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ON THE NONCOMMUTATIVE RESIDUE FOR

PROJECTIVE PSEUDODIFFERENTIAL OPERATORS

Jörg Seiler & Alexander Strohmaier

Abstract

A well-known result on pseudodifferential operators states that
the noncommutative residue (Wodzicki residue) of a zero-order
pseudodifferential projection on a closed manifold vanishes. This
statement is non-local and implies the regularity of the eta in-
variant at zero of Dirac type operators. We prove that in the odd
dimensional case an analogous statement holds for the algebra of
projective pseudodifferential operators, i.e., the noncommutative
residue of a projective pseudodifferential projection vanishes. Our
strategy of proof also simplifies the argument in the classical set-
ting. We show that the noncommutative residue factors to a map
from the twisted K-theory of the co-sphere bundle and then use
arguments from twisted K-theory to reduce this question to a
known model case. It can then be verified by local computations
that this map vanishes in odd dimensions.

1. Introduction

If ΨDOcl(X,E) denotes the algebra of classical pseudodifferential op-
erators on a closed manifold X acting on sections of a vector bundle E,
the corresponding algebra of symbols can be defined as the quotient
of ΨDOcl(X,E) by the ideal of smoothing operators. Since pseudodif-
ferential operators are smooth off the diagonal, the symbol algebra is
localized on the diagonal and it therefore can also be defined locally, us-
ing the product expansion formula and the change of charts formula for
pseudodifferential operators. That the local heat kernel coefficients and
the index of elliptic pseudodifferential operators are locally computable
relies on the fact that the index and asymptotic spectral properties of
pseudodifferential operators depend only on their class in the symbol al-
gebra. Note that the principal symbol of a pseudodifferential operator is
a section of the bundle of endomorphisms of π∗E, where π : T ∗X → X
is the canonical projection.

The bundle of endomorphisms of a complex hermitian vector bundle
is a bundle of simple matrix algebras with ∗-structure. However, not
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all bundles of simple matrix algebras with ∗-structure, so-called Azu-
maya bundles, are isomorphic to endomorphism bundles of hermitian
vector bundles. The obstruction is the so-called Dixmier-Douady class
in H3(X,Z). Given an Azumaya bundle A, it is possible to construct
algebras of symbols whose principal symbols take values in the space of
sections of the Azumaya bundle π∗A (see for example [MMS05] and
the discussion in [MMS06]). Following [MMS05], we refer to such a
symbol algebra as the algebra of symbols of projective pseudodifferen-
tial operators. For such symbol algebras, one can define an index and
Mathai, Melrose, and Singer [MMS06] proved an index formula for
projective pseudodifferential operators, analogous to the Atiyah-Singer
index formula. The topological index in this case is a map from twisted
K-theory to R. It has also been shown in [MMS06] that any oriented
manifold admits a projective Dirac operator even if the manifold does
not admit a spin structure. In this case, its index may fail to be an
integer.

Another important quantity that depends only on the class of the
symbol of a pseudodifferential operator is the so-called Wodzicki residue
or noncommutative residue. Up to a factor, it is the unique trace on
the algebra of pseudodifferential operators. The Wodzicki residue ap-
peared first as a residue of a zeta function measuring spectral asym-
metry ([APS76, Wo84]). Wodzicki showed that the regularity of the
η-function of a Dirac type operator at zero—a necessary ingredient to
define the η-invariant—follows as a special case from the vanishing of
the Wodzicki residue on pseudodifferential projections (as remarked by
Brüning and Lesch [BL99], the regularity of the η-function at zero for
any Dirac type operator and the vanishing of the Wodzicki residue on
pseudodifferential projections are actually equivalent). The regularity of
the η-function was proved by Atiyah, Patodi, and Singer in [APS76]
in the case when X is odd dimensional and later by Gilkey ([Gi81])
in the general case using K-theoretic arguments. Note that whereas the
Wodzicki residue can be locally computed, its vanishing on pseudodiffer-
ential projections is not a local phenomenon. Gilkey [Gi79] constructed
a pseudodifferential projection whose residue density is non-vanishing
but integrates to zero.

