣ ≤ C15(S+1)εσ−μ

′
.

As the cylinder ΠEd,E1,g×
√
ε

ω3
T is εσ-close to Π̃ε

Ed,E1,g
, ∃ a c′-minimal or-

bit z′(s) of Φs
G0

on ΠEd,E1,g such that αG0(c
′) = εd and ‖z′(s0)−z(s0)‖ ≤

O(εσ−μ′). Let Γx =
⋃s0+S

s=s0
(x(s), y(s)) and Γx′ =

⋃s0+S′
s=s0

(x′(s), y′(s))
where S′ is the period of x′(s), we have an estimate on the Hausdorff

distance dH(Γx,Γx′) ≤ O((S + 1)εσ−μ′). So,∫
Γx

〈y, dx〉 −
∫
Γx′

〈y, dx〉 = O((S + 1)εσ−μ
′
).

Because of G0(x
′(s), y′(s)) ≡ αG0(c

′) we have

0 =

∫ S′

0
(LG0(x

′(t), ẋ′(t))− 〈c′, ẋ′(t)〉+ αG0(c
′))dt

=

∫ S′

0
〈y′(s)− c′, ẋ′(s)〉ds.

Let x̄(s) be the lift of x(s) to the universal covering space, it follows
that ∫ S+s0

s0

〈y(s)− c, ẋ(s)〉ds

=

∫ S+s0

s0

〈y(s)− c′, ẋ(s)〉ds−
∫ S′+s0

s0

〈y′(s)− c′, ẋ′(s)〉ds

− 〈c− c′, x̄(S + s0)− x̄(s0)〉(5.5)

=

∫
Γx

〈y, dx〉 −
∫
Γx′

〈y′, dx′〉+O((S + 1)εσ−μ
′
)
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− 〈c− c′, x̄(S + s0)− x̄(s0)〉
=− 〈c− c′, x̄(S + s0)− x̄(s0)〉+O((S + 1)εσ−μ

′
),

where the last equality follows from the estimate dH(Γx,Γx′) ≤ O((S +

1)εσ−μ′). Since G′ε(z(s0), s0) = αG0(c
′), it follows from (5.3) that, for

all s ∈ [s0, S + s0], we have

αG′ε,0(c)−G′ε,0(x(s), y(s), s) ≥ αG′ε(c)− αG0(c
′)−O((S + 1)εσ−μ

′
).

Consequently, by using the formulae (5.3) and (5.5) we have
(5.6)∫ S+s0

s0

(LG′ε,0(x(s), ẋ(s), s)− 〈c, ẋ(s)〉+ αG′ε,0(c))ds

=

∫ S+s0

s0

(
〈y(s)− c, ẋ(s)〉+ (αG′ε,0(c)−G′ε,0(x(s), y(s), s))

)
ds

≥ (αG′ε,0(c)− αG0(c
′))S − 〈c− c′, x̄(S + s0)− x̄(s0)〉 −O((S + 1)εσ).

To derive contradiction between the right-hand-side of above inequal-
ity and (5.4), we note that the function αG0 keeps constant along each
flat in the channel C0,E1,g,G0 . The frequency vector ω(c) is, therefore,
parallel to the direction of Γg. To get the norm of ω(c), we assume the
general case g = k1g1 + k2g2 and consider the Hamiltonian in the finite
covering space M̄ = k̄1T× k̄2T where k̄m = k1g1m + k2g2m for m = 1, 2
if we write gj = (gj1, gj2) for j = 1, 2. In T ∗M̄ there are k1 + k2 fixed
points for the return map. According to Formula (2.9), for small E > 0
the period of the frequency λg is Tλg = τE,g − λ−11 (k1 + k2) lnE where
τE,g is uniformly bounded as E → 0. Since ∂αG0 = ω = λg, one has

(5.7)
λ1

λ1τE,g − (k1 + k2) lnE
= |ω|, ∀ c ∈ Γg.

