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A CHARACTERIZATION OF HARMONIC SPACES

Balázs Csikós & Márton Horváth

Abstract

The authors proved in [5] that in a complete, connected, and
simply connected Riemannian manifold, the volume of the inter-
section of two small geodesic balls depends only on the distance
between the centers and the radii if and only if the space is har-
monic. In this paper, we show that this proposition remains true,
if the condition is restricted to balls of equal radii.

1. Introduction

Z. I. Szabó proved in [12] (corollary 2.1) that in a complete, con-
nected, simply connected, and harmonic Riemannian manifold, the vol-
ume of the intersection of two geodesic balls depends only on the dis-
tance between the centers and the radii of the balls. As this property
is related to the extendability of the Kneser-Poulsen conjecture to Rie-
mannian manifolds, it was denoted by KP2 in [6] and [5], where the
reader can find more details about this connection. The converse of
Szabó’s theorem holds as well ([5]); namely, if a complete, connected,
and simply connected Riemannian manifold has the KP2 property, then
the manifold is harmonic. In this paper, we prove that this statement
is also true under a weaker condition KP=

2 , which requires the KP2

condition only for balls of equal radii (Theorem 1). This proposition
was conjectured in [5], where it was verified for symmetric spaces.

In general, we say that a Riemannian manifold has the KPk prop-
erty if the volume of the intersection of k geodesic balls depends only
on the distances between the centers and the radii of the balls. The
KP1 property is quite closely related to the notion of ball-homogeneity,
introduced in [11]. Recall that a Riemannian manifold is called ball-
homogeneous if the volume of small geodesic balls depends only on the
radius. Ball-homogeneous spaces have been studied by many authors;
see, e.g., the papers [3], [4], [7] and the references therein. KP1 man-
ifolds are ball-homogeneous, and ball-homogeneous spaces are known
to be of constant scalar curvature. The first author and D. Kunszenti-
Kovács [6] proved that if a complete connected Riemannian manifold
has the KP3 property, then it is one of the simply connected spaces
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of constant curvature. Conversely, every complete, connected, simply
connected space of constant curvature obviously has the KPk property
for all k.

The present paper is an organic continuation of [5]. For the sake of
the reader, Section 2 gives a summary of those results from [5] that will
be needed for the proof of our main theorem given in Section 3. A key
step of the proof is Theorem 2, which claims that KP=

2 manifolds are
D’Atri spaces.

Acknowledgments. The authors were supported by the Hungarian
National Science and Research Foundation OTKA K72537.

2. Preliminaries

In this section, we recall some notations and propositions from [5]
that will be used later.

Consider a unit speed geodesic γ in a Riemannian manifold. Choose
a parallel orthonormal frame E1, . . . , En along γ such that En = γ′. If
v ∈ γ′(t)⊥ = {x ∈ Tγ(t)M | x ⊥ γ′(t)} is a tangent vector at a given
point, then we shall denote by [v] the column vector of its coordinates
with respect to the basis E1(t), . . . , En−1(t). Denote by R(t) the matrix
of the restriction to γ′(t)⊥ of the Jacobi operator for γ′(t) with respect to

the basis E1(t), . . . , En−1(t). For a real r, let J(r, .) : R → R
(n−1)×(n−1)

be the solution of the following matrix differential equation:

(i) ∂2
2J(r, t) +R(t)J(r, t) = 0,

(ii) J(r, r) = 0,
(iii) ∂2J(r, r) = I,

where ∂i stands for the partial derivative of a multivariable function
with respect to its ith variable.

For an arbitrary tangent vector v ∈ γ′(r)⊥, consider the vector field
Jr,v along γ defined uniquely by [Jr,v(t)] = J(r, t)[v]. This is the Jacobi
field along γ satisfying the initial conditions Jr,v(r) = 0 and J ′

r,v(r) = v.
If γ(t) is close to γ(r), i.e., γ(t) is in the neighborhood onto which the
exponential map at γ(r) is a diffeomorphism, then γ(t) is not conjugate
to γ(r) along γ, so J(r, t) is invertible.

Denote by Σ(r, t) the geodesic sphere of radius |r| centered at γ(t).
If |r| is sufficiently small, then Σ(r, t) is a smooth hypersurface passing
through γ(t+r). In such a case, consider the Weingarten map of Σ(r, t−
r) at γ(t) with respect to the normal vector γ′(t), and denote by L(r, t)
its matrix with respect to the basis E1(t), . . . , En−1(t). We know that
L(r, t)J(t− r, t) = −∂2J(t− r, t) for small |r| > 0 (see lemma 3 in [8] or
proposition 1 in [5]), that is,

(1) L(r, t) = −∂2J(t− r, t)J(t − r, t)−1.
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We also have (equation (10) in [5])

(2) L(r, t) = I
1

r
+

R(t)

3
r +O

(

r2
)

.