In our paper we show that the Wodzicki residue can also be defined for
projective pseudodifferential operators (as already has been observed in
[MMS06]) and show that it vanishes on zero-order projections in case
the dimension of the manifold is odd. Our proof is based on the Leray-
Hirsch theorem in twisted K-theory and well-known facts from algebraic
K-theory. These results can be applied to the Wodzicki residue, showing
that it descends to a map from twisted K-theory K0(S∗X,π∗A) to C.
We then use the Leray-Hirsch theorem to show that this map vanishes
by reducing the problem to positive spectral projections of generalized
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Dirac operators for which it is known [BG92] that the residue density
vanishes.

Acknowledgments. We would like to thank Thomas Schick for com-
ments and for pointing out a gap in an earlier version of this paper. We
also would like to thank the anonymous referees for valuable suggestions
and simplifications of the argument.

2. Convolution bundles and Azumaya bundles

Pseudodifferential operators on a smooth closed Riemannian manifold
X acting on sections of a vector bundle E can be understood as co-
normal distributional sections in the vector bundle E ⊠ E∗ over the
space X ×X (i.e., the external tensor product of E and its dual bundle
E∗, having fibre Ex⊗E

∗
y over a point (x, y)), by identifying the operators

with their distributional kernel. The bundle E ⊠ E∗ has the following
structure that allows us to define the convolution of integral operators:
any element in the fibre over (x, y) may be multiplied by an element in
the fibre over (y, z) to give an element in the fibre over (x, z). Moreover,
this multiplication satisfies natural conditions such as associativity. In
order to define projective pseudodifferential operators, it is convenient
to formalize this structure, as we shall do in this section.

2.1. Convolution bundles. In the sequel, we shall denote by Mk(R)
the k × k-matrices with entries from R. Let U denote an open neigh-
borhood of the diagonal ∆(X) in X ×X which is symmetric under the
reflection map s : (x, y) 7→ (y, x). Let pik : X ×X ×X → X ×X be de-

fined by pik(x1, x2, x3) = (xi, xk) and set Ũ := p−1
12 (U)∩p

−1
23 (U)∩p

−1
13 (U).

Denote by p̃ik the restriction of the map pik to Ũ .

Definition 2.1. Let π : F → U be a locally trivial vector bundle
with typical fibre Mk(C). We call F a convolution bundle if there exists
a homomorphism of vector bundles m : p̃∗12F ⊗ p̃∗23F → F such that the
following conditions are satisfied:

(i) The following diagram is commutative:

p̃∗12F ⊗ p̃∗23F
m

−−−−→ F
y

y

Ũ
p̃13

−−−−→ U

(ii) m is associative, i.e., whenever fij belong to the fibre F(xi,xj), then

m (m(f12 ⊗ f23)⊗ f34) = m (f12 ⊗m(f23 ⊗ f34))

(we implicitly assume that (x1, x2, x3), (x1, x3, x4), and (x1, x2, x4)

belong to Ũ).
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(iii) There is an atlas {Oα} of U together with local trivializations

φα : π−1Oα → Oα ×Mk(C),

such that

φα(m(f12 ⊗ f23)) = φα(f12) · φα(f23)

whenever fij ∈ F(xi,xj) with (x1, x2, x3) ∈ p̃−1
12 (Oα) ∩ p̃

−1
23 (Oα).

Definition 2.2. A ∗-structure on F is a conjugate linear map ∗ :
F → F of vector bundles such that

F
∗

−−−−→ F
y

y

U
∗

−−−−→ U

commutes, such that (m(f⊗g))∗ = m(g∗⊗f∗), and such that the above
local trivializations additionally satisfy

∀f ∈ π−1(Oα ∩ s(Oα)) : φα(f
∗) = φα(f)

∗,

where the star on the right hand side denotes the hermitian conjugation
of matrices. We will refer to a convolution bundle with ∗-structure as a
∗-convolution bundle.

Note that E⊠E∗ is a particular example for a ∗-convolution bundle;
in this case we can choose U = X×X. The restriction of a ∗-convolution
bundle F to the diagonal in X ×X is a bundle A of finite dimensional
simple C∗-algebras. Following the literature, we refer to such bundles of
matrix algebras as Azumaya bundles.

As shown in [MMS06], any Azumaya bundle A on X gives rise to
a convolution bundle near the diagonal in the following way, using an
atlas of local trivializations with respect to a good cover {Uα} of X
(recall that a cover is good if finite intersections of elements therein are
either empty or contractible): The transition functions σαβ are smooth
functions on Uαβ = Uα∩Uβ with values in the automorphisms ofMk(C).
Since all automorphisms are inner, we can choose local functions ϕαβ :

Uαβ → SU(k) that implement σαβ, i.e., σαβ(x)(A) = ϕαβ(x)Aϕ
−1
αβ (x).

