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DIRICHLET DUALITY AND THE
NONLINEAR DIRICHLET PROBLEM

ON RIEMANNIAN MANIFOLDS

F. Reese Harvey & H. Blaine Lawson, Jr.

Abstract

In this paper we study the Dirichlet problem for fully nonlin-
ear second-order equations on a riemannian manifold. As in our
previous paper [HL4], we define equations via closed subsets of
the 2-jet bundle where each equation has a natural dual equation.
Basic existence and uniqueness theorems are established in a wide
variety of settings. However, the emphasis is on starting with a
constant coefficient equation as a model, which then universally
determines an equation on every riemannian manifold which is
equipped with a topological reduction of the structure group to
the invariance group of the model. For example, this covers all
branches of the homogeneous complex Monge-Ampère equation
on an almost complex hermitian manifold X .

In general, for an equation F on a manifold X and a smooth
domain Ω ⊂⊂ X , we give geometric conditions which imply that
the Dirichlet problem on Ω is uniquely solvable for all continuous
boundary functions. We begin by introducing a weakened form
of comparison which has the advantage that local implies global.
We then introduce two fundamental concepts. The first is the
notion of a monotonicity cone M for F . If X carries a global M -
subharmonic function, then weak comparison implies full compar-
ison. The second notion is that of boundary F -convexity, which is
defined in terms of the asymptotics of F and is used to define bar-
riers. In combining these notions the Dirichlet problem becomes
uniquely solvable as claimed.

This article also introduces the notion of local affine jet-equiva-
lence for subequations. It is used in treating the cases above,
but gives results for a much broader spectrum of equations on
manifolds, including inhomogeneous equations and the Calabi-Yau
equation on almost complex hermitian manifolds.

A considerable portion of the paper is concerned with specific
examples. They include a wide variety of equations which make
sense on any riemannian manifold, and many which hold univer-
sally on almost complex or quaternionic hermitian manifolds, or
topologically calibrated manifolds.
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1. Introduction

In a recent article [HL4] the authors studied the Dirichlet problem
for fully nonlinear equations of the form F(Hess u) = 0 on smoothly
bounded domains in Rn. Our approach employed a duality which en-
abled us to geometrically characterize domains for which one has ex-
istence and uniqueness of solutions for all continuous boundary data.
These results covered, for example, all branches of the real, complex,
and quaternionic Monge-Ampère equations, and all branches of the spe-
cial Lagrangian potential equation.

Here we shall extend these results in several ways. First, all results
in [HL4] are shown to carry over to riemannian manifolds with an ap-
propriate topological reduction of the structure group. For example, we
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treat the complex Monge-Ampère equation on almost complex manifolds
with hermitian metric. Second, the results are extended to equations
involving the full 2-jet of functions. There still remains a basic notion of
duality, and a geometric form of F -boundary convexity. Existence and
uniqueness theorems are established, and a large number of examples
are examined in detail.

In [HL4] our approach was to replace the function F(Hess u) by a
closed subset F ⊂ Sym2(Rn) of the symmetric n × n matrices subject
only to the positivity condition

(1.1) F + P ⊂ F

where P ≡ {A ∈ Sym2(Rn) : A ≥ 0} (cf. [K]). Such an F was called
a Dirichlet set in [HL4] but will be called a subequation here. A C2-
function u on a domain Ω is F -subharmonic if Hessxu ∈ F for all x ∈ Ω,
and it is F -harmonic if Hessxu ∈ ∂F for all x. (The reader might
note the usefulness of this approach in treating other branches of the
equation det(Hess u) = 0.) The important point is to extend these
notions to upper semicontinuous [−∞,∞)-valued functions. We will
follow the approach in [HL4] by using the dual subequation

(1.2) F̃ ≡ −(∼ F ) = ∼ (−F ).

The class of subaffine functions, or P̃-subharmonic functions, played a
key role in [HL4] since the positivity condition F +P ⊂ F is equivalent

to F + F̃ ⊂ P̃.
Each subequation F has an associated asymptotic interior

−→
F , and

using this we introduced a notion of strictly
−→
F -convex boundaries. For

the qth branch of the complex Monge-Ampère equation, for example,
this is just classical q-pseudo-convexity. It is then shown in [HL4] that

for any domain Ω whose boundary is strictly
−→
F - and

−→̃
F -convex, solu-

tions to the Dirichlet problem exist for all continuous boundary data.
Furthermore, uniqueness holds on arbitrary domains Ω.

In this paper the results from [HL4] will be generalized in several
ways. To begin we shall work on a general manifold X and consider
subequations given by closed subsets

F ⊂ J2(X)

of the 2-jet bundle which satisfy three conditions. The first is the posi-
tivity condition

(P) F + P ⊂ F,

where Px is the set of 2-jets of non-negative functions with critical value
zero at x. The second is the negativity condition

(N) F +N ⊂ F,
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where N = the jets of non-positive constant functions. The third is a
mild topological condition (T), which is satisfied in all interesting cases.
(See Section 2.) We always assume our subequations F satisfy these
conditions. For the pure second-order constant coefficient subequations
considered in [HL4], the positivity conditions (P) and (1.1) are equiva-
lent and automatically imply the other two conditions (N) and (T), as
long as F is a closed set.

Here the dual subequation F̃ is defined by (1.2) exactly as in [HL4].
While duality continues to be important, it is not used to define F -
subharmonic functions in the upper semicontinuous setting. This is
because subaffine (i.e., co-convex) functions do not satisfy the maxi-
mum principle on general riemannian manifolds. So we use instead the
equivalent [HL4, Remark 4.9], viscosity definition (cf. [CIL]). The F -
subharmonic functions have most of the important properties of classical
subharmonic functions, such as closure under taking maxima, decreas-
ing limits, uniform limits, and upper envelopes. This is discussed in
Section 2 and Appendices A and B.

The notion of a strictly
−→
F -convex boundary can be extended to this

general context. This is discussed below in the introduction and treated
in Section 11.

