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ON SPACELIKE ZOLL SURFACES WITH

SYMMETRIES

Pierre Mounoud & Stefan Suhr

Abstract

Three explicit families of spacelike Zoll surface admitting a
Killing field are provided. It allows to prove the existence of
spacelike Zoll surfaces not smoothly conformal to a cover of de
Sitter space as well as the existence of Lorentzian Möbius strips of
non constant curvature all of whose spacelike geodesics are closed.
Further the conformality problem for spacelike Zoll cylinders is
studied.

1. Introduction

A spacelike Zoll surface is a Lorentzian surface all of whose spacelike
geodesics are closed and simple and have the same length. The basic
example of a spacelike Zoll surface is de Sitter space, the homogeneous
space SO0(2, 1)/SO0(1, 1), and its finite coverings since it is not simply
connected. It can be understood as the Lorentzian analogue of the
round sphere as it has constant positive curvature. In [9], the authors
proved that a spacelike Zoll surface is diffeomorphic to a cylinder or a
Möbius strip. This purely topological classification leaves open the finer
questions of a classification up to isometry or conformality. Recall that
the cylinder as well as the Möbius strip admit uncountable many non
equivalent conformal Lorentzian structures.

The purpose of this article is twofold. First it provides three infinite
dimensional families of examples of spacelike Zoll surfaces, in order to
test answers to the questions that arise in the study of these surfaces.
Second it tries to initiate a study of the conformal properties of spacelike
Zoll surfaces since this is the main difference, besides the topological one,
to the Riemannian case.

In the Riemannian case several explicit families of Zoll surfaces, i.e.
surfaces all of whose geodesics are simple and closed, are known. The
most famous family is certainly the Zoll spheres of revolution, i.e. with
a Killing vector field, classified by Zoll and Darboux (see [3] chap. 4).
The first work in this direction for spacelike Zoll surfaces has been done
by Boucetta [5], who provided examples of spacelike Zoll cylinders of
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revolution, i.e. admitting a periodic spacelike Killing field. However,
contrary to a Riemannian 2-sphere, Killing fields of Lorentzian cylinders
are not periodic in general. Already, on de Sitter space, there exist three
conjugacy classes of Killing fields: the elliptic, the parabolic and the
hyperbolic one, each corresponding to a conjugacy class of 1-dimensional
subgroups of SO0(2, 1) acting on SO0(2, 1)/SO0(1, 1). Following this
line of ideas this paper investigates spacelike Zoll surfaces admitting a
non trivial Killing field.

For general spacelike Zoll cylinders the dynamics and the causal char-
acter of a Killing vector field coincides with that of a Killing vector field
on de Sitter space, see Proposition 3.4. Thus there exist only three
types: elliptic, parabolic and hyperbolic. Adding technical assumptions
allows to prove the following (see Theorems 5.6, 6.1 and 7.5 for more
precise statements):

Theorem. There exists infinite dimensional families of explicit space-
like Zoll surfaces of elliptic, parabolic and hyperbolic types.

These metrics are constructed as deformations of a covering of de
Sitter space, the deformation preserving a chosen Killing field K. In the
elliptic case, this construction is completely analogue to the one made
for Riemannian Zoll surfaces of revolution in chapter 4 of [3] and the
family obtained gives a complete classification. However, when K has
lightlike orbits, new ingredients have to be added and the deformations
are realized via atlases adapted to K (see Definitions 5.1, 7.1). These
atlases are inspired by ideas used by Ch. Bavard and the first author
in [1]. At the moment the authors are not aware of an example of a
spacelike Zoll surface with a Killing vector field that does not belong to
one of these families, but conjecture that such metrics exist.

Besides the classification problem for Zoll metrics there is the rigidity
problem for Zoll projective planes proven by Green [8] and recently
extended by Pries [11] to surfaces all of whose geodesics are closed.
These notes present a new feature of spacelike Zoll surfaces, opposing
the Riemannian case:

Theorem. There exist Lorentzian Möbius strips of non constant cur-
vature all of whose spacelike geodesics are closed.

The examples constructed are covered by smooth spacelike Zoll met-
rics with non constant curvature and parabolic or hyperbolic Killing
vector fields invariant by antipody, see Corollaries 5.10 and 7.9. So far
it is not clear whether the geodesics of the Möbius strips obtained are
simple and all have the same length i.e. if these metrics are spacelike
Zoll. It is interesting however to note that none of the three families
contain real-analytic metrics invariant by antipody.

Dropping the assumption of a Killing vector field two major results on
Riemannian Zoll surfaces remain: one is the theorem by Green [8] and
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its recent extension in [11] mentioned before. The other one is the the-
orem of Guillemin [7] saying that the space of Zoll metrics on S2 in the
conformal class of the constant curvature metric g0 is a manifold near
g0 and the tangent space at g0 is precisely the space of odd functions
on S2. If Guillemin confined his study to the conformal deformations
of the round sphere it is because of the uniformization theorem. Note
that a uniformization theorem does not exist for Lorentzian surfaces
and there exists an infinite number of non isometric conformal classes
of Lorentzian cylinders. So naturally the question appears which con-
formal classes of Lorentzian cylinders are represented by spacelike Zoll
metrics.

The conformal class of an orientable Lorentzian surface is simply
given by its pair of lightlike foliations. Hence, for 0 ≤ n ≤ ∞ two sur-
faces are Cn-conformal if there exists a Cn-diffeomorphism exchanging
their lightlike foliations. It is then clear that two metrics may be Cn but
not Cn+1-conformal for any 0 ≤ n ≤ ∞. As often in Lorentzian geom-
etry, the question of determining the conformal classes is quite subtle.
Here the conformal class are determined by considering the map from
the space of lightlike geodesics into itself obtained by reflection on the
conformal boundary. This map is clearly a conformal invariant.

This paper contains essentially three results on the conformal class
of a spacelike Zoll cylinder (C, g). Without further assumption, it is
shown that a two-fold cover of (C, g) conformally embeds into de Sitter,
see Proposition 2.6. Furthermore, combining the results of Theorem 4.2
and Theorem 5.11, we have:

Theorem. Let (C, g) be a spacelike Zoll cylinder with a nontrivial
Killing vector field. Then (C, g) is C0-conformal to a cover of de Sitter
space.

Besides, there exists parabolic spacelike Zoll cylinders that are not
C2-conformal to any cover of de Sitter space.

The authors conjecture that there exist spacelike Zoll metrics with
a Killing field which are not C1-conformal to a cover of de Sitter. An
extended classification of parabolic spacelike Zoll cylinders could yield
such a result.

The paper is organized as follows: section 2 studies spacelike Zoll
surfaces without assuming the presence of a Killing field; section 3 gives
the description of spacelike Zoll cylinders admitting a Killing field; sec-
tion 4 determines the C0-conformal class of these metrics; sections 5, 6
and 7 are devoted to the construction of the families of examples, finally
section 8, following an idea of Blaschke, explains how it is possible to
blend the preceding constructions in order to find examples that do not
admit any Killing fields.
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2. General spacelike Zoll surfaces

Proposition 2.1. Let (C, g) be a pseudo-Riemannian cylinder all of
whose spacelike geodesics are closed. Then (C, g) is globally hyperbolic
and the universal cover of (C,−g) is not globally hyperbolic.

Lemma 2.2. Let (C, g) be a Lorentzian cylinder with at least one non
timelike or non spacelike loop. Then (C, g) is space- and time-orientable.

Proof. By exchanging g with −g, if necessary, we can assume that the
loop in the assumption is non timelike. Further since C is a surface we
can assume that the loop is simple. Well-known arguments in Lorentzian
geometry (cp. [10]) allow us to additionally assume that the loop is
smooth and regular.

Let γ : [0, 1] → C be a simple closed, smooth and regular non timelike
loop in (C, g). Further let vl and vr be lightlike vectors at γ(0) pointing
to the same side of γ. If γ itself is a lightlike pregeodesic, the subsequent
argument will apply to the lightlike direction not tangent to γ. Denote
with ηl and ηr the geodesics with direction vl and vr. Lift both to R

2.
Then not both lightlike geodesics can be invariant (even up to a finite
quotient) under the group of deck transformations. So w.lo.g. we can
assume that the lift of γ lies on one side of η̃l the lift of ηl. Now consider
the strip bounded by η̃l and its translate by the deck transformation α
induced by the fundamental class of γ. If γ̇(1) does not lie in the same
connected component of {w ∈ TCγ(0)| g(w,w) ≥ 0}� {0} as γ̇(0), then
γ̃ and α ◦ γ̃ lie in the strip bounded by η̃l and α ◦ η̃l. But then α will
have a fixed point in that strip, which contradicts the assumption that
α is a deck transformation.

Consequently (C, g) is space-orientable. Together with the orientabil-
ity of C this implies the time-orientability of (C, g) as well. q.e.d.

Proof of Proposition 2.1. First we prove that (C, g) is globally hyper-
bolic. W.l.o.g. we can assume that (C, g) is spacelike Zoll (see [9, The-
orem 6.1]). It is well known that global hyperbolicity is passed down
to finite quotients. Let γ be any spacelike geodesic of (C, g). By as-
sumption γ is an embedded closed hypersurface. We claim that γ is a



ON SPACELIKE ZOLL SURFACES WITH SYMMETRIES 247

Cauchy hypersurface in (C, g). Let η be an inextendable causal curve
in (C, g) that does not intersect γ. Choose any curve from a point on
γ to a point on η and parallel transport the tangent vector γ̇ along
that curve. Denote the transported vector by v. Since η is causal the
spacelike geodesic with direction v is transversal to η (w.l.o.g. we can
assume η to be smooth.). This induces a smooth family of closed curves
transversal to a given inextendable curve at one end and disjoint form
it at the other end. This is of course impossible. Therefore η intersects
γ, as γ disconnects C this intersection is reduced to a point and γ is a
Cauchy hypersurface.

Next we show that the universal cover (C̃,−g̃) of (C,−g) is not glob-

ally hyperbolic. Consider a deck transformation φ of C̃ → C and a

point p ∈ C̃. W.l.o.g. we can assume that φ(p) ∈ I+(p), relative to
the time-orientable metric −g̃. Else consider φ−1 instead of φ. Now if

(C̃,−g̃) is globally hyperbolic then the space of causal arcs between p
and φ(p) is compact. By the limit curve lemma and the assumption that
every future pointing (−g̃)-timelike geodesic from p intersects φ(p) we
can conclude that both lightlike geodesics emanating from p intersect
φ(p). Since they are curves belonging to different transversal foliations
this is impossible. q.e.d.

Proposition 2.3. Let (C, g) be a Lorentzian cylinder all of whose
spacelike geodesics are closed. Then any pair of spacelike geodesics in-
tersects at least twice. The number of intersections is even and constant
throughout the set of spacelike geodesics.

Proof. The first assertion follows from the second, since obviously
there are intersecting spacelike geodesics and any pair of loops in the
cylinder has to intersect at least twice if they intersect once.

Since (C, g) is spacelike Zoll we can assume with [9] that the geodesic
flow on T 1C is a free S1-action. Fix a simple and closed unit speed
spacelike geodesic γ and consider the tangent curve γ̇. Further let η1, η2
be two closed and simple unit speed spacelike geodesics geometrically
different from γ. Then the tangent curves η̇1 and η̇2 are disjoint from
γ̇. Since γ̇ is a loop in the 3-manifold T 1C we can connect η̇1(1) and
η̇2(1) via a path μ : [0, 1] → T 1C not intersecting γ̇. The geodesics with
initial direction μ(s) form a (smooth) homotopy by spacelike geodesics
geometrically different from γ with endpoints η1 and η2. Since any
intersection between geometrically different geodesics is transversal, the
number of intersection between γ and η1 has to coincide with the number
of intersection between γ and η2. q.e.d.

Lemma 2.4. Every globally hyperbolic 2-dimensional cylinder is glob-
ally conformally flat.

This fact is actually folklore. For the sake of completeness and in
the absence of a reference we give a proof. Note that the lemma shows
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that every globally hyperbolic cylinder is conformal to one connected
component of the complement of at most two simply connected and
disjoint non timelike curves. Conversely of course every such component
is globally hyperbolic.

Proof. Denote the lightlike foliations of (C, g) by F1,2. Let γ be any
smooth Cauchy hypersurface in a globally hyperbolic cylinder (C, g).
Choose a diffeomorphism ϕ : γ → S1. Define two maps α, β : C → S1 to
be identical to ϕ on γ, α to be constant on the leafs of F1 and β to be
constant on the leafs of F2. Since the lightlike foliations are transversal
the differentials of α and β are linearly independent at every point.
Lifting everything to the universal cover gives two coordinates x, y whose
level sets are lightlike. Therefore the metric in these coordinates reads
f(x, y)dxdy with f(x+ 2π, y + 2π) = f(x, y). Consequently f descends
to the quotient and the metric 1

f g is flat. q.e.d.