In general, the functions ϕαβ may violate the co-cycle condition and
therefore are not the transition functions of a vector bundle. The cocycle
condition for the σαβ together with the condition that the ϕαβ are chosen
in SU(k) show that any ϕαβϕβγϕγα must be a constant function on
Uα ∩ Uβ ∩ Uγ , equal to a k-th root of unity times the identity matrix
(note that on different triple intersections the resulting unit-root can
be different; this induces a torsion element in H3(X,Z), the Dixmier-
Douady class). Then we obtain a convolution bundle F with typical fibre
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Mk(C) on a neighborhood of the diagonal by choosing the transition
functions

φαβ(x, y)(A) = ϕαβ(x)Aϕαβ(y)
−1, A ∈Mk(C),

on Uαβ×Uαβ. There are also other possible extensions ofA, cf. [MMS06],
and Proposition 2.4, below.

Remark 2.3. In the sequel it will be occasionally convenient to
choose an atlas for F consisting of sets Oα := Uα × Uα, where {Uα}
is a good cover of X; the corresponding trivializations we shall denote
by φα (so we use the same notation as in Definition 2.1(iii) above, but
possibly have changed the atlas).

2.2. Transition functions. In the previous section we have seen how
an Azumaya bundle leads to a convolution bundle by choosing certain
transition functions. Let us now have a closer look at the transition
functions of an arbitrary ∗-convolution bundle. Fix an atlas as explained
in Remark 2.3 and let φαβ : Oαβ −→ GL(Mk(C)) with

Oαβ := Oα ∩ Oβ = (Uα × Uα) ∩ (Uβ × Uβ)

be the transition functions defined by

φβ ◦ φ
−1
α

(
(x, y), A

)
=

(
(x, y), φαβ(x, y)(A)

)
.

Then condition (iii) of Definition 2.1 is equivalent to

φαβ(x, y)(A)φαβ(y, z)(B) = φαβ(x, z)(AB).

In particular,

(2.1) (x, x) 7→ φαβ(x, x) : Oαβ ∩∆(X) −→ Aut(Mk(C)).

Moreover, Definition 2.2 on the level of the transition functions means
that

(2.2) φαβ(x, y)(A
∗) = φαβ(y, x)(A)

∗.

Proposition 2.4. Let F be a ∗-convolution bundle with transition

functions φαβ as described above. Then

(2.3) φαβ(x, y)(A) = λαβ(x, y)ϕαβ(x)Aϕαβ(y)
−1

with mappings

ϕαβ : Oαβ −→ SU(k), λαβ : Oαβ −→ C,

satisfying

λαβ(x, x) = 1, λαβ(x, y)λαβ(y, z) = λαβ(x, z), λαβ(x, y) = λαβ(y, x),

and such that all ϕαβϕβγϕγα are constant functions on their domain of

definition, equal to a k-th root of unity times the identity matrix.
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Proof. Combining (2.1) with (2.2), we find ϕαβ with

φαβ(x, x)(A) = ϕαβ(x)Aϕαβ(x)
−1,

since all automorphisms of Mk(C) are inner. Now let us define

φ′αβ(x, y)(A) = ϕαβ(x)
−1φαβ(x, y)(A)ϕαβ(y).

We then have

φ′αβ(x, x)(A) = A, φ′αβ(A)(x, y)φ
′
αβ(y, z)(B) = φ′αβ(x, z)(AB).

It follows that

φ′αβ(x, y)(AB) = φ′αβ(x, y)(A)φ
′
αβ(y, y)(B) = φ′αβ(x, y)(A)B

and, analogously, φ′αβ(x, y)(AB) = Aφ′αβ(x, y)(B). Thus, for any matrix
A,

φ′αβ(x, y)(1)A = φ′αβ(x, y)(A) = Aφ′αβ(x, y)(1),

where 1 is the identity matrix. This shows φ′αβ(x, y)(1) is a multiple of

the identity matrix. Denoting the corresponding factor by λαβ(x, y), the
claim follows. q.e.d.

3. Projective Pseudodifferential Operators

Projective pseudodifferential operators were defined in [MMS05].
We adapt this definition to fit in our setting of convolution bundles.

