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CRITICAL POINTS OF GREEN’S FUNCTIONS

ON COMPLETE MANIFOLDS

Alberto Enciso & Daniel Peralta-Salas

Abstract

We prove that the number of critical points of a Li–Tam Green’s
function on a complete open Riemannian surface of finite type
admits a topological upper bound, given by the first Betti num-
ber of the surface. In higher dimensions, we show that there are
no topological upper bounds on the number of critical points by
constructing, for each nonnegative integer N , a Riemannian man-
ifold diffeomorphic to Rn (n > 3) whose minimal Green’s function
has at least N non-degenerate critical points. Variations on the
method of proof of the latter result yield contractible n-manifolds
whose minimal Green’s functions have level sets diffeomorphic to
any fixed codimension 1 compact submanifold of Rn.

1. Introduction

Let (M,g) be a noncompact, complete Riemannian n-manifold with-
out boundary and let us denote by G : (M ×M)\diag(M ×M) → R a
symmetric Green’s function of (M,g), which satisfies

(1.1) ∆gG(·, y) = −δy

for each y ∈ M . We will find it notationally convenient to fix a point
y ∈ M , once and for all, and consider a Green’s function G := G(·, y)
with pole y, which is smooth and harmonic in M\{y}.

The study of the Green’s functions of the Laplacian in a complete
Riemannian manifold is a classical problem in geometric analysis and
partial differential equations. Consequently, there is a vast literature on
this topic covering, among many other aspects, the existence of posi-
tive Green’s functions [8, 24, 25], upper and lower bounds, gradient
estimates and asymptotics [28, 26, 9, 19], and the connection between
Green’s functions and the heat kernel [37, 27, 16].

In this paper we shall focus on the study of the critical points of
Green’s functions on a complete Riemannian manifold. The chief diffi-
culty lies in the fact that, generally speaking, Green’s function estimates
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are not sufficiently fine to elucidate whether the gradient of G vanishes
in a certain region. Moreover, it is well known that the codimension of
the critical set of G is at least 2 [17], which introduces additional com-
plications in the analysis. For this reason, our approach is based on a
combination of techniques from differential topology and second-order
elliptic PDEs.

Let us state our main results. Our first theorem asserts that there is a
topological upper bound for the number of critical points of any Li–Tam
Green’s function on a surface of finite type. Here by Li–Tam Green’s
function we mean a Green’s function that arises from the exhaustion
procedure described by Li and Tam in [24], which will be briefly recalled
in Section 2. Any Li–Tam Green’s function coincides with the minimal
one when the latter exists.

Theorem 1.1. Let (M,g) be a smooth open Riemannian surface of
finite type. The number of critical points of any Li–Tam Green’s function
G on M is not larger than the first Betti number b1(M), and if this upper
bound is attained, then G is Morse.

Theorem 1.1 is a substantial extension of the classical result [38] that
the Dirichlet Green’s function of a simply or doubly connected domain
in the Euclidean plane respectively has zero or one critical points and,
to our best knowledge, is the first general finiteness result for critical
points in noncompact manifolds. The proof of the theorem combines
global ideas (namely, uniformization and Hopf’s index theorem), local
index bounds, and some classical harmonic function theory. We will also
discuss how the topological upper bound can be slightly refined using
the conformal geometry of the surface (Remark 2.3) and an extension
to higher-dimensional axisymmetric manifolds (Theorem 2.6).

Our second result shows that, contrary to what happens in the case
of surfaces, the number of critical points of the Green’s function of
a manifold of dimension n > 3 does not admit a topological upper
bound. In fact, we provide a procedure for constructing analytic met-
rics in R

n (n > 3) whose minimal Green’s functions have level sets of
prescribed topology and as many non-degenerate critical points as one
wishes, which allows us to prove the following

Theorem 1.2. Let N be a positive integer and Σ a smooth codimen-
sion 1 closed submanifold of Rn. For any n > 3 there exist real analytic
complete Riemannian manifolds (Mj , gj) (1 6 j 6 3) diffeomorphic to
R
n such that:

(i) The minimal Green’s function of (M1, g1) has at least N non-
degenerate critical points.

(ii) The minimal Green’s function of (M2, g2) has a level set diffeo-
morphic to Σ.
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(iii) The critical set of the minimal Green’s function of (M3, g3) has
codimension at most 3.

In all cases, the Green’s functions tend to zero at infinity.

Additional motivation for this theorem comes from a question of Ka-
wohl [22], recently solved in [12], concerning the possible level sets
and critical points of the solution to an exterior boundary problem in
Euclidean space. In the context of Riemannian geometry, the natural
analogue of Kawohl’s problem is whether the minimal Green’s function
(when it exists) of a manifold diffeomorphic to Rn necessarily has no crit-
ical points and all its level sets are homeomorphic to spheres. The first
statement in Theorem 1.2 is reminiscent of results of Morse and Shel-
don [30, 35] on the existence of Morse harmonic functions in bounded
domains of R2 and R

3 with an arbitrary number of non-degenerate crit-
ical points, but these authors’ constructions are fundamentally different
in scope and cannot be modified to deal with the problem studied in
this paper.

The article is organized as follows. In Section 2 we give the proof of
Theorem 1.1 and, using similar ideas, show that if a Green’s function of
an axisymmetric manifold diffeomorphic to R

n tends to zero at infinity,
then it does not have any critical points. In Section 3 we prove that
the Dirichlet Green’s function of a bounded domain in a Riemannian
manifold is generically Morse, a result we utilize in the proof of Theo-
rem 1.2. This statement cannot be deduced from Albert’s, Uhlenbeck’s,
or Bando–Urakawa’s analogous theorems for the eigenfunctions of the
Laplacian [36, 2, 4] or Damon’s results for filtered differential opera-
tors [10]. Finally, in Section 4 we present the proof of Theorem 1.2.

We conclude this section by introducing some standard notation. We
shall denote by ∆g, ∇g, dVg, | · |g , and distg, respectively, the Laplacian,
gradient operator, Riemannian measure, norm, and distance function in
(M,g), and we shall reserve the notation ∆, ∇, dx, | · |, and dist for
the corresponding objects in Euclidean space (Rn, g0). We shall use the
notation Bg(x, r) and B(x, r), in each case, for the open geodesic balls
in (M,g) and in (Rn, g0) of center x and radius r. The critical set of
a C1 function f is defined as the set of points x in the domain of f
such that df(x) = 0. Throughout this paper, the Riemannian manifold
(M,g) will be assumed to be connected, oriented, and of class C∞.
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2. Green’s functions on surfaces

In this section we will prove a topological upper bound for the num-
ber of critical points of a Green’s function on a C∞ Riemannian surface
(M,g). We assume that the surface is of finite type, i.e., that its funda-
mental group is finitely generated.

We will also assume that the Green’s function satisfies certain conve-
nient conditions at infinity in order to control some global properties of
its level sets; in particular, a standard choice is to restrict one’s attention
to the minimal Green’s function whenever it exists. More generally, we
shall assume in what follows that the Green’s function has been obtained
through an exhaustion procedure as in Li and Tam’s paper [24].

Let us summarize the main facts about Li–Tam Green’s functions,
which are obviously true in any dimension. We will henceforth denote
by GΩ : (Ω × Ω)\diag(Ω × Ω) → R the symmetric Dirichlet Green’s
function of a bounded domain Ω ⊂ M , which is defined by

(2.1) ∆gGΩ(·, y) = −δy in Ω , GΩ(·, y) = 0 on ∂Ω ,

and set GΩ := GΩ(·, y). Denoting by Ω1 ⊂ Ω2 ⊂ · · · an exhaustion of M
by bounded domains, it was proved in [24] that there exists a sequence
of nonnegative real numbers (aj)

∞
j=1 such that GΩj − aj converges uni-

formly on compact sets of M\{y} to a Green’s function G with pole y,
and that it coincides with the minimal one whenever the latter exists.
Throughout this paper we will refer to the class of Green’s functions
that arise through this procedure as Li–Tam Green’s functions. Li–Tam
Green’s functions are generally non-unique, but in any case a Li–Tam
Green’s function has the following properties [24]:

(i) G is decreasing in the sense that

sup
M\Bg(y,r)

G = max
∂Bg(y,r)

G

for all r > 0, Bg(y, r) being the geodesic ball centered at the pole
y of radius r.

