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Abstract

We provide an equivariant description / classification of all com-
plete (compact or not) nonnegatively curved manifoldsM together
with a co-compact action by a reflection group W, and moreover,
classify such W. In particular, we show that the building blocks
consist of the classical constant curvature models and generalized
open books with nonnegatively curved bundle pages, and derive a
corresponding splitting theorem for the universal cover.

1. Introduction

The theory of discrete groups of motions generated by reflections has
a long history (cf., e.g., [4]) going back to the study of planar regular
polygons and space polyhedra. It’s impact on the modern development
of Lie theory, and symmetric spaces going back to Cartan and Killing
is well known.

Much of the work on reflection groups has been focussed on constant
curvature spaces. Here, the euclidean and spherical cases are well un-
derstood ultimately due to the works of Coxeter [7]. In the hyperbolic
case the situation is very different. A complete classification of reflection
groups in the hyperbolic plane was achieved by Poincaré [15] (cf. also
von Dyck [9]), and in the hyperbolic 3-space by Andreev [2],whereas
hyperbolic reflection groups in higher dimensions are very far from be-
ing understood. A surprising theorem of Vinberg [19] asserts that there
are no co-compact hyperbolic reflection group in dimensions ≥ 30.

Here we deal with general Riemannian manifolds with variable, but
nonnegative (sectional) curvature equipped with a co-compact proper
action by a discrete reflection group. Our results provide an essentially
complete understanding of these objects.

In contrast to the classical framework discussed above, but moti-
vated by applications to polar actions (like the one in [10]), a reflection
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is nothing but an isometric involution whose fixed point set has a com-
ponent of codimension one, called a mirror. Most subtleties caused by
this generality evaporate when passing to a canonical finite cover (see
Proposition 2.3).

The following simple example is at the core of our work: Consider a
reflection r : M → M whose mirror Λ separates M . From the Cheeger-
Gromoll soul construction it follows that M is the double of a disc
bundle D(ν). Note that this double can also be described as the sphere
bundle S(ν⊕ε) (ε is the trivial line bundle), as well as an open book with
two pages D(ν), i.e., parametrized by S

0, having common boundary, the
binding Λ.

It turns out that a natural generalization of the above open book
type of manifold, together with the classical space forms constitute the
building blocks needed in general. To explain the appearance of build-
ing blocks, we say that the action W ×M → M is decomposable if the
orbitspace M/W metrically is a finite quotient of a product, and inde-
composable otherwise. With this terminology one of our main results is
the following Rigidity Theorem

Theorem A. A nonnegatively curved manifold Mn with an indecom-
posable co-compact action by a reflection group W is isometric to either
R
n, or T

n, or equivariantly diffeomorphic to either S
n, or RP

n with a
linear action, unless all mirrors in M meet.

Here the spherical case relies on showing that the orbitspace is a
simplex (cf. section 2), whereas the part where the universal cover of
M is non-compact also relies on Cheeger- Gromoll splitting results for
co-compact actions and for compact manifolds with infinite fundamental
group, as well as on Bieberbach’s celebrated Theorem (cf. section 4).
Recall, that by the latter, any compact flat manifold is finitely covered
by a flat torus, i.e., M = T

n/G, where G ⊂ O(n) is the holonomy. In
particular, Theorem A shows that the holonomy group G must be trivial
when the action is indecomposable. We will prove, moreover, that if the
orbit space splits as a metric product of euclidean simplices, then T

n/G
must be an iterated torus bundle, with holonomy group G a very special
elementary abelian 2-group in GL(Z, n) (see Corollary 5.6). The Klein
bottle serves as the simplest example.

To describe the structure that arises when all mirrors meet consider
the following generalizations of the open book with two pages discussed
above:

Model Examples. Let ρ be a linear (irreducible) representation of
a finite Coxeter group W on R

k, and ν a smooth vector bundle with
base space S. The obvious action by W on the bundle ν ⊕ εk, where ε
is a trivial line bundle, induces an action by W on the total space of the
sphere bundle Mρ,ν = S(ν ⊕ εk) =: S(ν, ρ). Note that, this action has k
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mirrors (up to conjugation), whose intersection is B := S(ν) ⊂ S(ν⊕εk),
and “normal” to B the action is ρ. Note also that the equivariant
projection ν⊕ εk → R

k induces an equivariant map L : S(ν⊕ εk) → D
k,

with L−1(0) = B and L−1([0, 1]x) = P diffeomorphic to D(ν) for any
x ∈ ∂Dk = S

k−1. For this reason we call Mρ,ν a k − 1 dimensional open

book with binding B and pages P , parametrized by S
k−1.

In general, given � linear representations ρi of finite Coxeter groups
Wi on R

ki , and � smooth vector bundles νi with base S. The obvious
W = W1× . . .×W� action on the product of the bundles νi⊕εki induces
a W action on the fiber product, Mρ̄,ν̄ := S(ν̄, ρ̄) of the sphere bundles
S(νi ⊕ εki), i.e., the pull back by the diagonal map Δ : S → S × . . .× S
of the product of the sphere bundles S(νi ⊕ εki). As in the case of a
single representation and bundle, there is a canonically associated W

equivariant map L : Mρ̄,ν̄ → D
k1 × · · · ×D

k� where B = L−1(0, . . . , 0) is
the intersection of all mirrors for W, and P = L−1([0, 1]x1, . . . , [0, 1]x�)
for any x̄ ∈ S

k1−1 × . . .× S
k�−1 is a manifold with corners diffeomorphic

to the fiber product D(ν̄) of the disc bundles D(νi). We say that Mρ̄,ν̄

is an iterated open book with pivot binding B and pages P .

Using this terminology we have the following general Structure The-
orem when all mirrors meet.

Theorem B. A compact nonnegatively curved manifold M with re-
flection group W, all of whose mirrors meet admits a finite cover M ′

which is equivariantly equivalent to an (iterated) open book Mρ̄,ν̄, with
pages a nonnegatively curved (fiber product) disc bundle D(ν̄).

For more details including further restrictions on the metric on the
pages, we refer to section 3, in particular Theorems 4.3 and 4.7 and
the description about additional geometric structure in the form of the
presence of spherical heavens of souls in the spirit of Yim’s work [23].
Also, conversely, using a construction due to Guijarro [13], it follows
that an (iterated) open book with the given data has an invariant metric
with nonnegative curvature.

Note, that by definition obviously a reflection group on a positively
curved manifold is indecomposable. Also iterated open books are ex-
cluded due to the presence of zero curvatures, and an open book with
positive curvature has soul a point, and is hence a sphere. In particular,
the above results have the following corollary in positive curvature also
proved, but not explicitly stated in this generality in [10]:

Corollary. A compact manifold M with positive curvature and re-
flection group W supports a W-invariant metric of constant curvature.

When passing to the universal cover, Theorems A and B in particular
lead to the following general Splitting Theorem
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Theorem C. Let M be a complete nonnegatively curved manifold
with co-compact reflection group W. Then the lifted reflection group Ŵ

on the universal cover M̃ is a product of Coxeter groups,

Ŵ = Ŵ0 ×
�−1∏

i=1

Ŵi × Ŵ�,

where Ŵ0 is affine, and the remaining factors are spherical. Corre-
spondingly, M̃ admits a Ŵ invariant metric splitting,

M̃ = R
k ×

�−1∏

i=1

S
ki ×Θ� ×N ,

where N can be any simply connected compact manifold of nonnegative
curvature on which all Ŵi act trivially, Ski is a nonnegatively curved
standard sphere with a linear Ŵi action, and Θ� is a compact simply
connected nonnegatively curved (iterated) open book.

As a consequence we derive the following Group Structure Theorem,

Corollary. A group W is a co-compact reflection group of a complete
nonnegatively curved manifold if and only if

W ∼= Ŵ0 × · · · × Ŵ�/N,

where Ŵ0 is an affine Coxeter group, Ŵi, 1 ≤ i ≤ �, is a spherical
Coxeter group, and N � Ŵ a normal subgroup isomorphic to a product
of a torsion free lattice and an elementary abelian 2-group.