3.1. Pseudodifferential operators. To clarify notation, let us briefly
recall the definition of classical (or polyhomogeneous) pseudodifferential
operators on an open subset Ω of Rn. Further details the reader may find,
for example, in [Ku82], [Sh87], or other textbooks on pseudodifferential
analysis. Let V ∼= C

k be a k-dimensional vector space.
A symbol of order m ∈ R is a smooth function a : Ω × Ω × R

n →
End(V ) = V ⊗ V ∗ satisfying estimates

∥∥∂αξ ∂β(x,y)a(x, y, ξ)
∥∥ ≤ CαβK(1 + |ξ|)m−|α|

for any multi-indices α, β and any compact subset K of Ω × Ω, and

having an asymptotic expansion a ∼
∞∑
j=0

χam−j with a zero-excision

function χ = χ(ξ) and homogeneous components am−j , i.e.,

am−j(x, y, tξ) = tm−jam−j(x, y, ξ)

for all (x, ξ) with ξ 6= 0 and all t > 0. The pseudodifferential operator
op(a) : C∞

0 (Ω, V ) → C∞(Ω, V ) associated with a is

[op(a)ϕ](x) = (2π)−n
∫∫

ei(x−y)ξa(x, y, ξ)ϕ(y) dydξ, ϕ ∈ C∞
0 (Ω, V ).
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An operator R : C∞
0 (Ω, V ) → C∞(Ω, V ) is called smoothing if it has a

smooth integral kernel k ∈ C∞(Ω× Ω,End(V )), i.e.,

(Rϕ)(x) =

∫

Ω
k(x, y)ϕ(y) dy, ϕ ∈ C∞

0 (Ω, V ).

A pseudodifferential operator of order m ∈ R on Ω is an operator of the
form A = op(a)+R, where a is a symbol of order m and R is smoothing.

Any pseudodifferential operator A = op(a) + R of order m can be
represented in the form op(aL) +R′, where aL(x, ξ) is a y-independent
‘left-symbol’ of order m; up to order −∞ the left-symbol is uniquely
determined by the asymptotic expansion

aL(x, ξ) ∼
∞∑

|α|=0

1

α!
∂αξ D

α
y a(x, y, ξ)

∣∣∣
x=y

.

The homogeneous components of A are by definition those of aL,

σm−j(A)(x, ξ) := (aL)m−j(x, ξ).

By the Schwarz kernel theorem, we can identify A with its distributional
kernel

KA ∈ D
′(Ω× Ω, V ⊗ V ∗),

the topological dual of C∞
0 (Ω × Ω;V ∗ ⊗ V ). It is uniquely defined by

the relation

〈KA, ψ ⊗ ϕ〉 = 〈ψ,Aϕ〉, ψ ∈ C∞
0 (Ω, V ∗), ϕ ∈ C∞

0 (Ω, V ).

Denoting by tr : V ∗ ⊗ V → C the canonical contraction map, we have
explicitly

〈KA, u〉 =

∫

Ω
tr[Au(x, ·)](x) dx, u ∈ C∞

0 (Ω× Ω;V ∗ ⊗ V ).

By pseudo-locality, KA ∈ C∞(Ω× Ω \∆(Ω), V ⊗ V ∗).
If U ⊂ X is a coordinate neighborhood, we can pull back local opera-

tors under the coordinate map. The resulting space of operators we shall
denote by ΨDOm

cl (U ; End(V )), the subspace of smoothing operators by
ΨDO−∞(U ; End(V )).

3.2. Projective pseudodifferential operators. In the following we
choose an atlas as explained in Remark 2.3.

Definition 3.1. Let F be a ∗-convolution bundle over U . A distri-
bution A ∈ D′(U , F ) is called a projective pseudodifferential operator
of order m ∈ R if

(i) A is smooth outside the diagonal.
(ii) For any α the distribution

(
φ−1
α

)∗
A
∣∣
Uα×Uα

is the distributional

kernel of a pseudodifferential operator Aα ∈ ΨDOm
cl (Uα; End(C

k)).
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We denote the vector space of m-th order projective pseudodifferen-
tial operators by ΨDOm

cl (U ;F ), the subspace of smoothing elements by
ΨDO−∞(U ;F ).

The subspace Diffm(U ;F ) of projective differential operators consists
of all projective pseudodifferential operators which are supported on the
diagonal.