(ii) G is a symmetric function, that is, G(x, y) = G(y, x).
(iii) If H is an amenable isometry group of (M,g), one can assume

that G is invariant under H, that is, G(h(x), h(y)) = G(x, y) for all
x, y ∈ M and h ∈ H (cf. e.g. [11]).
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The proof of Theorem 1.1 is based on an index-theoretical argument
that combines a local analysis and a global one. The local part consists
of the calculation of the Hopf index of a critical point of the Green’s
function using a blow-up technique. The global part exploits the con-
formal symmetry of the equation to show that the critical set of G is
finite and analyze the asymptotic behavior of the Green’s function in
each end of the surface.

Let us begin with the following local lemma, where we estimate the
index that a critical point of G can have. We will prove it in slightly
greater generality than we would need for Theorem 1.1 because we will
also use it in the proof of Theorem 2.6 below. This result is analogous
to Cheng’s local analysis of the nodal set of the eigenfunctions on a
surface [7], but our proof relies on a blow-up argument instead of the
Kuiper–Kuo theorem. The result being local, we will state it in local
coordinates (x1, x2).

Lemma 2.1. Let z ∈ R
2 be a critical point of a function u that

satisfies an equation of the form gij∂i∂ju+ bi∂iu = 0 in a neighborhood
of z. We assume the functions gij and bi are smooth and the symmetric
matrix (gij) is invertible, and call m > 2 the degree of the lowest nonzero
homogeneous term in the Taylor expansion of u− u(z) at z. Then z is
an isolated zero of ∇gu and its index is ind(z) = 1−m.

Proof. There is no loss of generality in assuming that z = 0 and that,
after making a linear change of coordinates if necessary, gij(0) = δij .
The unique continuation theorem [23] implies that the function u−u(0)
can vanish only up to finite order at 0, so m is necessarily finite. By a
theorem of Bers [5], there exists a homogeneous polynomial hm of degree
m such that

u(x)− u(0) = hm(x) +O(|x|m+1) ,(2.2a)

∇gu(x) = ∇hm(x) +O(|x|m) ,(2.2b)

where in these coordinates ∇gu is the vector of components gij∂ju. Fur-
thermore, the polynomial hm is harmonic with respect to the Euclidean
metric (∆hm = 0), which implies that the origin is an isolated critical
point of hm. It follows that the critical point of u must be isolated too.

Let us now consider polar coordinates (r, θ) ∈ R
+ × S

1 defined by
(x1, x2) = (r cos θ, r sin θ). As hm is harmonic, it readily follows that
in these coordinates one has hm(r, θ) = C0 r

m cos(mθ − θ0) for some
constants C0 and θ0. There is obviously no loss of generality in setting
θ0 = 0. We define the polar blow up [33] of the gradient ∇gu at z using
polar coordinates as the vector field

X :=
1

C0mrm−2
∇gu =

1

C0mrm−2

(

∇hm +O(rm)
)

,
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where we have used Eq. (2.2b). The blown-up trajectories are then given
by

ṙ = r cosmθ +O(r2) ,(2.3a)

θ̇ = − sinmθ +O(r) .(2.3b)

The blown-up critical points are thus (0, θk), with θk := kπ/m and
k = 1, . . . , 2m. The Jacobian matrix of X at (0, θk) is

(2.4) DX(0, θk) =

(

(−1)k 0
0 (−1)k+1

)

,

so these critical points are hyperbolic saddles. By blowing down, we
immediately find that a deleted neighborhood of 0 consists exactly of
2m hyperbolic sectors of the vector field X.

Since the field X is proportional to the gradient field ∇gu through
a nonvanishing factor, the well known Bendixson formula for the index
of a planar vector field (cf. e.g. [33, Theorem 3.12.7]) asserts that the
index of the critical point is

ind(0) = 1−
number of hyperbolic sectors

2
= 1−m,

as claimed. q.e.d.

Let us now focus on global aspects of the problem. Since (M,g) is a
smooth Riemannian surface of finite type, it is well known (cf. e.g. [20])
that there is a compact surface Σ endowed with a metric of constant
curvature ḡ, a certain number λ1 > 0 of isolated points pi ∈ Σ, and
another number λ2 > 0 of topological disks Di ⊂ Σ such that (M,g) is
conformally isometric to the interior of

M := Σ\

( λ1
⋃

i=1

{pi} ∪

λ2
⋃

j=1

Dj

)

with the metric ḡ. Equivalently, there exists a diffeomorphism Φ : M →
intM and a smooth positive function f on M such that Φ∗ḡ = fg.
Moreover, the boundaries ∂Di can be taken analytic without loss of
generality. Denoting the genus of Σ by ν and setting λ := λ1 + λ2 > 1,
it is clear that the pair (ν, λ) determines the surface M uniquely up to
diffeomorphism.

In the following lemma we prove several basic properties of the Li–
Tam Green’s function G, some of which are well known. In terms of the
diffeomorphism Φ considered above, it is convenient to introduce the
notation G := G ◦ Φ−1 for the Green’s function on (the interior of) M
and use the notation ȳ := Φ(y) for the image of the pole of the Green’s
function under the aforementioned diffeomorphism.

Lemma 2.2. The Green’s function has the following properties:
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(i) G is positive if and only if λ2 > 1. In this case, G tends to zero at
the boundary of each disk ∂Dj . G can be extended so as to satisfy

∆ḡG = 0 in a neighborhood of each isolated point pi and each circle

∂Dj , and the gradient ∇ḡG is orthogonal to (and nonzero at) ∂Dj .

(ii) If λ2 = 0, G tends to −∞ at, at least, one of the points pi, and
satisfies the equation ∆ḡG = 0 in a neighborhood of any point pj
where G is bounded from below.

(iii) G has a finite number of critical points in the interior of M\{ȳ}.

Proof. A short calculation using the conformal properties of the Lapla-
cian in two dimensions shows that G satisfies the equation

∆ḡG = −δȳ

in the interior of M . When the number λ2 of disks is at least 1, it
is standard (for example, due to the existence of bounded positive har-
monic functions in the interior of M [24]) that G is the minimal Green’s
function of (M,g), which corresponds to the unique solution G of the
boundary problem

∆ḡG = −δȳ in Σ\

λ2
⋃

j=1

Dj , G = 0 on ∂Dj for all j.

Moreover, the fact that ḡ and ∂Dj are analytic ensures [29] that G is
analytic and harmonic in a neighborhood of each circle ∂Dj .

When λ2 = 0, the function G satisfies the equation ∆ḡG = 0 but
at the pole ȳ and the isolated points pi. By property (i) of Li–Tam
Green’s functions, G is upper bounded at each point pi. If it is also
lower bounded, it is standard that pi is a removable singularity [14] and
∆ḡG = 0 in a neighborhood of pi. If G is not lower bounded, pi is an

isolated singularity of G, and the fact that G is upper bounded readily
implies that ∆ḡG = ciδpi in a neighborhood of pi for some positive
constant ci. Hence

∆ḡG = −δȳ +

λ1
∑

i=1

ci δpi

in the closed manifold Σ, so obviously
∑

i ci = 1.

Let us now prove that the number of critical points of G is finite. As
the boundary ∂Dj is analytic and G is positive (when λ2 > 0), by Hopf’s

boundary point lemma [15] there is a neighborhood Uj of each disk Dj

such that G does not have any critical points in Uj . The boundary ∂Dj

being a level curve of G, this ensures the gradient ∇ḡG is orthogonal to

this set. If p denotes either an isolated point pi where G tends to −∞
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or the pole ȳ, the well known asymptotics [14]
(2.5)
∣

∣G(x) + Cp log distḡ(x, p)
∣

∣+
∣

∣∇ḡG(x) +Cp∇ḡ log distḡ(x, p)
∣

∣

ḡ
= O(1)

for the Green’s function ensures that G does not have any critical points
in a neighborhood of p. Here Cp is to be interpreted as −ci/2π if p = pi
and 1/2π if p = ȳ. Since the critical points of G are isolated and cannot
accumulate at the isolated points pi where G is bounded due to the fact
that G is harmonic at these points and Lemma 2.1, it follows that G
has a finite number of critical points, as claimed. q.e.d.