Let c∗ be the class such that αG0(c
∗) = αG′ε,0(c), then αG0(c

∗)−αG0(c
′) =

(N − 1)εd > 0. Since αG0 is convex and αG0(c
∗) > αG0(c

′),

〈c∗ − c′, ∂αG0(c
∗)〉 > αG0(c

∗)− αG0(c
′).

Since c∗, c′ ∈ Γg, c
∗−c′ is parallel to ∂αG0(c

∗). It follows from (5.7) and

the relation E = O(εd) that some constant C16 > 0 exists such that

(5.8) |c∗ − c′| ≥ 1

‖∂αG0(c
∗)‖

(
αG0(c

∗)− αG0(c
′)
)
≥ C16ε

d| ln εd|.

To measure the distance between c∗ and c, we exploit the convexity of
the α-function and get |c − c∗||ω(c∗)| = |〈c − c∗, ω(c∗)〉| ≤ |αG0(c

∗) −
αG0(c)| = |αGε,0(c) − αG0(c)| = εσ. It follows from the fact that the
α-function undergoes small variation: |αL(c) − αL′(c)| ≤ ε for small
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perturbation L′ → L with ‖L′ − L‖C1 ≤ ε ([C11]). Therefore, some
number C17 > 0 exists such that

(5.9) |c∗ − c| ≤ C17ε
σ| ln εd|.

Be aware that αG0 is smooth and strictly convex when it is restricted
on the line Γg, the first cohomology classes c′, c∗ ∈ Γg are uniquely

determined so that αG0(c
′) = εd, αG0(c

∗) = Nεd where the number N
is chosen such that

ln(N − 1) = 3max{| sup τg(E)|, 1}.
Let c′′ ∈ Γg such that α0(c

′′) = (N − 1)εd, we find that

αG0(c
∗)− αG0(c

′′) > 〈ω′′, c∗ − c′′〉, αG0(c
′′)− αG0(c

′) > 〈ω′, c′′ − c′〉,
where ω′ = ∂αG0(c

′) and ω′′ = ∂αG0(c
′′). It follows that

(5.10) αG0(c
∗)− αG0(c

′) > 〈c∗ − c′, ω′〉+ 〈c∗ − c′′, ω′′ − ω′〉.
In the way to get (5.8) one obtains that

(5.11) |c∗ − c′′| ≥ C18ε
d| ln εd|,

where the number C18 depends on N . One obtains from (2.9) that

(5.12)

|ω′′ − ω′| = 1

T(N−1)εd
− 1

Tεd

≥(k1 + k2) ln(N − 1) + λ1(τεd,g − τ(N−1)εd,g)
λ1T(N−1)εdTεd

≥C19| ln εd|−2.
Since 〈ω′′ − ω′, c∗ − c′′〉 = |ω′′ − ω′||c∗ − c′′| (restricted on the cylinder,
the system has one degree of freedom, so they are treated as scalers, not
vectors), one obtains

αG′ε,0(c)− αG0(c
′)− 〈c− c′, ω′〉

=αG0(c
∗)− αG0(c

′)− 〈c∗ − c′, ω′〉 − 〈c− c∗, ω′〉

≥〈c∗ − c′′, ω′′ − ω′〉 − 〈c− c∗, ω′〉 ≥ C20
εd

| ln εd| ,

where the first inequality is obtained by applying (5.10), the second one
is obtained by applying (5.9), (5.11) and (5.12). It follows that the right
hand side of (5.6) is lower bounded by C21ε

d because S = O(| ln εd|),
where C21 > 0 is a constant. Because μ′ is very small, the formula (5.6)
contradicts (5.4) provided σ > d+ μ′. It completes the proof. q.e.d.