Remark 3.2. If U = X×X and F = E⊠E∗ for a bundle E over X,
then ΨDOm

cl (U ;F ) coincides with ΨDOm
cl (X;E,E), the pseudodifferen-

tial operators of order m acting on sections of E.

Though projective pseudodifferential operators, in general, are not
operators in the usual sense (i.e., acting between sections of vector bun-
dles), all elements of the standard calculus can be generalized to this
setting. In particular, the ∗-structure gives rise to a conjugation on
ΨDOm

cl (U ;F ), defined by A∗(x, y) := (A(y, x))∗ in the distributional
sense.

Let A be a projective pseudodifferential operator with local repre-
sentatives Aα and Aβ, cf. Definition 3.1, where Oαβ is not empty. By
passing to local coordinates on Uα ∩ Uβ, we can associate with Aα and
Aβ local left-symbols aα(x, ξ) and aβ(x, ξ), respectively. These symbols
are then related by

aβ(x, ξ) =

∞∑

|γ|=0

1

γ!
∂γξD

γ
y

∣∣∣
y=x

φαβ(x, y)
(
aα(x, ξ)

)

=
∞∑

|γ|=0

1

γ!
∂γξD

γ
y

∣∣∣
y=x

[
λαβ(x, y)ϕαβ(x)aα(x, ξ)ϕαβ(y)

−1
]
,

(3.1)

where the transition function φαβ is as described in (2.2) and Propo-
sition 2.4. Note that this behaviour, in general, differs from the stan-
dard case, due to the factor λαβ(x, y). However, (3.1) together with
λαβ(x, x) = 1 shows that with A we can associate a well-defined homo-
geneous principal symbol

σm(A)(x, ξ) ∈ C∞(S∗X,π∗A),

where π : S∗X → X is the canonical co-sphere bundle over X. Vice
versa, any given such section can be realized as the principal symbol of
a projective pseudodifferential operator.

If the projective pseudodifferential operators A1 and A2 are supported
in a sufficiently small neighborhood of the diagonal in U , their usual
composition

(A1 ◦A2)(x, z) =

∫

X

m (A1(x, y)⊗A2(y, z)) dy

is a distribution. By passing to local coordinates and using the composi-
tion theorems for pseudodifferential operators, one can see that A1 ◦A2
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is a projective pseudodifferential operator. The homogeneous principal
symbol is multiplicative under composition. Of course, any projective
pseudodifferential operator can be written as a sum of two operators,
where one is smoothing and the other is supported near the diagonal.
Summarizing, the coset space

(3.2) L∗
cl(U , F ) := ΨDO∗

cl(U , F )/ΨDO−∞(U , F )

is a filtered ∗-algebra. As in the standard case, asymptotic summations
of sequences of projective operators of one-step decreasing orders are
possible and parametrices (i.e., inverses modulo smoothing remainders)
to elliptic elements (i.e., those having a pointwise invertible principal
symbol) can be constructed.

The next theorem introduces the noncommutative residue or Wod-

zicki residue in the context of projective pseudodifferential operators,
extending the well-known constructions for standard pseudodifferential
operators, cf. [FGLS96]. Due to its uniqueness, it coincides with the
one introduced in [MMS06].

Theorem 3.3. Let F be a ∗-convolution bundle and let A be a pro-

jective pseudodifferential operator. For x ∈ X, define

WResx(A) :=

∫

S∗

xX

tr a−n(x, ξ) dσ(ξ) dx,

where a−n(x, ξ), n = dimX, is the homogeneous component of order

−n of a symbol of a local representative Aα with x ∈ Oα, cf. Definition

3.1. Then WResx(A) is well-defined and defines a global density on X.

Moreover,

WRes(A) :=

∫

X

WResx(A)

defines a trace functional on the algebra L∗
cl(U , F ). Up to a multiplicative

constant, WRes is the unique functional on L∗
cl(U , F ) that vanishes both

on commutators as well as on elements of order at most −n.

Proof. Let Aβ be another local representative and x ∈ Oβ. Fixing
local coordinates on Oα∩Oβ, the local symbols aα and aβ are related by
the asymptotic expansion (3.1). Following the proof in [FGLS96], terms
containing a derivative ∂γξ , |γ| ≥ 1, vanish under integration. We thus

obtain the same value for WResx(A) using either aα(x, ξ) or aβ(x, ξ).
That WResx(A) transforms as a density under changes of coordinates
is seen as in the standard case, cf. [FGLS96].

