
j. differential geometry

92 (2012) 55-69

LATTICE POINTS COUNTING

VIA EINSTEIN METRICS

Naichung Conan Leung & Ziming Nikolas Ma

Abstract

We obtain a growth estimate for the number of lattice points inside
any Q-Gorenstein cone. Our proof uses the result of Futaki-Ono-Wang
on Sasaki-Einstein metric for the toric Sasakian manifold associated to
the cone, a Yau’s inequality, and the Kawasaki-Riemann-Roch formula
for orbifolds.

1. Introduction

The Ehrhart polynomial pP : Z → Z associated to a lattice polytope
P inside an n-dimensional latticed vector space Zn ⊂ Rn is given by

pP (k) = #(kP ∩ Zn) =

n
∑

i=0

aik
i.

Lots of work has been done to get estimates of the polynomial, using
either combinatorial or geometric methods (see for example [4]). In this
paper, we are interested in obtaining a lower estimate of pP (k) for large
k using toric geometry and Einstein metrics.

When the polytope is Delzánt, the Ehrhart polynomial has an expres-
sion via toric geometry, by associating to P a toric manifold XP and
using the Riemann-Roch formula. It is well known that the leading coef-
ficient an is V ol(P ) and an−1 is determined by V ol(P ) if P is reflexive.
A lower estimate is obtained by considering an−2, which is an integral
of the second Chern class of XP , besides terms involving volume. When
the polytope is balanced (i.e. the center of mass agrees with the origin),
we can obtain an estimate

an−2 ≥
(3n+ 2)(n − 1)n

24(n + 1)
V ol(P ),

using the existence of the Kähler-Einstein metric (see [13] and [11]) and
a Yau’s inequality (see appendix 4.1).

In this paper, we want to generalize this result to reflexive poly-
topes which may not be balanced. Given any polytope P , we can form
its cone C∨(P ) = cone(P × {1}) ⊂ Rn × R and let ξ = (~0, 1). We
count the number of lattice points up to level k defined by ξ, that is,
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nξ(k) = #{x ∈ C∨(P ) ∩ Zn+1|(x, ξ) ≤ k}. The two counting functions
are related by

nξ(k) =
k

∑

i=0

pP (i).

We will reformulate the counting problem by considering nξ(k).
From now on, instead of using the standard lattice Zn × Z, we let

N be any rank n + 1 lattice and M be its dual. Let C∨ ⊂ MR be a
cone. We can choose an affine hyperplane Hξ = {x ∈ MR|(x, ξ) = 1} by
picking a dual vector ξ ∈ NR. The hyperplane is moved toward infinity
by changing ξ to ξ/k and letting k → ∞. We consider the function

nξ(k) = #{x ∈ C∨ ∩M |(x, ξ) ≤ k}
= bn+1k

n+1 + bnk
n + bn−1k

n−1 +O(kn−2)

which counts the number of lattice points inside the cone C∨ below the
affine hyperplane Hξ/k (see §2, Figure 1). Similar to the polytope case,
the first two coefficients, bn+1 and bn, are related to the volume of a
certain polytope ∆ξ determined by the ξ. Therefore, we focus on the
first non-trivial coefficient bn−1.

The advantage of this formulation is that we have the freedom to
rotate the hyperplane by changing ξ. If the cone is Q-Gorenstein (see
Definition 2.1), we always have a balancing direction ξc (see appendix
4.3), which satisfies

nξ(k) ≥ nξc(k) for k ≫ 0,

for any other normalized vector ξ in the interior of the cone C. ξc will
play the role of a balancing direction for the cone C∨. For ξ close enough
to ξc, the coefficient bn−1 of nξ(k) will have a lower estimate.

In the case that ξc is a rational vector and the polytope {x ∈ C∨|(x, ξc) =
1} is Delzánt, our result gives

nξ(k)
V oln+1(∆ξ)

≥ kn+1 + (n+1)(n+2)
2 kn + n(n+1)(n+2)(3n+5)

24 kn−1 +O(kn−2).