As indicated earlier, aside from obviously being of interest on its own,
understanding reflections groups in nonnegative curvature provides the
first step in understanding so-called polar actions on such manifolds (cf.
[10], where a complete classification of polar actions in positive curva-
ture, of cohomogeneity at least two, was established). The reason is that
so-called sections of a polar action are nonnegatively curved manifolds
with a reflection group. Basic examples of such actions are provided
by compact Lie groups with adjoint actions, where the sections are the
maximal tori. Note, that in this context, it is important to include non-
compact reflection manifolds, since sections may not be compact even
when the polar manifold is.

In general, there will be no classification like in [10] because of the
presence of open books as sections. In fact, potentially one might be
able to construct new nonnegatively curved (polar) manifolds as in the
case of cohomogeneity one actions considered in [12], when sections are
open books.

Note also, however, that a polar action with open books as sections,
should be considered as reducible, since the associated reflection group
of a section has an invariant subspace (a totally geodesic submanifold).
Thus, Theorem A, is the key starting point in an analysis of irreducible
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polar actions on compact simply connected manifolds of nonnegative
curvature, for which the following was proposed in [10]:

Conjecture. An irreducible polar action on a simply connected non-
negatively curved compact manifold is equivariantly diffeomorphic to a
quotient of a polar action on a symmetric space.

The general structure / classification of compact simply connected
nonnegatively curved polar manifolds will be addressed in forthcoming
papers.

We conclude the introduction with a short outline of the paper.
In the first section we provide the necessary background for reflection

groups in our generality, including the notion of a Coxeter action, where
the orbit space M/W is isometric to the closure C of any open chamber
c, i.e., of a connected component of the complement of the union of all
mirrors. We analyze the lift to the universal cover and establish the
existence of a canonical lift, the Coxeter cover, where the action by W

is Coxeter (Proposition 2.3).
The overall strategy in our approach is based on the fact that follows

from the work of Wörner [20] that the chamber C for a Coxeter action
is a product C = C0 × C1 × C2 × . . . × C� where C0 is a manifold
without boundary (typically a point), and each Ci, i ≥ 1 is a smooth
nonnegatively curved convex manifold with corners, and either (1) Ci

has more than ni = dimCi faces, but any ni faces of Ci meet, or (2) Ci

has ki ≤ ni faces and they all meet. In section 2, we show that if there
is only one factor and it is of type (1) then C is a simplex. This is then
used to prove the spherical part of Theorem A (cf. 2.5 and 2.6). The
case where there is only one factor in the splitting, but it has type (2)
is then handled in section 3. This is where the open book structures
appear, from which Theorem B follows.

The starting point in section 4 is the observation that a co-compact
action on a noncompact manifold of nonnegative curvature is decom-
posable unless the manifold is euclidean space, and similarly an action
is decomposable on a compact manifold with infinite fundamental group
unless it is flat (cf. 4.2 and 4.3). Consequently, the rest of the section
deals with reflection groups on flat manifolds, and in particular the flat
part of Theorem A follows from 5.5.

Finally, in section 5 we give proofs of Theorem C and Corollary D.
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2. Preliminaries and the Coxeter cover.

Although our focus in this paper is to analyse and describe complete
nonnegatively curved manifolds with co-compact reflection groups, we
begin with a brief review and discussion of general (co-compact) reflec-
tion groups, establish notation and derive important facts about covers.
See also [10] and [12], where several examples are discussed, as well as
[1].

For us, a reflection r on a Riemannian manifold M is an isometric in-
volution, whose fixed point set M r contains a component Λ of codimen-
sion 1. Any such component Λ, is called a mirror for r. It is sometimes
advantageous to label reflections by mirrors, Λr, keeping in mind that
different mirrors may be mirrors for the same reflection. It is essential
for us not to require that mirrors separate M into different components
interchanged by the reflection! Note that the latter, however, is the case
for reflections on a simply connected manifold [8].

Let W ⊂ Isom(M) be a discrete closed subgroup of isometries of M
generated by all reflections contained in W. We will call any such group
W a reflection group of M . An open chamber c ⊂ M is by definition
a connected component of the complement of the union of all mirrors
M for all reflections in W. Clearly, W acts transitively on the set of all
open chambers. However, the stabilizer group Wc may be non-trivial in
general.

We say that

• The action W×M → M is Coxeter if Wc is trivial.
• In this case we also say that (M,W) is a Coxeter manifold.

It is well known that the action is Coxeter when M is simply con-
nected [8] (and in this case W is a Coxeter group), or when M is a
section of a polar action on a simply connected manifold ([3, 12]). We
will see below in Proposition 2.3 that M admits a natural equivariant
Wc cover, M ′ with a Coxeter action by W. We will refer to this cover
as the Coxeter cover of (M,W), or simply of M .

The closure C = cl(c) is called a closed chamber or simply a chamber,
and clearly M/W = C/Wc. In particular, M/W = C when the action is
Coxeter. Moreover, any point p in the boundary ∂C = C − c of C is in
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one or more mirrors (at most dimM). SinceW is discrete, it follows that
the isotropy group Wp for any such p ∈ ∂C is a finite Coxeter group,
and locally C is a finite union of strongly convex sets. A chamber face
of C is by definition a component of the intersection C ∩ Λ, Λ ∈ M,
which contains an open subset of Λ. We can provide each chamber face
with a label i ∈ I and will denote the face by Fi and the corresponding
reflection by ri. As mentioned above, note though that different faces
can correspond to the same reflection, i.e., possibly ri = rj . Obviously,
Wc takes chamber faces to chamber faces, the image of which under the
projection map C → C/Wc = M/W constitute the faces of the orbit
space M/W. By construction we note that the boundaries ∂C and
∂(M/W) are the union of chamber faces, respectively of faces. Note
that in general, C is not an Alexandrov space, whereas C/Wc = M/W
is.

We now proceed to investigate natural reflection groups induced from
W to covers of M beginning with the universal cover.

Consider the universal covering map π : M̃ → M , and let W̃ be the
group acting on M̃ consisting of all lifts of all elements of W. Clearly
W̃ fits into an exact sequence

1 → π1 → W̃ → W → 1,

where π1 := π1(M). Note that in general W̃ is not a reflection group,
and it may not be finitely generated (even when W is).

Now let Ŵ � W̃ be the normal subgroup generated by all reflections
in W̃. Note that a mirror for any such reflection of M̃ is a connected
component of the lift of a mirror in M . Since M̃ is simply connected,
each mirror separates M̃ . Hence, Ŵ is a Coxeter group and its action on
M̃ is a Coxeter action with chamber C̃. Furthermore, since C̃ = M̃/Ŵ

is a retract of M̃ , we see that C̃ is simply connected (compare also Prop.
2.14 in [1] ).

Since both π1 and Ŵ are normal subgroups of W̃, so is Ŵ∩π1. More-
over, it follows that Ŵ ∩ π1 � Ŵ and Ŵ ∩ π1 � π1, with quotients W

and Γ := π1/Ŵ ∩ π1 respectively. We now claim that W̃/(Ŵ ∩ π1) is
isomorphic to the direct product W×Γ, i.e., we have an exact sequence

1 → Ŵ ∩ π1 → W̃ → W× Γ → 1.

Indeed, this is an immediate consequence of the following algebraic
lemma applied to the quotient W̃/Ŵ ∩ π1.

Lemma 2.1. Assume N̂ contains two normal subgroups N � N̂ and
G�N̂ such that N̂ = 〈N,G〉. Then N̂ = N × G, the direct product, if
N ∩ G = {1}.
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Proof. By the assumption, conjugation by elements of G defines a
homomorphism ρ : G → Aut(N). Similarly, conjugation by elements of
N defines a homomorphism τ : N → Aut(G). Note that, for any x ∈ N

and g ∈ G, we have

gxg−1 = ρ(g)(x), and x−1gx = τ(x)(g).

Thus gx = ρ(g)(x)g and gx = xτ(x)(g), and it follows that ρ(g)(x)g =
xτ(x)(g). Hence

x−1ρ(g)(x) = τ(x)(g)g−1

where the left side belongs to N, and right side belongs to G. From the
assumption, N∩G = {1}, it follows that both are trivial, in other words
both ρ and τ are trivial, i.e, N and G commute. q.e.d.