Remark 2.5. Next we want to fix a conformal embedding of de Sitter
space into (S1 × R, dϕ2 − dt2). De Sitter space is isometric to (S1 ×
R, cosh2(t)dϕ2 − dt2). So in order to construct a conformal embedding
into the flat cylinder we have to find a reparameterization ψ : (0, b) → R

such that (id×ψ)∗(cosh2(t)dϕ2 − dt2) is diagonal. This is equivalent to
solving the ODE (ψ′)2(s) = cosh2 ψ(s). Since ψ is supposed to be a
diffeomorphism we can assume that ψ′ > 0. Therefore we have to solve
the equation ψ′(s) = coshψ(s). In fact we do not need the solution ψ
explicitly. All we require is the value b, i.e. the length of the domain of
ψ. This can be done by integration: We know that∫ s

0

ψ′(σ)
coshψ(σ)

dσ = s

for all s ∈ (0, b). For t = ψ(s) we then see that (wlog lims→0 ψ(s) = −∞)∫ t

−∞

1

cosh(τ)
dτ = ψ−1(t).

The left hand side is equal to 2 arctan et (which give the solution ψ =
log(tan s

2)) and therefore tends to π for t → ∞. Thus de Sitter space is
conformal to a flat cylinder with circumference 2π and height π.

Proposition 2.6. Let (C2, g) be a Lorentzian spacelike Zoll cylinder.
Then for all ε > 0 there exists a smooth conformal embedding of (C, g)
into (S1 × R, dϕ2 − dt2) whose image is contained in S1 × (−ε, π + ε).
Especially up to a twofold covering (C, g) admits a conformal embedding
into de Sitter space.

Note that the conformal embedding is not surjective in general. Finite
coverings of de Sitter serve as examples.
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Proof. Let (C, g) be a spacelike Zoll surface and F : C → S1 × R be
a conformal embedding. Consider the image of a lightlike geodesic of
(C, g) in S1 × R. We can assume that (0, 0) lies on the image and that
the image is symmetric about (0, 0). Denote with (a, a) and (−a,−a)
its future and past endpoint respectively on ∂F (C) in S1 × R. Since
(C, g) is spacelike Zoll the fundamental class of every spacelike geodesic
generates π1(C) and via the conformal embedding their images generate
π1(S

1 × R). Note that due to the continuity of the geodesic flow for
every pair of neighborhoods of (a, a) and (−a,−a) there exist spacelike
geodesics passing through (0, 0) and intersecting these neighborhoods.
The geodesics have to close up after one round. Since the circumference
of the circle is 2π, the value of 4a is bounded from above by 2π, i.e.
a ≤ π/2.

Let γ be a lightlike geodesic in (C, g). Denote with x and y the future
and past endpoints of F ◦γ in S1×R respectively. Since (C, g) is globally
hyperbolic the boundary of F (C) is achronal (see e.g. [6] Theorem 3.29
and 4.16). Therefore we have F (C) ⊆ S1×R�(I+(x)∪I−(y)). The last
set being compact shows that ∂F (C) consists of two closed and simple
disjoint non timelike curves γ± : S1 → S1×R with t◦γ+ > t◦γ−. Since
neither γ+ nor γ− can be everywhere lightlike, we can approximate both
curves up to a given error ε > 0 by smooth, closed and simple disjoint
spacelike curves γ±ε : S1 → S1×R. Note that the precompact component
of S1 ×R� (γ+ε (S

1)∪ γ−ε (S1)) is a globally hyperbolic spacetime which
is ε-close to F (C) whenever γ±ε are ε-close to γ±.

Now consider the cylinder (S1 × R, dϕ2 − dt2) as the quotient of

(R2, dxdy) by the Z-operation generated by (x, y) 
→ (x+
√
2π, y+

√
2π).

Denote with γ̃±ε the lift of γ±ε to R
2. W.l.o.g. we can assume that γ̃±ε

are parameterized as graphs over the x-axis, i.e. γ̃±ε (s) = (s, θ±ε (s)) for
some maps θ±ε : R → R. Since γ±ε are spacelike, closed and simply θ±ε
are Z-equivariant diffeomorphisms.

Set θε(s) :=
1
2(θ

+
ε (s)+θ−ε (s)). θε is obviously a diffeomorphism of the

reals. Define the diffeomorphism Θ: R2 → R
2 by Θ(x, y) := (x, θ−1ε (y)).

It is conformal and maps the spacelike curve s 
→ (s, θε(s)) to the diag-
onal � = {(x, y)| x = y}. We know that

sup
s

|θ+ε (s)− θ−ε (s)| ≤
√
2(π + ε),

i.e. the curves Θ◦ γ̃±ε have distance at most π+ε
2 from the diagonal. This

implies the same maximal distance from the sets {t = 0} in the quotient
space. Since for the chosen conformal embedding of de Sitter we have
θ±(s) = s± π√

2
, the claim follows. q.e.d.
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3. Killing fields on spacelike Zoll surfaces.

From now on, we will be interested in spacelike Zoll cylinders admit-
ting a Killing field K, i.e. a vector field with complete flow consisting
of isometries. We will prove in this section that the dynamics of K are
always similar to that of a Killing field of a cover of de Sitter space. See
Proposition 3.4 for the precise statement.

Proposition 3.1. Let (S, g) be a connected Lorentzian surface all
of whose spacelike geodesics are closed. Then any locally Killing vector
field of (S, g), i.e. with antisymmetric covariant derivative, is complete
and therefore Killing.

Proof. Let K be a locally Killing vector field on S and let ΦK be its
local flow. For any z ∈ S, we define ωz by ωz = sup{t; Φt

K(z) exists}.
Let γ be a spacelike geodesic and ωγ = infz∈γ ωz. Let us assume that

there exists x ∈ γ such that ωx > ωγ then ΦK
ωγ
(γ) is a spacelike geodesic

that is not contained in any compact subset of S. This clearly contra-
dicts the assumption that all spacelike geodesics are closed. Therefore
we have ωx = ωγ for any x ∈ γ. Since any pair of points in S can be
joined by a broken spacelike geodesic, the function ω is constant and
the flow of K is complete. q.e.d.

Proposition 3.2. Let (C, g) be a spacelike Zoll Lorentzian cylinder
admitting a non trivial Killing field K. Then every spacelike geodesic
of g is at least twice tangent to K or contains at least two zeros of K.
It follows that

1) K is periodic if and only if it is spacelike and if and only if it has
a recurrent orbit;

2) K is vanishing if and only if K is somewhere timelike;
3) any geodesic perpendicular to K contains all its zeros.

In particular, K has to be spacelike somewhere. Further K has only
finitely many lightlike orbits.

Proof. Let γ be a spacelike geodesic of g. If there exists t0 such that
γ�γ(t0) is transverse to K then by pushing γ along the flow of K gives
a spacelike geodesic intersecting γ in at most one point. But, according
to Proposition 2.3 this is impossible.

It is well known that if K vanishes then it is somewhere timelike.
Reciprocally, if K is timelike at a point x ∈ C, consider the geodesic
γ defined by γ(0) = x, g(γ′(0), γ′(0)) = 1 and g(γ′(0),Kx) = 0. As γ
cannot be tangent to K and as it cannot be everywhere transverse to
it, K vanishes somewhere along γ. Moreover, if m is a zero of K and
γ̂ a spacelike geodesic containing m, we choose γ̂ different from γ. By
Proposition 2.3, γ̂ intersects γ. As γ and γ̂ cannot be tangent and as
they are both perpendicular to K, the intersection can be only at a zero



ON SPACELIKE ZOLL SURFACES WITH SYMMETRIES 251

of K. It follows that there exists t0 such that Φt0
K(γ) = γ̂ and therefore

m ∈ γ and any zero of K is on γ.
According to [9], a spacelike Zoll surface has no closed lightlike geo-

desic, therefore a periodic Killing field has to be spacelike. Reciprocally,
if K is a spacelike Killing field and if γ is a spacelike geodesic that is not
an orbit of K then Clairaut’s first integral imposes the value of g(K,K)
at the points where K and γ are tangent. It follows that K is tangent
to γ only at points where the restriction of the function α defined by
α(x) = gx(Kx,Kx) to γ reaches its maximum. But as γ is compact this
function also has a minimum, a point x0 realizing this minimum has to
be a critical point of α, considered as a function on C. The orbit of K
through x0 is therefore a spacelike geodesic and so is closed.

If K has a recurrent orbit, there exists a spacelike geodesic γ in-
tersecting this orbit transversally at a point x and t0 > 0 such that
Φt0
K(x) ∈ γ. Since a geodesic η emanating from Φt0

K(x) is uniquely de-

termined by g(η̇, η̇) and g(K, η̇), we have Φt0
K(γ) = γ. Consequently,

Φt0
K is an isometry of γ seen as a Riemannian circle. Therefore the orbit

of Φt0
K is dense or finite. It cannot be dense as K would be everywhere

transverse to γ. Hence, it is finite and K has a closed orbit.
The proposition follows then from the fact that a (complete) Killing

field on a Lorentzian surface that has a closed leaf is periodic. Indeed,
every geodesic emanating from a point x contained in a closed orbit ofK
is mapped to itself by Φt0

K for some t0 > 0. The isometry Φt0
K has a fixed

point x and its differential dΦt0
K(x) is an element of SO0(1, 1) (if C is

not assumed to be orientable we replace t0 by 2t0) having an eigenvalue
equal to 1 (associated to the eigenvector Kx) therefore dΦt0

K = Id and

therefore Φt0
K = Id.

Assume thatK has an infinite number of lightlike orbits. Since space-
like Zoll surfaces are globally hyperbolic, any given spacelike geodesic
γ intersects all lightlike geodesics that contains lightlike orbits of K. If
the complement of the lightlike orbits has only finitely many connected
components, then an open subset of C is foliated by lightlike orbits of
K. If not, the complement has infinitely many connected components.
Since K is smooth and γ is compact, there exist an infinite number of
these components on which K is transversal to γ. Choose any such con-
nected component. If K is spacelike on it, then g(K,K) has a maximum
on the intersection of γ with that component. But then one orbit of K
is a spacelike geodesic and therefore closed. This contradicts the first
part of the proof. So on these infinitely many connected components K
has to be timelike. We can therefore choose γ to be orthogonal to K.
But it means that γ cuts only timelike or singular integral curves of K,
therefore γ contains an infinite number of 0 of K. Which is impossible
since γ is compact. Therefore we can assume that an open subset of C is
foliated by lightlike orbits of K. It follows from the Lorentzian version
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of Wadsley’s theorem, see [9, Theorem 2.3], that the set of lengths of
spacelike geodesics of a spacelike Zoll metric is bounded. On the other
hand, if S is a strip foliated by lightlike orbits of K then S is flat and
isometric to (I × R, dxdy) for some interval I. Thus, for any T > 0
there exists a spacelike geodesic segment contained in S whose length
is greater than T . Hence, (C, g) does not contain any strip foliated by
lightlike orbits of K. q.e.d.

Proposition 3.3. Let (C, g) be a spacelike Zoll cylinder admitting a
non trivial Killing field K. Let η be a lightlike geodesic of g that is trans-
verse to K and α be the function on C defined by α(x) = gx(Kx,Kx).
Then the function α tends to +∞ at both ends of η. Moreover, if K is
not periodic then α vanishes once or twice on η and if there exists x ∈ η
such that α(x) < 0 then it vanishes exactly twice.

Proof. Let η : (tinf , tsup ) → C be a lightlike geodesic that contains a
point x such that α(x) > 0. For any t, if α(γ(t)) > 0 then (α◦γ)′(t) = 0
or (α ◦γ)′′(t) > 0. Indeed, if (α ◦γ)′(t) = 0 then the orbit of K through
γ(t) is a geodesic and therefore, as g is spacelike Zoll, contains conjugate
points. The curvature of g being constant along this geodesic, it has to
be positive and therefore (α ◦ γ)′′(t) > 0 (see Lemma 4.9 of [3]).

Clairaut’s first integral tells us that along any spacelike geodesic γ
the value of g(γ̇,K) is constant. We denote it by kγ . Even if we impose
g(γ̇, γ̇) = 1, it can be chosen as big as wanted by taking an initial
speed at a point where α > 0 sufficiently close to a lightlike direction.
Moreover if K is tangent to γ and if g(γ̇, γ̇) = 1 then the value of α
at this point is equal to k2γ . Any spacelike geodesic being somewhere
tangent to K, the function α is unbounded on C.

We suppose first that K is periodic. The saturation of any lightlike
geodesic η by K is equal to C. We have seen in the proof of Proposition
3.2 that α has critical points. But, we just saw they are all local minima.
It means that α has a minimum that is realized on a unique orbit of
K that we denote by γ0. We choose η(0) such that η(0) ∈ γ0, i.e. such
that it realizes the minimum of α. The restriction of α ◦ η to ]tinf , 0[
and ]0, tsup [ are strictly monotonous and, as any spacelike geodesic has
to be tangent to K on both side of γ0, we see that α ◦ γ → +∞ when t
goes to tinf or tsup .