In general, we have the following main theorem:

Main Theorem. Given an (n + 1)-dimensional Q-Gorenstein cone
C∨ ⊂ Mn+1

R , with its canonical Reeb vector ξc ∈ C ⊂ NR, if ξc is
rational, let ξ ∈ N be a primitive vector parallel to it; otherwise, choose
ξ having its direction close enough to ξc. Then

bn+1 = V oln+1(∆ξ)

bn =
1 + q

2
(n+ 1)V oln+1(∆ξ)

bn−1 ≥ cq,nV oln+1(∆ξ)

+
∑

ρ∈C(1)

cρ,nV oln(Hρ)
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Here ∆ξ = {(ξ, y) ≤ 1} ⊂ MR is the polytope cut out by ξ and

Hρ = {(ξ, y) ≤ 1}∩ρ⊥∩C∨ ⊂ ∆ξ is the corresponding facet associated to
each ray ρ ∈ C(1). V oln refers to the n-dimensional volume of subspaces
in MR.

Remark. 1. q is defined in Definition 2.2. The constant, cq,n and
cρ,n are given in §3.

Remark. 2. The sum
∑

ρ∈C(1) cρ,nV oln(Hρ) in the expansion, with

V oln(Hρ) being the volume of various facets, comes from the orbifold
structures of related toric spaces.

Remark. 3. The above result can be considered purely as a problem
concerning the cone C∨: When the direction is close enough to the
canonical one minimizing the volume, we can have an estimate of the
first nontrivial term in terms of the volume.

Remark. 4. In [5], Chan and the first author have studied a family
of Yau’s inequalities on Fano toric manifolds and their implications in
the lattice points counting problem.

We give the proof of the theorem in §2, omitting the computations
that arise from the presence of orbifold singularities. The orbifold com-
putations will be handled in §3.

Acknowledgments. The authors thank Akito Futaki for useful discus-
sions. The work described in this paper was substantially supported by
a grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. CUHK403709).

2. Proof of theorem

Before giving the proof of our main theorem, we give a proof of

the statement an−2 ≥ (3n+2)(n−1)n
24(n+1) V ol(P ) for the balanced reflexive

Delzánt polytope P mentioned in the introduction. Recall (see e.g.
[6]) that P determines a Fano toric manifold X = XP and pP (k) =
dimCΓ(X, (K−1

X )⊗k) = χ(X, (K−1
X )⊗k). Using the Riemann-Roch for-

mula, we have

pP (k) =
∫

X ch((K−1
X )⊗k)Td(X)

= (
∫

X cn1 )
kn

n! + (12
∫

X cn1 )
kn−1

(n−1)! +
1
12 [

∫

X cn1 +
∫

X cn−2
1 c2]

kn−2

(n−2)!

+O(kn−3),

where ci = ci(X) is the ith Chern class of X. Since P is balanced, X
has a Kähler-Einstein metric by the result of Wang-Zhu in [11]. Then
we can use the Yau’s inequality,

∫

X
c2c

n−2
1 ≥ n

2n+ 2

∫

X
cn1
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(see appendix 4.1), and
∫

X
cn1 = n!V ol(P )

to get estimate

an−2 ≥
(3n+ 2)(n − 1)n

24(n + 1)
V ol(P ).

Remark. The Yau’s inequality and its consequences for algebraic
geometry was studied by S.-T. Yau in [12], as a consequence of the
existence of Kähler-Einstein metrics. The existence of such metrics was
proved for the negative first Chern class case independently by T. Aubin
in [3] and S.-T. Yau in [13]. The zero first Chern class case was proven
by S.-T. Yau in [13].

The proof given below is in a similar flavor. We have to construct
some spaces and a line bundle that count the number of lattice points.
Extra difficulties arise from the orbifold structure.

As mentioned in the introduction, we consider the counting problem
for a cone C∨. Let C∨ ⊂ MR be a cone; we choose an affine hyperplane
Hξ = {x ∈ MR|(x, ξ) = 1} by choosing a ξ ∈ C ⊂ NR such that it
cuts the cone cleanly. Move the hyperplane toward infinity by changing
ξ to ξ/k and count the number of lattice points bounded below the
hyperplane. We want to study the effect of turning the hyperplane to a
different angle.