Thus, for the induced action by W = Ŵ/Ŵ∩π1 on M̂ := M̃/Ŵ ∩ π1,

a covering space of M with deck transformation group Γ = π1/(π1∩ Ŵ)
we have

Corollary 2.2. The action by W on M̂ is Coxeter, it commutes with
the Γ-action, and its chambers Ĉ are isometric to C̃, in particular they
are simply connected.

Proof. By construction, it is obvious that chambers of Ŵ in M̃ are
projected isometrically onto chambers for W on M̂ and that W acts
simply transitive on its set of chambers in M̂ , i.e., the action is Coxeter.

q.e.d.

Note that in general the stabilizer Γ
Ĉ

of a W chamber in M̂ is non-
trivial and acts freely on the chamber. Since the actions commute, this
stabilizer is independent of the chamber and is the kernel Γ0 of the
induced Γ action on the set of chambers in M̂ . This now leads to our
desired “resolution” M ′ = M̂/Γ0 of M , and Γ′ := Γ/Γ0

∼= Wc, and the

chamber C ′ = C̃/Γ0, where Wc means the W-stabilizer of a chamber
c in M . The manifold M ′ is a regular covering space of M called its
Coxeter cover.

Proposition 2.3 (Coxeter cover). Any manifold M with reflection
group W, admits a commuting lift to a regular Γ′ cover M ′ of M with
Coxeter action by W and Γ′ ∼= Wc.

Proof. Again it is clear from the construction that the chambers of
the induced W action on M ′ are C ′, and that W acts simply transitive
on its set of chambers. Moreover, W commutes with the induced action
by Γ′ := Γ/Γ0 and W ∩ Γ′ is trivial.

To see that Γ′ is isomorphic to Wc, note that for any γ′ ∈ Γ′ and any
chamber C ′ there is a unique w(γ′) ∈ W with γ′(C ′) = w(γ′)(C ′). It
follows that w(γ′) ∈ Wc and the map Γ′ → Wc is clearly a homomor-
phism. Conversely, given any w ∈ Wc and chamber C ′ projecting to C
there is a unique γ′ ∈ Γ′ such that w(C ′) = γ′(C ′). q.e.d.
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The following example proposed by the referee illustrates the con-
struction and properties of the Coxeter cover.

Example 2.4. Let M = S
1 × S

1 and W = Z2 switching the factors.
There is one chamber, so the action is not Coxeter, and the orbit space
M/Z2 is a Möbius band. Clearly M̃ = R

2, π1 = Z × Z, W̃ = D∞×Z

and Ŵ = D∞. Moreover Ŵ ∩ π1 ∼= Z, Γ = π1/(Ŵ ∩ π1) ∼= Z, Γ0
∼= 2Z,

Γ′ = Z2 and M̂ = M̃/(Ŵ ∩ π1) = S
1 ×R with chamber Ĉ = [0, 1] × S

1

the infinite strip, M ′ = M̂/Γ0 is a 2-fold cover of M with chamber C ′

the cylinder [0, 1] × S
1.

Remark 2.5. We remark that W may not be a Coxeter group. How-
ever, Ŵ is a Coxeter group. Hence W is a quotient group of Ŵ by a
normal subgroup. Notice that if Ŵ is an irreducible spherical Coxeter
group of rank at least 3, then the normal subgroup is in the center,
which is either trivial or Z2. Similarly, if Ŵ is an irreducible affine
Coxeter group of rank at least 3, then Ŵ = Z

n
�W0, where W0 is an

irreducible spherical Coxeter group. A normal subgroup is a sublattice
of Zn or an extension of such a sublattice by a center Z2 in W0.

Remark 2.6. From the structure of fundamental groups of mani-
folds with nonnegative curvature, we know that both π1(M) as well

as π1(M̂) = π1 ∩ Ŵ � π1 are finitely generated, so all groups in the
discussion above are finitely generated in our context of nonnegative
curvature.

Note also, that if C ′ is a simplex (or a product of simplices), which
in nonnegative curvature is often the case (cf. the subsequent sections),

then C ′ = C̃ = Ĉ, i.e, Γ0 = {1} and M̂ is the Coxeter cover of M . It

follows that W = Ŵ/π1(M̂) and Wc = π1(M)/π1(M̂). In particular,

π1(M)� Ŵ if the action is Coxeter.

Motivated by 2.3 and the fact that sections of polar actions on simply
connected manifolds are always Coxeter,

• We will focus our attention to co-compact Coxeter actions through-
out,

with the exceptions of 3.7, 5.5, and 5.6.

It is important to us that for Coxeter actions, the chambers C =
M/W have a particularly nice structure:

Remark 2.7 (Coxeter chamber structure). By definition, C ⊂ M
is convex, and assuming W is finitely generated, its boundary ∂C =⋃

i∈I Fi is the union of its faces Fi, i ∈ I := {1, . . . , k}, giving rise to a
natural stratification of C. To describe the stratification, it is convenient
to use the following notation: For any subset J ⊂ I set F̂J :=

⋂
i∈I−J Fi,

and FJ :=
⋃

i∈J Fi, i.e., F̂J is the intersection of faces opposite of FJ .
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Note that for J1 ⊂ J2 obviously FJ1 ⊂ FJ2 , F̂J2 ⊂ F̂J1 , and FI = ∂C.

By convention we set F̂I = C and F∅ = ∅.
With this notation all strata F̂J are locally totally geodesic. At interior

points, the fibers of the normal bundle to F̂J is the orbit space of the
normal slice representation of its isotropy group W

F̂J
= WI−J . Since

F̂J has codimension 1 in F̂J−j for any j ∈ J it follows that this normal
bundle is flat and trivial, in fact it is “spanned” by parallel fields. In
particular, C also has the structure of a smooth manifold with corners,
i.e., locally diffeomorphic to open balls of Rn

+. We also point out that
since the angle between any two faces is at most π/2, any of the strata

F̂J are extremal subsets of the Alexandrov space C, see, e.g., the survey
[14].

There are other natural and useful convex domains associated to C,
namely the so-called residues of C. Here the J-residue of C, J ⊂ I is
the set WJC, whose boundary is WJFI−J .

The above general structure for C is especially useful in the context
of nonnegative curvature, since it enables us to employ numerous strong
convexity arguments throughout. For example the distance function on
C to any face Fi ⊂ C or union of faces FJ (in particular the whole
boundary) is concave. One is thus in position to apply corresponding
Sharafutdinov retractions from C to the associated soul of C as in the
original approaches to open manifolds in [5] and [17] (This procedure
even applies to super level sets of these concave functions as long as
they have maximal dimension).

In the context described above, the general work of Wörner [20] about
the structure of compact Alexandrov spaces with nonnegative curvature
and non-empty boundary, as well as Yim’s work [22, 23] on the heaven
of pseudo-souls in a complete open manifoldM of nonnegative curvature
is very useful for us. Here by definition a subset S ⊂ M is called a
pseudo-soul if it is isometric to a soul S0 ⊂ M , and homologous to S0

in M .

3. Equivariant smooth rigidity: Not all faces meet

Unless otherwise stated we assume throughout that M is a nonneg-
atively curved compact or complete Riemannian n manifold with a co-
compact reflection group W acting in a Coxeter fashion on M with
chamber C.

We first point out that the maximal number of faces Fi of C having
non-empty intersection is n. In fact, at a point p of intersection the
corresponding faces of the chamber in the unit tangent sphere has at
most n faces, and in the latter case this is a spherical (n − 1) simplex,
actually a fundamental domain for the isotropy group Wp of W at p [10]
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(for a more general result we refer to [21]). Also note, that if n faces of
C have non-empty intersection, then the intersection consists of isolated
points. It follows that, either:

• All faces intersect, in which case C has at most 1 ≤ k ≤ n faces,
or

• There is a minimal 0 ≤ k ≤ n such that: There exist k + 1 faces
with empty intersection.