A recursive formula to compute higher order terms of the Laurent series
can be found in [9]. Equation (2) shows that we cannot define L for
r = 0, so we sometimes consider the function L0(r, t) = rL(r, t), which
we can extend to (0, t) smoothly with the value 0 for all t. Obviously
we have

(3) L0(r, t) = I +
R(t)

3
r2 +O

(

r3
)

.

As R is symmetric, the Wronskian

(4) J(r1, t)
T∂2J(r2, t)− ∂2J(r1, t)

TJ(r2, t)

is constant along γ. This means that its values at t = r1 and t = r2 are
equal, that is,

(5) −J(r2, r1) = J(r1, r2)
T.

We also use that (4) is equal to its value at t = r2. Thus,

J(r1, t)
T∂2J(r2, t)− ∂2J(r1, t)

TJ(r2, t) = J(r1, r2)
T.

Rearranging, we get

(6)
∂2J(r2, t)J(r2, t)

−1 − (∂2J(r1, t)J(r1, t)
−1)T

= J(r1, t)
−1TJ(r1, r2)

TJ(r2, t)
−1.

Equations (1), (6), and LT = L give

(7) −L(t− r2, t) + L(t− r1, t) = J(r1, t)
−1TJ(r1, r2)

TJ(r2, t)
−1.

Define the function Dγ(r, t) = det(L(r, t) − L(−r, t)). The function
r 7→ Dγ(r, t) has a pole singularity at 0; nevertheless, its germ at 0 can
be defined in the usual way. We will use the following proposition.

Proposition 1 ([5]). If in a Riemannian manifold, the volume of

the intersection of two geodesic balls of the same radius depends only

on the common value of the radii and the distance between the centers,

then the germ of the function r 7→ Dγ(r, t) at r = 0 does not depend on

t and γ.

As a consequence, in a manifold of type KP=
2 , we can define the

function D on a small punctured neighborhood of 0 by D(r) = Dγ(r, t).
It was also proved in [5] that every KP=

2 manifold is Einstein, so
the metric is analytic in normal coordinates by the Kazdan-DeTruck
theorem ([2]). In this case, the Jacobi operator is analytic, and by
the Cauchy-Kowalevski theorem, J and consequently L and L0 are also
analytic.
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3. Equivalence of the KP=
2 property and harmonicity

In this section, we prove the main result of the paper.

Theorem 1. A complete, connected, and simply connected Riemann-

ian manifold is harmonic if and only if the volume of the intersection

of two geodesic balls of the same radius depends only on the distance

between the centers and the common value of the radii of the balls.

The “only if” part is known ([12]); the proof of the “if” part consists
of two steps. First we prove that every KP=

2 manifold is a D’Atri space.
For the definition and basic properties of D’Atri spaces, see [10] or §2.7
[1].

Theorem 2. Every Riemannian manifold having the KP=
2 property

is a D’Atri space.

Proof. We shall use that a Riemannian manifold is a D’Atri space if
and only if hp(q) = hq(p) holds for all sufficiently close points p, q of
the manifold, where hm denotes the mean curvature function of small
geodesic spheres centered at m ([1]). We can rewrite this condition with
our notation so that for any geodesic curve γ,

trL(a− b, a) + trL(b− a, b) = 0

holds for small distinct values of a and b. Fix a geodesic γ and let J and
L be the matrix valued functions defined in Section 2. Choose ε > 0
such that both D(r) and L(r, t) are defined for 0 < |r| ≤ 2ε and |t| ≤ 2ε.
Assuming 0 < |r| ≤ ε and |t| ≤ ε, we can express the function D with
the help of equation (7):

D(r) = det(L(r, t) − L(−r, t))

= det
(

J(t− r, t)−1TJ(t− r, t+ r)TJ(t+ r, t)−1
)

=
det J(t− r, t+ r)

detJ(t− r, t) det J(t+ r, t)
.

Rearranging, we get

(8) det J(t− r, t) det J(t+ r, t)D(r) = detJ(t− r, t+ r).

Taking the logarithmic derivative of (8) with respect to t gives

tr(∂1J(t− r, t)J(t− r, t)−1) + tr(∂2J(t− r, t)J(t− r, t)−1) +

tr(∂1J(t+ r, t)J(t+ r, t)−1) + tr(∂2J(t+ r, t)J(t+ r, t)−1)

= tr(∂1J(t− r, t+ r)J(t− r, t+ r)−1) +

tr(∂2J(t− r, t+ r)J(t− r, t+ r)−1).

(9)

We can transform those terms in (9) which contain the differentiation
∂1 into terms containing ∂2 with the help of equation

∂1J(r1, r2) = −(∂2J(r2, r1))
T,
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which follows from (5). Using the symmetry relation (5) a few more
times, (9) can be brought to the form

tr(∂2J(t, t− r)J(t, t− r)−1) + tr(∂2J(t− r, t)J(t− r, t)−1) +

tr(∂2J(t, t+ r)J(t, t+ r)−1) + tr(∂2J(t+ r, t)J(t+ r, t)−1)

= tr(∂2J(t+ r, t− r)J(t+ r, t− r)−1) +

tr(∂2J(t− r, t+ r)J(t− r, t+ r)−1).