In order to make this comparison, we need to have a good parameter
space of the hyperplanes with respect to the cone. This is possible if we
have a Q-Gorenstein cone.

Let C∨ ⊂ MR be a top dimensional rational cone, C be its dual,
int(C) be the interior of C, and C(1) be the set of rays in C inward
normal to facets in C∨. For each ρ ∈ C(1), we let vρ be the primitive
vector in ρ.

Definition 2.1. C∨ is said to be a Q-Gorenstein cone if it satisfies
the following two conditions.

(i) (smoothness) For each face F ⊂ C∨, the subset of C(1) normal to
F can be extended to the Z-basis of N .

(ii) (Q-Gorenstein) There exists λ ∈ M and some l ∈ Z>0 such that
(λ, vρ) = −l holds for all ρ ∈ C(1).

Definition 2.2. Fixing a primitive vector ξ ∈ int(C) ∩M , let ∆ξ =
{x ∈ C∨|(x, ξ) ≤ 1} and define the lattice points counting function as

nξ(k) = #(k∆ξ ∩M).

For every chosen ξ, a ratio q is defined by the equality (λ, ξ) = −ql.
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Figure 1

The above notations and definitions are summarized in Figure 1.
nξ(k) is the counting function we are interested in; we associate a non-
compact toric manifold YC with a C∗-action to each chosen ξ and relate
the counting function to some geometric invariants of YC . We can define
W as YC/C

∗, and compactify YC → W as a P1 bundle π : X → W. It
turns out that

nξ(k) = χ(X ,L⊗k)

for some toric line bundle L on X .

Remark. YC is related to Sasakian geometry. A quick review is given
in the appendix.

For example, if C = cone(e1, . . . , en+1) ⊂ Rn+1 is the standard cone
and ξ is chosen to be e1 + · · · + en+1, then we have YC = Cn+1 − {0},
W = Pn, and X = PW(O(−1) ⊕ O). L is the relative O(1) bundle for
the map X → W.

When X , W are smooth, we have

χ(X ,L⊗k) =

∫

X
ch(L⊗k)Td(X )

and we get an expression of bi’s in terms of integrals of Chern classes
on W. In particular, bn−1 is expressed as a combination of V ol(∆ξ) and

∫

W
c2(W)c1(W)n−2.

Furthermore, if we are lucky enough that ξ is parallel to ξc, the above
term will have a lower estimate in terms of V ol(∆ξ). We indeed have
a Kähler structure on YC that is transversal Kähler-Einstein (appendix
4.2). In that case, this Kähler structure will induce a Kähler-Einstein
structure on W. So we can use the Yau’s inequality (appendix 4.1) to
estimate it in terms of V ol(∆ξ).

In general, ξc may not even be rational. However, transversal Chern
classes are defined and the inequality still holds. In that case, we know
the transversal Yau’s inequality is strict from Lemma 2.2. For a primitive
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vector ξ such that its direction is close enough to ξc, we still have our
lower estimate by continuity.

Remark. X and W are orbifolds in most cases.

Let us begin by giving some notations and definitions concerning the
spaces mentioned above. We define a Kähler manifold YC as follows:
There is a map

ZC(1) → N

given by the assignment

eρ 7→ vρ.

Tensoring with C and taking the quotient gives rise to a group homo-
morphism

(C∗)C(1) → TC
N ,

and let κC be the kernel. Then YC is given by the G.I.T. quotient of
CC(1) − {0} by κC via the natural action of (C∗)C(1) (see e.g. [1]).

A similar construction using the symplectic quotient gives a symplec-
tic structure on YC . In general, any ξ ∈ NR gives a vector field ξ# on
YC by the real torus action. We also denote ξ1,0 =

√
−1ξ# − Jξ# to be

the corresponding holomorphic vector field. If ξ is primitive, we have a
C∗-action on YC given by the holomorphic vector field.

We define W = YC/C
∗. Hence YC can be viewed as a C∗-bundle over

W. Using the standard action of C∗ on C, we can associate a line bundle
LW over W. We let X = PW(LW ⊕O) be the P1-bundle over W. There
is a relative O(1) bundle on X , denoted by L, associating to the natural
projection map π : X → W.