Proposition 5.2. If the Aubry set for c ∈ Γg ∩α−1Gε,0
(E) is contained

in the NHIC, and E > 0 is independent of ε, each orbit in this set does

not hit the energy level set G−1ε,0 (E ± ε
1
3
σ) if ε > 0 is sufficiently small.
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Proof. If an orbit z(s) of the Aubry set for c ∈ Γg ∩α−1Gε,0
(E) touches

the energy level G−1ε,0 (E−ε
1
3
σ), following the proof of Proposition 5.1 we

also have (5.4) and (5.6). Again, we are going to show the contradiction
between them.
Let c∗ be the class such that αG0(c

∗) = αGε,0(c) and let c
′ ∈ Γg such

that αG0(c
′) = E − ε

1
3
σ, then αG0(c

∗) − αG0(c
′) = ε

1
3
σ. Similar to the

way to get (5.8), note the period is of order one, we obtain

(5.13) |c∗ − c′| ≥ C22ε
1
3
σ.

Since αG0 is smooth and strictly convex when it is restricted on Γg, one
obtains from (5.13) and (5.9) that

αG0(c
∗)− αG0(c

′)− 〈c∗ − c′, ω′〉 = 1

2
|∂2αG0(νc+ (1− ν)c′)||c′ − c∗|2

≥ C23ε
2
3
σ,

from which we see that the right hand side of (5.6) is lower bounded by

O(ε
2
3
σ). As μ′ is very small, the formula (5.6) contradicts (5.4) provided

σ > d+ μ′. The proof for E + ε
1
3
σ is the same. q.e.d.

Proof of Theorem 5.1. For the Hamiltonian G0 with V ∈ V, there are
at most finitely bifurcation points 0 < E1, E2, · · ·Ek ≤ E′1. The Aurby
set Ã(c) for G0 is a (E, g)-minimal periodic orbit if c ∈ LβG0

(λg) and

αG0(c) �= Ei for i = 1, 2, · · · k. At each bifurcation point the Aubry
set consists of exactly two (E, g)-minimal periodic orbits. These peri-
odic orbits make up several pieces of NHICs which admit a continuation
to the energy level of Ei ± δ, denoted by Π0,E1+δ,g and ΠEi−δ,Ei+1+δ,g,
respectively. The continuation is made up by local (E, g)-minimal pe-
riodic orbits. Restricted on the cylinder ΠEi−δ,Ei+1+δ,g, the Hamilton-
ian has one degree of freedom, associated with a smooth α-function
denoted by αi: c1 ∈ [ci1 − δc1, c

i+1
1 + δc1] → R. The first cohomol-

ogy class c1 determines uniquely a flat IE ⊂ CEi,Ei+1,g,G0 such that

αi(c1) = αG0(IE) if c1 ∈ [ci1, c
i+1
1 ]. Indeed, one has αG0(c1, c2) = αi(c1)

if (c1, c2) ∈ IαG0
(c1,c2) and we use certain coordinates so that g = (1, 0).

By the definition, we have αi−1(ci1) = αi(c
i
1), αi−1(c1) ≥ αi(c1) for

c1 ∈ [ci1, c
i
1 + δc1] and αi(c1) ≤ αi+1(c1) for c1 ∈ [ci+1

1 − δc1, c
i+1
1 ]. It

follows from the generic condition (H3) that

d

dc1
αi−1(ci1) >

d

dc1
αi(c

i
1), ∀ i.

Under the perturbation εσR, large part of NHICs survive, such as
Π̃ε

εd,E1+δ−εd and Π̃ε
Ei−δ+εd,Ei+1+δ−εd . The former is εσ-close to

Πεd,E1+δ−εd,g×
√
ε

ω3
T, the latter is εσ-close to ΠEi−δ+εd,Ei+1+δ−εd,g×

√
ε

ω3
T.
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For the Hamiltonian G0 and the class c
i ∈ Cg,G0 with αG0(c

i) = Ei,
the Aubry set consists of two λig-minimal periodic orbits, the Mañé
set contains these two periodic orbits plus some orbits connecting them
(hetroclinic orbits). For the Hamiltonian Gε,0 and the class c ∈ Cεd,E′1,g

so that |αGε,0(c)− Ei| ≤ εσ, the Mañé set Ñ (c) stays in a small neigh-

borhood of cylinders Π̃ε
Ei−1−δ+εd,Ei+δ−εd,g and Π̃

ε
Ei−δ+εd,Ei+1+δ−εd,g. It is

due to the upper semi-continuity of Mañé on small perturbations. So, it
follows from the hyperbolic structure that each ergodic minimal measure
for this class has its support in the cylinder either Π̃ε