The above discussion applies to general Alexandrov spaces with non-
negative curvature, for which Wörner [20] proved the following Splitting
Theorem (Theorem 1.2):

Theorem 3.1 (Wörner). A compact n-dimensional Alexandrov space
A, with non-empty boundary, not all of whose faces meet is isometric to
a product Xn−k × Y k of nonnegatively curved Alexandrov spaces, where
X is isometric to the intersection of any k faces of C, with k chosen as
above.

Remark 3.2. It also follows (cf. [20]) that the maximal number of
faces of A is 2n, in which case A is a product of intervals. When applied
to C, we conclude in particular that W is generated by k ≤ 2n elements.

Repeated applications of 3.1 above yields a metric splitting of the
Coxeter chamber C of the form

(3.3) C = Δ1 × . . .×Δr × V×N

where N is a closed nonnegatively curved manifold (typically a point),
and each of the remaining factors is a smooth nonnegatively curved
convex manifold with corners, and boundary face structure given by

(1) Δi has more than ni = dimΔi faces, but any ni faces of Δi meet,
(2) V has k ≤ dimV faces and they all meet.

The presence of a non-trivial N occurs when taking products with a
trivial action on N (cf. 6.2).

Our objective in this section is to begin an analysis of the case where
C has only one factor, and this factor is of the first kind Δ. We will refer
to this as the maximal indecomposable case. The following is crucial

Lemma 3.4 (Simplex). When the action is maximal indecomposable,
C is an n-simplex.

Proof. First note that it is an immediate consequence of Theorems
1.2 and 1.4 in [20] that if C has at least n+ 1 faces and any n of them
meet, then in fact C has exactly n + 1 faces, F1, · · · , Fn+1. Moreover,
for each i = 1, . . . , n + 1 the intersection of faces opposite Fi, denoted
by F̂i, consists of exactly one point pi, which we refer to as the vertex
opposite Fi.
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Now consider a vertex, say pn+1 and its opposite face Fn+1. From
Lemma 5.1 in [20] we immediately get that pn+1 is the set at maxi-
mal distance to Fn+1, in particular it is the soul of C constructed from
dist(Fn+1, ·). Using that all non-maximal super level sets of dist(Fn+1, ·)
are convex we construct (applying a standard partition of unity argu-
ment starting inductively at the most singular strata involving F1, . . . ,
Fn and then Fn+1) a smooth gradient like vector field on C − {pn+1}
which is tangent to all strata F1, . . . , Fn, radial near pn+1 and transverse
to Fn+1. Since a small ball around pn+1 in C is clearly a simplex, this
competes the proof. q.e.d.

Remark 3.5. An alternative proof of the above claim using only
Riemannian geometry, i.e., not appealing to [20] can be carried out
by considering the convex J = {1, . . . , n} residue Apn+1

:= Wpn+1
C =

∪w∈Wpn+1
wC of C in M , where Wpn+1

= WJ is the isotropy group

of pn+1. Note, that ∂Apn+1
is the union of faces opposite pn+1, and

that Apn+1
has smooth totally geodesic interior, with pn+1 an interior

point. Now one applies Riemannian convexity arguments as in the soul
theorem in a Wpn+1

equivariant fashion, which eventually leads to the
conclusion that the soul of Apn+1

is {pn+1}.

Note that if all mirrors meet in the Coxeter cover M ′ of M , they
certainly meet in M as well. So the assumptions in Theorem A in
particular imply that its Coxeter chamber by the above lemma is a
simplex. Thus the following Theorem and its Corollary will complete
the proof of half of Theorem A in the introduction.

Theorem 3.6 (Spherical space form). Let (M,W) be a compact non-
negatively curved Coxeter manifold with finite fundamental group and
chamber C a simplex. Then M admits a W invariant metric of constant
curvature 1.

Proof. By 2.6, π1(M) is a normal subgroup of the Coxeter group Ŵ

acting on the universal cover M̃ . By assumption M̃ is compact and
hence Ŵ is a finite Coxeter group, acting simply transitively on its set
of chambers. In this case all tangent cones at any point of a boundary
strata of a chamber C̃ = M̃/Ŵ (= C) is isometric to a corresponding

tangent cone for the linear action by the Coxeter group Ŵ on S
n. From

the above lemma and arguing as in Corollary 2.10 of [10] we see that

C̃ admits a metric of constant curvature 1, which extends via Ŵ to an
invariant metric on M̃ . Since π1(M)� Ŵ one gets an induced constant
curvature metric on M invariant under W. q.e.d.

In the above theorem it is well known that π1(M)�Ŵ is either trivial
or Z2 acting as the antipodal map on the sphere. This has the following
somewhat surprising consequence:
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Corollary 3.7. Let (M,W) be compact nonnegatively curved man-
ifold with finite fundamental group whose Coxeter cover has simplex
chambers. Then M admits a W invariant metric of constant curvature.

Proof. From 3.6 and 2.6, we know that the Coxeter cover M ′ = M̂
is either S

n or RP
n with an invariant metric of nonnegative curvature.

Recall that by construction of the Coxeter cover in 2.3 the action by Γ′ ∼=
Wc onM ′ commutes with theW action. In particular, any mirror as well
as its complement is preserved by Γ′. If M ′ is RP

n such a complement
is a (convex) open disc, whose soul must be a point preserved by Wc.
But since the action is free, Wc must be trivial.

If M ′ is Sn, it follows that Γ′ = π1(M) commutes with Ŵ = W. Argu-
ing as in the projective space case, it follows thatWc

∼= Γ′ is either trivial
or Z2 = 〈a〉. In the latter case note that a induces an automorphism of
W which is reflected also in the induced action, by say A on the orbit
space simplex S

n/W. Now A fixes the soul point of the simplex S
n/W

and maps vertices according to the induced automorphism of the dia-
gram for W. Now using convexity and critical point theory arguments
〈A〉-equivariantly, we conclude that Ĉ = S

n/W admits an A-invariant
metric of constant curvature, analogous to the proof of Corollary 2.10
of [10], just like its linear model. It follows, that M admits an invariant
constant curvature metric, i.e., M = RP

n and Wc
∼= Γ′ = π1(M) acts

on S
n as the antipodal map. q.e.d.

Remark 3.8. We will see that when M has non-compact univer-
sal cover, and the action is indecomposable, then sections are flat. In
particular, C ′ is a flat simplex when the action is maximal indecompos-
able. This will lead to a proof of the second half of Theorem A in the
introduction (cf. the Torus Theorem 5.5).

4. Open book structures: All faces meet

In this section we will develop complete structure results for Coxeter
manifolds of nonnegative curvature, where all mirrors meet, equivalently
the chamber C = V in the splitting 3.3. These Theorems will have
Theorem B of the introduction as an immediate consequence.

As in the case of maximal indecomposable Coxeter actions it is crucial
to understand the structure of a chamber C. Note that in the case
under consideration, there are k ≤ n mirrors in M and their intersection
coincides with the fixed point setMW, which in C is also the intersection
B := F1 ∩ . . . ∩ Fk of all its faces, i.e., F̂∅ recalling our notation from
2.7 to be used throughout below. Moreover, for each of p ∈ B, W acts
effectively on the normal sphere S

⊥ = S
k−1 ⊂ R

k to B at p, and W is a
finite Coxeter group.
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For each face Fi we let Si ⊂ C be the soul in C associated to the
distance function di := dist(Fi, ·) to Fi. Recall that by construction,
Si is the image, Shi(C) of the associated Sharafutdinov deformations
retraction, Shi : C → C of C. Since, this retraction is a concatenation
of gradient pushes, and gradient pushes preserve extremal sets [14] it
follows immediately that

• For each i ∈ I, the soul Si meets every component of F̂i (cf.
definition in 2.7).

In particular, if Si ⊂ F̂i it follows that F̂i is connected. Moreover,

Lemma 4.1 (Reduction). If Si is not a subset of F̂i, it is perpendic-
ular to it, and the normal slice representation of W along B is reducible.

Proof. Consider the I − i residue W
F̂i
C of C with boundary W

F̂i
Fi.