From the symplectic perspective, the space YC is related to another
compact odd dimensional space. If we let r : YC → R be a smooth
function such that 1

2r
2 is the moment map of the induced S1-action,

then S := {r = 1} ⊂ YC is a principal S1-bundle over W. W can be
viewed as the symplectic quotient of YC via the S1-action. This gives W
a structure of Kähler orbifold.

(S, ξ#|S) is indeed a Sasakian manifold and (YC , ξ
#, ω, J) can be

viewed as its (Kähler) cone manifold. The relationship between (S, ξ#|S)
and (YC , ξ

#, ω, J) is a one to one correspondence. Furthermore, (S, ξ#|S)
is still defined even when ξ is an irrational vector. The transversal
Yau’s inequality still holds when (S, ξ#|S) admits a transversal Kähler-
Einstein metric. For details, we refer readers to [2] and [7].

From the toric perspective, in case ξ is primitive, we can complete
the cone C ⊂ NR to a complete fan Σ by adding ξ and −ξ to it. We can
also define a quotient lattice N ′ = N/Zξ and p : NR → N ′

R. The image
of C together with its faces forms a fan Σ′ ⊂ N ′

R. Then we have two
complete fans Σ and Σ′, having |C(1)|+ 2 and |C(1)| rays respectively.
The spaces X and W are the toric orbifolds associated to the fans Σ and
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Σ′ respectively, using the G.I.T. quotient construction (see [1]). The line
bundle L is identified with the divisor bundle of D−ξ.

Using the toric perspective, we have (see e.g. [6])

nξ(k) = dimH0(X ,L⊗k).

In order to get

nξ(k) = χ(X ,L⊗k),

we use the convexity of the supporting function corresponding to the
line bundle L and the Demazure vanishing theorem [6].

Using the Kawasaki-Riemann-Roch formula in [9], we get the expan-
sion

nξ(k) =
∫

X ch(L⊗k)Td(X ) +Rorb

= bn+1k
n+1 + bnk

n + bn−1k
n−1 + · · · .

Here Rorb is the contribution from orbifold singular strata (starting from
codimension 2). Presence of Rorb results in periodicity of bi’s in k (for i ≤
n−1); more explicitly, bi(k)’s are compositions of rational functions with

functions of the form e
2π

√
−1ck
N . The contribution of

∫

X ch(L⊗k)Td(X ) to
the coefficient bn−1 only involves integrals of products of c1(W), c1(LW),
and c2(W).

First, there is an equality relating c1(W) and c1(LW). Let ξ1,0 be the
holomorphic vector field on YC associated to ξ, and let L = Cξ1,0 be the
trivial line bundle over YC with a Hermitian metric 1

2r
2. Its quotient

by C∗ gives a Hermitian metric on LW → W with c1(L
∗
W) = 1

2π [dη] on
W, where η = dclog(r). Here η is the contact 1-form of the Sasakian
manifold S, and dη descends to W (see e.g. [7]). c1(W) is also related
to the class [dη], and there is a equality

c1(W) =
q

2π
[dη] = qc1(L

∗
W),

where q is the ratio in Definition 2.2.
The integral involving only the first Chern class is given in [10] by

∫

W
c1(L

∗
W)n = (

1

2π
)n+1

∫

S
(dη)n ∧ η = (n+ 1)!V ol(∆ξ).

Second, there is a term

(1)

∫

W
c2(W)c1(W)n−2 =

∫

S
cB2 (S)c

B
1 (S)

n−2η

in the expression of bn−1. Here cBk (S)’s are basic Chern classes of S
defined in [7].

A key observation is that this term can be controlled if ξ is suitably
chosen: for our cone C∨, there is a canonical direction ξc associated to
it. (It is the unique minimizer of the volume function F (ξ) = V ol({y ∈
C∨|(ξ, y) ≤ 1}) restricting to I = {x ∈ int(C)|(x, λ) = −(n+ 1)l}.) For
a general ξ (may not be rational), YC and S are still defined and we can
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discuss the transversal Kähler geometry of S, even though the quotient
W may not exist. Those ξ’s parallel to ξc are exactly those with S having
a transversal Kähler-Einstein metric. In that case, we can obtain a lower
bound of (1) by the following transversal Yau’s inequality.