We are now ready to prove Theorem 1.1. In the proof we will assume
that the Green’s function G has been extended to the points pi where
it is bounded and to the circles ∂Dj as in Lemma 2.2. We recall that
the first Betti number of the manifold M is given by

b1(M) = 2ν + λ− 1 ,

and that a smooth function is Morse if its Hessian matrix has maxi-
mal rank at all its critical points. It should be noted too that obviously
Cr(G) = Φ−1(Cr(G)), where Cr(f) denotes the critical set of a func-
tion f .

Proof of Theorem 1.1. Let Dȳ be a small disk in M that contains the
pole ȳ. For concreteness, using the asymptotics for the Green’s func-
tion (2.5) we can assume that the boundary of this disk is the level

curve G
−1

(c0) for some large positive constant c0. By construction, the
gradient ∇ḡG is transverse (in fact, orthogonal) to ∂Dȳ. By the asymp-

totics for the gradient (2.5) it is clear that G does not have any critical
points in the closure of Dȳ.

Suppose that the number λ2 of removed disks is at least one and
consider the manifold with boundary

Σ′ := Σ\

(

Dȳ ∪

λ2
⋃

j=1

Dj

)

.

By item (i) in Lemma 2.2 the vector field ∇ḡG is smooth in Σ′ and
transverse to its boundary. Let us denote by z1, . . . , zN the critical points
of G in M , which are finite in number by item (iii) in Lemma 2.2. In
addition to this, some of the isolated points pi can be critical points of
G too; without loss of generality we can order them so that these critical
points are p1, . . . , pλ′

1
with 0 6 λ′

1 6 λ1.

If we now apply Hopf’s index theorem [31] to the vector field ∇ḡG
in the manifold with boundary Σ′ and realize that in dimension 2 it
does not matter whether the vector field points inward or outward at
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the boundary, we get that the sum of the indices of the zeros of ∇ḡG
equals the Euler characteristic of Σ′:

N
∑

k=1

ind(zk) +

λ′

1
∑

i=1

ind(pi) = χ(Σ′) .

Since χ(Σ′) can be readily shown to be 1 − 2ν − λ2 and the index of
each critical point is smaller than or equal to −1 by Lemma 2.1, we find
(2.6)

−

N
∑

k=1

ind(zk) = 2ν+λ2−1+

λ′

1
∑

i=1

ind(pi) 6 2ν+λ2−λ′
1−1 6 2ν+λ−1 .

This implies that N 6 2ν + λ− 1, and the equality is not satisfied but
perhaps when ind(zk) = −1 for all k, that is, when G is Morse. (The
fact that the critical point zk is non-degenerate when ind(zk) = −1 is
an immediate consequence of Lemma 2.1.)

Consider now the case where λ2 = 0. We have seen in item (ii) of
Lemma 2.2 that there are some points pj where G tends to −∞, and

that G is harmonic at the other points pk. Among the points where the
function is harmonic, some can be critical points of G. Without loss of
generality we can label these critical points as p1, . . . , pλ′

1
. Let λ′′

1 be

the number of points where G tends to −∞; for concreteness, we can
assume that these points are pλ′

1
+1, . . . , pλ′

1
+λ′′

1
. Notice that necessarily

λ′′
1 > 1.

As we did with the pole ȳ, let us take small disks Dpj containing
the points pj, with λ′

1 + 1 6 j 6 λ′
1 + λ′′

1 . As before, the boundary

circles can be chosen as the λ′′
1 components of the level curve G

−1
(−c0)

for large enough c0. The asymptotics for the Green’s function given
by (2.5) ensures that G does not have any critical points in the closure
of these disks and ∇ḡG is transverse (and orthogonal by construction)
to the boundary ∂Dpj .

We can now apply Hopf’s index theorem to the vector field ∇ḡG in
the manifold with boundary

Σ′′ := Σ\

(

Dȳ ∪

λ′

1
+λ′′

1
⋃

j=λ′

1
+1

Dpj

)

.

The Euler characteristic of Σ′′ is 1 − 2ν − λ′′
1, so denoting the critical

points of G in M again by z1, . . . , zN and arguing as above, one arrives
at the inequality

−

N
∑

k=1

ind(zk) = 2ν+λ′′
1−1+

λ′

1
∑

i=1

ind(pi) 6 2ν+λ′′
1−λ′

1−1 6 2ν+λ−1 .
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This yields N 6 2ν+λ−1, the inequality being saturated at most when
ind(zk) = −1 for all k (that is, when G is Morse). q.e.d.

Remark 2.3. Although the bound N 6 2ν + λ − 1 is purely topo-
logical, it should be emphasized that the proof of the theorem shows
that knowledge of the conformal structure of the manifold allows us to
improve the bound. In particular, when λ2 > 1 it stems from (2.6) that
N 6 2ν + λ2 − 1. This can be paraphrased as saying that only hy-
perbolic ends (i.e., the removed disks) contribute to the upper bound.
Again, if this bound is saturated the Green’s function must be Morse.
The converse implication does not hold.

It is clear that a Li–Tam Green’s function of a surface diffeomorphic
to R

2 does not have any critical points. To conclude this section, we
will illustrate how the approach that we have followed in the proof
of Theorem 1.1 can be used to show the absence of critical points in
certain classes of higher-dimensional manifolds and certain choices of the
pole y. The kinds of spaces we will consider are those of axisymmetric
manifolds, and we will make the additional assumption that there is
a Green’s function G (which is necessarily minimal) tending to zero at
infinity. It is known that this assumption is satisfied, e.g., when the ends
of the manifold are large and it has nonnegative Ricci curvature [28] or
asymptotically nonnegative sectional curvature [26].

Before starting our treatment of axisymmetric manifolds, let us prove
an easy lemma that will be also of use in forthcoming sections:

Lemma 2.4. Let G be the minimal Green’s function with pole y of a
Riemannian manifold (Rn, g), with n > 2. Suppose that G tends to zero
at infinity. Then each level set G−1(c) is compact and connected, and
the relatively compact domain bounded by G−1(c) contains the pole y.

Proof. The level sets of G are necessarily compact because G is pos-
itive and tends to zero at infinity. Suppose that G−1(c) had more than
one connected component. As Rn is contractible, there would be at least
two disjoint relatively compact sets, S1 and S2, such that G would be
constant on their boundaries. As the pole y does not belong to at least
one of these sets, say S1, it follows from the maximum principle that G
is constant in S1, contradicting the unique continuation theorem [23].
q.e.d.

Remark 2.5. The lemma and its proof remain valid if we replace
G by the Dirichlet Green’s function GΩ of a domain Ω ⊂ (Rn, g) with
connected boundary.

We recall that a Riemannian n-dimensional manifold is axisymmetric
if it is diffeomorphic to R

n and there is a subgroup of isometries H
isomorphic to SO(n − 1). To simplify the notation, we will introduce
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global coordinates x = (x1, . . . , xn) taking values in R
n and assume

without loss of generality that H acts via rotations of the last n − 1
coordinates x′ := (x2, . . . , xn). The metric is then necessarily of the
form

(2.7) g = α dx21 + β
(

dx22 + · · ·+ dx2n
)

+ γ
(

x2 dx2 + · · ·+ xn dxn
)2

,

where α, β, γ are smooth functions of x1 and |x′|2, α and β are positive,
and

β(x1, |x
′|2) + |x′|2γ(x1, |x

′|2) > 0 .

The fixed set of H is then the x1-axis, and the action of H is proper
and free on its complement.

Theorem 2.6. Let (Rn, g) be an axisymmetric manifold whose Green’s
function G tends to zero at infinity and suppose that the position of the
pole y is fixed by the action of the rotation group H. Then G does not
have any critical points.

Proof. Without loss of generality, we can then assume that y is lo-
cated at the origin x = 0. The pole being invariant under H, prop-
erty (iii) of Li–Tam Green’s functions ensures that the Green’s function
is invariant under H, which means that G only depends on x1 and |x′|2.
By the form of the metric, ∇gG is obviously tangent to the plane

Π :=
{

x3 = · · · = xn = 0
}

.