We can assume now that α vanishes somewhere (but maybe not K).
Let η be a lightlike geodesic that is transverse to K. Let us first suppose
that α(x) > 0 for some x ∈ η. Let V be the connected component of
α−1(]0,∞[) that contains x. The vector field K sends lightlike geodesics
to lightlike geodesics and leaves V invariant. On V the vector field K
is transverse to any lightlike geodesic, thus the flow of K defines an
open equivalence relation on the lightlike geodesics of V . Hence, V is
the saturation of η ∩ V by the flow of K. Let γ be a spacelike geodesic
intersecting V . As the function α vanishes on ∂V the restriction of α
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to γ ∩ V has a local maximum and therefore γ has to be tangent to K
somewhere in V . Therefore α is unbounded on V . Any level set of α|V
intersects η since the saturation of η ∩ V under K is V . Since α|η is
monotonous, the restriction of α to η ∩ V goes to +∞ at one end and
to 0 at the other end.

Let us now see that this other end corresponds to an intersection
between η and a lightlike orbit of K. The function α is strictly mo-
notonous on η ∩ V , therefore for any c > 0, α−1(c) ∩ V is equal to one
orbit of K. Any spacelike geodesic is twice tangent to K, therefore the
boundary of V contains at least two non trivial lightlike orbits of K. We
choose small lightlike transversal τ1 and τ2 along each of them such that
α(τ1 ∩V ) = α(τ2 ∩V ). As the level sets of α on V are equal to orbits of
K, there exists t1 such that Φt1

K(τ1) ∩ τ2 = ∅. If τ1 and τ2 are pieces of

leaves from the same lightlike foliation then Φt1
K(τ1) ∩ V = τ2 ∩ V . But

it would mean that τ1 and τ2 are transversals of the same lightlike orbit
of K, contrary to our assumption. Hence we can assume that η and the
geodesic containing τ1 are leaves of the same foliation. Consequently
there exists t2 such that Φt2

K(τ1) ∩ V ⊂ η and therefore η intersects a
lightlike orbit of K.

In order to see that α goes to +∞ we just have to prove that it
takes positive values again. Let x be a point of η such that α(x) = 0.
According to Proposition 3.2, the function α has to take non zero values
again. Let us suppose that there exists a point y ∈ η such that α(y) < 0.
We choose a parametrization of η starting from y and 3 unit spacelike
geodesics γi starting also from y. The geodesic γ0 is perpendicular to
K and the initial speeds satisfy

|g(γ̇1(0), η̇(0))| < |g(γ̇0(0), η̇(0))| < |g(γ̇2(0), η̇(0))|.
That is γ1 is the closest to η. We remark that the roles of γ1 and γ2 are
permuted if η is replaced by η̂ the other lightlike geodesic emanating
from y.

As above we choose two numbers a < 0 < b such that γ2 is transverse
to K on ]a, b[ and such that K is tangent to γ2 at the points γ2(a) and
γ2(b). Let U be the saturation by K of γ2(]a, b[). Let us see that each
orbit of K cuts at most once γ2(]a, b[). If y ∈ γ2(]a, b[) and Φt0

K(y) ∈
γ2(]a, b[) then, using Clairaut’s first integral and the fact that a flow
always preserves the orientation, we see that Φt0

K(γ2) = γ2. As the set
of tangency points between γ and K is preserved by the flow of K it
follows that Φt0

K(γ2(]a, b[)) = γ2(]a, b[). If t0 = 0 thenK has closed orbits
contrarily to our assumption. The map (s, t) 
→ Φs

K(γ2(t)) therefore
defines coordinates on U such that metric reads α(t)ds2+2dsdt+dt2 (in
order to obtain a 2 we may have to change K by one of its multiples),
with α(0) < 0. The open set U contains lightlike orbits of K. Let
c ∈]0, b[ the smallest number such that α(c) = 0. It corresponds to
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an orbit of K that goes to a zero of K (a separatrix). It implies that
α′(c) > 0 (otherwise DKK(γ2(c)) = 0) therefore α′(t) > 0 for t ≥ c.
Doing the same for the biggest number d ∈]a, 0[ such that α(d) = 0, we
see that U contains exactly 2 lightlike orbits of K that are separatrices
of saddle points.

The intersection of γ0 with U is asymptotic to these lines therefore
η ∩U cannot cut any of them and it has also to be asymptotic to them
in both direction. It implies that η̂ cuts the two lightlike orbits of K
contained in U (see figure 1). Swapping the roles of η and η̂ we see
that η cuts the two lightlike orbits of K contained in the open set U ′
obtained by saturating a segment of γ1.

η̂ γ2

γ0

η

Figure 1. the positions of the curves γ0, γ2, η and η̂ on U .

Thus there are points on η on both side of y where α takes positive
values therefore α goes to infinity on both ends of η. q.e.d.

If (C, g) is a spacelike Zoll surface with a Killing field K then Propo-
sition 3.3 says that in the coordinates obtained by K-saturation of a
lightlike geodesic the metric reads h(y)dx2 + 2dxdy with h defined on
an interval I =]t−, t+[ and h → +∞ when y → t±. We can actually
precise this fact:

Proposition 3.4. Let (C, g) be a spacelike Zoll cylinder admitting a
non zero Killing field K.

1) When K is periodic, then (C, g) is the quotient by a horizontal
translation, of a metric on R

2 that reads h(y)dx2+2dxdy where h
is a positive function that has a unique local minimum and satisfies
limy→±∞ h(y) = +∞.

2) When K does not vanish and is not periodic, then there exists a
finite atlas {(Ui, ψi), i ∈ Z/2kZ} such that ψi(Ui) = R × Ii and
ψ−1i

∗g = hi(y)dx
2 + 2dxdy where the hi are non negative smooth

functions, such that
• hi(0) = 0
• the hi are strictly monotonous on ]t−i , 0[ and on ]0, t+i [
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• limy→t±i
hi(y) = +∞;

• h2i(t) = h2i+1(t) for any t > 0 and h2i(t) = h2i−1(t) for any
t < 0.

3) When K vanishes, then there exists a finite atlas {(Ui, ψi), i ∈
Z/4kZ} of C minus the set of zeros of K such that ψi(Ui) = R×Ii
and (ψ−1i )∗g = hi(y)dx

2+2dxdy where the hi are smooth functions
such that:
• for any i ∈ A, there exists ai < 0 < bi satisfying hi(ai) =
hi(bi) = 0,

• hi is positive and strictly monotonous on ]t−i , ai[ and on ]bi, t
+
i [,

• hi is negative on ]ai, bi[,
• limy→t±i

hi(y) = +∞;

• h2i(t) = h2i+1(t− a2i + a2i+1), for any a2i < t < b2i;
• h2i(t) = h2i+3(t− a2i + a2i+3), for any t < a2i;
• h2i−t(t) = h2i(t− b2i−1 + b2i), for any t > b2i−1.

Proof. The first case is a direct consequence of Proposition 3.3 and
the fact that, in this case, the saturation of any lightlike geodesic of the
universal cover is the entire space. The interval I corresponds to the
interval of definition of the geodesic.

Let us assume now that K is not periodic. Let η1 be a lightlike
geodesic such that g(η̇1,K) = 1. It follows from Proposition 3.3 that
the map (s, t) 
→ Φt

K(η1(s)) is a diffeomorphism onto its image, that we
denote U1. In these coordinates the metric reads h1dt

2 + 2dsdt. Let
U+
1 be a connected component of α−1(]0,+∞[)∩U1. Let η2 be another

geodesic such that g(η̇2,K) = 1 and cutting η1 at a point p ∈ U+
1 .

We define U2 and h2 as above and U+
2 as the connected component of

α−1(]0,+∞[) ∩ U2 that contains p. It is easily verified that η2 cuts all
the leaves of K contained in U+

1 (cp. previous proof), therefore U+
1 =

U+
2 and the functions h1 and h2 coincide on U+

1 . It implies that the
derivative of h1 on the boundary of U+

1 in U1 is equal to the derivative of
h2 on the boundary of U+

2 in U2. According to Proposition 3.3 it means
that h1 changes sign if and only if h2 does. As any pair of points can
be connected by a broken lightlike geodesic, it implies that if a function
hi takes negative values they all do.

The properties of the function hi are also given by Proposition 3.3.
The fact that the atlas is finite is equivalent to the fact that K has only
a finite number of lightlike orbits and therefore follows from Proposi-
tion 3.2. The identities between the hi’s follow from the fact that the
transition maps between the charts are isometries. q.e.d.

Let us remark that Proposition 3.4 actually says that there are only
three possible dynamics for Killing fields of spacelike Zoll cylinders, the
three dynamics that appear on de Sitter space. The study thus splits in
three cases that we will call elliptic, parabolic and hyperbolic in reference
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to the constant curvature case. In order to be able to determine when
such metrics are indeed spacelike Zoll, we have made assumptions on
the hi appearing in Proposition 3.4, see sections 5 and 7.

4. The Conformal Classes

In this section we prove the C0-classification of the conformal classes
of spacelike Zoll cylinders admitting a Killing vector field.

Definition 4.1. Let g, g′ be Lorentzian metrics on a manifold M . A
homeomorphism Φ: M → M is called a conformal homeomorphism if
it maps g-lightlike geodesics to g′-lightlike geodesics up to parameteri-
zation. If such a Φ exists (M,g) and (M,g′) are called C0-conformal.

Note that for surfaces C0-conformality is equivalent to the property
that the lightlike foliations are mapped onto each other. Denote with
[g] the conformal class of the pseudo-Riemannian metric g.

Theorem 4.2. Let (C, g) be a spacelike Zoll cylinder with a non
trivial Killing vector field K. Then (C, g) is C0-conformal to the k-fold
cover of de Sitter space, where 2k is the number of intersection points
between any pair of distinct spacelike geodesics. Besides, if K is periodic
then (C, g) is C∞-conformal to the k-fold cover of de Sitter space.

The proof will be given at the end of the section. In general the C0-
conformality cannot be improved to C2-conformality as Theorem 5.11
shows.

Proposition 4.3. Let (C, g) be a globally hyperbolic spacetime admit-
ting a conformal embedding F : (C, g) → (S1 × R, dϕ2 − dt2). Assume
that there exists a conformal homeomorphism Φ: (C, [g]) → (C, [g]) that
leaves each lightlike foliation of (C, g) invariant. Then F ◦Φ◦F−1 has a
unique extension as a conformal homeomorphism of (S1×R, dϕ2−dt2).
If furthermore Φ is a Cn-diffeomorphism, so will be the extension.

Proof. Since we are interested in the conformal structure only, we
can assume from the very beginning that C is an open subset of S1 ×R

bounded by possible none, one or two closed and simple non timelike
loops.

Consider (S1 × R, dϕ2 − dt2) as the quotient of (R2, dxdy) by the
Z-action generated by (x, y) 
→ (x+

√
2π, y +

√
2π). Lift everything to

R
2 and denote the lift of Φ with Φ̃. Since Φ̃ maps horizontal lines to

horizontal lines and vertical lines to vertical lines, we see that Φ̃(x, y) =

(Φ̃1(x), Φ̃2(y)). By the assumption that (C, g) is globally hyperbolic the

intersection of any lightlike line in (R2, dxdy) with C̃ is an interval. This

implies that the maps Φ̃1(x) = x◦ Φ̃ and Φ̃2(y) = y ◦ Φ̃ are well defined.

Since x(C̃) = y(C̃) = R, we can define the extension of Φ̃ denoted by
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Φ̃e to R
2 by setting Φ̃e(x, y) := (Φ̃1(x), Φ̃2(y)). This extension is unique

if we impose the condition of conformality on the extension. Since Φ̃1

and Φ̃2 are equivariant under the deck transformation group of R2 over

S1×R described above, Φ̃e descends to a conformal homeomorphism of
(S1 × R, dϕ2 − dt2). q.e.d.

Corollary 4.4. If K is a smooth conformal vector field on a globally
hyperbolic cylinder (C, g), then for every smooth conformal embedding
F : (C, g) → (S1 × R, dϕ2 − dt2) there is a unique smooth extension K
of F∗K to a smooth conformal vector field of (S1 × R, dϕ2 − dt2).

Proof. We have seen in the previous proof that the local flow of the
lift of F∗K to the universal cover (R2, dxdy) has the form Φt(x, y) =
(Φ1,t(x),Φ2,t(y)). This implies that the lift of F∗K has the form

(K1(x),K2(y))

for smooth functions K1,K2 on the lift of F (C). Since the intersection
of every horizontal and vertical line with the lift of F (C) is non empty
and connected, we can extend the functions K1 and K2 to R

2 by setting
K(x,y) = (K1,K2) where K1 is the value of the x-part of K on the
intersection of the vertical line through (x, y) with the lift of F (C) and
K2 is the respective value on the intersection of the horizontal line with
the lift of F (C). Since the lift of F∗K is invariant under the group of
deck transformations, it is now obvious that the constructed vector field
induces a smooth conformal vector field on (S1 × R, dϕ2 − dt2). q.e.d.

Corollary 4.5. If (C, g) is spacelike Zoll and admits a nontrivial
Killing vector field K, then the conformal boundary is piecewise smooth
and spacelike. If K has no lightlike leaves then the boundary is spacelike
and smooth.