Lemma 2.1 (Transversal Yau’s inequality). Let (S, g, J) be a Sasakian
manifold of dimension 2n+1 such that its transversal Ricci form satis-
fies

RicT = τ(
1

2
dη)

for some τ ∈ R. Then

(2)

∫

S
[cB2 (S)−

n

2(n+ 1)
(cB1 (S))

2] ∧ (
1

2
dη)n−2 ∧ η ≥ 0.

If the equality sign holds, then the Einstein metric has constant transver-
sal holomorphic bisectional curvature.

As basic Chern classes depend only on the Reeb vector field ξ# (or
equivalently, the transversal complex structure) and not on the metric,
the inequality holds whenever the Reeb vector field is given by ξc. It
can be argued that it also holds for those ξ’s parallel to ξc. For details,
readers may consult the appendix.

In the case that ξc is not a rational vector, the following uniformiza-
tion lemma (Lemma 2.2) tells us that we must have a strict inequality
for those ξ’s parallel to ξc. Hence, for primitive ξ having its direction
close enough to ξc, we still have the same estimate.

The remainder of this section is devoted to prove Lemma 2.2. It is a
statement about toric Sasakian geometry. Readers may skip the proof
and progress to the next section, where we will deal with the orbifold’s
contribution Rorb.

As mentioned in the appendix, given a Q-Gorenstein cone C∨, we can
associate to it a unique toric Sasaki-Einstein manifold (S, g, Jc) with the
Reeb vector field given by ξc. For this space, the Yau’s inequality holds
and there is a uniformization result:

Lemma 2.2. If equality holds in (6) for the space (S, g, Jc), then
|C∨(1)| = n+ 1 and ξc is a rational vector.

Proof.

Step 1: Since C(S) =: Y is Ricci flat, we have a pointwise Yau’s
inequality for Y :

c2(Y ) ∧ ωn ≥ 0.

From the fact that S has constant transversal holomorphic bi-
sectional curvature, we have that

[cB2 − n

2(n + 1)
(cB1 )

2] ∧ (
1

2
dη)n−2 ∧ η = 0.
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A second fundamental form computation implies c2(Y ) ∧ ωn = 0.
This further says Y is flat and S has positive constant sectional
curvature.

Step 2: Let S̃ be the universal cover of S and Ỹ = C(S̃), which is
a finite covering of degree N = |π1(Y )| = |π1(S)| as S is Ricci

positive. We lift the Sasakian structure to S̃ and hence the Kähler
structure to Ỹ . We let p : Ỹ → Y be the covering map.

The torus action can be lifted to Ỹ (may be non-effective), and
we have

Tn+1 y Ỹ
φ ↓ ↓
Tn+1 y Y,

where φ is multiplication byN . We define ξ̃c ∈ t̃ by letting φ∗(ξ̃c) =
ξc.

Step 3: We may assume Y is simply connected with constant holo-
morphic bisectional curvature by considering Ỹ instead. S, as a
Riemannian manifold, is identified with the 2n + 1 dimensional
sphere S2n+1. To identify the Sasakian structure, it suffices to
identify the Killing vector field Kc with Kstd, generated by ξc
and ξstd respectively. Fixing a point p0 ∈ S, we can choose isome-
try between S and S2n+1, which identify (Tp0S,Kc(p0),∇Kc(p0))
with (T1S

2n+1,Kstd(1),∇Kstd(1)), for some point 1 ∈ S2n+1. This
identifies Kc with Kstd.

Step 4: We have a possibly non-standard action Tn+1 y S2n+1. The
flow line of Kc closes up; this shows the rationality of ξc. Taking
the quotient, we have Tn y (CPn, ωstd) being a toric Kähler man-
ifold. Hence conjugation by automorphism of (CPn, ωstd) gives the
standard action. In particular, the moment map image is a cone
with n+ 1 rays.

q.e.d.

3. Riemann-Roch for orbifolds

This section is devoted to the Riemann-Roch computation for orb-
ifolds.