The focus of this paper is an important class of subequations con-
structed on riemannian manifolds, with an appropriate reduction of
structure group, from constant coefficient equations on Rn. It is a
basic fact that on riemannian manifolds X, there is a canonical bundle
splitting

(1.3) J2(X) = R⊕ T ∗X ⊕ Sym2(T ∗X)

given by the riemannian hessian. This enables us, for example, to carry
over any On-invariant constant coefficient subequation F ⊂ Sym2(Rn)
(the so-called Hessian equations in [CNS]) to all riemannian manifolds.
That is, any purely second-order subequation on Rn which depends
only on the eigenvalues of the hessian carries over to general riemannian
manifolds.

Much more generally, however, consider a constant coefficient sub-
equation, i.e., a subset

F ⊂ R⊕Rn ⊕ Sym2(Rn)

satisfying (P), (N), and (T), and its compact invariance group

G ≡ {g ∈ On : g(F) = F}.
SupposeX is a riemannian manifold with a topological G-structure. This
means that X is provided with an open covering {Uα}α and a tangent
frame field eα = (eα1 , . . . , e

α
n) on each Uα so that each change of framing

Gαβ : Uα ∩ Uβ → G ⊂ On is valued in the subgroup G. Then from the
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splitting (1.3), the subequation F can be transplanted to a globally de-
fined subequation F on X. Such subequations are called G-universal or
riemannian G-subequations and make sense on any riemannian manifold
with a topological G-structure.

An important new ingredient is the concept of a convex monotonicity
cone for F (Definition 9.4). This is a subset M ⊂ J2(X) which is a
convex cone (with vertex 0) at each point and satisfies

F +M ⊂ F.

The subequation P defined by requiring that the riemannian hessian
be ≥ 0 is a monotonicity cone for all purely second-order subequations.
The corresponding P -subharmonic functions are just the riemannian
convex functions. (Note that these exist globally on Rn and, in fact,
on any complete simply-connected manifold of non-negative sectional
curvature.) Similarly, on an almost complex hermitian manifold X the
subequation PC, defined by requiring the hermitian symmetric part
of Hessu to be ≥ 0, is a monotonicity cone for any Un-universal sub-
equation depending only on the hermitian symmetric part. The cor-
responding PC-subharmonic functions are hermitian plurisubharmonic
functions on X.

Our first main result is the following.

Theorem 13.1. Suppose F is a riemannian G-subequation on a rie-
mannian manifold X provided with a topological G-structure as above.
Suppose there exists a C2 strictly M -subharmonic function on X where
M is a monotonicity cone for F .

Then for every domain Ω ⊂⊂ X whose boundary is strictly F - and

F̃ -convex, both existence and uniqueness hold for the Dirichlet problem.
That is, for every ϕ ∈ C(∂Ω) there exists a unique F -harmonic function
u ∈ C(Ω) with u

∣∣
∂Ω

= ϕ.

The simplest case of this, where F is a constant coefficient equation
in euclidean Rn (and G = {1}), already generalizes the main result in
[HL4]. Here comparison holds for any subequation which is gradient
independent since the squared distance to a point can be used to con-
struct the required M -subharmonic function. (See Theorem 13.4.) A
similar comment holds for any complete simply-connected manifold X
of non-positive sectional curvature.

In general, requiring the existence of a strictly M -subharmonic func-
tion (or something similar) is an intuitively necessary global hypothe-
sis; for example, in the case where G = SOn, one is free to arbitrarily
change the riemannian geometry inside a domain Ω while preserving the
F -convexity of ∂Ω. However, even for quite regular metrics—domains
in S3×S3—examples in Appendix D show that uniqueness fails without
this hypothesis.
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Theorem 13.1 applies in a quite broad context. We point out some
examples here. They will be discussed in detail in the latter sections of
the paper.

Example A. (Parallelizable manifolds). Even when F admits abso-
lutely no symmetries, i.e., G = {1}, the theorem has broad applicability.
Suppose X is a riemannian manifold which is parallelizable, that is, on
which there exist global vector fields e1, . . . , en which form a basis of
TxX at every point. The single open set U = X with e = (e1, . . . , en)
is a G = {1}-structure, and every constant coefficient subequation F in
Rn can be carried over to a subequation F on X.

Note that many manifolds are indeed parallelizable. For example, all
orientable 3-manifolds have this property.

Example B. (General riemannian manifolds). Any constant co-
efficient subequation F ⊂ R⊕Rn ⊕Sym2(Rn) which is invariant under
the action of On carries over to all riemannian manifolds. There are,
for example, many invariant functions of the riemannian hessian which
yield universal “purely second-order” equations. Associated to each
A ∈ Sym2(Rn) is its set of ordered eigenvalues λ1 ≤ · · · ≤ λn. These
eigenvalues have the property that λq(A + P ) ≥ λq(A) for any P ∈ P.
Thus, for example, the set Pq = {A : λq(A) ≥ 0} gives a subequation
on any riemannian manifold. This subequation Pq is the qth branch of
the Monge-Ampère equation.

There are many other equations of this type. In fact, let Λ ⊂ Rn

be any subset which is invariant under permutations of the coordinates
and satisfies the positivity condition: Λ+Rn

+ ⊂ Λ where R+ ≡ {t ≥ 0}.
Then this set, considered as a relation on the eigenvalues of the riemann-
ian hessian, determines a universal subequation on every riemannian
manifold.

A classical case is F(σk) = {λ : σ1(λ) ≥ 0, . . . , σk(λ) ≥ 0} (the
principal branch of σk(λ) = 0 where σk denotes the kth elementary
symmetric function). One can compute that the convexity of ∂Ω, for
this equation and its dual, corresponds to the F(σk−1)-convexity of its
second fundamental form. For domains in Rn this result was proved in
[CNS]. It is generalized here in two ways. We establish the result for
all branches of the equation and we carry it over to general riemannian
manifolds. (See Theorem 14.4.)