Proof. By Corollary 4.4 the Killing fieldK admits a unique conformal
extension to S1 × R for every conformal embedding. Since the image
of C is invariant under the flow of the extension, so is the conformal
boundary. Therefore the conformal boundary consists of non timelike
orbits of the extension since (C, g) is globally hyperbolic. By Proposition
3.2 K has only finitely many lightlike orbits. Therefore the conformal
boundary contains only finitely many singularities of the extension, i.e.
the common limit of lightlike orbits. The rest consists of spacelike or
lightlike orbits.

We want to exclude the lightlike case. So assume that there is a
lightlike orbit of K in the boundary of C. We denote it by I. Since the
boundary is invariant under the flow of K the entire lightlike orbit of
K is contained in the boundary. Let η be a lightlike geodesic asymp-
totic to a point in I. By Proposition 3.2 we know that g(K,K) → ∞
as η approaches the boundary. Especially K will be spacelike near
the boundary. We will now consider η only near I. Note that since
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C is 2-dimensional −g is Lorentzian again. Further (C,−g) is time
orientable by Lemma 2.2. Time orient (C,−g) such that K is future

pointing on η. Lift everything to the universal cover (C̃,−g̃). Now de-
note with J+(y) and J−(y) the causal future and past respectively of

y ∈ C̃ relative to −g̃ with the lifted time orientation. Since the lifted
boundary is lightlike as well we see, e.g. by considering the situation
in a conformal embedding into (R2,−dxdy), that for points x on η̃ suf-
ficiently close to the boundary the set J+(x) ∩ J−(Φ1

K̃
(x)) is compact

in C̃, where Φ
K̃

denotes the flow of lifted Killing field K̃. Recall that

every Lorentzian metric on C̃ is causal. It is well known that these
two properties imply that the set of future pointing causal curves, mod-
ulo reparameterizations, from x to Φ1

K̃
(x) is compact in the space of

causal paths of (C̃,−g̃) (Proposition 8.7 in [2]). Therefore x and Φ1
K(x)

are connected by a maximal −g-timelike (i.e. g-spacelike) geodesic of

g-length at least
∫ 1
0

√
g(K,K)dt =

√
g(K,K)(x). The right hand side

diverges as x → ∂C, thus showing that (C, g) contains arbitrarily long
non selfintersecting spacelike geodesic arcs. This contradicts Wadsley’s
Theorem (cp. the last argument in the proof of Proposition 3.2). q.e.d.

Definition 4.6. (a) Let (C, g) a be globally hyperbolic cylinder
and F : (C, g) → (S1 × R, dϕ2 − dt2) a conformal embedding. A

ping-pong in (F (C), dϕ2 − dt2) is a piecewise smooth, closed and
simple lightlike loop with vertices on the boundary.

(b) Let k ∈ N. A globally hyperbolic cylinder (C, g) has the k-ping-
pong-property (k-PPP) if every lightlike geodesic of (C, g) lies on
a ping-pong and every ping-pong has exactly 2k vertices.

The definition of ping-pongs can be interpreted in a dynamical con-
text. We describe this interpretation at the end of this section.

Remark 4.7. Ping-pongs can only exist in conformally compact
globally hyperbolic cylinders. Further, ping-pongs are invariant under
conformal homeomorphisms, i.e. the definition is independent of the
conformal embedding F .

It is clear from the construction of the conformal class of de Sitter
that the k-fold cover of de Sitter has the k-PPP.

The next Proposition is the first step in the proof of Theorem 4.2.

Proposition 4.8. Let (C, g) be a spacelike Zoll cylinder admitting a
non trivial Killing vector field. Then (C, g) has the k-PPP where 2k is
the number of intersections of any pair of spacelike geodesics.

Note that finite covers of de Sitter show that every k ∈ N appears.

Lemma 4.9. If the conformal boundary of a globally hyperbolic cylin-
der in S1 ×R has no lightlike parts, then every lightlike geodesic lies on
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at most one ping-pong. Further if every lightlike geodesic lies on a ping-
pong, then the spacetime has the k-PPP for some k ∈ N.

Proof. If the conformal boundary has no lightlike parts the intersec-
tion of a lightlike line with it is unique. Therefore the vertices and sides
of a ping-pong are uniquely determined by any side of it. Further if the
conformal boundary has no lightlike parts, the intersection of a light-
like geodesic with the boundary varies continuously with the geodesic.
Therefore the first selfintersection of a ping-pong varies continuously.
Since the number of sides and vertices of a ping-pong is finite, it is
constant throughout the set of lightlike geodesics. q.e.d.

Proof of Proposition 4.8. We will show that every lightlike geodesic is
a side of a ping-pong by considering it as the limit of a sequence of
spacelike geodesics.

Let F : (C, [g]) → (S1 × R, [dϕ2 − dt2]) be a conformal embedding.
We will not distinguish between (C, g) and its image under F . Repa-
rameterize all spacelike geodesics of (C, g) as graphs over S1 × {0}, i.e.
graphs of 1-Lipschitz functions on S1.

Now let η be a lightlike geodesic of (C, g). Reparameterize η as a
partial graph over S1 × {0} and denote it with the same letter. Next
consider a sequence of spacelike pregeodesics γn such that γ̇n(0) →
η̇(0). By the Theorem of Arzela-Ascoli a subsequence of γn converges
uniformly to a [dϕ2− dt2]-non timelike curve γ∞ : S1 → S1×R. By our
assumptions η is a subarc of the limit curve.

Since γ∞ is the limit of spacelike pregeodesics and (C, g) is spacelike
Zoll, the limit curve has to be lightlike everywhere on the intersection
with C. This follows from the fact that in C the curve γ∞ is a non
timelike pregeodesic as it is a limit of spacelike pregeodesics. If it is
not lightlike, γ∞ will be a spacelike pregeodesic and therefore nowhere
lightlike, thus contradicting the initial assumption on the sequence.

Fix a closed and simple spacelike geodesic γ0 of (C, g) not contained
in the sequence {γn}n∈N. Since all γn’s intersect γ0 transversally in
exactly 2k points, the limit curve intersects γ0 in exactly 2k points as
well. Note that the intersections cannot approach one another in the
limit since on γ0 the injectivity radius is bounded from below. Therefore
γ∞ contains exactly 2k lightlike pregeodesics of (C, g).

We claim that the limit curve has only vertices on the boundary of
C in S1 ×R. Then γ∞ will be a ping-pong with exactly 2k sides. If the
2k lightlike pregeodesics do not cover the entire limit curve, a piece of
the boundary has to be part of the limit curve. Note that by Corollary
4.5 the conformal boundary of (C, g) consists of spacelike and constant
orbits of the unique conformal extension of the g-Killing vector field K
to (S1 × R, [dϕ2 − dt2]). Let γ∞|[t0,t1] be a subarc lying in a spacelike
orbit of K and U a neighborhood with K|U spacelike. By restricting
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U and [t0, t1] we can assume that g(K,K)|γn has at most one critical
point, a maximum, in U for all γn intersecting U . This follows from
the classification of the Killing vector fields of spacelike Zoll cylinders in
Proposition 3.4. In fact let t be a critical point of g(K,K)|γn that is not
a maximum. Then γn is transversal to K. Thus the K-orbit through
γn(t) is itself a geodesic. If it is spacelike, it has to be closed and K
is spacelike everywhere. In this case there is only one geodesic K-orbit
and we can assume that it lies outside of U . In the other cases Kγn(t)

has to be a non spacelike and again we can assume that it is disjoint
from U . Further note that the maxima of g(K,K)|γn are exactly the
minima of

arcosh∠hyp(K, γ̇n) =
g(K, γ̇n)√

g(K,K)
√

g(γ̇n, γ̇n)
.

Note that this definition makes sense without referring to g, since it
coincides with the respective quotient in (S1 × R, dϕ2 − dt2). Conse-
quently, by Proposition 3.4, the quotient is monotonous in U except
at its minima. From our assumptions we know that γn|[t0,t1] converges
uniformly to γ∞|[t0,t1] a piece of a spacelike orbit of K. Use K and a
curve orthogonal to K in U to introduce coordinates (w, z) on U such
that ∂w = K and ∂z ⊥ K relative to dϕ2 − dt2. Note that on the inter-
section with C the orthogonality also holds with respect to g. Choose
constant 0 < C1, C2 < ∞ such that the absolute value of the slope of
lightlike vectors in these coordinates is bounded between C1 and C2.
Reparameterize the γn and γ∞ on the intersection with U as graphs
over the w-axis. Let w0 := γ∞(t0) < w1 := γ∞(t1). For ε > 0 choose N
such that

γn|[w0,w1] ⊂ U ∩ {|z| < εC2(w1 −w0)}
for all n ≥ N . Since the slope of γ̇n is bounded by C2 and z(γn) has at
most one critical point in U , the slope of γ̇n is bounded by C2ε on a set
A ⊆ [w0, w1] of measure at least (w1 − w0)(1− 2C2ε).

Now we can give a bound on g(K,γ̇n)√
g(K,K)

√
g(γ̇n,γ̇n)

on A. In fact we know

that dϕ2 − dt2 in the (w, z)-coordinates reads as Edw2 −Gdz2 for some
positive smooth functions E,G on U . The upper bound on the slope of
the lightlike directions is equivalent to saying E−GC2

2 ≤ 0, i.e. G
E ≥ 1

C2
2

.

The lower bound on the slope is equivalent to saying E −GC2
1 ≥ 0, i.e.

G
E ≤ 1

C2
1

. For γ̇n = (1, γ̇z,n) we then have

1− G

E
γ̇2z,n ≥ 1− γ̇2z,n

C2
1

≥ 1− ε2C2
2

C2
1

on A. As E = g(K,K) we have√
C2
1 − C2

2ε
2

C1

√
g(K,K) ≤

√
g(γ̇n, γ̇n).
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Thus we have

Lg(γn) ≥
∫
A

√
g(γ̇n, γ̇n)dt

≥ (w1 − w0)(1− 2C2ε)

√
C2
1 − C2

2ε
2

C1
inf
U

√
g(K,K).

Since we can choose U as small as we wish, infU
√

g(K,K) will diverge
to∞ by Proposition 3.4. Thus the g-length of the γn diverges as n → ∞.
This contradicts the corollary of Waldsley’s theorem asserting that the
geodesic flow on the unit tangent bundle of a spacelike Zoll manifold is
periodic. q.e.d.

Proposition 4.10. A globally hyperbolic cylinder (C, g) has the k-
PPP and the conformal boundary contains no lightlike parts iff it is C0-
conformal to the k-fold cover of de Sitter space. Further if the conformal
boundary is Cn-spacelike, then the conformal homeomorphism can be
chosen to be a Cn-diffeomorphism.

Assume that the globally hyperbolic cylinder (C, g) has the k-PPP
and the conformal boundary contains no lightlike parts. Lift everything
to the universal cover (R2, dxdy) of (S1 × R, dϕ2 − dt2) with the deck

transformation group generated by (x, y) 
→ (x+
√
2π, y +

√
2π). Then

the boundary of the universal cover C̃ is the union of the graphs of
two

√
2π-equivariant homeomorphisms θ± : R → R, i.e. θ±(x+

√
2π) =

θ±(x) +
√
2π, over the x-axis (θ− < θ+).

Lemma 4.11. Assume that the conformal boundary of the globally
hyperbolic cylinder (C, g) does not contain any lightlike parts. Then
(C, g) has the k-PPP iff ((θ−)−1 ◦ θ+)k(x) = x+

√
2π for all x ∈ R.

Proof. Let x ∈ R. Then (x, θ+(x)) is the future endpoint of a vertical

lightlike g̃-geodesic γ+x of (C̃, g̃) in R
2. The point ((θ−)−1◦θ+(x), θ+(x))

is the past endpoint of the horizontal lightlike g̃-geodesic γ−
θ+(x)

of (C̃, g̃)

in R
2 whose future endpoint in R

2 is (x, θ+(x)). Now we can consider

the vertical lightlike geodesic of (C̃, g̃) whose past endpoint is ((θ−)−1 ◦
θ+(x), θ+(x)) and start the above construction over again. This defines

inductively a series of wedges in (R2, dxdy) with vertices in ∂C̃ and sides

in C̃.
Now if (C, g) has the k-PPP take the lift of a ping-pong that contains

a given lightlike g̃-geodesic γ+x . The ping-pong in (C, g) returns to
the same geodesic after k wedges in (S1 × R, dϕ2 − dt2). By the first
paragraph this implies that ((θ−)−1 ◦ θ+)k(x) = x +

√
2π. Since any

γx lies on the lift of a ping-pong, we see that the k-PPP implies the
identity for ((θ−)−1 ◦ θ+)k.
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For the other direction we can restrict ourself to geodesic lifting to
vertical lightlike geodesics since the claim for geodesics lifting to hor-
izontal lightlike geodesics follows by considering the vertical lightlike
geodesic with the same future endpoint as the given horizontal lightlike
geodesic. If the identity ((θ−)−1 ◦ θ+)k(x) = x +

√
2π holds for all x

then the projection to S1 × R of the wedges constructed in the first
paragraph will form a k-ping-pong, thus showing the lemma. q.e.d.