Ei−1−δ+εd,Ei+δ−εd,g
or Π̃ε

Ei−δ+εd,Ei+1+δ−εd,g.
Since the energy level setG−1ε,0 (E) is in ε

σ-neighborhood ofG−10 (E), we

obtain from Proposition 5.2 and the condition (H3) that for c ∈ Cg,Gε,0

such that αGε,0(c) is close to Ei we have

Ã(c) ⊂ Π̃ε

Ei−1,Ei+ξε
σ
3 ,g

∪ Π̃ε

Ei−ξε
σ
3 ,Ei+1,g

,

where ξ ≥ 2max{( d
dc1

αi−1(ci1) − d
dc1

αi(c
i
1))

−1, 1}‖R‖∞. Since δ > 0 is
independent of ε, the Aubry set completely lies on the cylinders if ε > 0
is suitably small.
To verify that the Aubry set Ã(c) with αGε,0(c) = Nεd is contained in

the cylinder, we apply Theorem 2.3. The invariant cylinder
Π̃ε

1
2
εd,E1+δ−εd,g for Φθ

G′ε,0
lies in O(εσ)-neighborhood of the cylinder

Π 1
2
εd,E1+δ−εd,g ×

√
ε

ω3
T. By the choice of the number d in (2.29), we

see that Gε,0(z, θ) ≥ εd if (z, θ) stays in that Aubry set Ã(c) with
αGε,0(c) = Nεd. Applying Lemma 5.1, we then complete the proof.

q.e.d.

The second part of Theorem 1.1 follows from Theorem 5.1 and the
result obtained in Section 4 (the finiteness of NHICs).

6. Criterion for strong and weak double resonance

Given a perturbation εP (p, q), it is natural to ask, along the resonant
path Γ′, how many double resonances need to be treated as strong dou-
ble resonance. The argument below is, in fact, the proof of Theorem 1.2.

Proof of Theorem 1.2. On the path Γ′ the resonance condition
〈∂h(p), k′〉 = 0 is always satisfied and at each double resonant point
some other k′′ ∈ Z

3, independent of k′, exists such that 〈∂h(p), k′′〉 = 0
holds. Recall the process of KAM iteration, the main part of the reso-
nant term is obtained by averaging the perturbation over a circle deter-
mined by these two resonant relations. It takes the form

Z = Zk′(p, 〈k′, q〉) + Zk′,k′′(p, 〈k′, q〉, 〈k′′, q〉),
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where
Zk′ =

∑
j∈Z\{0}

Pjk′(p)e
j〈k′,q〉i,

Zk′,k′′ =
∑

(j,l)∈Z2,l �=0

Pjk′+lk′′(p)e
(j〈k′,q〉+l〈k′′,q〉)i.

Since the perturbation P is Cr-function, the coefficient Pjk′+lk′′ is
bounded by

|Pjk′+lk′′ | ≤ 8π3‖P‖Cr‖jk′ + lk′′‖−r.
Therefore, some constant ϑ = ϑ(k′) depending on k′ exists such that

(6.1) ‖Zk′,k′′‖C2 ≤ ϑ‖P‖Cr‖k′′‖−r+2.

Recall the procedure we did in the second section, after the rescaling
and linear coordinate transformation we obtain the main part of the
system

G0 =
1

2
〈Ay, y〉 − Vk′(x2)− Vk′,k′′(x1, x2).