We are also able to treat inhomogeneous subequations such as Hessu ≥
0 and detHessu ≥ f(x) for a positive function f on X (and the analo-
gous subequations for the other σk as above). This follows from Theo-
rem 10.1 on local affine jet-equivalence.

Example C. (Almost complex hermitian manifolds). Consider
Cn = (R2n, J) where J : R2n → R2n represents multiplication by

√
−1.

To any A ∈ Sym2(R2n) one can associate the hermitian symmetric part
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AC ≡ 1
2 (A−JAJ) which has n real eigenvalues λ1 ≤ · · · ≤ λn occurring

with multiplicity 2 on n complex lines. The entire discussion in Example
B now applies. Any permutation-invariant subset Λ ⊂ Rn satisfying the
Rn

+-positivity condition Λ+Rn
+ ⊂ Λ gives a natural subequation on any

manifold with Un-structure, i.e., any almost complex manifold with a
compatible riemannian metric. This includes, for example, all branches
of the homogeneous complex Monge-Ampère equation. We note that
almost complex hermitian manifolds play an important role in modern
symplectic geometry.

One can also treat the Dirichlet problem for Calabi-Yau–type equa-
tions in this context of almost complex hermitian manifolds. (See, e.g.,
Example 6.15.)

One can also consider Un-invariant functions of the skew-hermitian
part Ask = 1

2(A + JAJ). An important case of this is the Lagrangian
equation discussed below.

Example D. (Almost quaternionic hermitian manifolds). A dis-
cussion parallel to that in Example C holds with the complex numbersC
replaced by the quaternions H = (R4n, I, J,K). In particular, Theorem
13.1 applies to the Dirichlet problem for all branches of the quaternionic
Monge-Ampère equation on almost quaternionic hermitian manifolds.

Example E. (Grassmann structures). Fix any closed subset Gl ⊂
G(p,Rn) of the Grassmannian of p-planes in Rn, and consider the sub-
equation F (Gl ) defined for (r, p,A) ∈ R⊕Rn ⊕ Sym2(Rn) by the con-
dition

trξA ≡ tr
(
A
∣∣
ξ

)
≥ 0 for all ξ ∈ Gl .

Here the F (Gl )-subharmonic functions are more appropriately called
Gl -plurisubharmonic. Now F (Gl ) carries over to a subequation on any
riemannian manifold with G-structure where

G ≡ {g ∈ On : g(Gl ) = Gl }.
For example, if Gl = G(p,Rn), then G = On and the corresponding

subequation, which makes sense on any riemannian manifold, states
that the sum of any p eigenvalues of Hess u must be ≥ 0. This is called
geometric p-convexity or p-plurisubharmonicity.

A particularly interesting example is given by the Un-invariant set
LAG ⊂ G(n,Cn) of Lagrangian subspaces of Cn = (R2n, J). On any
almost complex hermitian manifold, this gives rise to a notion of La-
grangian subharmonic and Lagrangian harmonic functions with an as-
sociated Dirichlet problem which is solvable on Lagrangian convex do-
mains. This is discussed in more detail below.

Another rich set of examples comes from almost calibrated manifolds
such as manifolds with topological G2 and Spin7 structures. These are
also discussed at the end of the introduction.
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For all such structures, Theorem 13.1 gives the following general re-
sult. Call a domain Ω ⊂ X strictly Gl -convex if it has a strictly Gl -psh
global defining function. This holds if ∂Ω is strictly Gl -convex (cf. (1.5)
below) and there exists f ∈ C2(Ω) which is strictly Gl -psh.

Theorem 16.1. Let X be a riemannnian manifold with topological G-
structure so that the riemannian G-subequation F (Gl ) is defined on X.
Then on any strictly Gl -convex domain Ω ⊂⊂ X the Dirichlet prob-
lem for F (Gl )-harmonic functions is uniquely solvable for all continuous
boundary data.

Jet-Equivalence of Subequations. Although it is not our main fo-
cus, one of the important results of this paper is that Theorem 13.1
actually holds for a much broader class of subequations, namely those
which are locally affinely jet-equivalent to constant coefficient subequa-
tions. The notion of (ordinary) jet-equivalence is expressed in terms
of automorphisms of the 2-jet bundle. A (linear) automorphism of
J2(X) is a smooth bundle isomorphism Φ : J2(X) → J2(X) which
has certain natural properties with respect to the short exact sequence
0 → Sym2(T ∗X) → J2(X) → J1(X) → 0. (See Definition 6.1 for de-
tails.) The automorphisms form a group, and two subequations F,F ′ ⊂
J2(X) are called jet-equivalent if there exists an automorphism Φ with
Φ(F ) = F ′.

A subequation on a general manifold X is said to be locally jet-
equivalent to a constant coefficient subequation if each point x has a
coordinate neighborhood U so that F

∣∣
U

is jet-equivalent to a constant
coefficient subequation U × F in those coordinates.

Any riemannian G-subequation on a riemannian manifold with topo-
logical G-structure is locally jet-equivalent to a constant coefficient sub-
equation. Theorem 13.1 remains true if one drops the riemannian metric
on X and replaces the “G-universal assumption” with the assumption
that F is locally jet-equivalent to a constant coefficient subequation.
This is a strictly broader class of equations. For example, a generic sub-
equation defined by a smoothly varying linear inequality in the fibers of
J2(X) is locally jet-equivalent to constant coefficients.

The notion of jet-equivalence can be further substantially broadened
by using the affine automorphism group. This is the fiberwise extension
of the linear automorphisms by the full group of translations in the fibers
J2
x(X).

Theorem 13.1′. Theorem 13.1 holds for subequations which are locally
affinely jet-equivalent to riemannian G-subequations.

This allows one to treat inhomogeneous equations with variable right
hand side. For example, one can establish existence and uniqueness of
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solutions to the Dirichlet problem for the Calabi-Yau–type equation

(1.4)

(
1

i
∂∂u+ ω

)n

= euf(x)ωn,

or the same equation with eu replaced by any non-decreasing positive
function F (u). Here the results hold on any almost complex hermitian
manifold (see Section 19). One also gets existence and uniqueness results
for equations of the type

σ1(Hess u) ≥ 0, . . . , σk(Hess u) ≥ 0 and

σk(Hess u) = f(x)

where f > 0. This is also true for equations such as

λq(Hess u) = f(x)

for any smooth function f . Examples are given in Section 18.