For each face τ ⊂ C, we define

τ1 = cone(τ ∪ {ξ}), τ−1 = cone(τ ∪ {−ξ}).

Here cone(F ) := {∑i aivi|vi ∈ F, ai ≥ 0} is the cone generated by the
vectors in F , where F is a subset of a vector space. We let Σ be the fan
consisting of all τ , τ1, τ−1 for all faces τ ⊂ C. Σ is the normal fan for
the polytope {y ∈ C∨|r1 ≤ (ξ, y) ≤ r2} for any r2 > r1 > 0.
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As in the previous section, we have an orbifold X , together with an
orbi-line bundle L, which compute the function nξ(k):

(3) nξ(k) = χ(X ,L⊗k) =

∫

X
ch(L⊗k)Td(X ) +Rorb.

The formula for Rorb is given in [8]. We will concentrate on the con-
tribution of Rorb to the coefficient bn−1. For that purpose, we consider
the codimension two singular stratum of X (since there is no singular
stratum of codimension one).

The space X is a quotient of affine space CΣ(1) (Σ(1) stands for the
set of all rays in the fan Σ) by some subgroup κΣ of (C∗)Σ(1) via the
quotient construction mentioned in [1]. Each ray in the fan corresponds

to a coordinate of the affine space CΣ(1) before taking the quotient.
Hence vanishing of some of the coordinate functions defines a closed
sub-orbifold (may be non-effective) of the quotient. For example, codi-
mension one sub-orbifolds that correspond to rays in Σ(1) are the toric
divisors.

Codimension two closed toric sub-orbifolds are defined by two rays.
For each ρ ∈ C(1) and α (α = ±1), we have a closed sub-orbifold Fα

ρ

given by vanishing of the coordinate functions corresponding to the rays
ρ and αξ. These give all the singular strata necessary for the computa-
tion of the coefficient bn−1.

To obtain a coordinate chart, we can choose an orbifold chart by
taking any maximal cone τ ⊃ ρ. By the smoothness assumption of the
cone C∨, we can take a µ ∈ N together with the primitive vectors of the
rays {vρ′ |ρ′ ∈ τ(1)} to be a Z-basis of N and write ξ as ξ =

∑

cρ′vρ′+dµ,

for some cρ′ , d ∈ Z. The cone τα gives an orbifold chart Zd y Cτ(1) ×C

of X . Cτ(1) × C →֒ CΣ(1) (the last coordinate corresponds to αξ) is a
subset given by letting the coordinate functions corresponding to the
rays other than {αξ} ∪ τ(1) be 1. The group Zd is the subgroup of κΣ
which preserve the subset Cτ(1)×C. Then Cτ(1)×C cover a dense open
subset of X . A local chart of Fα

ρ is given by vanishing of coordinate
functions that correspond to ρ and αξ.

If we let d̂ = d/[g.c.d.({cρ′}ρ′ 6=ρ, d)] and Γα
ρ = Zd̂ ≤ Zd, then Γα

ρ acts
trivially on Fα

ρ . Let θ be the induced action of Γα
ρ on L|Fα

ρ
(η ∈ Γα

ρ acts

by multiplication by θ(η)). These are the combinatorial data we needed
for our computations.

According to the Kawasaki-Riemann-Roch formula in [8], we have
Rorb =

∑

ρ∈C(1)

∑

α KRR(ρ, α,Lk) +O(kn−2), where

KRR(ρ, α,L⊗k)

=
∑

η∈Γα
ρ−{0}

θ(η)k

(1− η−cρ)(1 − ηα)

∫

Fα
ρ

c1(L)n−1

(n− 1)!
kn−1 +O(kn−2).
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Recall that q ∈ Q is the ratio such that (ξ, λ) = −ql (λ as in definition
(2.1)). For n ≥ 2, we have

bn+1 =
1

(n+ 1)!

∫

W
c1(L

∗
W)n

= V olMR
(∆ξ)

bn =
1

2n!

∫

W
{c1(L∗

W)n + c1(L
∗
W)n−1c1(W)}

=
1 + q

2
(n+ 1)V olMR

(∆ξ)

bn−1 =
(q2 + 3q + 1)

12(n − 1)!