To see that the integral of the residue density defines a trace func-
tional, we need to show that it vanishes on commutators [A,B]. To
this end, fix a cover {U ′

σ} of X by coordinate maps together with a
subordinate partition of unity, such that U ′

σ ∪ U ′
ρ is contained in some

Uα whenever U ′
σ ∩U

′
ρ is not empty. We then can write A =

∑
σ Aσ and
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B =
∑

σ Bσ modulo smoothing operators, where the Aσ and Bσ are sup-
ported in O′

σ := U ′
σ×U

′
σ. Then the commutator [A,B] can be written as

a sum of terms [Aσ, Bρ]. Such a commutator is smoothing if O′
σ ∩O′

ρ is
empty. Otherwise it is contained in some set Oα. Therefore the calcula-
tion reduces to a local one, which is not different from the one for usual
pseudodifferential operators that can be found in [FGLS96]. Also the
uniqueness on the class of projective pseudodifferential operators sup-
ported in some set Oα is verified as in this paper. Using a partition of
unity, the uniqueness of the noncommutative residue follows. q.e.d.

4. The noncommutative residue in twisted K-theory

4.1. Twisted K-theory. Suppose that A is an Azumaya bundle over
a compact manifold X. The twisted K-theory is defined to be the K-
theory of the C∗-algebra of continuous sections C(X;A) of A.

If Y ⊂ X is a closed subset, then the set of sections C(X,Y ;A)
vanishing on Y is a closed two-sided ideal in C(X,Y ;A) and the quotient
by this ideal can be identified with the space of continuous sections
C(Y ;A) of the Azumaya bundle A|Y . We therefore have the six term
exact sequence as a consequence of the six term exact sequence in the
theory of C∗-algebras,

K0(X,Y ;A) −−−−→ K0(X;A) −−−−→ K0(Y ;A)
x

y

K1(Y ;A) −−−−→ K1(X;A) −−−−→ K1(X,Y ;A)

where the relativeK-groupsK∗(X,Y ;A) are defined asK∗(C(X,Y ;A)).
There is a natural map

K∗(C(X,Y ;A))⊗Z K∗(C(X)) 7→ K∗(C(X,Y ;A) ⊗̂C(X)).

Here ⊗̂ is the tensor product of C∗-algebras, which is well defined in
this case as C(X) is nuclear. The usual multiplication

C(X,Y ;A) ⊗̂C(X) → C(X,Y ;A)

induces a map K∗(C(X,A) ⊗̂C(X)) → K∗(C(X,A)). The composition
of these two maps makes K∗(X,Y ;A) a module over the Z2-graded
ring K∗(X). Choosing Y = ∅ defines a K∗(X) module structure on
K∗(X;A). Note that the morphisms in the six term exact sequence are
module homomorphisms.

These observations can be used to prove the following Leray-Hirsch
theorem:

Theorem 4.1. Let R be a commutative torsion-free ring. Suppose

that π : M
F
−→ X is a compact smooth fibre bundle with fibre F over X

and let A be an Azumaya bundle over X. Assume that K∗(F )⊗ZR is a
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free R-module and suppose there exist elements c1, . . . , cN ∈ K∗(M)⊗ZR
such that the cj |Mx form a basis for K∗(Mx)⊗ZR for every x ∈ X. Then

the following map is an isomorphism:

K∗(X;A)⊗Z R
N −→ K∗(M,π∗(A))⊗Z R, (p, α) 7→

N∑

j=1

αjπ
∗(p) · cj .

Indeed, the usual proof of the Leray-Hirsch theorem in topological
K-theory (see e.g. [H09], Theorem 2.25) can be adapted to our set-
ting. If Y ⊂ X is a closed subset of X, we have the following di-
agram (where, for notational convenience, we shall use abbreviations
K∗
RN (. . .) = K∗(. . .)⊗Z R

N ):

//K∗
RN (X,Y ;A)

Φ
��

//K∗
RN (X;A)

Φ
��

//K∗
RN (Y ;A)

Φ
��

//

//K∗
R(π

−1X,π−1Y ;A) //K∗
R(π

−1X;A) //K∗
R(π

−1Y ;A) //

with Φ being defined as in the theorem, Φ(p, α) =
N∑
j=1

αjπ
∗(p) · cj. The

rows of this diagram are exact since tensoring with RN and R is an
exact functor. All maps in the six term exact sequence are natural and
therefore the pull back π∗ commutes with them. Moreover, the maps
in the six term exact sequence for the pair (π−1X,π−1Y ) are K∗(M)
module homomorphisms. Thus, the diagram commutes. Since X is a
finite cell complex, one can proceed in the usual way using the 5-lemma
and induction in the number of cells and the dimension to prove the
theorem.