Clearly, the usual Riemannian construction of the soul of W
F̂i
C is W

F̂i

invariant and equivalent to working on C. In particular, its soul is
W

F̂i
Si, a totally geodesic submanifold of W

F̂i
C. Pick a point p ∈ Si ∩

F̂i ⊂ W
F̂i
Si. Obviously, the tangent space to the soul W

F̂i
Si of WF̂i

C
at p is W

F̂i
invariant. If this is not a subspace of the tangent space to

F̂i, its complement is perpendicular to it, i.e., Si is perpendicular to F̂i.
If Si − F̂i �= ∅, there is a smallest strata D = F̂J containing Si and

meeting it at interior points of D. Suppose first that D = C and let
pq be a minimal geodesic from p ∈ c ∩ Si to Si ∩ F̂i, and pqi a minimal
geodesic from p to Fi. Clearly, pqi is perpendicular to pq as well as to
Fi. It follows that pqi and pq are adjacent edges in an isometrically
embedded flat rectangle in C with opposite edges in Fi, respectively a
minimal geodesic γ from Si ∩ F̂i to Fi. Since qp is not on the boundary
of the normal space of directions to F̂i in C at q, it follows that γ
is a geodesic in F̂i, and in particular we see that the W normal slice
representation is reducible.

In general, if Si is not contained in F̂i, let D = F̂J be the smallest
strata containing Si and meeting it at interior points. In the residue,
W

F̂i
C consider the corresponding totally geodesic subsetMWI−J∩W

F̂i
C,

i.e., the intersection of the residue with the mirrors determined by F̂J .
Clearly the soul of the residue is contained in this subset. Moreover,
the Sharafutdinov retraction of the residue preserves the subset, and
since it is totally geodesic, this restricted deformation retraction is also
distance non-increasing with respect to the intrinsic metric on the set.
From these properties, it follows as in the original approach by Shara-
futdinov (cf. also [22]) that the intrinsic soul of the subset is isometric
to “extrinsic” soul, i.e., the soul of the residue. Again by invariance, it
follows that the intrinsic soul of the strata D is isometric to Si, and in
particular intersects D at interior points. The proof is now completed
as above. q.e.d.



REFLECTION GROUPS IN NON-NEGATIVE CURVATURE 193

We are now ready to describe the structure of C, when the action ρ
of W on the normal spaces Rk to B is irreducible.

Note that for each i, the strata F̂i is a connected, compact nonneg-
atively curved manifold with boundary B. Moreover, when Si is con-
tained in F̂i it follows (as in the proof above) that F̂i has the structure
of a disc bundle of a nonnegatively curved vector bundle νi over Si.

Using the description in the model examples of the introduction, we
will show that for each i, M is equivariantly equivalent to the open
book Mρ,νi = S(νi ⊕ εk) =: S(νi, ρ) → D

k. To do this, we will show

that C = M/W is S(νi⊕ εk)/W → D
k/W = cone(Δk−1

s ), where Δk−1
s =

S
k−1/W. Due to this description, we also say that C = S(νi ⊕ εk)/W

is a book with binding B and pages D(νi) = F̂i parametrized by Δk−1
s .

Indeed, with Δk−2
s being the space of directions in Δk−1

s opposite its
face labelled i, we have:

Lemma 4.2 (Book chamber). If the action by W on normal spaces
to B is irreducible, and W has rank k ≤ n, then C has the structure of
the ball bundle of νi × cone(Δk−2

s ).
Alternatively, C has the structure of a book with binding B and pages

F̂i parametrized by Δk−1, the normal space of directions in C along B.

Proof. Since by the reduction lemma 4.1, the soul Si ⊂ F̂i for di :=
dist(Fi, ·) is a totally geodesic submanifold, and also a soul for F̂i, the
first claim is an immediate consequence of the soul construction for C
(or alternatively for its I−i residue), recalling that the normal bundle in

C to F̂i along interior points (including Si), is spanned by k− 2 parallel
fields (see Remark 2.7).

For the same reason, Fi is the “sphere bundle ” boundary of this
bundle, i.e., the normal space of directions bundle of Si in C. Note,
that each fiber of this bundle is the join of a normal sphere to Si in F̂i

with Δk−2
s . Moreover, the bundle orthogonal to F̂i is trivial.

Viewing the join S
m ∗ Sk−2 → D

k−1 = cone(Sk−2) as a k − 2 dimen-
sional open book with binding S

m and pages D
m+1 (following the flow

lines for the gradient of the distance function to either sphere), provides
the desired induced structure on S

m ∗Δk−2 ⊂ S
m ∗ Sk−2. This in turn

yields the book structure on Fi and then for all of C, using that the
simplex bundle over Si is trivial. Specifically, one constructs (much like
in [11]) a smooth vector field on C which is radial near B, tangent to
all strata and transverse to the submanifold with corners, Si × Δk−1,
that emerged from the soul construction. Using that all normal bundles
to all strata are trivial as observed in 2.7, one can also arrange that
Si ×Δk−1 ⊂ C is perpendicular to all strata. q.e.d.

The following is now a simple consequence of the fact that all con-
structions above can be carried over to M equivariantly, and noting the
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same structure on the sphere bundle S(νi⊕εk) of νi×R
k equipped with

the obvious action by W.

Theorem 4.3 (Open Book). Let (M,W) be a nonnegatively curved
Coxeter n-manifold with rank k ≤ n, where all mirrors meet in B =
MW. If the normal representation ρ along B is irreducible, then M
is equivariantly diffeomorphic to S(ν ⊕ εk), where ν is a nonnegatively
curved vector bundle with sphere bundle B.

Alternatively, M is an open book with binding B and nonnegatively
curved pages D(ν) parametrized by S

k−1.

Remark 4.4 (Converse). We point out that conversely we can con-
struct a W invariant metric with nonnegative curvature on a mani-
fold with these data. To do this we use the open book description of
S(ν⊕εk) = S(ν)×Dk∪∂D(ν)×Sk−1, where S(ν)×Dk is a small tubular
neighborhood of B = S(ν) ⊂ S(ν⊕εk), and the W-action can be written
as the gluing of the linear actions on each piece. By [13] we can modify
the metric on ν so that it is product near infinity. We take product
metrics on D(ν) × S

k−1 and on S(ν) × D
k, where the metric on D

k is
also a product near the boundary. The desired claim follows.

Remark 4.5. Note that M is a sphere, if the soul Si is a point,
and in this case the action is a suspension or iterated suspension of the
irreducible normal sphere action by W.

Also, B can have at most two components, and if it does, ν is a trivial
line bundle, Si is isometric to B, and M = Si×S

k. If in this case, Si is
not a point, M is actually metrically a product, and the action on the
second factor is the suspension of the normal sphere action by W, and
the metric is invariant with nonnegative curvature (cf. remark about
heavens below). In particular, the orbit space M/W = B × (Sk/W)
splits, but this is the only decomposable case where k faces meet and
the normal action to the binding is irreducible.

Remark 4.6 (Spherical heavens). In the situation of the open book
theorem any two souls Si and Sj obviously have the same homotopy
type, namely that of C. In fact, since the corresponding Sharafutdinov
maps are distance non-increasing deformation retractions of C and the
souls are closed manifolds, it in fact follows as in [22] that they are
isometric.