Note. The notion of jet-equivalence is a quite weak relation. A jet-
equivalence of subequations Φ : F → F ′ does not induce a correspon-
dence between F -subharmonic functions and F ′-subharmonic functions.
In fact, for a C2-function u, Φ(J2u) is almost never the 2-jet of a func-
tion.

Comparison Results. This paper contains a number of other possibly
quite useful existence and uniqueness results which lead to Theorem
13.1 above.

A central concept in this subject is that of comparison for upper
semicontinuous functions, which is treated in Section 8.

Definition. We say that comparison holds for F on X if for all compact
subsets K ⊂ X and functions

u ∈ F (K) and v ∈ F̃ (K),

the Zero Maximum Principle holds for u+ v on K, that is,

(ZMP) u+ v ≤ 0 on ∂K ⇒ u+ v ≤ 0 on K.

If comparison holds for F on X, then one easily deduces the unique-
ness of solutions to the Dirichlet problem for F -harmonic functions on
every compact subdomain.

Obviously, comparison for small compact sets K does not imply that
comparison holds for arbitrary compact sets. However, this is true
for a weakened form of comparison involving a notion of strictly F -
subharmonic functions.

Consider a subequation F on a riemannian manifold X. For each
constant c > 0 we define F c ⊂ F to be the subequation whose fiber at
x is

F c
x ≡ {J ∈ Fx : dist(J,∼ F ) ≥ c}
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where “dist” denotes distance in the fiber Jx(X). We define an upper
semicontinuous function u on X to be strictly F -subharmonic if for each
point x ∈ X there is a neighborhood B of x and a c > 0 such that u is
F c-subharmonic on B.

Definition. We say that weak comparison holds for F on X if for all
compact subsets K ⊂ X and functions

u ∈ F c(K) (some c > 0) and v ∈ F̃ (K),

the Zero Maximum Principle holds for u+v onK. We say that local weak
comparison holds for F on X if every x ∈ X has some neighborhood on
which weak comparison holds.

It is proved (see Theorem 8.3) that:

Local weak comparison implies weak comparison.

Then in Section 10 we prove that:

Local weak comparison holds for any subequation which is
locally affinely jet-equivalent to a constant coefficient subequation.

Taken together we have that global weak comparison holds for all such
subequations. This constitutes a very broad class. In particular, we
have that

Weak comparison holds for riemannian G-subequations
on a riemannian manifold.

We then establish, under certain global conditions, that weak com-
parison implies comparison.

Theorem 9.7. Suppose F is a subequation for which local weak compar-
ison holds. Suppose there exists a C2 strictly MF -subharmonic function
on X where MF is a monotonicity cone for F . Then comparison holds
for F on X.

Combined with our notions of boundary convexity, we prove the fol-
lowing.

Theorem 13.3. Suppose comparison holds for a subequation F on X.

Then for every domain Ω ⊂⊂ X whose boundary is strictly F - and F̃ -
convex, both existence and uniqueness hold for the Dirichlet problem.

In Section 9 we introduce the concept of strict approximation for
F on X and show that if X admits a C2 strictly MF -subharmonic
function (where MF is a monotonicity cone for F as above), then strict
approximation holds for F on X. Furthermore, we show that weak
comparison plus strict approximation implies comparison.
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Boundary Convexity. An important part of this paper is the formu-
lation and study of the notion of boundary convexity for a general fully
nonlinear second-order equation. This concept is presented in Section
11. It strictly generalizes the boundary convexity defined in [CNS] and
in [HL4].

In the Grassmann examples this boundary convexity condition is par-
ticularly transparent and geometric. Suppose F (Gl ) is a purely second-
order equation, defined as in Example E by a subset Gl ⊂ G(p, TX)
of the Grassmann bundle. Then boundary convexity for a domain Ω
becomes the requirement that the second fundamental form II∂Ω of ∂Ω
satisfy

(1.5) trξII∂Ω ≥ 0

for all ξ ∈ Gl such that ξ ⊂ T (∂Ω). (When there are no Gl -planes in
Tx∂Ω, Gl -convexity automatically holds at x.) This convexity automat-
ically implies convexity for the dual subequation.

Domains with convex boundaries in the riemannian sense are F -
convex for any purely second-order subequation.

For subequations which do not involve the dependent variable, F -
convexity is defined in terms of the asymptotic interior of F . This is
an open, point-wise conical set consisting of rays with conical neighbor-
hoods which eventually lie in F . For general subequations, we freeze
the dependent variable to be a constant λ (e.g. replace ∆u ≥ eu with
∆u ≥ eλ) and use the associated asymptotic interiors to define convex-
ity.

We then derive a simple, geometric criterion for F -convexity in terms
of the second fundamental form of ∂Ω. In almost all interesting cases,
the boundary convexity condition is straightforward to compute.

Some subequations F have the property that every boundary is F -
convex. These include the p-Laplace-Beltrami subequation,

‖∇u‖2∆u+ (p− 2)(∇u)t(Hess u)(∇u) ≥ 0

for 1 < p <∞, and the infinite Laplace-Beltrami subequation

(∇u)t(Hess u)(∇u) ≥ 0.

For the general minimal surface subequation (1+ ‖∇u‖2)∆u− (∇u)t
(Hess u)(∇u) ≥ 0, strict boundary convexity is equivalent to strictly
positive mean curvature with respect to the interior normal. For the
Calabi-Yau equation, and also for the homogeneous complex Monge-
Ampère equation, F -convexity of the boundary is simply standard pseudo-
convexity (in the hermitian almost-complex case).