The vector field Y is then defined as the pullback of ∇gG to this invari-
ant plane, and can be regarded (through the coordinates (x1, x2)) as a
vector field in R

2. In fact, if we denote by

(2.8) ḡ := α(x1, x
2
2) dx

2
1 +

(

β(x1, x
2
2) + x22 γ(x1, x

2
2)
)

dx22

the pullback of the metric to the plane Π, it is obvious that Y = ∇ḡG,

with G the restriction of G to the plane Π. Note that the functions
α, β, γ that appear in (2.8) are the same as in Eq. (2.7) (but they are
of course evaluated at different arguments).

By the axisymmetry of G, it is obviously enough to ensure that G
does not have any critical points in the plane Π, which is tantamount
to saying that G does not have any critical points. A short computation
using the metric (2.7) shows that, when we evaluate the equation ∆gG =
0 at any point of the plane Π other than the pole, we get

0 = (∆gG)
∣

∣

Π\{0}
= ḡij∂i∂jG+ bi∂iG ,

where the indices i, j range over {1, 2} and bi(x1, x2)∂i is a smooth vector
field in Π. Therefore, Lemma 2.1 guarantees that the critical points of
G are isolated and their indices are not greater than −1.

By Sard’s theorem [1], there is a sequence of regular values (ck)
∞
k=1 ց

0 of G, so that the gradient of G does not vanish on Γk := G
−1

(ck).
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Each of these level sets is diffeomorphic to a circle, with the pole lying
in its interior Ωk (that is, in the relatively compact domain bounded by
Γk). To prove this, it is enough to notice that Γk, which is obviously
smooth, is compact and connected because G−1(ck) is (this is immediate
by Lemma 2.4). Moreover, this lemma ensures that the pole is contained
in the domain Ωk. It should be noticed that, as G is positive and tends
to zero at infinity, the domains Ωk exhaust the plane Π in the sense that
Ωk ⊂ Ωk+1 and Π =

⋃∞
k=1Ωk.

Take a small disk D around the point 0 in the plane Π. From the
asymptotics of the Green’s function G near the pole [14]

G(x) =
1

|Sn−1|distg(x, y)n−2
+O

(

distg(x, y)
3−n

)

,(2.9a)

|∇gG(x)| =
n− 2

|Sn−1|distg(x, y)n−1
+O

(

distg(x, y)
2−n

)

,(2.9b)

we infer that G does not have any critical points in D. It is clear that

one can take D = G
−1

(c) for some large constant c. By construction,
∇ḡG is then orthogonal to the boundaries ∂D and Γk.

Let us now apply the index theorem for manifolds with boundary to
the vector field ∇ḡG in the region Ωk\D. The critical points z1, . . . , zNk

of G in Ωk are necessarily finite in number because the set Ωk\D is com-
pact and we have already seen that critical points are isolated. Hence,
Hopf’s index theorem yields

Nk
∑

j=1

ind(zj) = χ
(

Ωk\D
)

= 0 .

Since ind(zj) 6 −1, this implies that Nk = 0 for all k. As the domains
Ωk exhaust the whole plane, the result follows. q.e.d.

3. Dirichlet Green’s functions with non-degenerate critical

points

In this section we aim to prove that the Dirichlet Green’s function of
a “generic” bounded domain Ω of a smooth Riemannian manifold (M,g)
of dimensions n > 2 is Morse, which will be instrumental in the proof of
Theorem 1.2. The usefulness of Morse functions for our purposes lies in
the fact that it ensures that the function is locally smoothly conjugate to
its second order Taylor expansion at the critical point [18], so that the
structure of the neighboring level sets can be easily controlled. Notice
we are not assuming that the boundary ∂Ω is connected.

Before proving the main result of this section, we find it convenient
to introduce the following definition.
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Definition 3.1. Given any positive integer k, two C∞ bounded do-
mains Ω,Ω′ ⊂ M are said to be ǫ-close in Ck if there exists a C∞

diffeomorphism Φ of M mapping (Ω, ∂Ω) onto (Ω′, ∂Ω′) and such that
Φ− id is compactly supported and satisfies ‖Φ − id‖Ck < ǫ.

As is well known, we can define the above Ck norm, e.g. using the
covariant derivative. The precise way in which one defines the Ck norm
is inessential for our purposes because Φ− id has compact support. We
are now ready to prove the desired generic non-degeneracy result:

Theorem 3.2. Let Ω be a smooth bounded domain of (M,g) and fix
a point y ∈ Ω. Then for any ǫ > 0 and any positive integer k there is a
smooth domain Ω′ ǫ-close to Ω in Ck whose Green’s function GΩ′ with
pole y is Morse. Furthermore, there is some smaller δ > 0 such that the
Green’s function with pole y of any Ck domain δ-close to Ω′ in Ck is
also Morse.

Remark 3.3. Equivalently, the theorem can be restated as follows:
Given any bounded domain Ω ⊂ M , GΦ(Ω) is Morse for a Ck-generic

(i.e., belonging to a set open and dense in the Ck norm) embedding
Φ : Ω → M .

Proof. Let us divide the proof in two parts.

Density. We shall show that there exists another domain Ω′ ⊂ M of
class C∞ which is ǫ-close in Ck to Ω and such that its associated Green’s
function GΩ′ with pole y is Morse in Ω′\{y}.

We start by noticing that GΩ is smooth in Ω\{y}, and that the gra-
dient of GΩ is nonzero on ∂Ω by the Hopf boundary point lemma [15].
Take the level set G−1

Ω (η) for a small positive constant η, so that the gra-
dient of GΩ does not vanish on it by continuity. The same argument we
used in the proof of Lemma 2.4 shows here that there is a unique subset
Ω0 of Ω whose boundary consists of components of G−1

Ω (η), and that

Ω0 is automatically connected, contains y, and satisfies ∂Ω0 = G−1
Ω (η).

Choosing η small enough, Ω0 is ǫ
2 -close in Ck to Ω.

The critical set of GΩ being compact, we can cover it by finitely
many open patches Va ⊂ Ω\{y} (1 6 a 6 N) of harmonic coordinates
(xa1, . . . , x

a
n) [13], which satisfy the equation ∆gx

a
j = 0 in the closure Va

(that is, in an open neighborhood of Va). As Ω\Va is connected, a Runge-
type theorem proved by Bagby and Blanchet [3] ensures that these
local harmonic coordinates xaj can be approximated in the Ck norm by

harmonic functions Xa
j , which satisfy ∆gX

a
j = 0 in Ω, so that the norm

‖xaj −Xa
j

∥

∥

Ck(Va)
is arbitrarily small. (Actually, only C0 approximation

is stated in this reference, but the fact that it can be promoted to Ck

approximation is obvious by standard Schauder estimates [15].)
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We shall prove in what follows that there exist constants λa
j arbitrarily

close to zero such that the function

fN := GΩ −

N
∑

a=1

n
∑

j=1

λa
jX

a
j

is Morse in the closure of VN :=
⋃N

a=1 Va ⊂ Ω. As fN obviously ap-

proximates GΩ in the Ck norm in any compact subset of Ω\{y} and
∇gGΩ 6= 0 both in ∂Ω and in a neighborhood of y, it will immediately
follow from the former claim and the boundedness of Ω that fN is Morse

in Ω0\{y} for sufficiently small values of λj
a.

We shall prove the above claim by induction. Let us begin by showing
that there exist constants λ1

1, . . . , λ
1
n in an arbitrarily small neighbor-

hood of 0 such that

f1 := GΩ −

n
∑

j=1

λ1
jX

1
j

is Morse in V1. Sard’s theorem [1] ensures that there exists an open and
dense subset Λ1 ⊂ R

n such that the Hessian of the expression of the
Green’s function GΩ in the coordinates (x11, . . . , x

1
n) is nonsingular on

the points of V1 where
∂GΩ

∂x1j
= λ1

j

for 1 6 j 6 n and all (λ1
1, . . . , λ

1
n) ∈ Λ1. This simply means that the

function

GΩ −

n
∑

j=1

λ1
j x

1
j

is Morse in V1 for all (λ1
1, . . . , λ

1
n) ∈ Λ1. By the stability of Morse func-

tions and the fact that the function X1
j approximates the harmonic

coordinate x1j in the Ck norm, the function f1 is Morse too in V1.