Proof of Proposition 4.10. The second assertion will readily follow from
the construction in the first part. Further if (C, g) is C0-conformal to
the k-fold cover of de Sitter space, then the k-PPP is obvious for (C, g).
The conformal boundary does not contain any lightlike parts either since
this is invariant under conformal homeomorphisms.

Using the Lemma choose a
√
2π-equivariant homeomorphism ψ : R →

R conjugating (θ−)−1 ◦ θ+ to a translation by
√
2π
k . Applying (ψ−1 ◦

θ+ ◦ ψ)−1 to both sides we obtain

(ψ−1 ◦ θ− ◦ ψ)−1(x)− (ψ−1 ◦ θ+ ◦ ψ)−1(x) =
√
2π

k
.

Now we can isotope ψ−1 ◦ θ− ◦ ψ and ψ−1 ◦ θ+ ◦ ψ simultaneously to
translations. Note that for the k-fold cover of de Sitter the boundary

is given by two translations whose difference is
√
2π
k . Thus the result of

this isotopy is a conformal homeomorphism of (C, g) to the k-fold cover
of de Sitter space.

Finally the conformal boundary is Cn-spacelike if, and only if the
homeomorphisms θ± are Cn-diffeomorphisms. Since (θ−)−1 ◦ θ+ is pe-
riodic the conjugation ψ can be chosen to be Cn as well. This shows
that in this case (C, g) is Cn-conformal to the k-fold cover of de Sitter
space. q.e.d.

Proof of Theorem 4.2. The proof follows from Corollary 4.5, Proposi-
tion 4.8 and Proposition 4.10. In fact if (C, g) is spacelike Zoll then
by Corollary 4.5 the conformal boundary does not contain any light-
like parts. Further by Proposition 4.8 (C, g) has the k-PPP for some
k ∈ N. By Proposition 4.10 these two properties imply that (C, g) is
C0-conformal to the k-fold cover of de Sitter space. If K is periodic
then by Corollary 4.5 the boundary is smooth and by Proposition 4.10
the conformal homeomorphism is a smooth diffeomorphism. q.e.d.

As announced we give a dynamical interpretation of ping-pongs. Con-
sider a globally hyperbolic conformally compact cylinder (C, g) whose
conformal boundary has no lightlike parts. Then we know that ev-
ery lightlike geodesic lies on a unique lightlike polygonal chain (with
self intersections) with vertices on the conformal boundary. The map
(θ−)−1 ◦ θ+ can be defined as before and induces a homeomorphism of
the future conformal boundary of (C, g). The difference is that i.g. the
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polygonal chains do not close, i.e. no power of this homeomorphism
is the identity. In fact a periodic point corresponds to a closed chain.
If the chain has no selfintersections the lightlike geodesic is a side of
a ping-pong. It is conceivable that this map completely encodes the
conformal class of (C, g) on every level of differentiability.

5. Parabolic case

In this section we will describe a family of parabolic spacelike Zoll
surfaces, i.e. admitting an atlas similar to the one described at point 2
of Proposition 3.4. This family will allow us to construct several inter-
esting examples, such as Moebius strip all of whose spacelike geodesics
are closed with non constant curvature or spacelike Zoll cylinders not
smoothly conformal to a cover of de Sitter space. We start with the
following definition of a “parabolic atlas”.

Definition 5.1. Let (C, g) be a Lorentzian cylinder with an atlas
A = {(Ui, φi); i ∈ Z/2kZ}. We denote by Φij = φj ◦ φ−1i the transition
functions of A.
We will say that A is a parabolic atlas of (C, g) if:

1) for all i ∈ Z/2kZ, the image of φi is R
2;

2) the transition functions are the following:

Φ2i,2i+1 : H+ → H+

(x, y) 
→
(
−x+ 2

y , y
)
,

if i = 0 Φ2i−1,2i : H− → H−

(x, y) 
→
(
−x+ 2

y , y
)
,

Φ2k−1,0 : H− → H−

(x, y) 
→
(
−x+ 2

y + τ, y
)
,

where H+ = {(x, y) ∈ R
2; y > 0}, H− = {(x, y) ∈ R

2; y < 0} and
τ ∈ R;

3) for all i ∈ {1, . . . 2k},
gi = φ−1i

∗g = y2dx2 + 2dxdy + fi(y)dy
2,

where fi is a smooth function satisfying 1 − y2fi(y) > 0 for all
y ∈ R.

Remark 5.2. Note that a parabolic atlas induces an analytic struc-
ture on C. The Killing field K is according to the conditions analytic as
well. In opposition the metric g need not be analytic, but the g-length
of K is again an analytic function on C.

Clearly, Lorentzian cylinders admitting a parabolic atlas posses a
Killing vector field K that is everywhere spacelike except on a finite
number of lightlike orbit (K reads as ∂x in any map φi). De Sitter
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Figure 2. The manifold, the open set U1 and the Killing
field (k = 2)

space clearly admits such an atlas. It has the following parameters
k = 1, τ = 0 and f1 = f2 = 0. Let us note that if we modify only τ ,
the cylinder obtained still has constant curvature equal to 1 but is not
isometric to de Sitter space (for example its spacelike geodesics are no
more closed).

We remark also that for any i ∈ Z/2kZ the restrictions of f2i and
f2i+1 to H+ have to be equal as well as the restrictions of f2i−1 and f2i
to H−. In particular if g is analytic then f1 = f2 = · · · = f2k.

Proposition 5.3. Let (C, g) be a spacelike Zoll cylinder admitting a
parabolic Killing field K, i.e. that is not periodic and does not vanish.
Let σ be the curvature of g and α : C → R the function defined by
α(p) = gp(Kp,Kp). There exists l > 0 such that (C, l · g) admits a
parabolic atlas if and only if for any p ∈ C, α(p) = 0 implies σ(p) > 0
and dσ(p) = 0.

Proof. According to Proposition 3.2, K has spacelike and lightlike
orbits but no timelike ones. Let η be a lightlike geodesic of (C, g)
transversal to K. According to Proposition 3.3, the function α van-
ishes somewhere on η and goes to +∞ on both ends of η.

Let U be the saturation of η by K. There exists a lightlike geodesic
vector field Y on U tangent to η such that [Y,K] = 0. It allows us to
find coordinates on U such that g reads as h(y)dx2 +2dxdy with h ≥ 0
for (x, y) ∈ R × I, according to Proposition 3.4, h vanishes at only one
point. The assumption on the curvature implies that h(y) = 0 implies
h′′(y) > 0. Choose the coordinates so that h(0) = 0 and denote by a
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the function defined by h(y) = y2e2a(y). Rescaling g we assume that
a(0) = 0. The hypothesis σ′(0) = 0 entails that a′(0) = 0.

Let γ(t) = (x(t), y(t)) be the unique curve satisfying:

(1)

⎧⎨⎩
g(γ′(t), ∂x) = 1

γ′(t).yea(y) = 1
γ(0) = 0

i.e. ⎧⎨⎩
x′y2e2a(y) + y′ = 1

y′(t)ea(y)(1 + a′(y)y) = 1
γ(0) = 0

Fact 5.4. For all y ∈ R, we have 1 + a′(y)y = 0.

Indeed, if we have 1 + a′(y)y = 0 then the curve t 
→ (t, y) is a
complete spacelike geodesic. As it is not closed, it contradicts the fact
that the metric is spacelike Zoll.

Thanks to Fact 5.4, we can write

y′ =
e−a(y)

1 + ya′(y)

x′ =
e−2a(y)

1 + ya′(y)
1 + ya′(y)− e−a(y)

y2
.

Therefore
∂x

∂y
= e−a(y)

1

y2

(
1 + ya′(y)− e−a(y)

)
as a′(0) = 0 we see that ∂x

∂y is well defined on R and smooth. It implies

that γ is the graph of a function, in particular it cuts each horizontal
line exactly once. The fact that h goes to infinity on both ends of η says
that γ is defined on R.

Hence, the map Φ : (u, v) 
→ γ(v)+(u, 0) is a smooth diffeomorphism.
Equation (1) exactly says that Φ∗g|U has the desired form. Repeating
this construction for any lightlike geodesic transverse to K gives us an
atlas of (C, g) such that the metric has the right expression. The last
things to check are the transition functions.

If η′ is another lightlike geodesic and if we denote by V its saturation,
then there are 3 possibilities: either U = U ′, either U ∩ U ′ = ∅ or
V := U ∩ U ′ is an half plane of U ({v > 0} or {v < 0}). The only case
to deal with is the third one. In that case there exists a geodesic δ in
V that is perpendicular to K and such that the orthogonal symmetry
relatively to δ sends η on η′ (see [1] for details). It is not difficult to
check that this symmetry is the transition function we were looking
for. It has the right expression up to a possible horizontal translation.
However, it is not difficult to modify the atlas so that these translations
are trivial except one.
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Reciprocally, it is easily checked that a Lorentzian cylinder admitting
a parabolic atlas satisfies the conditions on the curvature given in the
statement. q.e.d.

Remark 5.5. If (C, g) is a spacelike Zoll cylinder admitting a par-
abolic atlas A, then the parameter k of A is equal to the number k in
Theorem 4.2.

At the moment we do not know if there exists a spacelike Zoll metric
with a parabolic Killing field that does not admit a parabolic atlas.

We are able to describe all the spacelike Zoll surfaces admitting a par-
abolic atlas:

Theorem 5.6. Let (C, g) be a Lorentzian cylinder admitting a par-
abolic atlas A = {(Ui, φi); i ∈ Z/2kZ}. The surface (C, g) is spacelike
Zoll if and only if the parameter τ of A vanishes and there exist k smooth
functions κ0, . . . κk−1 : R → R such that

1) for all t ∈ R, for all j ∈ Z/kZ, κj(t) ≥ −1;
2) all the functions κj have the same infinite Taylor expansion at 0

and satisfy κj(0) = κ′j(0) = 0;

3) the function
∑

j κj is odd;

4) for all i ∈ Z/2kZ the function fi such that

gi = φ−1i
∗g = y2dx2 + 2dxdy + fi(y)dy

2,

satisfies

fi(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− (1 + κ�i/2	)2

y2
if y > 0

1− (1 + κ
i/2�)2

y2
if y < 0,

where �.� (resp. �.�) is the lower (resp. upper) integral part.

Proof. Let A be a parabolic atlas of (C, g). We denote as above by
gi the expression of g in the coordinates (Ui, φi). We recall that there
exist functions fi such that the gi’s read as y2dx2 + 2dxdy + fi(y)dy

2.

Lemma 5.7. Let γi : t 
→ (x(t), y(t)) be a unit spacelike geodesic of
(R2, gi). There exists c > 0 such that γi is contained between the lines
y = c and y = −c and is tangent exactly once to each of these lines.
Moreover the geodesic segment between these points satisfies

∂x

∂y
=

c
√

1− y2fi(y)−
√

c2 − y2

y2
√

c2 − y2
.

Proof. Let γi : t 
→ (x(t), y(t)) be a unit spacelike geodesic of (R2, gi).
It is well know that Killing vector fields induce first integrals for the
geodesic field, more precisely the fact that the vector field ∂x is Killing
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implies that gi(∂x, γ
′
i) is constant. Therefore, there exists c ≥ 0 and

ε1 ∈ {±1} such that:

(2)

{
y2x′ + y′ = ε1c

y2x′2 + 2x′y′ + fi(y)y
′2 = 1.

This system of equations can be solved if and only if c2−y2 ≥ 0 proving
that c = 0 and −c ≤ y ≤ c. Solving it we find:

x′ =
ε1c(1 − y2fi(y)) + ε

√
(1− y2fi(y))(c2 − y2)

y2(1− y2fi(y))

y′ = −ε

√
c2 − y2

1− y2fi(y)
,

where ε ∈ {±1}. It implies that

∂x

∂y
=

−εε1c
√

1− y2fi(y)−
√

c2 − y2

y2
√

c2 − y2
.

The number ε1 determines the orientation of the geodesic and ε changes
only when y = ±c.

The fact that for any y0 such that 0 < |y0| < c the integral∫ y0

0

−c
√

1− y2fi(y)−
√

c2 − y2

y2
√

c2 − y2
dy

diverges implies that γ is tangent at most once to each line y = ±c.
The fact that for any y0 ∈]0, c[ and any y1 ∈]− c, 0[ the integrals∫ c

−c

c
√

1− y2fi(y)−
√

c2 − y2

y2
√

c2 − y2
dy∫ c

y0

−c
√

1− y2fi(y)−
√

c2 − y2

y2
√

c2 − y2
dy∫ y1

−c

−c
√

1− y2fi(y)−
√

c2 − y2

y2
√

c2 − y2
dy

converge implies that γ is tangent at least once to each line y = ±c.
q.e.d.