Finally we note that for a general F all sufficiently small balls in any
local coordinate system are strictly F -convex under the mild condition
that F contains critical jets (see Proposition 11.9).
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Existence without Comparison. Certain methods taken from com-
plex analysis, which go back to Bremermann/Perron and then Walsh
([B], [W]), enable us to prove existence in the constant coefficient set-
ting with no assumptions about a monotonicity cone. This includes
many cases where uniqueness does not hold. More generally, we prove
in Section 12 that if X = K/G is a riemannian homogeneous space and
F ⊂ J2(X) is a K-invariant subequation, then existence holds for all

continuous boundary data on any domain which is strictly F - and F̃ -
convex. This applies in particular to the p-Laplace-Beltrami and infinite
Laplace-Beltrami subequations mentioned above, where all domains are

strictly F - and F̃ -convex.
The euclidean version of this result is Theorem 12.7. It establishes

existence for any constant coefficient subequation F on all strictly F and

F̃-convex domains (when they exist). We follow this with an Example
12.8 of a second-order equation where uniqueness does in fact fail.

Further Examples. There are many geometrically interesting sube-
quations which are covered by the results above. We examine a few
more examples here. We start with a general observation.

Inhomogeneous Equations. The methods above apply to any sub-
equation which is locally affinely jet-equivalent to a constant coefficient
equation. This greatly extends the equations that one can treat. For
example, suppose that F is a riemannian G-subequation with a mono-
tonicity cone M on a manifold X, and let J be any smooth section of
the 2-jet bundle J2(X). Then FJ ≡ F + J (fiber-wise translation) is

also a subequation having the same asymptotic interior
−→
FJ =

−→
F and

also having M as a monotonicity cone.
As a simple but interesting example, suppose that F is one of the

branches of the homogeneous Monge-Ampère equation (in the real,
complex, or quaternionic case), and choose Jx = f(x)I where f is
an arbitrary smooth function on X (and I is the identity section of
Sym2(T ∗X)). Then one can treat the inhomogeneous equation

λk(Hess u) = f(x)

under the same conditions that one can treat the homogeneous equation
λk(Hess u) = 0. For the principal branch P, PC etc., and f ≡ −1, this
yields functions which are quasi-convex, quasi-psh, etc. The higher
branches with variable f are more interesting.

Similar remarks hold for any purely second-order subequation, such
as those below. However, many other interesting subequations arise
from local affine jet-equivalence (cf. Example 6.15).

Example F. (Almost calibrated manifolds). An important class
of Grassmann structures (discussed in Example E) are given by calibra-
tions. A constant coefficient calibration is a p-form φ with the property
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that φ(ξ) ≤ 1 for all ξ ∈ G(p,Rn). The associated set is

Gl (φ) ≡ {ξ ∈ G(p,Rn) : φ(ξ) = 1}
and the associated group is

G(φ) = {g ∈ On : g∗(φ) = φ}.
Any riemannian manifold with a topological G(φ)-structure will carry

a global p-form φ̃, called an almost calibration, which is of type φ at
every point but is not necessarily closed under exterior differentiation.
Some of the subequations already referred to can be defined in this way.
For example, almost complex hermitian geometry arises from φ = ω,
the standard (not necessarily closed) Kähler form. There are, however,
many others. Several interesting examples are given next.

Example G. (Almost Hyperkahler Manifolds). Here we con-
sider a 4n-dimensional manifold X equipped with a subbundle Q ⊂
Hom (TX, TX) generated by global sections I, J,K satisfying the stan-
dard quaternion relations: I2 = J2 = K2 = −1, and IJ = K, etc.
and equipped with a compatible riemannian metric g. The topological
structure group is Spn. This is a special case of Example D above so
the quaternionic plurisubharmonic functions are defined, and when the
Hyperkahler structure is integrable, they coincide with the ones used by
Alesker and Verbitsky to study the Quaternionic Monge-Ampere equa-
tion in the principal-branch case. (See [A1,2], [AV])

However, a manifold with a topological Spn-structure carries other

almost calibrations such as the generalized Cayley calibration Ω̃ =
1
2

{
ω2
I + ω2

J − ω2
K

}
introduced in [BH].

Example H. (Almost Calabi-Yau Manifolds). This is an almost
complex hermitian manifold with a global section of Λn,0(X) whose real
part Φ has comass ≡ 1. This is equivalent to having topological struc-
ture group SUn. In addition to the structures discussed in Case 2, these
manifolds carry functions associated with the Special Lagrangian cali-
bration Φ. The Φ-submanifolds are called Special Lagrangian submani-
folds and the Φ-subharmonic functions are said to be Special Lagrangian
subharmonic.

Example I. (Almost G2 manifolds). Let ImO = R7 denote the
imaginary Cayley numbers. This space is acted on by the group G2 of
automorphisms of O which preserves the 3-form

ϕ(x, y, z) = 〈x · y, z〉
called the associative calibration. Any 7-dimensional manifold X with a
topological G2-structure carries an associated riemannian metric and a
global (non-closed) calibration ϕ. There also exists a degree 4 calibra-
tion ψ = ∗ϕ on X. One then has ϕ and ψ subharmonic and harmonic
functions on X and one can consider the Dirichlet problem on bounded
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domains. We note that these structures exist in abundance. In [LM,
page 348] it is shown that for any 7-manifold X

X has a topological G2 structure ⇐⇒ X is spin.

Example J. (Almost Spin7 manifolds). On the Cayley numbers
O = R8 there is a 4-form of comass 1 defined by

Φ(x, y, z, w) = 〈(x · y) · z − x · (y · z), w〉
and preserved by the subgoup Spin7 ⊂ SO8 (cf. [HL1], [H], [LM]).
This determines a non-closed calibration Φ on any 8-manifold X with a
topological Spin7-structure. In [LM, page 349] it is shown that for any
8-manifold X

X has a topological Spin7 structure ⇐⇒
X is spin and p1(X)2 − 4p2(X) + 8χ(X) = 0

for an appropriate choice of orientation on X. Here pk(X) is the kth
Pontrjagin class and χ(X) denotes the Euler class of X.