Let us next assume as the induction hypothesis that the function

fm−1 := GΩ −
m−1
∑

a=1

n
∑

j=1

λa
jX

a
j

is Morse in the closure of Vm−1 :=
⋃m−1

a=1 Va for an open and dense set of
values of (λa

j ). If we now invoke the same Sard-type argument we used

for f1 replacing GΩ by fm−1, V1 by Vm, and λ1
j by λm

j , we immediately
derive that the function

fm := fm−1 −
n
∑

j=1

λm
j Xm

j
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is Morse in Vm for an open and dense set Λm ⊂ R
n of values of

(λm
1 , . . . , λm

n ). Moreover, the C2-openness of Morse functions in Vm−1

guarantees that fm is also Morse in Vm−1 provided that the new pa-
rameters λm

j are small enough. By induction in m, this proves that

there exist arbitrarily small λa
j ∈ R such that fN is Morse in VN .

By construction, fN is harmonic in Ω\{y}. Besides, Thom’s isotopy
theorem [1, Section 20.2] ensures that the level set f−1

N (η) ⊂ Ω and the

boundary ∂Ω0 are ǫ
2 -close in Ck, provided that the parameters λa

j are
chosen close enough to zero. Hence the first part of the theorem now
follows by defining Ω′ to be the bounded domain enclosed by f−1

N (η), so
that GΩ′ = fN − η.

Openness. Suppose that GΩ is Morse. It is clear that for any ǫ > 0 there
exists δ1 > 0 such that

max
∂(Ω∩Ω′)

GΩ < ǫ , max
∂(Ω∩Ω′)

GΩ′ < ǫ

for any Ck domain Ω′ which is δ1-close in Ck to Ω. In particular,

(3.1)
∣

∣GΩ −GΩ′

∣

∣ < 2ǫ

in ∂(Ω ∩ Ω′). The function GΩ − GΩ′ being harmonic in Ω ∩ Ω′, the
estimate (3.1) must hold in Ω ∩ Ω′ as well by virtue of the maximum
principle, and hence it follows that, as Ω′ becomes closer and closer to Ω,
the Green’s function GΩ′ approximates GΩ in the C0 (and, by Schauder
estimates [15], Ck) norm in compact subsets of (Ω∩Ω′)\{y}. Therefore
a simple stability argument ensures that GΩ′ is Morse in any compact
subset of (Ω ∩ Ω′)\{y}. As the gradient of GΩ′ does not vanish either
in a neighborhood of y by the asymptotics (2.5) and (2.9) or at ∂Ω by
Hopf’s boundary point lemma, the theorem follows. q.e.d.

4. Green’s functions with prescribed behavior

In this section we prove Theorem 1.2, which follows from Corollar-
ies 4.4-4.5 and Theorem 4.7 below. Roughly speaking, the content of
Theorem 1.2 is that there are well-behaved metrics in R

n (n > 3) hav-
ing Green’s functions with good fall-off at infinity (in particular, tend-
ing to zero) that have as many critical points as one wishes, and level
sets of arbitrarily complicated topology. This is in strong contrast with
the 2-dimensional situation (cf. Theorem 1.1), where a Li–Tam Green’s
function does not have any critical points.

In fact, the proof of Theorem 1.2 provides a method for constructing
metrics whose Green’s functions have prescribed critical and level sets,
and can be painlessly extended to other topologies. The reason why we
concentrate on metrics in R

n is that a Green’s function that tends to
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zero at infinity automatically has critical points unless the manifold is
homeomorphic to R

n, as we show in the following

Proposition 4.1. Let G be a Green’s function on a smooth manifold
(M,g), and suppose that G tends to zero at infinity. Then if G has no
critical points, M is homeomorphic to R

n.

Proof. The well known asymptotics for the Green’s function near the
pole (2.9) shows that the level sets G−1(c) are homeomorphic to the
sphere S

n−1 for sufficiently large c. Consider the local flow φt of the

vector field
∇gG

|∇gG|2g
, which is smooth in M\{y} because G does not have

any critical points. Since the level sets G−1(c) are compact (because G
is positive and tends to zero at infinity) and obviously

d

dt
G(φtx) = 1

for all x, it is immediate that the local flow φt is a homeomorphism
mapping

φt

(

G−1(c)
)

= G−1(c+ t)

whenever c and c+ t are positive. Hence all the level sets of G must be
homeomorphic to S

n−1. Let us now take a decreasing sequence cj ց 0
and consider the domain Bj containing y whose boundary is G−1(cj),
which we have shown to be homeomorphic to a ball. Then M is the
monotone union of the balls Bj , so a theorem of Brown now ensures [6]
that M is then homeomorphic to R

n. q.e.d.

The proof of our results, which is of interest in itself, is based on the
construction of a metric in R

n whose minimal Green’s function tends to
zero and approximates the Euclidean Green’s function of a prescribed
domain Ω with Dirichlet boundary conditions (Theorem 4.2). We will see
that this metric, which can be taken analytic, is obtained by multiplying
the Euclidean metric by a conformal factor that is approximately 1 in the
domain Ω and very large in its complement. Suitable decay conditions
on the curvature ensure the existence of a Green’s function with the
desired decay at infinity, which permits us to complete the proof of the
theorem using variational methods:

Theorem 4.2. Let Ω ⊂ R
n be a bounded domain with smooth con-

nected boundary, and let GΩ be its Euclidean Green’s function with
pole y. Given a compact subset S of Ω\{y}, a positive integer k, and
δ > 0, there is a complete analytic metric in R

n whose minimal Green’s
function G with pole y approximates GΩ in the Ck(S) norm as ‖G −
GΩ‖Ck(S) < δ. Furthermore, G tends to zero at infinity.

Proof. One can take global coordinates (x1, . . . , xn) ∈ R
n and assume

without loss of generality that y is located at the origin x = 0 and
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the order of approximation k is at least 3. For any positive integer j,
let ϕ̃j : R

n → [1,∞) be a smooth function such that ϕ̃j(x) = 1 if
x ∈ Ω and ϕ̃j(x) = j if dist(x,Ω) > 1

j . By Whitney’s approximation

theorem [32, Section 1.6.5], we can approximate each ϕ̃j by an analytic
function ϕj : R

n → R in such a way that

(4.1)
∑

|α|6k

∣

∣Dαϕj(x)−Dαϕ̃j(x)
∣

∣ <
e−|x|

j
.

There is no loss of generality in assuming that ϕj(0) = 1 for all j ∈ N.

Let us now define the conformally flat analytic metrics gj := ϕjg0 on
R
n, where g0 denotes the Euclidean metric in the coordinates (x1, . . . , xn).

For notational simplicity we shall denote by a subscript j the geomet-
ric quantities corresponding to the metric gj , e.g. dVj, ∇j, and ∆j . It
is clear that the end of (Rn, gj) is large because this manifold has Eu-
clidean volume growth. Moreover, the approximation (4.1) ensures that
the Riemann tensor is bounded by

∣

∣Rmj(x)
∣

∣ < C e−|x| ,

so that (Rn, gj) has asymptotically nonnegative curvature. This implies
that (Rn, gj) has a unique minimal positive Green’s function Gj , which
satisfies ∆jGj = −δ0 and falls off at infinity as [21, 26]

(4.2) Gj(x) <

∫ ∞

distj(x,0)

t dt

Volj(Bj(0, t))
<

C

jn−1|x|n−2
.

In the last inequality we have only used the properties of the function
ϕj and elementary identities.

It is therefore standard [34] that one can express Gj in terms of the
unique solution GR

j to the boundary problem

∆jG
R
j = 0 in AR :=

{

x ∈ R
n : 1/R < |x| < R

}

,(4.3a)

GR
j

∣

∣

|x|=1/R
=

Rn−2

|Sn−1|
, GR

j

∣

∣

|x|=R
= 0,(4.3b)

on the annulus AR of center 0, inner radius R−1, and outer radius R.
Indeed, we will next show that

(4.4) Gj =
(

1 + o(1)
)

GR
j + o(1) ,

so that we clearly have uniform convergence in any compact set K ⊂
R
n\{0}:

(4.5)
∥

∥Gj −GR
j

∥

∥

C0(K)
= o(1) .