4.2. The noncommutative residue. In this section we show that the
value of the Wodzicki residue of a projection in L0

cl(U , F ) depends only
on the class of its principal symbol in K0(C(S∗X,π∗A)). Therefore, the
Wodzicki residue induces a map in twisted K-theory.

Proposition 4.2. Let A be the Azumaya bundle obtained by re-

stricting a ∗-convolution bundle F to the diagonal. The noncommutative

residue from Theorem 3.3 descends to a group homomorphism

(4.1) WRes : K0(S∗X,π∗A) → C,

where π : S∗X → X denotes the co-sphere bundle over X.

Proof. We have the usual exact sequence

0 −→ L−1
cl (U , F ) −→ L0

cl(U , F ) −→ C∞(S∗X,π∗A) −→ 0

where the last map is the symbol map. Define

A := L0
cl(U , F )/L

−n−1
cl (U , F ), I := L−1

cl (U , F )/L
−n−1
cl (U , F ).

Then A/I is isomorphic to C∞(S∗X,π∗A) via the symbol map. By def-
inition, the Wodzicki residue is a trace on A and therefore its restriction
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to projections descends to a map K0(A) → C. The ideal I is a nilpotent
ideal in A and it is well known that this implies that the natural map
K0(A) → K0(A/I) is an isomorphism, cf. [B68]. Thus, the Wodzicki
residue descends to a map from K0(C

∞(S∗X,π∗A)) to C. Finally, the
natural inclusion of theK-theory of the local C∗-algebra C∞(S∗X,π∗A)
into that of C(S∗X,π∗A) is an isomorphism, cf. [Bl98]. q.e.d.

5. Twisted Dirac operators and connections

Let A be the Azumaya bundle obtained by restricting a ∗-convolution
bundle F to the diagonal.

Definition 5.1. A projective connection ∇ = ∇F on F is a linear
map

Y 7→ ∇Y : C∞(X;TX) −→ Diff1(U ;F )

satisfying, for any vector field Y ∈ C∞(X,TX) and any function f ∈
C∞(X),

(1) ∇fY = f∇Y ,
(2) [∇Y , f ] = Y f for any f ∈ C∞(X).

It is called a hermitian connection if, additionally,

(3) ∇∗
Y +∇Y + div Y = 0

(here, f and div Y are considered as elements of Diff0(U ;F )).

Note that in case U = X ×X and F = E ⊠ E∗ for a vector bundle
E over X, we just recover a usual hermitian connection on E. One can
always construct a projective hermitian connection from local hermitian
connections by gluing with a partition of unity.

If ∇ = ∇F is a projective connection and φα is a local trivialization
of F over Uα × Uα as described in Remark 2.3, the corresponding local
differential operator

∇α
Y ∈ Diff1(Uα,End(C

k))

is of the form

∇α
Y = Y + ΓαY (x), ΓαY ∈ C∞(Uα,Mk(C)).

If we use another trivialization φβ of F on Uβ×Uβ, we have the relation

ΓβY (x) = φαβ(x, x)(Γ
α
Y (x)) + Yyφαβ(x, y)(1)

∣∣
y=x

, x ∈ Uα ∩ Uβ,

where 1 is the identity matrix. Thus, in analogy to the theory of stan-
dard connections, we may describe projective connections by ‘connection
matrices’ ΓαY associated to a covering X = ∪α Uα satisfying the above
compatibility relations. For a hermitian connection, the connection ma-
trices also have to be skew-symmetric, ΓαY (x)

∗ = −ΓαY (x).
Suppose now S is a Clifford module over X and let γ denote the

Clifford multiplication. Moreover, let ∇S be a connection on S which is
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compatible with the Clifford structure. Writing F̃ := S ⊠ S∗ it is easy

to see that F ⊗ F̃ is a ∗-convolution bundle over U , and we can define
the projective hermitian connection

∇ := ∇F ⊗ 1 + 1⊗∇S

by choosing the corresponding connection matrices as

ΓF,αY (x)⊗ 1 + 1⊗ ΓS,αY (x), x ∈ Uα,

where the Uα are chosen in such a way that both F and F̃ are locally
trivial over Uα × Uα. Then we can define the twisted Dirac operator

D := (1⊗ γ) ◦ ∇ ∈ Diff1(U ;F ⊗ F̃ );

in fact, in each local trivialization ∇ is a usual hermitean connection
and we can compose it locally with 1⊗ γ.