Example K. (Lagrangian subharmonicity). Suppose (X,J) is an
almost complex hermitian manifold of real dimension 2n. Then, as
mentioned in Example E, there is a natural Grassmann structure LAG ⊂
G(n, TX) consisting of the Lagrangian n-planes. This gives rise to the
Lagrangian subequation defined in terms of the riemannian hessian by
the condition that

tr
{
Hessu

∣∣
ξ

}
≥ 0 for all ξ ∈ LAG.

Interestingly, there is a beautiful polynomial operator which vanishes on
the Lagrangian harmonic functions, and so the Dirichlet problem here
can be considered to be for this operator. Furthermore, just as in the
Monge-Ampère case, this operator has many branches, each of which is
another Un-invariant subequation on the manifold. This follows from
G̊arding’s theory of hyperbolic polynomials ([G], [HL4], [HL7]).

Example L. (Equations involving the dependent variable but
independent of the gradient). Many purely second-order equations
can be enhanced to ones which involve the dependent variable u and
our theory continues to apply. For example, consider the On-universal
subequation F defined by requiring

f(u, λq(A)) ≥ 0

where f(x, y) is non-increasing in x and non-decreasing in y. As a special
case, consider

λq(A)− ϕ(u) ≥ 0

where ϕ is monotone non-decreasing. The dual subequation F̃ is given
by

λn−q+1 + ϕ(−u) ≥ 0.
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If ϕ(0) = 0, then the required convexity of the boundary is that

min{λq(II∂Ω), λn−q(II∂Ω)} > 0.

Another interesting On-universal subequation is

F ≡ {(r, p,A) : A ≥ 0 and detA− er ≥ 0}

which is discussed in Remark 12.9. Its dual equation is

F̃ = {(r, p,A) : −A 6< 0 or − |detA|+ e−r ≥ 0}.

G̊arding hyperbolic polynomials. G̊arding’s beautiful theory of hy-
perbolic polynomials [G], when applied to homogeneous polynomials M
on Sym2(Rn), fits perfectly into this paper. It unifies and generalizes
many of our constructions. We give here a brief sketch of how this
works, and refer to [HL7] for full details.

By definition a homogeneous polynomialM of degreem on Sym2(Rn)
is hyperbolic with respect to the identity I if for all A ∈ Sym2(Rn) the
polynomial s 7→ M(sI + A) has exactly m real roots. The negatives of
these roots are called theM -eigenvalues of A. It is useful to order these
eigenvalues

λM1 (A) ≤ · · · ≤ λMm (A)

and normalize so thatM(I) = 1. Then the polynomial factors asM(sI+
A) =

∏m
k=1

(
s+ λMk (A)

)
. Using the ordered eigenvalues, we can define

branches

FM
k ≡ {A ∈ Sym2(Rn) : λMk (A) ≥ 0}

which satisfy FM
1 ⊂ FM

2 ⊂ · · · . The principal branch FM ≡ FM
1 is the

connected component of {M 6= 0} containing I. G̊arding proves that:

(1) The principal branch FM is a convex cone.

(2) FM
k + FM ⊂ FM

k for all k.

Under the positivity assumption FM + P ⊂ FM , we then have that:

Each FM
k is a constant coefficient subequation

for which FM is a monotonicity cone.

When M = det, we get the branches of the Monge-Ampère equation
(Example B). However, this applies to many other interesting cases
(such as Examples C, D, and K). Furthermore, for each subset Λ ⊂ Rn

as in 14.1 below, one can construct a subequation FM,Λ using the λMk
(see [HL7]).

If the polynomialM is invariant under a subgroupG ⊂ On, then these
subequations carry over to any manifold with a topological G-structure.
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Parabolic Subequations. The methods and results of this paper carry
over effectively to parabolic equations. SupposeX is a riemannian man-
ifold equipped with a riemannian G-subequation F for G ⊂ On. We
assume F is induced from a universal model

F = {J ∈ J2 : f(J) ≥ 0}
where f : J2(X) → R is G-invariant, P- and N -monotone, and Lips-
chitz in the reduced variables (p,A). Then on the riemannian product
X × R we have the associated G-universal parabolic subequation H
defined by

f(J)− p0 ≥ 0

where p0 denotes the ut component of the 2-jet of u. The H-harmonic
functions are solutions of the equation ut = f(u,Du,D2u). Interesting
examples which can be treated include:

(i) f = trA, the standard heat equation ut = ∆u for the Laplace-
Beltrami operator on X.

(ii) f = λq(A), the qth ordered eigenvalue of A. This is the natural
parabolic equation associated to the qth branch of the Monge-
Ampère equation.

(iii) f = trA+ k
|p|2+ǫ2

ptAp for k ≥ −1 and ǫ > 0. When X = Rn and

k = −1, the solutions u(x, t) of the associated parabolic equation,
in the limit as ǫ → 0, have the property that the associated level
sets Σt ≡ {x ∈ Rn : u(x, t) = 0} are evolving by mean curvature
flow. (See the classical papers of Evans-Spruck [ES∗] and Chen-
Giga-Goto [CGG∗], and the very nice accounts in [E] and [Gi].)

(iv) f = tr{arctanA}. When X = Rn, solutions u(x, t) have the
property that the graphs of the gradients Γt ≡ {(x, y) ∈ Rn ×
Rn = Cn : y = Dxu(x, t)} are Lagrangian submanifolds which
evolve the initial data by mean curvature flow. (See [CCH] and
references therein.)

Straightforward application of the techniques in this paper shows
that:

Comparison holds for all riemannian G-subequations H on X ×R.

By standard techniques one can prove more. Consider a compact
subset K ⊂ {t ≤ T} ⊂ X × R and let KT ≡ K ∩ {t = T} denote
the terminal time slice of K. Let ∂0K ≡ ∂K − IntKT denote the
parabolic boundary of K. Here IntK denotes the relative interior in
{t = T} ⊂ X ×R. We say that parabolic comparison holds for H if for
all such K (and T )

u+ v ≤ p on ∂0K ⇒ u+ v ≤ p on IntK

for all u ∈ H(K) and v ∈ H̃(K). Then one has that:
Parabolic comparison holds for all riemannian
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G-subequations H on X ×R.