∫

W
c1(L

∗
W)n +

1

12(n − 1)!

∫

W
c2(W)c1(L

∗
W)n−2

+
1

(n− 1)!

∑

ρ,α

∑

η∈Γα
ρ−{0}

χ(η)k

(1− η−cρ)(1− ηα)

∫

Fρ

c1(L
∗
W)n−1

=
(q2 + 3q + 1)

12n(n + 1)
V olMR

(∆ξ) +
1

12(n − 1)!

∫

W
c2(W)c1(L

∗
W)n−2

+
∑

ρ∈C(1)

n

|vρ|
∑

η∈Γα
ρ−{0}

1− ηk+1

(1− η−cρ)(1− η)
V oln(Hρ)

Remark. 1) The equality
∫

Fρ

c1(L
∗
W)n−1 =

n!

|vρ|
V oln(Hρ)

is similar to that in the previous section.
2) For the case n = 1, the formula reads

χ(X ,L⊗k) = (k2 + (1 + q)k + q)V ol(∆ξ)

+
∑

ρ={ρ1,ρ2}

1

|vρ|
[

∑

η∈Γα
ρ−{0}

1− ηk+1

(1− η−cρ)(1− η)
]V ol1(Hρ)

We give a 2-dimensional example to illustrate the contribution from
orbifold singularities.

Example. Letting NR = R2, C = cone(e1,−e1 + 3e2), and ξ =
(1, 1) ∈ R2, we have λ = (−3,−2) ∈ (R2)∗ and q = 5

3 . This gives

∆ξ = cone{(0, 0), (0, 1), (34 , 14 )}, V ol(∆ξ) =
3
8 ,He1 = cone{(0, 0), (0, 1)},

and H−e1+3e2 = cone{(0, 0), (34 , 14)}.
In this case, the lattice points counting function is

ηξ(k) =
1

16
{6k2 + 16k + 2(

√
−1)k[1 + (−1)k] + (−1)k + 11}.

Combining with the above sections, we have our main theorem:

Main Theorem. Given an (n + 1)-dimensional Q-Gorenstein cone
C∨ ⊂ MR, with its canonical Reeb vector ξc ∈ C ⊂ NR, if ξc is rational,
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let ξ ∈ N be the primitive vector parallel to ξc; otherwise, choose ξ
having its direction close enough to ξc. If we write

nξ(k) = bn+1k
n+1 + bnk

n + bn−1k
n−1 +O(kn−2),

then we have

bn+1 = V oln+1(∆ξ)

bn =
1 + q

2
(n+ 1)V oln+1(∆ξ)

bn−1 ≥
n

24
[q2(3n + 2) + 2(3q + 1)(n + 1)]V oln+1(∆ξ)

+
∑

ρ∈C(1)

n

|vρ|





∑

η∈Γα
ρ−{0}

1− ηk+1

(1− η−cρ)(1− η)



V oln(Hρ)

4. Appendix: Sasakian Geometry

4.1. Basic results and notations from Sasakian geometry. We
recall some definitions in Sasakian geometry, following [7] and [10].

Definition 4.1. A Sasakian manifold is a Riemannian manifold (S, g)
of real dimension 2n+1, together with a choice of R-invariant complex
structure J on its cone manifold (C(S), gC(S)) := (S × R+, dr

2 + r2g),
such that it is Kähler.

Given a Sasakian manifold, we let V = r ∂
∂r be the Euler vector field

and K = JV be the Reeb vector field. There is an equivalent definition
of Sasakian manifold from the symplectic aspect given in [2], which
works better with toric geometry. We will freely interchange between
the two definitions.

We follow the notations of transversal Kähler geometry of a Sasakian
manifold introduced in [7].

Definition 4.2. A Sasakian manifold (S, g, J) is said to be transver-
sal Kähler-Einstein if there is a real constant τ such that

(4) RicT = τ(
1

2
dη)

where η is the contact 1-form on S.

Remark. A Sasakian manifold is transversal Kähler-Einstein (with
constant τ = 2n+ 2) if and only if its cone manifold C(S) is Ricci flat.