We assume that Vk′ has a non-degenerate minimal point at x∗2, i.e.,
V̈k′(x

∗
2) = λ3 > 0, the system 1

2〈Ay, y〉 − Vk′(〈k′, q〉) possesses a NHIC
Π0

k′,k′′ = {y = ξy0, ξ ∈ R, x2 = x∗2, x1 ∈ T},
where y0 solves the equation (1, 0)t = Ay0. Applying the normally
hyperbolic invariant manifold theorem, one obtains from the estimate
(6.1) that some positive number ϑ1 = ϑ1(λ3) > 0 exists such that Φt

G0

also admits a normally hyperbolic and invariant cylinder Πk′,k′′ close to
Π0

k′,k′′ provided

(6.2) ‖k′′‖r−2 ≥ ϑ(k′)
ϑ1(λ3)

‖P‖Cr .

It is a criterion, if the integer vector k′′ satisfies this condition, the
double resonance is thought as weak resonance and can be treated in
the way for a priori unstable system.
We notice that the potential V is obtained by fixing a double resonant

point y = y′′. It seems that the non-degeneracy of the minimal point
depends on the position of double resonant point on the resonant path
Γ′, namely, the number λ3 depends on the y ∈ Γ′. Because the set
of double resonant points is dense along the resonant path, it appears
necessary to ask whether it holds simultaneously for all p ∈ Γ′ that
the minimal point of Zk′(p, x) is non-degenerate when it is treated as a
function of x = 〈k′, q〉. Fortunately, we have the following result [CZ1]

Theorem 6.1. Assume M is a closed manifold with finite dimen-
sions, Fζ ∈ Cr(M,R) with r ≥ 4 for each ζ ∈ [ζ0, ζ1] and Fζ is Lipschitz
in the parameter ζ. Then, there exists an open-dense set V ⊂ Cr(M,R)
so that for each V ∈ V, it holds simultaneously for all ζ ∈ [ζ0, ζ1] that
the minimal point of Fζ + V is non-degenerate. In fact, given V ∈ V
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there are finitely many ζi ∈ [ζ0, ζ1] such that Fζ + V has only one global
minimal point for ζ �= ζi and has two global minimal point if ζ = ζi.

So, once one has a generic single resonant term Zk′ , the non-degen-
eracy λ3 is lower bounded from zero for all double resonant points.
There are finitely many k′′ ∈ Z

3 which do not satisfy the condition
(6.2), thus need to be treated as strong double resonance. Obviously,
the number of such points is independent of ε.
It follows from Theorem 6.1 that there are finitely many point p =

p′j ∈ Γ′ where the single resonant term Zk′ has two global minimal points

when it is treated as the function 〈k′, q〉. It is clearly generic that the
condition (H3) holds for Zk′ . It implies that as one move p along Γ′,
the Mather set varies along one cylinder and jump to another cylinder
when it crosses the point p′j which is called bifurcation point. It is also
generic that none of these bifurcation points is strong double resonant
point. q.e.d.

Remark. Given a resonant path determined by a class g ∈ H1(T
2,Z),

we have a channel Cg = ∪λLβGε,0
(λg) ⊂ H1(T2,R). By the result we

get in this paper, this channel has certain width except the place very
close to the disk Fi which corresponds to strong double resonance. For

each c ∈ intCg with d(c,Fi) > O(ε
1
2
+d), the Aubry set is located in

certain NHIC. By using the method of [CY1, CY2, LC], this Aubry
set can be connected to other Aubry set nearby also lying on the cylin-
der. Some local connecting orbit looks like heteroclinic orbit (Arnold’s
mechanism), some other orbits are constructed by using cohomology
equivalence. Because certain Hölder modulus continuity of weak KAM
solutions is established in [Z1] for the whole cylinder, not only restricted
on the set of invariant circles, one can always connects such Aubry set
to another one via Arnold’s mechanism.
In conclusion, we find transition chain along the resonant path ex-

cept for finitely many gaps around the strong double resonant points.
The size of the gaps is so small that these pieces of transition chain
are connected by paths of cohomology equivalence on energy levels
slightly above zero around double resonance, shown in a subsequent
paper [C17]. Another way to cross double resonance was suggested in
[Mat], elaborated in [KZ], [Mar] using cylinders with holes entering
the negative energy region.
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