Under further mild assumptions on f which are satisfied in the ex-
amples above, one also has existence results. Consider a domain Ω ⊂ X

whose boundary is strictly F - and F̃ -convex. Set K = Ω× [0, T ]. Then

For each ϕ ∈ C(∂0K) there exists a unique function u ∈ C(K)
such that u

∣∣
IntK

is H-harmonic and u
∣∣
∂0K

= ϕ.

One also obtains corresponding long-time existence results. Details will
appear elsewhere.

A brief outline of the paper. Section 2 along with Appendices
A and B provide a self-contained treatment of general F -subharmonic
functions and their properties. Section 3 introduces the concept of a
subequation and discusses the natural duality among subequations. Rie-
mannian manifolds are considered in Section 4 where it is shown that
there is a natural splitting of the 2-jet bundle induced by the riemannian
hessian. This splitting gives many geometric examples of subequations
which are purely second-order. In Section 5 “universal” subequations
are constructed. Suppose F is a constant coefficient (euclidean) sub-
equation with compact invariance group G ⊂ On, andX is a riemannian
manifold with a topological G-structure. Then it is shown that the eu-
clidean model F induces a riemannian G-subequation F on X with the
property that F is locally jet-equivalent to F. Section 6 discusses auto-
morphisms of the 2-jet bundle and the general notion of jet-equivalence
for subequations. In Section 7 a notion of strictly F -subharmonic func-
tions is introduced for upper semicontinuous functions. In Section 8 a
weak form of comparison is defined using this notion of strictness. It
is shown that if weak comparison holds locally, then it is true glob-
ally. Section 9 addresses the question of when weak comparison implies
comparison. We first note that this holds whenever approximation by
strictly F -subharmonic functions is possible. The main discussion con-
cerns how this “strict approximation” can be deduced from a form of
monotonicity. This yields many geometric examples. In Section 10 we
prove that weak comparison holds for any subequation which is locally
(weakly) jet-equivalent to a constant coefficient subequation, and in
particular for the riemannian G-subequations constructed in Section 5.
The proof relies on the Theorem on Sums stated in Appendix C. In

Section 11 we introduce the notion of the asymptotic interior
−→
F of a

reduced subequation F . This leads to the notion of strict F -boundary-
convexity which implies the existence of barriers essential to existence
proofs. For riemannian G-subequations the existence of these barriers
is actually equivalent to strict F -convexity. Section 12 addresses the
existence question for the Dirichlet problem. Assuming strict boundary

convexity for both the subequation F and its dual F̃ , several existence
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theorems are proved. Section 13 compiles and summarizes the results
established for the Dirichlet problem.

The remaining sections are devoted to examples. Section 14 examines
On-universal subequations. These are subequations that make sense on
any riemannian manifold. Particular attention is paid to subequations
which are purely second-order. Analogous results in the complex and
quaternionic case are examined in Section 15. Section 16 discusses the
subequations F (Gl ) geometrically defined by a closed subset Gl of the
Grassmannian. Section 17 applies the theory to equations defined in
terms of the principal curvatures of the graph of u. Section 18 ap-
plies affine jet-equivalence to give results for inhomogeneous and other
equations. Section 19 treats the Calabi-Yau–type equations on almost
complex hermitian manifolds.

We note that in [AFS] and [PZ], standard viscosity theory has been
retrofitted to riemannian manifolds by using the distance function, par-
allel translation, Jacobi fields, etc,. In our approach this machinery is
not necessary. We get by with the standard viscosity techniques (cf.
[CIL], [C]).

Acknowledgments. H.B. Lawson was partially supported by the N.S.F.

2. F-Subharmonic Functions

Let X be a smooth n-dimensional manifold. Denote by J2(X) → X
the bundle of 2-jets whose fiber at a point x is the quotient

J2
x(X) = C∞

x /C
∞
x,3,

where C∞
x denotes the germs of smooth functions at x and C∞

x,3 the
subspace of germs which vanish to order three at x. Given a smooth
function u on X, let J2

xu ∈ J2
x(X) denote its 2-jet at x, and note that

J2u is a smooth section of the bundle J2(X).
The bundle on 1-jets J1(X) is defined similarly and has a natural

splitting J1(X) = R⊕ T ∗X with J1
xu = (u(x), (du)x). There is a short

exact sequence of bundles

(2.1) 0 → Sym2(T ∗X) → J2(X) → J1(X) → 0.

Here the space Sym2(T ∗
xX) of symmetric bilinear forms on TxX is em-

bedded as the space of 2-jets of functions with critical value zero at the
point x, i.e.,

Sym2(T ∗
xX) ∼= {J2

xu : u(x) = 0, (du)x = 0}.
Note that if u is such a function, and V,W are vector fields near x,

then (Hessxu)(V,W ) = V ·W · u =W · V · u+ [V,W ] · u =W · V · u =
(Hessxu)(W,V ) is a well-defined symmetric form on TxX. However, for
functions u with (du)x 6= 0, there is no natural definition of Hessxu,
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i.e., the sequence (2.1) has no natural splitting. Choices of splittings
correspond to definitions of a hessian, and there is a canonical one for
each riemannian metric, as we shall see in Section 4.

At a minimum point x for a smooth function u, we have (du)x = 0
(so that Hessxu ∈ Sym2(T ∗X) is well defined), and Hessxu ≥ 0. The
isomorphism
(2.2)
{H ∈ Sym2(T ∗X) : H ≥ 0} ∼= {J2

xu : u ≥ 0 near x and u(x) = 0}
defines a cone bundle

P ⊂ Sym2(T ∗X) ⊂ J2(X)

with Px defined by (2.2).
Given an arbitrary subset F ⊂ J2(X), a function u ∈ C2(X) will be

called F -subharmonic if its 2-jet satisfies

J2
xu ∈ Fx for all x ∈ X,

and strictly F -subharmonic if its 2-jet satisfies

J2
xu ∈ (IntF )x for all x ∈ X.