Here and in what follows, o(1) denotes a quantity that tends to 0 as
R → ∞ uniformly in j (in the previous equation, this quantity obviously
depends on the compact set K too). To prove Eq. (4.4), it suffices to
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note that the asymptotics for the Green’s function near the pole (see
Eq. (2.9)) ensures that

Gj =
(

1 + o(1)
)

GR
j on |x| = 1/R ,

while Gj ||x|=R = o(1) by (4.2). Therefore one can choose a small positive
constant η, of order o(1), such that

±
(

Gj − (1± η)GR
j

)

< 0

on |x| = 1/R and
∣

∣Gj − (1± η)GR
j

∣

∣ < η

on |x| = R. Since Gj − (1 ± η)GR
j is harmonic in AR, the maximum

principle ensures that

(1− η)GR
j − η < Gj < (1 + η)GR

j + η ,

which is equivalent to (4.4).

Let us now fix a large value of R such that B(0, 1/R) ⊂ S ⊂ Ω ⊂
B(0, R), where S is the compact set that appears in the statement of
the theorem, and study the behavior of GR

j for large j. To this end, we

shall use [15] that GR
j is the unique minimizer of the functional

ER
j [F ] :=

∫

AR

∣

∣∇jF
∣

∣

2

j
dVj =

∫

AR

ϕj(x)
n
2
−1

∣

∣∇F (x)
∣

∣

2
dx ,

defined on the space of Lipschitz functions

CR :=
{

F ∈ C0,1(AR) : F
∣

∣

|x|= 1

R
= Rn−2

|Sn−1|
, F

∣

∣

|x|=R
= 0

}

.

It is apparent that inf ER
j is bounded uniformly in j. Indeed, if F0

belongs to the set

C(Ω;R) :=
{

F ∈ C0,1(AR ∩ Ω) : F
∣

∣

|x|= 1

R
= Rn−2

|Sn−1|
, F

∣

∣

∂Ω
= 0

}

,

it immediately follows from the inclusion C(Ω;R) ⊂ CR that

inf ER
j 6 ER

j [F0] 6
(

1 + 1
j

)
n
2
−1

∫

AR∩Ω
|∇F0|

2 dx .

In particular, by letting F0 vary over C(Ω;R), it stems from this that

(4.6) inf ER
j 6

(

1 + 1
j

)
n
2
−1

inf ER
Ω = inf ER

Ω + oR(1) ,

where ER
Ω : C(Ω;R) → R denotes the energy functional

ER
Ω [F ] :=

∫

AR∩Ω
|∇F |2 dx

and the symbol oR(1) henceforth stands for a quantity that tends to
zero as j → ∞ but is not necessarily uniform in R.
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Let us now suppose that there exist some ǫ1, ǫ2 > 0 and a subsequence
(js)

∞
s=1 ր ∞ such that the Lebesgue measure of the set

UR
s :=

{

x ∈ AR\Ω :
∣

∣∇GR
js(x)

∣

∣ > ǫ1
}

is at least ǫ2 for all s. In this case

lim sup
j→∞

inf ER
j > lim

s→∞
inf ER

js = lim
s→∞

ER
js [G

R
js ]

> lim
s→∞

(js − 1)
n
2
−1ǫ21ǫ2 = +∞ ,

contradicting the fact that inf ER
j is bounded in j. It then follows that

∇GR
j tends to zero in measure in AR\Ω as j → ∞. The uniform (in j)

estimate (4.6) for

inf ER
j = ER

j [G
R
j ] >

1

2

∫

AR\Ω
|∇GR

j |
2 dx

then ensures, by Vitali’s theorem, that

(4.7)

∫

AR\Ω
|∇GR

j |
2 dx = oR(1) ,

i.e., that the L2 norm of the gradient of GR
j becomes very small outside

Ω for large j.

Now let K be any compact subset of AR\Ω. Standard Schauder esti-
mates for the differential equation ∆jG

R
j = 0 yield the C2 bound [15]

(4.8) ‖GR
j ‖C2(K) 6 CK‖GR

j ‖C0(AR) 6
CKRn−2

|Sn−1|
,

which is uniform in j. The maximum principle has been used to derive
the second inequality. The constant CK can be chosen to depend on
the compact set K and the dimension n but not on j [15] because the
principal symbol of the elliptic operator j∆j at any point x ∈ K is given
by

j ϕ−1
j (x) id =

(

1 +O(j−1)
)

id .

In view of the C2 bound (4.7), the L2 estimate (4.5) then implies that
∇GR

j converges pointwise to zero as j → ∞ uniformly in each compact

set K ⊂ AR\Ω. Since GR
j ||x|=R = 0 for all j, this immediately yields the

C1 estimate

(4.9)
∥

∥GR
j

∥

∥

C1(K)
= oR(1)

for all K as above.

Let us consider thickenings of the domain Ω of the form

Ωǫ :=
{

x ∈ R
n : dist(x,Ω) < ǫ

}

,

with ǫ a small positive number, and take a smooth function χǫ : R
n → R

with χǫ = 1 in Ωǫ/2 and χǫ = 0 in AR\Ωǫ. Let us now set vRǫ,j := χǫG
R
j ,
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which is a function that clearly belongs to the space C(Ωǫ;R). With
the obvious definition of the energy functional ER

Ωǫ
, a short calculation

shows

ER
Ωǫ
[vRǫ,j] =

∫

Ωǫ/2∩AR

|∇GR
j |

2 dx+

∫

Ωǫ\Ωǫ/2

∣

∣χǫ∇GR
j +GR

j ∇χǫ

∣

∣

2
dx .

By Eq. (4.7), the first summand is at most inf ER
j + oǫ,R(1), while the

second term is obviously bounded by Cǫ‖G
R
j ‖C1(Ωǫ\Ωǫ/2)

. Using the es-

timate (4.9), this yields

(4.10) inf ER
Ωǫ

6 ER
Ωǫ
[vRǫ,j] 6 inf ER

j + oǫ,R(1) .

Here we are using the notation oǫ,R(1) for a quantity that tends to zero
as j → ∞ but is not uniform in ǫ or R. Let us hereafter use the notation
õR(1) to denote a quantity that goes to 0 as ǫ → 0 (not as j → ∞) and
is uniform in j but not necessarily in R. It is clear then that we have

inf ER
Ωǫ

= inf ER
Ω + õR(1) ,

so that Eqs. (4.6) and (4.10) yield

(4.11) ER
Ωǫ
[vRǫ,j] 6 inf ER

Ωǫ
+ oǫ,R(1) + õR(1) .

Let us now compare the function vRǫ,j with the unique solution GR
Ωǫ

of the boundary value problem

∆GR
Ωǫ

= 0 in AR ∩Ωǫ , GR
Ωǫ

∣

∣

|x|=R−1 =
Rn−2

|Sn−1|
, GR

Ωǫ

∣

∣

∂Ωǫ
= 0 .

(4.12)

Since the function 1
2(G

R
Ωǫ

+ vRǫ,j) belongs to the space C(Ωǫ;R), it is now
immediate that
∫

|∇GR
Ωǫ

−∇vRǫ,j|
2

4
=

∫

|∇GR
Ωǫ
|2 + |∇vRǫ,j|

2

2
−

∫
∣

∣

∣

∣

∇

(

GR
Ωǫ

+ vRǫ,j
2

)
∣

∣

∣

∣

2

=
ER
Ωǫ
[GR

Ωǫ
] + ER

Ωǫ
[vRǫ,j]

2
− ER

Ωǫ

[

GR
Ωǫ

+ vRǫ,j
2

]

6 inf ER
Ωǫ

− ER
Ωǫ

[

GR
Ωǫ

+ vRǫ,j
2

]

+ oǫ,R(1) + õR(1)

6 oǫ,R(1) + õR(1),(4.13)

where all integrals are taken over Ωǫ ∩AR with respect to the Lebesgue
measure dx and we have used Eq. (4.11) to estimate ER

Ωǫ
[vRǫ,j].