Proposition 5.8. Let γ be a unit spacelike geodesic of (C, g). The
geodesic γ is closed if and only if∫ c

−c
c

∑
i∈Z/2kZ(

√
1− y2fi(y)− 1)

y2
√

c2 − y2
dy = −τ,

where τ is the term of translation appearing in Φ2k−1,0 and c = |g(γ′,K)|.
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Proof. Let γ be a geodesic of g and p0, . . . , pl, . . . the points where γ
is tangent to the Killing field K (such points exists according to Lemma
5.7). For each geodesic segment [pl, pl+1], there exist an open set Uil
containing it. Clearly, il+1 = il + 1 and i0 = i2k. Without loss of
generality we can suppose il = l mod 2k.

For any i ∈ Z/2kZ, we set:

Ik(c) =

∫ c

−c

c
√

1− y2f0(y)−
√

c2 − y2

y2
√

c2 − y2
dy.

If p0 has coordinates (x0,−c) on U0 then the coordinates of p1 on U0

are

(x0 + I0(c), c) .

It follows that the coordinates of p1 on U1 are(
− [x0 + I0(c)] +

2

c
, c

)
and the coordinates of p2 on U1 are (remark that the orientation of γ
changed) (

− [x0 + I0(c)] +
2

c
− I1(c),−c

)
.

We can continue the same way, in order to obtain the coordinates of the
points pl on Ul−1 and Ul. In particular, we see that the coordinates of
p2k on U0 are (

x0 +
2k−1∑
l=0

Il(c)− 4k

c
+ τ,−c

)
.

It implies that γ is closed if and only if p0 = p2k if and only if

(3)

2k−1∑
l=0

∫ c

−c

c
√

1− y2fl(y)−
√

c2 − y2

y2
√

c2 − y2
dy =

4k

c
− τ.

We consider now the metric g0 of constant curvature 1 given by g0i =
y2dx2 + 2dxdy and γ0 the g0-spacelike geodesic starting horizontally
from p0. We denote by p0l the points of tangency of γ0 with K. Doing
the same computation as above we see that the coordinates of p02k on
U0 are (

x0 + 2k

∫ c

−c

c−
√

c2 − y2

y2
√

c2 − y2
dy − 4k

c
+ τ,−c

)
.

Computing the integral above, we find that its value is 2
c and therefore

the coordinates of p02k are in fact

(x0 + τ,−c)
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(reproving that all the spacelike geodesics of de Sitter space are closed).

In order to finish the proof, we just replace 4k
c by 2k

∫ c
−c

c−
√

c2−y2
y2
√

c2−y2 dy in

(3). q.e.d.

Lemma 5.9. If h : R → R is a function such that the function

H : c 
→
∫ c

−c
c

h(y)

y2
√

c2 − y2
dy

is constant, then h is odd and H = 0.

Proof. We first remark that H(c) only depends on the even part of
h. Thus we will assume that h is even and prove that it has to vanish.

We define a function I on R
+ by

I(a) =

∫ a

0

H(t)√
a2 − t2

dt.

We have

I(a) =

∫ a

0

2t√
a2 − t2

∫ t

0

h(s)

s2
√
t2 − s2

ds dt

=

∫ a

0

2h(s)

s2

∫ a

s

t√
(a2 − t2)(t2 − s2)

dt ds

=

∫ a

0

2h(s)

s2
ds

∫ +∞

0

dx

1 + x2
= π

∫ a

0

h(s)

s2
ds

with x =
√

t2−s2
a2−t2 .

Moreover if H is constant, we see by direct computation that I is also
constant. It follows from I ′ = 0 that h = 0. q.e.d.

For i ∈ {0, . . . , k − 1} we define the function κi by

κi(y) =
√

1− y2f2i(y)− 1.

These functions clearly satisfy points 1 and 2 of the statement. It follows
from Lemma 5.9 and Proposition 5.8 that the geodesics of (C, g) are all
closed if and only if the function c 
→ ∑

i∈Z/2kZ κi is odd and τ = 0.

q.e.d.

Corollary 5.10. There exist smooth Möbius strips all of whose space-
like geodesics are closed with non constant curvature and whose orien-
tation cover admits a parabolic atlas. Moreover, if the orientation cover
of a non constant curvature Möbius strip all of whose spacelike geodesics
are closed admits a parabolic atlas then it is not analytic and it is C0-
conformal to a k-cover of de Sitter with k > 1.

Proof. Let (C, g) be a parabolic spacelike Zoll cylinder and A be a
parabolic atlas of (C, g). If (C, g) is analytic (or if k = 1) then the
functions κi given by Theorem 5.6 have to be equal and therefore odd.
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It follows that (C, g) cannot be the lift of a metric on the Möbius strip
unless the κi vanish.

Let κ be a smooth function on R with support on [1, 2] and values in
[−1, 1]. We define now three functions κ0, κ1 and κ2 by κ0(t) = κ(t),
κ1(t) = −κ(−t) and κ3(t) = −κ(t) + κ(−t). These functions clearly
satisfy points 1, 2 and 3 of the statement of Theorem 5.6. Therefore
they induce a spacelike Zoll metric g on the cylinder (the parameters of
the parabolic atlas being k = 3 and τ = 0).

Let σ : C → C be the map sending Ui on Ui+3 for any i ∈ Z/6Z
and that reads (x, y) 
→ (−x,−y) in coordinates. This map is clearly a
smooth involution with no fixed points. Moreover, despite appearances
(because the orientations of the frame (∂x, ∂y) are opposite on Ui and
Ui+3), it does not preserve the orientation. Hence C/σ is a smooth
Möbius strip. By a direct computation, we see that the metric g is
invariant by σ and therefore defines a Lorentzian metric on the Möbius
strip all of whose spacelike geodesics are closed. Further we can choose
κ such that the curvature of g is non constant. q.e.d.

Theorem 5.11. There exists a spacelike Zoll cylinder, admitting a
parabolic atlas with parameter k > 1, that is not C2-conformal to de
Sitter and whose conformal boundary is not C2.

Proof. Let (C, g) be a time-oriented spacelike Zoll admitting a para-
bolic atlas and let F1 and F2 be its lightlike foliations. We denote by
L1 and L2 their spaces of leaves. As (C, g) is globally hyperbolic, we
know that the Li are diffeomorphic to circles. The time orientation and
the orientation of (C, g) define an orientation on the Li.

We define the first reflexion map P (for Ping) from L1 to L2 that
associates to a lightlike geodesic η ∈ L1 the lightlike geodesic η̄ ∈ L2

such that η and η̄ intersects on the future conformal boundary of (C, g).
It follows from the fact that the boundary contains no lightlike parts,
see Corollary 4.5, that P is well defined and continuous. Actually, we
do not need to have a conformal embedding in the flat cylinder to define
the map P , P (η) is the unique geodesic such that η ∩P (η) = ∅ and any
η̂ ∈ L1 sufficiently closed to η and on one side intersects P (η).

Clearly, any smooth parametrized transversal cutting at most once
each leaf of Fi defines smooth local coordinates on Li. It follows from the
definition of P in terms of reflexion on the future conformal boundary
that P is smooth where the boundary is spacelike and smooth. More-
over, if it is smooth but lightlike at a point then the graph of P has a
horizontal or vertical tangent at this point therefore this property can be
read off of P . It follows from the other definition, that the regularity of
P is a conformal invariant of (C, g). In particular, if (C, g) is conformal
to a finite cover of de Sitter space then P has to be smooth. Corollary
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4.5 implies that P is smooth except maybe at points of L1 correspond-
ing to lightlike orbits of K. Let us look at P at a neighborhood of such
a leaf.

Let η0 ∈ L1 that is a lightlike orbit of K. For example η0 is the
curve contained in U0 whose equation is y = 0. The curve y 
→ (0, y) is
transversal to F1 and cuts each element of F1 at most once, therefore it
defines local coordinates on L1 around η0. Possibly changing the time
orientation, we can assume that the leaf P (η0) is the geodesic {y = 0}
contained in U1. We define as above coordinates on L2 around P (η0).

Lemma 5.12. Let κ0 and κ1 be the functions given by Theorem 5.6.

For i = 0 or 1, let hi be the primitive vanishing at 0 of s 
→ κi(s)
s2

and let δi = lims→−∞ hi(s). Denoting by P the expression of P in the
coordinates defined above, we have for y > 0

P (y) =

⎧⎪⎪⎨⎪⎪⎩
F−1

(
2

y
+ δ1 − h0(y)

)
if y > 0

G−1
(
−2

y
− δ0 + h0(y)

)
if y < 0

where F is the map defined for z < 0 by F (z) = −δ1 + h1(z)− 2
z and G

the map defined for z > 0 by G(z) = δ0 +
2
z − h0(z).

Proof. On Ui the metric reads y2dx2+2dxdy+fi(y)dy
2 therefore any

lightlike geodesic of Ui different from {y = 0} is transverse to ∂x. The

vector fields defined by
κ�i/2�(y)

y2
∂x+∂y and −2+κ�i/2�(y)

y2
∂x+∂y for y > 0

and by
κ�i/2�(y)

y2 ∂x + ∂y and −2+κ�i/2�(y)

y2 ∂x + ∂y for y < 0 are lightlike

and smooth. Therefore any lightlike geodesic of {y > 0} is the graph

of a function y 
→ ∫ κ�i/2�(s)

s2
ds = hi(y) + cst or y 
→ ∫ −2+κ�i/2�(s)

s2
ds =

2
y − h�i/2	(y) + cst and any lightlike geodesic of {y < 0} is the graph of

a function y 
→ ∫ κ�i/2�(s)

s2
ds = h
i/2�(y) + cst or y 
→ ∫ −2+κ�i/2�(s)

s2
ds =

2
y − h
i/2�(y) + cst.

Let η be a lightlike geodesic of F1 (the foliation that has {y = 0} as
a leaf) intersecting H+

0 . It cuts {x = 0} at a point (0, y1). The image of
(0, y1) by the transition function Φ0,1 is ( 2

y1
, y1), therefore η∩H+

1 is the

graph of a map h0 + c1. As (2/y1, y1) ∈ η, we have c1 =
2
y1

− h0(y1). It

follows that η ∩H−
1 is the graph of the map h1 + c1. This implies that

η is asymptotic to the vertical line {x = δ1 + c1} when y goes to −∞.
We now define the map F . Let z be a negative number and η̄ be the

geodesic of F2 that contains the point (0, z) of H
−
1 . Its intersection with

H−
1 is the graph of the function y 
→ 2

y − h1(y) + h1(z)− 2
z therefore it

is asymptotic to the vertical line {x = −δ1 + h1(z) − 2
z} when y goes
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to −∞. We set therefore F (z) = −δ1 + h1(z) − 2
z . By definition the

function F is strictly increasing and therefore invertible.

(0,y) (2/y,y)

ηη

P (η)

(0,P (y))

Φ0,1

Figure 3. The map P for y > 0.

We have η̄ = P (η) if and only if η ∩H−
1 and η̄ ∩H−

1 are asymptotic
to the same vertical line. Indeed, if η is asymptotic to {x = a} and η̄ to
{x = b}, then for b < a the curves have to intersect and so η̄ = P (η). If
a > b and η̄ = P (η) then the leaf of F1 asymptotic to {x = a+b

2 } has to

cut η̄. But as b < a+b
2 they have to cut twice which is impossible since

the foliations F1 and F2 are transverse. It follows that η̄ = P (η) if and
only if F (z) = δ1 +

2
y1

− h0(y1) i.e. that P (y) = F−1(δ1 + 2
y1

− h0(y1))

for any y > 0.
Let us see now what happens for a geodesic η that intersects H−

0 . We
denote by (0, y2) the intersection of η with {x = 0}. Note that y2 < 0.
The curve η ∩ H−

0 is the graph of y 
→ 2
y − h0(y) + h0(y2) − 2

y2
. It is

asymptotic to {x = −δ0 + h0(y2) − 2
y2
} when y goes to −∞. Hence

P (η) ∩H0 is the graph of y 
→ h0(y)− 2δ0 + h0(y2)− 2
y2

and P (η) cuts

y = 0 at the point (−2δ0 + h0(y2)− 2
y2
, 0).

We now define the map F . Let z be a positive number and η̄ be the
geodesic of F2 that contains the point (0, z) of H

+
1 . Its intersection with

H+
0 contains the point (2/z, z) therefore it is the graph of the function

y 
→ h0(y)− h0(z) +
2
z . Thus it cuts the set {y = 0} of U0 at the point

(h1(z) +
2
z , 0). We define G by G(z) = −h0(z) +

2
z . Similarly to the

previous case, we have η̄ = P (η) if and only if G(z) = −2δ0+h0(y2)− 2
y2

i.e. P (y) = G−1(−2δ0 + h0(y2)− 2
y2
) for any y < 0. q.e.d.