When the souls are not points, it turns out that in fact much more
structure compatible with the open book description is present. This is
because there is a large family of choices for ”Sharafutdinov retractions”.
To explain this, note that for any J-tuple of nonnegative numbers aJ =
{ai ≥ 0}i∈J the subset

CaJ = {p ∈ C | dist(p, Fi) ≥ ai, i ∈ J}

is convex when non-empty. Clearly, this set can be obtained from C by
applying various ”partial Sharafutdinov retractions”. Moreover, when



REFLECTION GROUPS IN NON-NEGATIVE CURVATURE 195

non-collapsed, i.e., dimCaJ = n one can consider any union or intersec-
tion of its k faces as in the case of C where aJ is the trivial J tuple.
For such non-collapsed convex sets CaJ we can utilize further Shara-
futdinov retractions associated to any face or union of faces of it. It
follows, that all souls obtained in this fashion are isometric. Even more,
the arguments of [23] carry over to our case verbatim since they pivot
only around distance non increasing deformation retractions on convex
subsets of a Riemannian manifold. As a result, M contains a totally
geodesic spherical heaven, H of pseudo souls isometric to the product of
S with a nonnegatively curved metric on an �-sphere, where � ≥ k − 1
is the dimension of the flat trivial sub bundle of the normal bundle S⊥

to S in M spanned by all parallel fields. Here � = k − 1 when ν has a
unique soul, in which case, the heaven H = S × S

k−1 provides a canon-
ical W-invariant “edge” of the open book opposite its binding. When
� > k − 1, ν = ν0 ⊕ ε�−k+1 and the heaven intersects the binding in a
product of S with a nonnegativey curved metric on an �−k sphere, and
in this case M = S(ν0⊕ε�−k+1⊕εk) = S(ν0⊕ε�+1) of course also has an
open book structure with binding the sphere bundle of ν0, and pages the
disc bundle of ν0 parametrized by an �-sphere. In the latter description,
however we do not know if ν0 supports a nonnegatively curved metric.

It remains to consider, the situation where the action by W on the
normal spaces toB is reducible. In this case, W = W1×· · ·×W�, acts in a
component-wise fashion on the normal sphere S⊥ = S(Rk1)∗· · ·∗S(Rk�).
We point out here that in our formulation below, the component of the
Wi action is not necessarily required to be irreducible.

Although we are primarily interested in the indecomposable case, we
point out that the product (M1 × . . . × M�,W1 × . . . × W�) of any �
irreducible non maximal indecomposable actions (Mi,Wi), i = 1, . . . , �
provides a decomposable example where all mirrors meet. Our descrip-
tion below will include this.

Before, formulating our result, we elaborate further on the notion of
an iterated open book, which is based on having leaves being manifolds
with corners:
Suppose for example, P is a manifold with corners, the most “singular”
having local type Rn−k ×R

k
+. An �1 dimensional open book with pages

P and binding a manifold with corners of type Rn−k×R
k−1
+ will then be

a manifold with corners of type R
n−k+�1 × R

k−1
+ , i.e., having decreased

the corner type by one. This way, k open book iterations results in a
manifold without corners. Note that a k-fold iterated open book N has
a page map L = (L1, . . . , Lk) : N → D

m1× . . .×D
mk with k coordinates,

where a page is of the form L−1(Ik), where each factor I is a radial line
in the corresponding disc. We will refer to L−1(0, . . . , 0) as the pivot
binding of the iterated book.
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A special case of this arises as described in the model examples of the
introduction:

Given � linear representations ρi of finite Coxeter groups Wi on R
ki ,

and � smooth vector bundles νi with base S. The obviousW = W1×. . .×
W� action on the product of the bundles νi ⊕ εki induces a W action on
the fiber product, Mρ̄,ν̄ := S(ν̄, ρ̄) of the sphere bundles S(νi ⊕ εki), i.e.,
the pull back by the diagonal map Δ : S → S× . . .×S of the product of
the sphere bundles S(νi ⊕ εki). As in the case of a single representation
and bundle as above, there is a canonically associated W equivariant
page map L : Mρ̄,ν̄ → D

k1 × · · · × D
k� where B = L−1(0, . . . , 0) is the

intersection of all mirrors for W, and P = L−1([0, 1]x1, . . . , [0, 1]x�) for
any x̄ ∈ S

k1−1 × . . .× S
k�−1 is a manifold with corners diffeomorphic to

the fiber product D(ν̄) of the disc bundles D(νi).

Theorem 4.7 (Iterated open book). Let M be a compact nonnega-
tively curved Coxeter W-manifold where all mirrors meet. Then there
is a splitting (allowing one factor) of the normal slice representation
splits as ρ̄ = ρ1 × . . . × ρ� on S

⊥ = S(Rk1) ∗ · · · ∗ S(Rk�), such that
M is W-equivariantly diffeomorphic to a fiber product, Mρ̄,ν̄ := S(ν̄, ρ̄).
Moreover, the fiber product of any of ν1, · · · , ν� mutually orthogonal sub
bundles, is a totally geodesic subbundle of the sum of all of them, a
vector bundle with non-negative sectional curvature over a soul S of the
chamber C.

Alternatively, M is an iterated open book with pivot binding B and
page a nonnegatively curved fiber product D(ν̄) with orthogonal totally
geodesic subbundles D(νJ), J ⊂ {1, . . . , �} with right angles at all cor-
ners along its totally geodesic boundary strata.

Proof. For a W-invariant decomposition of S⊥, we apply Theorem 4.3
to the W1-action on M . It follows that M is W1-equivariantly diffeo-
morphic to a sphere bundle S(ν1 ⊕ εk1) over S1, where S1 is the soul of
a chamber, C1 for the W1-action on M . As seen in the proof of Lemma
4.2, D(ν1) can be taken to be any of the strata F̂ 1

i in C1, and the fixed
point set of the W1 action, i.e., the intersection of all W1 mirrors Λ1

i , is
the subbundle S(ν1) =: B1 =

⋂
i Λ

1
i . Note that, since Wj , j �= 1 fixes the

normal spaces to B1 along B = MW, the totally geodesic submanifold
Λ̂1
i ⊂ M (the double of F̂ 1

i ) is invariant under W2 × . . .×W� for any i.

In addition, since Λ̂1
i = S(ν1 ⊕ ε1), we are in position to complete the

proof by induction.
Specifically, we note that W2 acts on M = S(ν1⊕εk1) ↘ S1 in a fiber

preserving fashion commuting with the W1-action. If W2 acts trivially
on the base, then W2 acts linearly along the fiber, hence ν1 = εk2 ⊕ ν ′1
and M = S(ν ′1⊕εk1 ⊕εk2) ↘ S1 with its W1×W2 action. Therefore, we
may assume that, the action of each factor Wi, i ≥ 2, is nontrivial on
S1, hence S(ν1 ⊕ εk1) ↘ S1 is an equivariant W2 × · · · ×W� bundle. By
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induction we may assume that the soul S1 is W2×· · ·×W� equivariantly
diffeomorphic to a fiber product S(ν̂1, ρ̂1) of Sphere bundles S(νi ⊕ εki),
i �= 1 over a totally geodesic submanifold S ⊂ S1, where S is the soul of a
chamber of the W2×· · ·×W� action on S1. In particular, the orbit space
of the W2 × · · · ×W� action on S1 is the fiber product of the chambers
in the disk bundles D(ν2 ⊕ εk2−1), · · · ,D(ν� ⊕ εk�−1). Therefore, the
orbit space of the W-action on M is the fiber product of chambers of
D(ν1 ⊕ εk1−1),D(ν2 ⊕ εk2−1), · · · ,D(ν� ⊕ εk�−1), where the double of
D(ν1 ⊕ εk1−1) is the restriction of the sphere bundle S(ν1 ⊕ εk1) to S.
It follows that M is W equivariantly diffeomorphic to the fiber product
S(ν̄, ρ̄) of S(νi ⊕ εki) over S. q.e.d.

Remark 4.8. We leave the details of the proof of the (equivalent)
iterated open book statement to the reader. Here, rather than us-
ing the induction hypothesis on the soul S1, one uses it on the whole
W2 × · · · ×W� invariant page D(ν1). We also point out that each irre-
ducible sub action gives rise to a coordinate page map for an open book
decomposition as in Theorem 4.3. All together one gets a W equivariant
page map F : M → D

k1×. . .×D
k� with pages as claimed. As in the case

of the open book description, one gets even more geometric structure
when the normal W action is reducible. For example, one gets several
heavens Hi corresponding to the Wi sub-actions, and their (orthogonal)
intersections as totally geodesic submanifolds of M .

We note that
• The chamber C is a bundle over the soul S with fiber the product

S
i1 ∗Δ1 × · · · × S

i� ∗Δ�.