Let

K ′ :=
{

x ∈ AR ∩ Ω : dist(x, ∂Ω) 6 ǫ′
}

,

with ǫ′ small enough so that the set S is contained in K ′. In view of
the definition of the conformal factor ϕj , standard Schauder estimates
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and the maximum principle for the equations ∆jv
R
ǫ,j = 0 and ∆GR

Ωǫ
= 0

show that in the compact set K ′ we have the uniform C2 bounds

‖GR
Ωǫ
‖C2(K ′) 6 CK ′‖GR

Ωǫ
‖C0(AR∩Ωǫ) 6

CK ′Rn−2

|Sn−1|
,

‖vRǫ,j‖C2(K ′) 6 CK ′‖vRǫ,j‖C0(AR∩Ωǫ) 6
CK ′Rn−2

|Sn−1|
,

with CK ′ depending only onK ′ and the dimension n. With these bounds,
the L2 estimate (4.13) implies that

∇GR
Ωǫ

−∇vRǫ,j = oǫ,R(1) + õR(1)

pointwise in K ′. Since GR
Ωǫ

− vRǫ,j = 0 on |x| = 1/R, this yields the C1

bound

(4.14)
∥

∥GR
Ωǫ

− vRǫ,j
∥

∥

C1(K ′)
= oǫ,R(1) + õR(1) .

Let GR
Ω be the solution to the boundary value problem (4.12) with Ωǫ

replaced by Ω. Since GR
Ωǫ

converges to GR
Ω for small ǫ, i.e.,

(4.15) lim
ǫ→0+

GR
Ωǫ

= GR
Ω

pointwise in K ′, and vRǫ,j = GR
j in K ′, it stems from this that

(4.16)
∥

∥GR
j −GR

Ω‖C0(K ′) = oR(1) .

To see this, note that for any η > 0 one can take a very small ǫ such that
|GR

Ωǫ
− GR

Ω| < η/2 in K ′ by (4.15), and if ǫ is small enough Eq. (4.14)

guarantees that there is a large j such that |GR
Ωǫ

− vRǫ,j| < η/2 in K ′.

Hence for this j, |GR
j −GR

Ω | < η, which implies the claim.

Let K be any compact subset of Ω\{0} whose interior contains S.
Since obviously

lim
R→∞

∥

∥GΩ −GR
Ω

∥

∥

C0(K)
= 0 ,

Eqs. (4.5) and (4.16) readily imply that for any δ′ > 0 one can choose
large values of R and j so that

(4.17)
∥

∥Gj −GΩ

∥

∥

C0(K)
< δ′ .

Notice that

(4.18) ϕj∆j(Gj −GΩ) = −ϕj∆jGΩ = −∆GΩ +Yj · ∇GΩ = Yj · ∇GΩ ,

in Ω\{0}, with the vector field Yj := −(n2 −1)ϕ−1
j ∇ϕj bounded in K as

(4.19) ‖Yj‖Ck−1(K) <
Ck,K

j
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by the property (4.1) of the conformal factor ϕj . Schauder estimates for
the equation (4.18) and the bounds (4.17) and (4.19) yield

‖Gj −GΩ‖Ck(S) 6 C1

(

‖Gj −GΩ‖C0(K) + ‖∇GΩ‖Ck−1(K)‖Yj‖Ck−1(K)

)

6 C1δ
′ +

C2

j
,

where again the constants C1, C2 depend on the number of derivatives
k and the compact sets K and S, but not on δ′ or j. Therefore one
can choose δ′ small enough and j large enough so that the difference
between GΩ and the Green’s function of the analytic metric gj in the
compact S, ‖Gj −GΩ‖Ck(S), is smaller than any given positive number
δ, completing the proof of the theorem. q.e.d.

The fact that Theorem 4.2 yields a Ck approximation (k > 2) is cru-
cial for relating the topological properties of the level sets of the Green’s
function of the curved manifold to those of the Euclidean Green’s func-
tion of the domain. In the rest of this section we shall present several
concrete applications of this idea as corollaries of the previous theorem.

The following easy corollary provides a somewhat more concrete way
of relating the Green’s function of a “generic” domain GΩ to that
of (Rn, g), where the metric g is constructed as in Theorem 4.2. By
“generic” we mean that the Green’s function GΩ is assumed to be Morse,
which is indeed true for an open and dense set (with respect to any Ck

topology) of smooth domains by Theorem 3.2:

Corollary 4.3. Let Ω be a domain with C∞ connected boundary and
consider a compact set K ⊂ Ω and a small neighborhood B of a point
y ∈ Ω. If the Green’s function GΩ with pole y is Morse, there is a
C∞ diffeomorphism Θ of Rn, arbitrarily close to the identity in the Ck

norm, and an analytic metric g on R
n whose minimal Green’s function

G tends to zero at infinity and satisfies

(4.20) G(x) = (GΩ ◦Θ)(x)

for all x ∈ K\B.

Proof. By Theorem 4.2, one can choose an analytic metric g so that G
and GΩ are arbitrarily close in the Ck+1(K\B) norm. Given any ǫ > 0,
the structural stability of Morse functions implies [1] that there exists a
C∞ diffeomorphism Θ of K\B onto its image with ‖Θ− id‖Ck(K\B) < ǫ

and satisfying (4.20) for all x ∈ K\B. Since Θ is close to the identity,
it is standard that it can be extended to a diffeomorphism of Rn, which
we still denote by Θ, so that ‖Θ − id‖Ck(Rn) < 2ǫ. q.e.d.

In the following corollary we show that the level sets of a minimal
Green’s function in R

n can have highly nontrivial topologies:
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Corollary 4.4. Let Σ ⊂ R
n be a compact, codimension 1 submani-

fold without boundary of class C∞, and let y be a point in the domain
bounded by Σ. Then, for any positive integer k and any ǫ > 0, there exist
a compactly supported diffeomorphism Φ : Rn → R

n with ‖Φ− id‖Ck < ǫ
and a complete analytic Riemannian manifold (Rn, g) whose minimal
Green’s function with pole y tends to zero at infinity and has Φ(Σ) as a
level set.

Proof. Let Ω be the bounded domain enclosed by Σ and let GΩ be its
Green’s function with pole y. By the Hopf boundary point lemma [15],
the gradient of GΩ does not vanish on Σ. The level sets of GΩ being
connected by Lemma 2.4 and Remark 2.5, it then follows that the Cω

submanifold Σ′ := G−1
Ω (c) is ǫ-close in Ck to Σ for small enough c > 0.

By Theorem 4.2 one can choose an analytic metric g on R
n such

that its minimal positive Green’s function G is arbitrarily close to GΩ

in the Ck norm on compact subsets of Ω\{y} and tends to zero at
infinity. As the level sets of G are connected by Lemma 2.4, it follows
by Thom’s isotopy theorem [1] that G−1(c) is diffeotopic to Σ′, so that
G−1(c) = Φ(Σ) for some ambient diffeomorphism close to the identity.
q.e.d.

Next we shall apply Theorem 4.2 to construct analytic metrics in R
n

with many critical points. Additionally, we can ensure that each of these
critical points is non-degenerate and control its Morse index, which is
the number of negative eigenvalues of its Hessian matrix at the critical
point. In order to see that this corollary actually shows that the Green’s
function can have as many critical points as one wishes, it is enough to
apply the statement, for instance, to a domain Ω in R

n whose boundary
is the connected sum of N copies of S1×S

n−2, whose first Betti number
is b1(Ω) = N .

Corollary 4.5. Let Ω be a bounded domain in R
n with C∞ connected

boundary and let bp(Ω) be the Betti numbers of its closure. Then there
exists an analytic metric in R

n whose minimal Green’s function with
pole y tends to zero at infinity and has at least bp(Ω) non-degenerate
critical points of Morse index n− p, for 1 6 p 6 n− 2.

Proof. By translating and slightly deforming the domain if necessary,
Theorem 3.2 ensures that one can take y ∈ Ω such that the Green’s
function GΩ of Ω with pole y is Morse. By the Hopf boundary point
lemma [15], the gradient of GΩ does not vanish on the boundary of Ω.
Let us consider the auxiliary function f : Ω → R, of class C2, defined
by

f(x) :=

{

−1/(GΩ(x) + 1)2 if x 6= y ,

0 if x = y .
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Since the gradient ∇gf obviously points inwards on the boundary ∂Ω,
by the Morse theory for manifolds with boundary [31] it follows that f
has at least bp(Ω) critical points of index n−p, for all p = 0, . . . , n. It is a
straightforward computation that all the critical points of f other than
y are also critical points of GΩ and they have the same Morse indices.
Therefore Corollary 4.3 guarantees that there exists an analytic metric
whose minimal Green’s function has the same number of critical points
in Ω as GΩ and of the same Morse type. q.e.d.