To obtain a Yau’s inequality for transversal Kähler-Einstein mani-
folds, we recall

Theorem 4.1 (Yau’s inequality for Kähler-Einstein manifolds). Let
(M,ω, J, g) be a connected Kähler-Einstein manifold of complex dimen-
sion n. Then

(5)

[

c2(∇l.c.)− n

2(n + 1)
c1(∇l.c.)2

]

∧ ωn−2 = δωn
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for some positive function δ. δ ≡ 0 if and only if M has constant holo-
morphic bisectional curvature, where ∇l.c. is the Levi-Civita connection
on M and ci(∇l.c.) is the corresponding i-th Chern form.

We can have the following lemma, generalizing the above to the
transversal Kähler-Einstein case.

Lemma 4.1 (Transversal Yau’s inequality for Sasaki-Einstein man-
ifolds). Let (S, g, J) be a Sasakian manifold of real dimension 2n + 1,
which satisfies

RicT = τ(
1

2
dη)

for some τ . Then

(6)

∫

S

[

cB2 (S)−
n

2(n + 1)
(cB1 (S))

2

]

∧ (
1

2
dη)n−2 ∧ η ≥ 0,

where cBi (S)’s are the basic Chern classes of S defined in [7]. If equality
holds, then the Einstein metric has constant transversal holomorphic
bisectional curvature.

Remark. The above integral is independent of basic deformations of
Sasakian structures described in [7].

The existence of such a metric in the case τ > 0 is what we are inter-
ested in. First, we normalized the constant τ by D-homothetic transfor-
mation to get a new Kähler metric g′ with Einstein constant 2n+ 2.

Given a Sasakian manifold (S, g, J) and α ∈ R>0, define K ′ = 1
αK

and g′ = αg + α(α − 1)η ⊗ η. The complex structure on C(S), J ′, is
given by

J ′(V ) = K ′

J ′(Y ) = J(Y ) for Y ∈ Γ(TS)
K⊥

Then we have the new Kähler form ω′ = αω and the transversal
Kähler form 1

2dη
′ = α(12dη).

Notice that g′ has constant transversal holomorphic bisectional cur-
vature if and only if g does (with different constants).

The existence of transversal Kähler-Einstein structures is proven in
the toric case by Futaki-Ono-Wang in [7].

4.2. Toric Sasakian geometry and existence of transversal Ein-

stein metrics. For notations of toric Sasakian geometry, we refer read-
ers to [2].

Theorem 4.2 (Futaki-Ono-Wang [7]). For a toric Sasakian manifold
with C∨ being its moment cone, if C∨ is a Q-Gorenstein cone, then there
exists a unique Jc, which is a torus invariant complex structure, such
that the corresponding cone manifold is Ricci flat (or equivalently, the
corresponding Sasakian manifold is transversal Kähler-Einstein).
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The Reeb vector of such a Ricci flat metric is characterized by a vol-
ume minimization. Given a Q-Gorenstein cone C∨, we let F : int(C) →
R, defined by F (ξ) = V olMR

({y ∈ C∨|(ξ, y) ≤ 1}) and I = {x ∈
C|(x, λ) = −(n+ 1)l}. Then there are the following two theorems:

Theorem 4.3 (Martelli-Sparks-Yau [10]). F |I is strictly convex with
a unique minimum point ξc.

Theorem 4.4 (Futaki-Ono-Wang [7]). The Sasaki complex structure
Jc, which admits transversal Kähler-Einstein Sasakian metric, has its
Reeb vector Kc equal to the vector field generated by ξc via the torus
action.

For a toric (2n + 1)-dimensional Sasakian manifold (S, g, J), by tak-
ing a D-homothetic transformation with constant α, we have the new
moment map and Reeb vector given by µ′ = αµ and K ′ = 1

αK, respec-
tively.

Hence for each ξ ∈ Co parallel to ξc, there is a unique J having its
Reeb vector field generated by ξ, which is transversal Kähler-Einstein.

As a consequence, for any such J , we have
∫

S
[cB2 − n

2(n + 1)
(cB1 )

2] ∧ (
1

2
dη)n−2 ∧ η ≥ 0

and equality holds if and only if J has constant transversal holomorphic
bisectional curvature.
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