6. Vanishing of the Wodzicki residue

Theorem 6.1. If X is an odd dimensional oriented manifold, the

map WRes of (4.1) vanishes identically.

Consequently, WRes(P ) = 0 for any projection P ∈ L0
cl(U , F ).

Proof of Theorem 6.1. Suppose the dimension of X is n = 2ℓ−1. Let us
denote by S = ⊕

k even
Λk(T ∗X) the bundle of even-degree forms over X,

let ∗ : Λk(T ∗X) → Λn−k(T ∗X) be the Hodge star operator, and denote
by d and δ the exterior differential and the co-differential, respectively.
Define the operator DS acting on sections of S as

DS = iℓ ∗ (δ + (−1)k+1d) on k-forms.

By Proposition 1.22 and 2.8 in [BGV04], this is a generalized Dirac
operator, where the Clifford action on S is given by

γ(ξ) = iℓ ∗
(
int(ξ) + (−1)k+1ext(ξ)

)
, ξ ∈ T ∗X,

and the compatible connection is the Levi-Civita connection. The prin-
cipal symbol of DS restricted to the co-sphere bundle is a self-adjoint
involution and the projection σ+(D

S) = 1
2(σ(D

S) + 1) onto its +1

eigenspace defines an element in K0(S∗X). It is well known (see for
instance [APS76]) that restriction of this element to each co-sphere
S∗
xX equals 2ℓ times the Bott element on Sn−1 which, together with the

class of the trivial line bundle, freely generates K0(Sn−1).
For notational convenience, denote byK∗

R
(X) the groupsK∗(X)⊗ZR.

By Theorem 4.1 applied to the co-sphere bundle of X, any element of
K0

R
(S∗X,π∗A) can be represented in the form

α0π
∗(p) · [1] + α1π

∗(p) · [σ+(D
S)]
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for some α0, α1 ∈ R and some p ∈ K0(X,A). Here both the class [1]
of the trivial line bundle and the class [σ+(D

S)] are understood as ele-
ments in K0

R
(S∗X). The elements in α0π

∗(p) · [1] can be represented by
projections in C∞(X;MN (A)). Therefore, the noncommutative residue
of these elements vanishes. It remains to show that this is also true for
the second summand.

To this end, let p be a projection in MN (C
∞(X;A)). Let us de-

fine the new convolution bundle Fp having fibre p(x)MN (F )(x,y)p(y) ⊂
MN (F )(x,y) in (x, y). We now apply the above construction and build a

twisted Dirac operator Dp with respect to Fp ⊗ F̃ , F̃ = S ⊠ S∗. Then
σ+(Dp) represents the class π∗([p]) · [σ+(D

S)] in K0(S∗X,π∗A).
The projective differential operator Dp can now be used to construct

a certain projection Q ∈ L0
cl(U , Fp) whose principal symbol is σ+(Dp)

on S∗X. In the case of an invertible Dirac type operator D acting on a
vector bundle, the projection would just be the operator 1

2(|D|−1D+1).
The symbol of this projection can be constructed from a parametrix of
D, and this construction is local modulo smoothing operators. That is,
the full symbol of 1

2(|D|−1D+1) modulo smoothing terms in local coor-
dinates depends only on the full symbol of D in these local coordinates.
Thus, the construction can be repeated for the operator Dp to yield an
element in L0

cl(U , Fp) which we denote by Q or formally 1
2(|Dp|

−1Dp+1).

By construction, [σ(Q)] ∈ K0
R
(S∗X;A) is equal to π∗([p]) · [σ+(D

S)].
In [BG92] (Theorem 3.4), Branson and Gilkey have used invariant

theory to show that the residue density of the positive spectral pro-
jection for any generalized Dirac operator vanishes identically. Locally,
Dp is a generalized Dirac operator and, since the construction of the
residue density is local, the residue density of Q vanishes as well. So
we can conclude that the noncommutative residue of Q vanishes, which
completes our proof. q.e.d.
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