Remark 4.6. The reason why one only needs to take 1 6 p 6 n− 2
in the statement is the following. For a manifold with boundary Ω,
bn−1(Ω) = bn(Ω) = 0, so it is enough to consider p 6 n − 2. The
zeroth Betti number is b0(Ω) = 1, but the associated critical point of
the auxiliary function f simply reflects that y is the maximum of f , but
y is clearly not related to a critical point of GΩ but to its pole.

To conclude the proof of Theorem 1.2, we shall next show how to
construct an analytic metric in R

n whose Green’s function has a critical
set of codimension at most 3. (Of course, the statement ensures that
some of the components of the critical set have codimension at most 3,
not that all of them do.)

Theorem 4.7. There exists an analytic metric in R
n whose minimal

Green’s function with pole y tends to zero at infinity and has a critical
set of codimension at most 3.

Proof. First of all, let us take Cartesian coordinates (x1, . . . , xn) in R
n

so that the pole of G is given by y = 0. Let us consider the polynomial

Q(x1, x2) :=
N−1
∏

k=0

[(x1 − 2k − 1)2 + x22 − 1
]2

,

where N is a positive integer, and define the domain in R
3

Ω0 :=
{

x ∈ R
3 : Q(x1, x2) + x23 < a , x1 > 0

}

.

This domain is obviously diffeomorphic to a solid torus of genus N if
the constant a > 0 is sufficiently small.

By Corollary 4.5 it suffices to consider the case where n > 4. We
will identify R

3 with the 3-plane in R
n corresponding to the coordinates

(x1, x2, x3). Let H be the group of rotations of the n − 2 coordinates
(x1, x4, . . . , xn) (i.e., the group generated by the vector fields x1∂j−xj∂1
with 4 6 j 6 n). We define a domain Ω1 ⊂ R

n as the interior of the set
H ·Ω0 (that is, we regard Ω0 as a subset of Rn, consider its orbit under
the action of the group H and define Ω1 as the interior of this orbit).

The boundary of the domain Ω1 is not smooth, as it has corners on
its intersection with the 2-plane {x1 = x4 = · · · = xn = 0}. Hence we
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start by defining a smooth domain, which we call Ω, by rounding off the
corners of Ω1. This new domain can be taken arbitrarily close in C0 to
Ω1. The domain Ω1 is invariant under the group H and under the re-
flections σk along all the hyperplanes {xk = 0} (when k = 2, 3 it follows
from the definition of Ω0, not from the fact that we are considering an
orbit of the group H). Therefore, we can take the new domain Ω to be
invariant under these transformations as well. For later convenience, we
will call H0 the group generated by the reflections σ2 and σ3.

Let GΩ be the Euclidean Dirichlet Green’s function of Ω with pole at
0. The Green’s function GΩ is invariant under the Euclidean isometries
which preserve both the pole y = 0 and the domain Ω, so GΩ ◦σk = GΩ

for k = 1, . . . , n. In particular, the gradient ∇GΩ is tangent to the x1-
axis.

Our goal now is to study the critical points of GΩ on the x1-axis.
Clearly the intersection of Ω with the x1-axis consists of 2N + 1 con-
nected components Lα, which are line segments we label with an integer
−N 6 α 6 N . These components are ordered in the natural way, so
that the value of the coordinate x1 is greater in Lα than in Lα′ if and
only if α > α′. The restriction of the function GΩ, which we call ΨΩ, is
smooth in

L :=

( N
⋃

α=−N

Lα

)

\{0}

and vanishes on the endpoints of each ∂Lα by the boundary conditions.
Moreover, ΨΩ is everywhere positive because so is GΩ, which implies
that ΨΩ has a local maximum in Lα for all α 6= 0 by Rolle’s theorem.
Since the gradient ∇GΩ is tangent to the x1-axis, it follows that the
aforementioned maxima of ΨΩ correspond to critical points of GΩ, which
are necessarily of saddle type. Let z be one of the above critical points
of GΩ, located on L. As GΩ is invariant under the group of rotations
H, the critical set of GΩ must contain the H-orbit passing through z,
which has dimension n− 3. Thus the critical set of GΩ has codimension
at most 3.

We shall now construct a sequence of analytic metrics gj on R
n such

that the minimal Green’s functions Gj in (Rn, gj) with pole 0 approxi-

mate GΩ in the Ck norm in compact sets of Ω\{0}. The construction is
based on a straightforward modification of the proof of Theorem 4.2 that
takes into account the symmetries of the domain Ω. Again we denote by
ϕ̃j : Rn → [1,∞) a smooth function such that ϕ̃j(x) = 1 if x ∈ Ω and
ϕ̃j(x) = j if dist(x,Ω) > 1

j . The domain Ω being invariant under the

action of the group H ⊕H0, we can obviously take ϕ̃j invariant under
H ⊕H0.
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By Whitney’s approximation theorem [32, Section 1.6.5], for any pos-
itive integer j there exists an analytic function ϕ̂j : R

n → R such that

(4.21)
∑

|α|63

|Dαϕ̂j(x)−Dαϕ̃j(x)| <
e−|x|

j
.

We can obviously assume that ϕ̂j(0) = 1. Observe that both the set

Λj :=
{

x ∈ R
n : dist(x, ∂Ω) > 1

j

}

and the majorating function e−|x|/j in (4.21) are invariant under the
compact group H ⊕H0. Consequently, we can define an analytic sym-
metrization ϕj of the function ϕ̂j by

ϕj(x) :=
1

4

∑

σ∈H0

∫

H
ϕ̂j(σ ◦ h(x)) dh ,

where dh denotes the normalized Haar measure of H. Since Dαϕ̃j = 0
in the set Λj, it readily follows from Eq. (4.21) that for all x ∈ R

n with

dist(x, ∂Ω) > 1
j we have the estimate:

∑

|α|63

|Dα(ϕj − ϕ̃j)(x)| 6
1

4

∑

σ∈H0

∫

H

∑

|α|63

∣

∣Dαϕ̂j(σhx) −Dαϕ̃j(x)
∣

∣ dh

6
Ce−|x|

j
,

where C does not depend on j.

If we now define the complete metric gj := ϕjg0, it follows that gj has
asymptotically nonnegative curvature and Euclidean volume growth, so
(Rn, gj) admits a minimal positive Green’s function Gj that tends to
zero at infinity [21, 26]. Following verbatim the proof of Theorem 4.2,
one infers that Gj approximates GΩ in any C l norm in compact subsets
of Ω\{0}. By construction H ⊕H0 is a group of isometries of (Rn, gj),
so, by property (iii) of Li–Tam Green’s functions and the fact that the
pole is at the origin, the gradient field ∇jGj is tangent to the x1-axis.
As in the proof of Theorem 4.2, we are denoting by a subscript j the
objects corresponding to the metric gj .

Let us use the notation Ψj for the restriction of the Green’s function
Gj to the set L. As Ψj tends to ΨΩ uniformly on compact subsets
of each segment Lα and ΨΩ has at least 2N local maxima, it follows
that Ψj also has at least 2N local maxima if j is large enough. Rolle’s
theorem and the fact that Ψj tends to +∞ at 0 ensure that Ψj also
has at least 2N local minima. By symmetry, these local extrema of Ψj

correspond to critical points of Gj , and the invariance of Gj under the
group of isometries H implies that the critical set of Gj also contains
the H-orbit passing through each of these critical points. Since these
orbits have dimension n− 3, the result follows for large enough j. q.e.d.
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Remark 4.8. The proof of Theorem 4.7 relies on the construction of
a metric in R

n with an SO(n − 2) isometry subgroup leaving a point
y invariant and whose Green’s function G with pole y has a nonempty
critical set. However, we saw in Theorem 2.6 that the existence of an
SO(n− 1) isometry group automatically implies that the Green’s func-
tion has no critical points, so this construction cannot be adapted to
obtain critical sets of codimension 2. The question of whether there are
Green’s functions on (Rn, g) tending to zero at infinity with critical sets
of codimension 2 remains open.
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Consejo Superior de Investigaciones Cient́ıficas

28049 Madrid, Spain

E-mail address: aenciso@icmat.es

Instituto de Ciencias Matemáticas
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