We now choose some spacelike Zoll cylinder (C, g) admitting a para-
bolic atlas such that κ0, κ1 coincide with y 
→ y2 on a neighborhood of
0 but δ0 = δ1 (using Lemma 5.12’s notations). Clearly, such a surface
exits, but only for k ≥ 3. Near 0 we thus have h0(s) = h1(s) = s and
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(0,y)

P (η)

η

P (η)

(0,P (y))

Φ0,1

Figure 4. The map P for y < 0.

therefore for small z and large y > 0

F (z) =− δ1 + z − 2

z
, G(z) =

2

z
− z,

F−1(y) =
y + δ1 −

√
(y + δ1)2 + 8

2
, G−1(y) =

−y +
√

y2 + 8

2
,

where we used that F−1 and G−1 tend to 0 when y → +∞. Hence, for
small y,

(4) P (y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2

⎛⎝2

y
+ 2δ1 − y −

√[
2

y
+ 2δ1 − y

]2
+ 8

⎞⎠ if y > 0

1

2

⎛⎝2

y
+ 2δ0 − y +

√[
2

y
+ 2δ0 − y

]2
+ 8

⎞⎠ if y < 0.

Consequently P is C1 but not C2. It means that the metric is not
C2-conformal to a finite cover of de Sitter space and that its conformal
boundary is not C2. q.e.d.

6. Elliptic case

Now we look at spacelike Zoll surfaces admitting a periodic Killing
field. We will call them elliptic spacelike Zoll surfaces. This case is
much simpler than the former one and very similar to the Riemannian
one treated in [3]. Moreover, in this case we don’t need to make any
extra assumptions on the metric. Our result in this case is the following:

Theorem 6.1. If (C, g) is an elliptic cylinder all of whose spacelike
geodesics are closed then there exist a smooth function f : R → R such
that f(y)(y2+1)−1 < 0 for all y ∈ R and numbers l > 0 and τ > 0 such
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that (C, l g) is isometric to the quotient of R2 endowed with the metric
(y2 + 1)dx2 + 2dxdy + f(y)dy2 by the translation (x, y) 
→ (x+ τ, y).

Moreover such a metric has all its spacelike geodesics closed if and
only if there exist p, q in Z

∗, and an odd function κ bounded below by
− pτ

2qπ such that

f(y) =
1−

(
κ(y) + pτ

2qπ

)2

y2 + 1
.

In particular elliptic Möbius strips all of whose spacelike geodesics are
closed have constant curvature.

Sketch of proof. It can be proven simply by following the scheme of
proof of Section 5. The adaptation is straightforward. In particular, the
metric has closed spacelike geodesics if and only if there exists integers
p and q such that for any c > 0

2q

∫ c

−c

√
c2 + 1

√
1− f(y)(y2 + 1)

(1 + y2)
√

c2 − y2
dy = pτ,

but the cylinder is spacelike Zoll if and only if p = 1. Using the fact
that ∫ c

−c

√
c2 + 1

(1 + y2)
√

c2 − y2
dy = π

we find that the metric has closed spacelike geodesics if and only if

(5)

∫ c

−c

√
c2 + 1(

√
1− f(y)(y2 + 1)− pτ

2πq )

(1 + y2)
√

c2 − y2
dy = 0 ∀c > 0

Adapting Lemma 5.9, we see that y 
→ √
1− f(y)(y2 + 1) − pτ

2πq

is odd. For metrics g lifted from the Möbius strip this implies that√
1− f(y)(y2 + 1)− pτ

2πq vanishes and g has constant curvature. q.e.d.

7. The hyperbolic case

We are interested now in spacelike Zoll surfaces with a Killing field
that vanishes somewhere. Again we start by describing a family of
Lorentzian atlases.

Definition 7.1. Let (S, g) be a Lorentzian surface and let A =
{(Ui, φi); i ∈ Z/4kZ} be an atlas of it. We denote by Φij = φj ◦φ−1i the
transition functions of A.
We will say that A is a hyperbolic atlas with parameter τ of (S, g) if:

1) for all i ∈ Z/4kZ, the image of φi is R
2;
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2) the transition functions are the following:

Φ2i,2i+1 : P0 → P0

(x, y) 
→
(
−x+ log

(
y+1
−y+1

)
, y
)
,

if i = 0 Φ2i−2,2i+1 : P− → P−
(x, y) 
→

(
−x+ log

(
y+1
y−1

)
, y
)
,

Φ4k−2,1 : P− → P−
(x, y) 
→

(
−x+ log

(
y+1
y−1

)
+ τ, y

)
,

if i = 0 Φ2i−1,2i : P+ → P+

(x, y) 
→
(
−x+ log

(
y+1
y−1

)
, y
)
,

Φ4k−1,0 : P+ → P+

(x, y) 
→
(
−x+ log

(
y+1
y−1

)
− τ, y

)
,

where P+ = {(x, y) ∈ R
2; y > 1}, P0 = (x, y) ∈ R

2;−1 < y < 1}
and P− = {(x, y) ∈ R

2; y < −1} and τ ∈ R;
3) for all i ∈ {1, . . . 4k},

gi = φ−1i
∗g = (y2 − 1) dx2 + 2dxdy + fi(y)dy

2,

where fi is a smooth function satisfying 1− (y2 − 1)fi(y) > 0 for
all y ∈ R.

Figure 5. The gluing picture when k = 1.

Remark 7.2. 1) The function Φi,j are odd involutions.
2) If (S, g) admits a hyperbolic atlas then S is diffeomorphic to a

cylinder with 2k points removed.
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Figure 6. The manifold, the open set U0 and the Killing
field (k = 1).

3) De Sitter space (with 2 points removed) clearly admits such an
atlas with the parameters k = 1, τ = 0 and f1 = · · · = f4 = 0.

4) Note that a hyperbolic atlas induces an analytic structure on C.
The Killing field K is according to the conditions analytic as well.
In opposition the metric g need not be analytic, but the g-length
of K is again an analytic function on C.

5) The transition maps being isometries, the restriction of f2i and
f2i+1 coincide on P0, f2i−2 and f2i+1 coincide on P− and f2i−1
and f2i coincide on P+. It follows that it is sufficient to know
the f2i in order to know all the fi. Further if A is analytic then
f0 = f1 = · · · = f4k.

Proposition 7.3. If (S, g) is a Lorentzian surface admitting a hy-
perbolic atlas then it can be isometrically embedded into a Lorentzian
cylinder.

Proof. Since we fill the holes one by one, we need to consider the case
k = 1 only. In this case S is diffeomorphic to a cylinder with 2 points
removed. Let us see how to fill one hole.

Let F : R2 → R be a smooth function invariant by the flow of u∂u −
v∂v defined by F (u, v) = f0(uv − 1) if u > 0 and F (u, v) = f2(uv − 1)
if u < 0. Let h be the Lorentzian metric on R

2 given by h = v2du2 +
2(1 + uv F )du dv + u2F dv2.

Let V0 = {(u, v) ∈ R
2 ; u > 0}, V1 = {(u, v) ∈ R

2 ; v > 0 and 2−uv >
0}, V2 = {(u, v) ∈ R

2 ; u < 0} and V3 = {(u, v) ∈ R
2 ; v < 0 and 2−uv >
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0}. Let ψ0, ψ1, ψ2 and ψ3 the diffeomorphisms defined by

ψ0 : V0 → R
2

(u, v) 
→ (log(u), uv − 1)

ψ1 : V1 → {(x, y) ; y < 1}
(u, v) 
→

(
log

(
v

2− uv

)
, uv − 1

)
ψ2 : V2 → R

2

(u, v) 
→ (log(−u) + τ, uv − 1)

ψ3 : V3 → {(x, y) ; y < 1}
(u, v) 
→

(
log

( −v

2− uv

)
− τ, uv − 1

)
We let the reader check that ψ∗i gi = h|Vi and that ψi+1 ◦ ψ−1i = Φi,i+1.
Hence the first hole is filled, the second one can be filled the same way.

q.e.d.

The following proposition gives sufficient conditions to ensure that a
spacelike Zoll cylinder admits a hyperbolic atlas. The conditions 2 and
3 are necessary in the sense that they are satisfied by metrics admitting
a hyperbolic atlas. There exists spacelike Zoll metrics admitting a hy-
perbolic atlas that do not satisfy condition 1, see Theorem 7.5, but this
condition is satisfied on a neighborhood of de Sitter space.

Proposition 7.4. Let (C, g) be a spacelike Zoll cylinder with a Killing
field K that is timelike somewhere (and therefore vanishing somewhere)
and {p0, . . . , p2k−1} be the set of zeros of K. Let η be a lightlike geodesic
transverse to K.

Then there exists l > 0 such that (C � {p0, . . . , p2k−1}, l · g) admits a
hyperbolic atlas if

1) the curvature of g is positive at any point where K is timelike or
lightlike,

2) K and α are analytic,
3) there exists t1 = t2 such that α ◦ η(t1) = α ◦ η(t2) = 0 and (α ◦

η)′(t1) = −(α ◦ η)′(t2).
Proof. Let {(Ui, ψi), i ∈ Z/4kZ} be the atlas of C � {p0, . . . , p2k−1}

given by Proposition 3.4. In any of these charts g reads hi(y)dx
2+2dxdy.

Condition 3 of the statement above can be translated into h′0(a0) =
−h′0(b0), with a0 and b0 as defined in Proposition 3.4. It follows from
the compatibility conditions between the hi that for any i ∈ Z/4kZ, we
have h′(ai) = h′(a0) and h′(bi) = h′(b0) and therefore h′(ai) = −h′(bi)
Let yi be a critical point of hi, we know that hi(yi) < 0 and it follows
from our assumption on the curvature that h′′i (yi) > 0. Therefore the
function hi has a unique minimum. Multiplying g and K by positive
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constants, if necessary, we may assume that the minimum of h0 is −1
and |h′0(a0)| = |h′0(b0)| = 2.

The space of non constant orbits of K is an analytic non Hausdorff
1-dimensional manifold that we denote L. The points where L is not
separated correspond to the separatrix of the saddle points of K. The
cardinality of this set is therefore 8k. An atlas of L can be easily ob-
tained from the atlas {(Ui, ψi)}. To each Ui corresponds a maximal
connected Hausdorff submanifold Vi of L. We endow L with an ana-
lytic vector field ∂s whose restriction to V0 is complete. This induces a
coordinate s on each line Di = {(x, y) ∈ Ui, x = 0} such that α|Di(s)
is analytic. It follows from the gluing picture of L, that, up to an ap-
propriate translation, the functions α|Di(s) all coincide. In particular it
means that all the functions hi have the same minimum and, using the
fact that all hi diverge to infinity at both ends, that s goes from −∞ to
+∞ on each Vi, i.e. that ∂s is complete.

Let λi be the function such that hi(y) = eλi(y)(y− ai)(y− bi). Notice

that λi(ai) = λi(bi) = ln
(

2
|ai−bi|

)
. The map α|Di is a Morse function

admitting a unique critical point. Therefore there exists a coordinate
t on Di (depending on i) such that α|Di(t) = t2 − 1 and y(−1) = ai
and y(1) = bi. Differentiating the equality eλi(y(t))(y(t) − ai)(y(t) −
bi) = t2 − 1 we obtain y′(−1)eλi(ai)(ai − bi) = −2 i.e. y′(−1) = 1 and
similarly y′(1) = 1. The metric g reads as (t2−1)dx2+2βi(t)dtdx in the
coordinates (x, t). Let t 
→ c(t) be a solution of c′(t)(t2 − 1) = 1− βi(t).
It follows from y′(±1) = 1 that βi(±1) = 1. Consequently c′, and
therefore c, is smooth.

Using the solution c(t) we define new coordinates (u, t) on Ui by
(u, t) 
→ (c(t)+u, t). The metric in the coordinates (u, t) has the desired
form. As in Proposition 5.3, we see that the transition functions are
isometries preserving the second coordinate and sending the Killing field
to its opposite. Consequently they have the desired expression up to a
horizontal translation of length τi. However in this case, it is not obvious
which translations can be assumed to be trivial.

In order to conclude we remark that the restrictions of the function
α to arc length parametrized geodesics intersecting {p0, . . . , p2k−1} does
not depend on the choice of these horizontal translations. Furthermore,
it is proven in [1] that these functions completely determine the metric
on a neighborhood of the zero. Thus it follows from Proposition 7.3
that

∑3
k=0 τ4j+k = 0 for any j. Now it is not difficult to modify the

atlas in order to obtain a hyperbolic atlas. q.e.d.

Theorem 7.5. Let (C, g) be a Lorentzian cylinder and p0, . . . , p2k−1 ∈
C such that (C � {p0, . . . , p2k−1}, g) admits a hyperbolic atlas A =
{(Ui, φi); i ∈ Z/4kZ}. If the parameter τ of A is 0 and if there ex-
ist 2k smooth functions κ0, . . . κ2k−1 on R such that
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1) for all t ∈ R and all j ∈ Z/2kZ, κj(t) ≥ −1;
2) all the functions κj have the same infinite Taylor expansion at −1

and at 1 and satisfy κj(±1) = 0;
3) for all i ∈ {0, . . . , 2k − 1} the function f2i such that

g2i = φ−1i
∗g = (y2 − 1)dx2 + 2dxdy + f2i(y)dy

2,

satisfies

f2i =
1− (1 + κi)

2

y2 − 1
;

4) the restriction of the function
∑

j κj to [−1, 1] and the restrictions

of the functions
∑

j κ2j and
∑

j κ2j+1 to ]−∞,−1] ∪ [1,+∞[ are
odd.

then the cylinder (C, g) is spacelike Zoll.
Moreover, we have a reciprocal in the analytic case i.e. if (C, g) is

analytic and spacelike Zoll then the parameter τ is equal to 0 and κ0 =
· · · = κ2k are odd functions.