Applying (1) yields

(10)
tr(L(−r, t − r)) + tr(L(r, t)) + tr(L(r, t+ r)) + tr(L(−r, t))

= tr(L(−2r, t− r)) + tr(L(2r, t + r)).

Define the function f : [−ε,+ε]× [−ε,+ε] → R by

f(a, b) = tr(L(a− b, a)) + tr(L(b− a, b)).

L has singularity at (0, t) for all t; thus, f(a, b) is defined initially only
when a 6= b. However, as shown by (2), f has an analytic extension
to the diagonal a = b such that f(a, a) = 0. Now we prove that the
function f is identically 0, which will complete the proof. Equation (10)
says that

f(t− r, t) + f(t, t+ r) = f(t− r, t+ r),

or equivalently,

f(a, b) = f

(

a,
a+ b

2

)

+ f

(

a+ b

2
, b

)

.

If we apply this k times, we get

(11) f(a, b) =

2k−1
∑

i=0

f

(

a+
i

2k
(b− a), a+

i+ 1

2k
(b− a)

)

.

According to (3), the Taylor polynomial of trL0(r, t) with Lagrange
remainder term with respect to r is

trL0(r, t) = n− 1 +
trR(t)

3
r2 +

tr∂3
1L

0(r̃, t)

6
r3,

where |r̃| < |r|. The function |tr∂3
1L

0| has a maximal value C on the
compact set [−2ε,+2ε] × [−ε,+ε]. As the manifold is Einstein, trR is
constant. So we have |f(a′, b′)| ≤ C

3 |a
′ − b′|2 for every a′, b′ ∈ [−ε,+ε].

Applying this upper bound to the summands on the right-hand side of
(11), we obtain

|f(a, b)| ≤

2k−1
∑

i=0

∣

∣

∣

∣

f

(

a+
i

2k
(b− a), a+

i+ 1

2k
(b− a)

)
∣

∣

∣

∣

≤ 2k
C

3

∣

∣

∣

∣

|b− a|

2k

∣

∣

∣

∣

2

=
C

3

|b− a|2

2k
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for arbitrary a, b ∈ [−ε,+ε]. If k tends to infinity, we get f(a, b) = 0, as
we wanted to prove. q.e.d.

Now we are ready to prove the main result.

Proof of Theorem 1. Let ε be as in the proof of Theorem 2 and assume
0 < |r| ≤ ε and |t| ≤ ε. Differentiating the logarithm of (8) with respect
to r yields

(12)

−tr(∂1J(t−r, t)J(t−r, t)−1)+tr(∂1J(t+r, t)J(t+r, t)−1)+(logD)′(r)

= −tr(∂1J(t−r, t+r)J(t−r, t+r)−1)+tr(∂2J(t−r, t+r)J(t−r, t+r)−1).

In the same way as equation (10) was obtained from equation (9), we
can transform equation (12) to the form

tr(L(−r, t − r))− tr(L(r, t+ r)) + (logD)′(r)

= tr(L(−2r, t− r)− tr(L(2r, t + r)).

Since the manifold is D’Atri, hm(expm(v)) = hm(expm(−v)) holds for
any sufficiently small tangent vector v (see [1]), which means

tr(L(−r, t− r)) = −tr(L(r, t + r))

with our notation. We also have tr(L(−2r, t − r)) = −tr(L(2r, t + r));
consequently,

(13) −2tr(L(r, t+ r)) + (logD)′(r) = −2tr(L(2r, t + r)).

As (13) holds for every t, r ∈ R such that 0 < |r| ≤ ε and |t| ≤ ε,
equation

(14) (logD)′(r) = −2tr(L(2r, t)) + 2tr(L(r, t))

is valid for 0 < |r| ≤ ε
2 and |t| ≤ ε

2 . Since the manifold is analytic,

trL0(r, t) is an analytic function. Thus we can write the trace of the
Weingarten map as the sum of a Laurent series:

tr(L(r, t)) =
n− 1

r
+

∞
∑

i=1

ai(t)r
i.

With this substitution, equation (14) takes the form

(logD)′(r) =
n− 1

r
− 2

∞
∑

i=1

(2i − 1)ai(t)r
i.

Thus, the coefficients of the Laurent series of the function (logD)′(r)
determine the coefficients ai(t), from which we conclude that tr(L(r, t))
depends only on r (but neither on t nor on the geodesic γ). This means
that the mean curvature of small geodesic balls is a constant depend-
ing only on the radius, which is one of the equivalent definitions of
harmonicity. q.e.d.
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[12] Z.I. Szabó, The Lichnerowicz conjecture on harmonic manifolds, J. Differential
Geom. 31 (1990), 1–28, MR 1030663 (91g:53052), Zbl 0686.53042. Available at
http://projecteuclid.org/getRecord?id=euclid.jdg/1214444087.

Department of Geometry
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