Remark 4.9 (Reconstruction). As in the Remark 4.4, the nonneg-
atively curved metric on M can be constructed from a W2 × · · · ×W�-
invariant complete metric of non-negative curvature on the vector bun-
dle ν1 over S1, by modifying the metric near infinity (cf. [13]) in a
W2 × · · · ×W� invariant fashion.
Alternatively one can use the iterated open book description to achieve

this as soon as the nonnegatively curved page metrics have been mod-
ified so as to be product metrics along the boundary and its corners.
This again is done inductively using [13] combined with the information
that say the disc bundles D(ν1) and the fiber product of the remaining
disc bundles D(ν̂1) are orthogonal totally geodesic sub bundles of the
D(ν̄), so that either one of these manifolds with corners can be used a
soul of the page.

Prompted by the structure emerged in this section, we raise the fol-
lowing questions:

Problem 4.10. Are there obstructions for the sum / quotient of two
nonnegatively curved bundles with common soul to have nonnegative
curvature?
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5. Metric rigidity: Non compact universal cover

Our main goal in this section is to derive rigidity properties for non-
negatively curved manifolds M having noncompact universal cover and
supporting a cocompact reflection group. In particular, we will see that
the action is indecomposable if and only if M is flat with Coxeter cham-
ber C ′ a euclidean simplex. Moreover, in this case M is either a flat
torus or flat eucidean space.

We begin with the case whereM itself is non-compact (and complete).
By the Cheeger - Gromoll soul theorem such a manifold contains a

metrically embedded, totally convex compact submanifold S (a soul of
M) whose normal bundle is diffeomorphic toM . Moreover, by Corollary
6.2 in [5], M splits uniquely as a product M̄ × R

k, where the isometry
group I(M̄) of M̄ is compact and I(M) = I(M̄) × I(Rk). Thus in the
presence of a cocompact isometric action their work immediate yields

Theorem 5.1 (Strong Splitting). Assume M is a complete open
manifold of nonnegative curvature with a cocompact isometric group
action. Then M is isometric to a metric product Rk × S, where S is a
soul of M .

In particular,

Corollary 5.2 (Noncompact Indecomposable). A complete open
manifold M with nonnegative curvature and cocompact reflection group
W is indecomposable if and only if M is isometric to flat euclidean
space R

n and W is an affine Coxeter group with chamber C = M/W a
euclidean n-simplex.

Here the last claim follows from the fact, that the factors in 3.3 all
must be euclidean simplices for any cocompact Coxeter action on R

k,
and that a co-compact Affine Coxeter group has orbit space a simplex
if it is indecomposable, or equivalently, in this case, irreducible.

Also, for M compact with infinite fundamental group we get

Proposition 5.3. Let M be a compact nonnegatively curved mani-
fold with infinite fundamental group and reflection group W. Then, the
action is decomposable unless M is flat.

Proof. From the Cheeger-Gromoll-Toponogov splitting theorem [18,
6] we know that the universal cover of Mn splits isometrically as Rk×N ,
where R

k is flat euclidean k-space, k ≥ 1 and N is a compact simply
connected nonnegatively curved manifold. Since mirrors for the lifted

reflection group Ŵ contain either an R
k factor or an N factor we have

that Ŵ = ŴRk × ŴN , yielding a nontrivial splitting for the Ŵ chamber
unless N is a point. The desired result follows. q.e.d.

Throughout the remaining part of this section M is a compact flat
manifold. We start with the following simple observation, concerning
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actions where the Coxeter chamber C ′ does not contain any simplex
factors in 3.3:

Lemma 5.4 (Flat open book). Assume M is a compact flat manifold
with a Coxeter action by a reflection group W. If all mirrors meet, then
W ∼= Z

k+�
2

and M is isometric to N×
Z�
2
T
�×T

k, where Z
�
2 acts freely on

a compact flat manifold N , Z�
2 × W ⊂ I(S1)�+k acting componentwise

on T
k+� = S

1 × · · · × S
1 by reflecions.

Proof. It is clear that the intersection of mirrors is a flat manifold. Let
N denote a fixed point connected component. From 4.3, respectively 4.7
we know that M is a bundle with fiber a sphere respectively a product
of spheres over a soul. Being flat, the soul S must be flat, and the fiber
must be a product of circles. Therefore, M is the fiber product of S1-
bundles S(νi ⊕ ε), where νi, 1 ≤ i ≤ k + �, are all real line bundles over
S. Assume the first � bundles are nontrivial, and respectively the last k
bundles are trivial. In particular, N is a free Z�

2 bundle over S. It is clear

W ∼= Z
k+�
2

acting on T
k+� by componentwise reflections, commuting

with the componentwise Z
�
2 action on the first � factors (different from

theW action on the component, note that Z2×Z2 ⊂ I(S1)). The desired
result follows. q.e.d.

It follows in particular that the action is indecomposable if and only
if the chamber of its associated Coxeter action is a euclidean simplex.
Moreover, by 2.6 we know that if the Coxeter cover M ′ of M has cham-
ber a simplex, then π1(M

′) ⊂ Ŵ, and the Ŵ chamber in M̃ is a simplex
as well. However, as pointed out above, it then follows that the affine
Coxeter group is irreducible.

Recall that, an irreducible affine Coxeter group W of rank m must
be one of types Ãm, B̃m, C̃m, D̃m, Ẽ6, Ẽ7, Ẽ8, F̃4, G̃2 (cf., e.g., [4]), and
W = Z

m
� W0, where W0 is an irreducible spherical Coxeter group,

of type Am, Bm = Cm, Dm,E6,E7,E8,F4,G2. We say that a reflection

group W acting on a flat manifold M is irreducible if the Ŵ action on
R
m is irreducible. With this terminology, we now know that the W

action is indecomposable if and only if it is irreducible, if and only if its
Coxeter chamber is a simplex.

Before proving our main result below about irreducible actions, recall
that by Bieberbach’s celebrated theorem, a finite cover of M is isometric
to a flat torus T

m = R
m/Zm. Note that every isometry of Tm lifts to

a lattice preserving isometry of Rm, whose isometry group is I(Rm) ∼=
R
m
�O(m), and vice-versa. Therefore, I(Tm) contains Tm as a normal

subgroup with quotient a finite subgroup of O(m).
In view of Lemma 5.4 and subsequent comments above, the following

in particular completes the proof of Theorem A in the introduction:
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Theorem 5.5 (Torus Theorem). Let M be a compact flat manifold
with an irreducible / indecomposable reflection group action by W. Then

(1) M is a flat torus T
m.

(2) The W action is Coxeter.
(3) W ∼= A�W0, where A is a finite abelian group of rank at most m,

and W0 is a finite irreducible spherical Coxeter group.

Proof. By Bieberbach’s theorem, M = T
m/G where G ⊂ O(m) is the

holonomy. Note that G preserves the lattice Z
m ⊂ R

m, hence G is also
a finite subgroup of GL(Z,m).

By section 2, W lifts to a reflection group Ŵ ⊂ W̃ ⊂ I(Rm) = R
m
�

O(m) such that W̃/π1 = Ŵ/(π1 ∩ Ŵ) = W. Recall that Ŵ = Z
m
�W0,

where W0 is a maximal finite subgroup of Ŵ, a spherical Coxeter group.
Since π1 is a torsion free group, π1∩Ŵ is a torsion free normal subgroup
of Ŵ, and hence π1 ∩ Ŵ ⊂ Z

m is a sublattice. In particular, the split
epimorphism Ŵ → W0 induces a split epimorphism W = Ŵ/(π1∩Ŵ) →
W0 with kernel, A, a quotient of the sublattice in Z

m. Hence (3) follows.
Now we prove (1), i.e., G is trivial. Recall that π1 is a normal ex-

tension of Zm by G. Hence the holonomy homomorphism gives an epi-
morphism from Γ = π1/π1 ∩ Ŵ onto G ⊂ O(m). By Corollary 2.2,

Γ × W acts on a flat covering space M̂ of M , hence G commutes with
W0, the image of Ŵ in O(m). In particular, every g ∈ G commutes
with every w ∈ W0 ⊂ O(m). Therefore, the linear irreducible Coxeter
W0 action commutes with the linear G-action on S

m−1. It follows that
G ⊂ Z2 = 〈±I〉, generated by the antipodal map. If G = Z2, then π1 is a
normal extension of Zm by Z2 with monodromy −I. Such an extension
always splits, contradicting the fact that π1 is torsion free.