Proof. Let A be a hyperbolic atlas of

(C � {p0, . . . , p2k−1}, g).
We denote with K the associated Killing field and by gi the expression
of g in the coordinates (Ui, φi). We recall that there exist functions fi
such that the gi’s read as (y2 − 1)dx2 + 2dxdy + fi(y)dy

2.
We first remark that on each Ui the foliation perpendicular to K does

not depend on the functions fi and so do the Φi,j’s. Moreover, in the
proof of Proposition 7.3 we saw that the transitions functions used to
fill the holes are also independent of these functions. It means that the
(unparameterized) spacelike geodesics orthogonal to K do not depend
on the choice of the functions fi but only on τ . In order to see when
such a geodesic is close and simple we can assume that all the fi are
0. The cylinder is then the quotient of the universal cover of de Sitter
by the product of an elliptic element and the time τ of an hyperbolic
flow. Consequently, the spacelike geodesics orthogonal to K are closed
and simple if and only if τ = 0. We assume now τ = 0 and we study
spacelike geodesics not perpendicular to K.

Lemma 7.6. Let γi : t 
→ (x(t), y(t)) be a unit spacelike geodesic of
(R2, gi) that is not perpendicular to ∂x. Then there exists c > 1 such
that γi is contained between the lines y = c and y = −c. Further γi
is either tangent exactly once to each of these lines or it is asymptotic
to the lines y = ±1. Moreover, in the first case the geodesic segment
between the points of tangency satisfies:

∂x

∂y
=

√
c2 − 1

√
1− (y2 − 1)fi(y)−

√
c2 − y2

(y2 − 1)
√

c2 − y2
.
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Furthermore, these two situations are exchanged by a transition map
Φ2j,2j+1.

Proof. Let γi : t 
→ (x(t), y(t)) be a unit spacelike geodesic of (R2, gi)
that is not perpendicular to ∂x.

Writing the first integrals of the geodesic flow, we have

(6)

{
(y2 − 1)x′ + y′ = ε1

√
c2 − 1

(y2 − 1)x′2 + 2x′y′ + fi(y)y
′2 = 1,

with c > 1 and ε1 = ±1.
This system of equations can be solved if and only if c2 − y2 ≥ 0

proving that −c ≤ y ≤ c. Solving it we find:

x′ =
ε1
√
c2 − 1(1− (y2 − 1)fi(y)) + ε

√
(1− y2fi(y))(c2 − y2)

(y2 − 1)(1− y2fi(y))

y′ = −ε

√
c2 − y2

1− (y2 − 1)fi(y)
,

where ε = ±1. It implies that

∂x

∂y
=

−εε1
√
c2 − 1

√
1− (y2 − 1)fi(y)−

√
c2 − y2

(y2 − 1)
√

c2 − y2
.

The number ε1 determines the orientation of the geodesic and ε changes
only when y = ±c.

The fact that for any y0 such that 1 < y0 < c the integrals∫ y0

1

−√
c2 − 1

√
1− (y2 − 1)fi(y)−

√
c2 − y2

(y2 − 1)
√

c2 − y2
dy,∫ −1

−y0

−√
c2 − 1

√
1− (y2 − 1)fi(y)−

√
c2 − y2

(y2 − 1)
√

c2 − y2
dy

diverge, implies that γ is tangent at most once to each line y = ±c.
If γ intersect P+ ∪ P−, then the fact that for any y0 ∈]1, c[ and any

y1 ∈]− c,−1[ the integrals∫ c

−c

√
c2 − 1

√
1− (y2 − 1)fi(y)−

√
c2 − y2

(y2 − 1)
√

c2 − y2
dy,∫ c

y0

−√
c2 − 1

√
1− (y2 − 1)fi(y)−

√
c2 − y2

(y2 − 1)
√

c2 − y2
dy,∫ y1

−c

−√
c2 − 1

√
1− (y2 − 1)fi(y)−

√
c2 − y2

(y2 − 1)
√

c2 − y2
dy
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converge implies that γ is tangent at least once to each line y = ±c.
Between these points we have

∂x

∂y
=

√
c2 − 1

√
1− (y2 − 1)fi(y)−

√
c2 − y2

(y2 − 1)
√

c2 − y2
.

If γ ⊂ P0 then ∂x
∂y has to be equal to

−√
c2 − 1

√
1− (y2 − 1)fi(y)−

√
c2 − y2

(y2 − 1)
√

c2 − y2

and the geodesic is asymptotic to the lines y = ±1. q.e.d.

Proposition 7.7. Let γ be a unit spacelike geodesic of (C, g) that is
not perpendicular to K. Let i0 be an even element of Z/4kZ such that
γ is tangent to K at some point of Ui0. The geodesic γ is closed if and
only if

(7)

∫ c

−c

√
c2 − 1

∑
i∈σγ

(
√

1− (y2 − 1)fi(y)− 1)

(y2 − 1)
√

c2 − y2
dy = 0,

where σγ =
{
2i+ 1+(−1)i+1

2 + i0 ∈ Z/4kZ
}

and
√
c2 − 1 = |g(γ′,K)|.

Proof. Similar to the parabolic case, the integral above expresses the
shift between the geodesic γ and the geodesic of g0 starting with the
same initial speed at a point of tangency. The only difference is that
when γ is cut along its points of tangency with K the segments obtained
are contained in a Ui with i ∈ σγ . q.e.d.

Let g be a metric admitting a hyperbolic atlas with τ = 0. Replacing√
1− (y2 − 1)f2i(y)− 1 by κi in (7), we see that the spacelike geodesics

having a point of tangency in U0 are all closed if and only if∫
[−c,−1]∪[1,c]

√
c2 − 1

∑
i∈σγ

κ2i

(y2 − 1)
√

c2 − y2
dy +

∫ 1

−1

√
c2 − 1

∑
i∈σγ

κi

(y2 − 1)
√

c2 − y2
dy = 0.

We also see that spacelike geodesics having a point of tangency in U2

are all closed if and only if∫
[−c,−1]∪[1,c]

√
c2 − 1

∑
i∈σγ

κ2i+1

(y2 − 1)
√

c2 − y2
dy +

∫ 1

−1

√
c2 − 1

∑
i∈σγ

κi

(y2 − 1)
√

c2 − y2
dy = 0.

This is the case, under the hypothesis of Theorem 7.5. The reciprocal is
given by applying the following lemma to the function

∑
i∈σγ

κi(y)/(y
2−

1).

Lemma 7.8. Let h : R → R be a smooth function. If the function

H : c 
→
∫ c

0

√
c2 − 1

h(s)√
c2 − s2

ds
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is constant on ]1,+∞[ then it is equal to 0. If moreover h is analytic
then h = 0.

Proof. We define the function J(a) by:

J(a) =

∫ a

1

cH(c)√
a2 − c2

√
c2 − 1

dc =

∫ a

1

c√
a2 − c2

∫ c

0

h(s)√
c2 − s2

ds dc.

Repeating the computation in the proof of Lemma 5.9 we find

(8) J(a) = π

∫ a

0
h(s)ds− 2

∫ 1

0
h(s) arctan

(
1− s2

a2 − 1

)
ds.

On the other hand if H is constant and equal to τ then J(a) does not
depend on a, in fact J(a) = τπ/2. When a tends to 1 then (8) tends to
0 therefore τ = 0. Proving the first part.

It follows that
∫ c
0

c h(s)√
c2−s2ds = 0 for any c > 1. If h is analytic then

this equality is in fact true for all c > 0 and it follows from Lemma 5.9
that h = 0. q.e.d.

Combining Lemma 7.6, Proposition 7.7 and Lemma 7.8 finishes the
proof of Theorem 7.5. q.e.d.

It is not clear, whereas Lemma 7.8 can be extended to the smooth
case. Indeed, it is possible to construct non zero Cn functions h such
that the corresponding function J vanishes, even though this does not
imply that H also vanishes. Adapting the construction of Corollary
5.10, we obtain:

Corollary 7.9. There exist smooth spacelike Zoll Möbius strips with
non constant curvature whose orientation covers admit hyperbolic at-
lases, but no analytic ones.

Proof. LetA be a hyperbolic atlas with k = 2 and τ = 0. Let σ : C →
C be the involution such that σ(U2i) = U2i+5 (and therefore σ(U2i+1) =
U2i−4) and φ2i+5 ◦ σ ◦φ−12i (x, y) = −(x, y) = φ2i ◦σ ◦φ−12i+5(x, y). We let
the reader check that σ is well defined. It has no fixed points and it is
not orientation preserving therefore C/σ is a Möbius strip. Let κ be a
smooth function with support in [2, 3] and values in [−1, 1]. We define
four functions by setting κ0 = κ, κ1(t) = −κ(t)+κ(−t), κ2(t) = −κ(−t)
and κ3 = 0. Let g be the spacelike Zoll metric provided by Theorem 7.5
with the functions κi. This metric is clearly invariant by σ and therefore
induces a metric all of whose spacelike geodesics are closed on C/σ.

q.e.d.

8. Blaschke’s examples

It is also possible to produce examples with no global Killing field.
We just adapt Blaschke construction from [4, p. 162] to the Lorentzian
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case. We give only one of the possible constructions and let the reader
imagine all the possible variations around it.

We start with de Sitter space seen as {(x, y, z) ∈ R
3,−x2+y2+z2 = 1}

endowed with the metric g0 induced by −dx2 + dy2 + dz2. Let K1 be
the elliptic Killing field given by K1(x, y, z) = (0,−z, y) and K2 be
the parabolic Killing field given by K2(x, y, z) = (y, x + z,−y). Let
V1 = {(x, y, z) ∈ R

3;−x2 + y2 + z2 = 1 and g0(K1,K1) ≤ 2}. We see
that (x, y, z) ∈ V1 if and only if |x| ≤ 1, therefore for any (x, y, z) ∈ V1

we have g0(K2,K2) = (x+ z)2 ≤ 9. Hence, V2 = {(x, y, z) ∈ R
3;−x2 +

y2 + z2 = 1 and 16 ≤ g0(K2,K2) ≤ 25} and V1 are disjoint.
Let κ1 be an odd function with support in [−1, 1] bounded below

by −1 and g1 be the metric given by g1 = (v2 + 1)du2 + 2dudv +
1−(κ1(v)+1)2

v2+1
dv2. According to Theorem 6.1, g1 induces a spacelike Zoll

metric on the quotient of R2 by the horizontal translation of length 2π
(then p = q = 1). It can be seen as a perturbation of the de Sitter metric
for which K1 is still a Killing field. The support of this deformation
being contained in V1.

Let κ2 be an odd function with support in [−5,−4] ∪ [4, 5] bounded
below by −1. Let g2 be the metric on the cylinder given by a parabolic

atlas such that k = 1, τ = 0 and g20 = v2du2 + 2dudv + 1−(κ2(v)+1)2

v2
dv2.

According to Theorem 5.6, g2 is spacelike Zoll. It can be seen as a
perturbation of the de Sitter metric for which K2 is still a Killing field,
the support of this deformation being contained in V2.

Let g be the metric on the cylinder that coincides with g1 on V1,
with g2 on V2 and with g0 elsewhere. Let γ be a spacelike geodesic of
g. It follows from Proposition 2.3 that γ intersects V1. If γ does not
meet V2 then it is clearly closed, otherwise it has to cross it. Let γ1 be
the g1 geodesic that contains γ ∩ V 1 and let t0 < t1 < t2 < t3 be such
that γ1([t1, t2]) ⊂ V1, γ1(]t0, t1[) ∩ V1 = γ1(]t2, t3[) ∩ V1 = ∅ and γ′1(t0)
and γ′1(t3) are proportional to K1. The restrictions of γ1 to [t0, t1] and
[t2, t3] are geodesic segments of g0. Let us see that these two segments
are in fact on the same g0-geodesic. We proved that g1 is spacelike Zoll
by comparing its geodesics to the g0 one. The fact that for any c > 0
we have (compare to (5) in section 6):∫ c

−c

√
c2 + 1κ1(v)

(1 + v2)
√
c2 − v2

dv = 0

says precisely that the g0-geodesic that starts tangentially to K1 from
γ1(t0) arrives tangentially to K1 at the point γ1(t3), proving our claim.
This means that from the perspective of V2 the perturbation on V1 has
no effect on the spacelike geodesics. In particular, in this case also γ
is closed and therefore g is spacelike Zoll. Moreover, for i = 1, 2, any
global Killing field K of g has to be proportional to Ki on Vi, therefore
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if K is non trivial it has both lightlike leaves and periodic leaves. But
such a behaviour contradicts Proposition 3.4, therefore K = 0.
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