Given (1), W̃ is an extension of W by Z
m, hence, by (3), a split

extension over W0 with kernel a subgroup of translations of Rm. If the
W action is not Coxeter, then Wc is isomorphic to a finite subgroup of
W̃ (in fact, isomorphic to a chamber isotropy group of W̃ on R

m), hence

a subgroup of a conjugate of W0 in W̃. Therefore, Wc is trivial, since
the W0 action on R

m is Coxeter. The desired result follows. q.e.d.

The proof above, in fact also yields the somewhat surprising state-
ment, that if the Coxeter chamber C ′ only contains simplex factors in
its decomposition 3.3, then in particular it is Coxeter (cf. 2.3). Precisely
we have:

Corollary 5.6. Let M be a compact flat manifold with a reducible
reflection group W, where Ŵ = Ŵ1×· · ·×Ŵk such that Ŵi is irreducible.
If the chamber C ′ is a direct product of euclidean simplices Δ1×· · ·×Δk,
then M = T

m/G, where the holonomy group G ⊂ Z2×· · ·×Z2 a subgroup
of GL(Z,m) consists of block matrices with i-th block ±I. Moreover, the
W action is Coxeter.



REFLECTION GROUPS IN NON-NEGATIVE CURVATURE 201

It is easy to see that, if M is as in the above corollary, then it is an
iterated torus bundles with structure group Z2.

The Klein bottle is the simplest example of the above type. Specifi-
cally, we have:

Remark 5.7. Any reflection group W on a Klein bottle K is re-
ducible. Moreover, if C ′ is a product of intervals, then W ∼= D2k ×Z2, or
D2k ×Z

2
2 for k odd, or D2k ×Z2

Z
2
2 for k even, where D2k is the dihedral

group of order 2k, Z2 is the center of D2k in the balanced product.

The first assertion follows immediately from 5.5. Note that K is the
quotient T

2/〈γ〉, where the involution γ is given by (x, y) �→ (−x, ȳ),
with x, y ∈ S

1 ⊂ C unit complex numbers. From 5.6 we know that W is
the quotient of the product of reflection groups on R

1, hence, from 5.5
(3), the quotient of the product of two dihedral groups D2k ×D2l acting
componentwise on S

1 × S
1, for some k, l ≥ 1. Moreover, the reflection

group D2k ×D2l commutes with the deck involution γ, i.e., wγw−1 = γ
for any w ∈ D2k ×D2l. Therefore, l = 1 or 2. If k is even, the center of
D2k is Z2 generated by the antipodal map on S

1, hence γ ∈ D2k ×D4. By
the assumption on C ′ we know that, if l = 1, then D2 is not the complex
conjugation on S

1. From the fact that the quotient of a dihedral group
is again a dihedral group the second assertion follows.

6. Universal cover and group decomposition

Our objective in this section is to prove Theorem C and Corollary D
in the introduction.

To do this assume without loss of generality that the co-compact
W action on M is Coxeter with chambers, C = M/W. Based on the
previous sections and 3.3 we have a metric decomposition of the form

(6.1) C =

r∏

i=1

Δe
i ×

�−1∏

j=1

Δs
j × V� ×N

where N is a closed nonnegatively curved manifold without boundary
(possibly a point), the Δe

i are euclidean simplexes (including intervals),
Δs

j are spherical simplices, and V is a (iterated) book chamber.
We start with a simple observation

Lemma 6.2 (Trivial factor). The above M is isometric to M̄ × N
where W acts trivially on N , and M̄ is a nonnegatively curved Coxeter
W-manifold with orbit space as above without the N factor.

Proof. Consider the composition of submetries p : M → M/W → N .
This yields a horizontal and vertical splitting of the tangent bundle ofM ,
both of which are integrable and totally geodesic. Clearly the fiber M̄
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supports an induced W-action, with chamber C̄ =

r∏

i=1

Δe
i ×

�−1∏

j=1

Δs
j ×V�.

Using the decomposition (6.1) we can define an equivariant map f :
M → M̄ × N by identifying a chamber C with C̄ × N , a chamber for
the product W-action on M̄ × N , where W acts trivially on N . It is
clear that f is a diffeomorphism which restricts to an isometry on every
chamber wC, for any w ∈ W. The desired result follows. q.e.d.

The following shows that (6.2) does not hold unless the action is
Coxeter.

Example 6.3. Consider the product action on S
m × S

n of a linear
irreducible Coxeter W action on S

m and the trivial action on S
n. Let

S
m ×Z2

S
n be the orbit space of the free diagonal antipodal involution.

Then the induces W-action on S
m ×Z2

S
nis not Coxeter. A chamber C

is isometric to Δ × S
n, but the chamber isotropy group Wc = Z2 acts

freely on the product with orbit space Δ× P
n.

Note, that this example may be modified by replacing the antipodal
map on the Sn factor by any isometric involution a. In particular, if we
take n = m = 1, W = A2 and a = r a reflection, we get a non-Coxter
action on the Klein bottle, with chamber, S1 ×Δ1 and orbit space, an
“open envelope”, i.e, the double of a flat rectangle, leaving one side open
(cf. 5.6).

By Lemma 6.2 we now assume N is a point. Note, that faces of C
are products of all factors but one, with faces of the remaining factor.
Moreover, each such set i of such faces, generate a reflection group Wi

any two of which commute.

Proof of Theorem C. Let us first consider the case where π1(M) is in-
finite. Then by the Cheeger-Gromoll splitting theorem, the universal
cover M̃ is isometric to the product R

k × N , where N is a compact
simply connected manifold. Clearly, the chamber C̃ for the lifted Ŵ

action is a product of euclidean simplices with a chamber CN in N , and
Ŵ = Ŵ0×ŴN , where Ŵ0 is an affine Coxeter group, and ŴN is a finite
Coxeter group.

In particular, it remains to prove the claim when π1(M) is finite.
Thus it suffices to consider that case where M is compact and simply
connected. In this case, there are no euclidean simplices in the splitting
of C̃, and an open book chamber is simply connected as well. The
splitting of the tiles, by equivariance, obviously gives rise to a local
hence global splitting of M into factors consisting of spheres and an
open (iterated) book as claimed, with corresponding actions of Coxeter
groups. q.e.d.
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Proof of Corollary D. By Theorem C, passing to the universal cover,
M̃ , the lifted reflection group Ŵ is a product Ŵ0 × Ŵ1 × · · · × Ŵ�,
where Ŵ0 is an affine Coxeter group, Ŵj , 1 ≤ j ≤ �, are finite spherical

Coxeter groups. Note that W = Ŵ/N, where N is a normal subgroup

in Ŵ acting freely on M̃ , as a subgroup of the deck transformations.
It suffices to prove that N is abelian. Note, that N clearly projects to
a normal subgroup pj(N) ⊂ Ŵj , and moreover, N is contained in the
product of p0(N)×· · ·×p�(N). Hence it remains only to show that pj(N)
is abelian.

Note that pj(N) acts freely on the j-th factor. Therefore, p0(N) ⊂

Ŵ0
∼= Z

m
� W0 is contained in the torsion free lattice (cf. Theorem

5.5). A spherical factor Ŵj of rank 2, must come from either an open
book factor or a factor acting linearly on a sphere of dimension at least
2. In either case Ŵj has a fixed point, and hence, pj(N) must be triv-
ial. Finally, from the well-known fact that a normal subgroup of an
irreducible spherical Coxeter group of rank at least 3 is contained in its
center (trivial or Z2) the desired result follows.

Conversely, for an abelian normal subgroup N ∼= Z
p×Z

q
2
�Ŵ0×Ŵ1×

· · · × Ŵ�, where Z
q
2
is in the center of the product of spherical Coxeter

groups, which acts freely on the product of spheres Sk1 × · · · × S
k�, as a

sub-action of the product of the antipodal maps. Therefore N acts freely
on the product Rk × S

k1 × · · · × S
k�, and W acts as reflection groups on

the quotient space, a manifold with non-negative curvature. The proof
is now complete. q.e.d.
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