These notions are of limited interest for general sets F .

Definition 2.1. A subset F ⊂ J2(X) satisfies the positivity condi-
tion if

(P) F + P ⊆ F.

A subset F ⊂ J2(X) which satisfies (P) will be called P-monotone.

Note that condition (P) implies that

IntF + P ⊂ IntF.

Monotonicity is a key concept in this paper. For arbitrary subsets
M,F ⊂ J2(X) we say that F is M-monotone or that M is a mon-
tonicity set for F if

F +M ⊂ F.

It is necessary and quite useful to extend the definition of F -subharmonic
to non-differentiable functions u. Let USC(X) denote the set of [−∞,∞)-
valued, upper semicontinuous functions on X.

Definition 2.2. A function u ∈ USC(X) is said to be F -subharmonic
if for each x ∈ X and each function ϕ which is C2 near x, one has that

(2.3)

{
u− ϕ ≤ 0 near x0 and

= 0 at x0

}
⇒ J2

xϕ ∈ Fx.

We denote by F (X) the set of all such functions.

Note that if u ∈ C2(X), then

(2.4) u ∈ F (X) ⇒ J2
xu ∈ Fx ∀ x ∈ X
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since the test function ϕmay be chosen equal to u in (2.3). The converse
is not true for general subsets F . However, we have the following.

Proposition 2.3. Suppose F satisfies the positivity condition (P) and
u ∈ C2(X). Then

(2.5) J2
xu ∈ Fx for all x ∈ X ⇒ u ∈ F (X).

Proof. Assume J2
x0
u ∈ Fx0 and ϕ is a C2-function such that
{
u− ϕ ≤ 0 near x0

= 0 at x0

}
.

Since (ϕ− u)(x0) = 0, d(ϕ− u)x0 = 0, and ϕ− u ≥ 0 near x0, we have
J2
x0
(ϕ − u) ∈ Px0 by definition. Now the positivity condition implies

that J2
x0
ϕ ∈ J2

x0
u+ Px0 ⊂ Fx0 . This proves that u ∈ F (X).

The proof above shows that we must assume F satisfies the positiv-
ity condition. Otherwise the definition of F -subharmonicity would not
extend the natural one for smooth functions.

There is an equivalent definition of F -subharmonic functions which is
quite useful. We record it here and prove it in Appendix A (Proposition
A.1 (IV)).

Lemma 2.4. Fix u ∈ USC(X), and suppose that F ⊂ J2(X) is closed.
Then u /∈ F (X) if and only if there exists a point x0 ∈ X, local coordi-
nates x at x0, α > 0, and a quadratic function

q(x) = r + 〈p, x− x0〉+ 1
2〈A(x− x0), x− x0〉

with J2
x0
(q) /∈ Fx0 so that

u(x)− q(x) ≤ −α|x− x0|2 near x0 and

= 0 at x0

Remark 2.5. (a). The hypothesis that F is closed in Lemma 2.4 can
be substantially weakened. It suffices to assume only that the fibers of
F under the map J2(X) → J1(X) are closed. In fact, Proposition A.1
is proved under this weaker hypothesis.

(b). The positivity condition is rarely used in proofs. This is because
without it F (X) is empty and the results are trivial. For example, the
positivity condition is not required in the following theorem. (F need
only be closed.)

It is remarkable, at this level of generality, that F -subharmonic func-
tions share many of the important properties of classical subharmonic
functions.

Theorem 2.6. Elementary Properties of F-Subharmonic Func-
tions. Let F be an arbitrary closed subset of J2(X).
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(A) (Maximum Property) If u, v ∈ F (X), then w = max{u, v} ∈
F (X).

(B) (Coherence Property) If u ∈ F (X) is twice differentiable at x ∈ X,
then J2

xu ∈ Fx.
(C) (Decreasing Sequence Property) If {uj} is a decreasing (uj ≥

uj+1) sequence of functions with all uj ∈ F (X), then the limit
u = limj→∞ uj ∈ F (X).

(D) (Uniform Limit Property) Suppose {uj} ⊂ F (X) is a sequence
which converges to u uniformly on compact subsets to X; then
u ∈ F (X).

(E) (Families Locally Bounded Above) Suppose F ⊂ F (X) is a family
of functions which are locally uniformly bounded above. Then the
upper semicontinuous regularization v∗ of the upper envelope

v(x) = sup
f∈F

f(x)

belongs to F (X).

Proof. See Appendix B.

Cautionary Note 2.7. Despite the elementary proofs of the proper-
ties in Theorem 2.6, illustrating how well adapted Definition 2.2 is to
nonlinear theory, there are difficulties with the linear theory. If F1 and
F2 are P-monotone subsets, then the (fiberwise) sum F1 + F2 is also
obviously a P-monotone subset. However, the property

u ∈ F1(X), v ∈ F2(X) ⇒ u+ v ∈ (F1 + F2)(X)

is difficult to deduce from Definition 2.2 even in the basic case where
F1 = F2 = F1+F2 is the linear “subequation” on Rn defined by ∆u ≥ 0.

3. Dirichlet Duality and the Notion of a Subequation

The following concept is the lynchpin for the Dirichlet problem.

Definition 3.1. Given a subset F ⊂ J2(X), the Dirichlet dual F̃ of
F is defined by

(3.1) F̃ = ∼ (−IntF ) = −(∼ IntF ).

Note the obvious properties:

(1) F1 ⊂ F2 ⇒ F̃2 ⊂ F̃1.

(2) F̃1 ∩ F2 = F̃1 ∪ F̃2

(3)
˜̃
F = F if and only if F = IntF .

Thus to have a true duality with
˜̃
F = F we must assume that

F = IntF . For simplicity we also want to compute the dual fiberwise
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in the jet bundle. Consequently we will assume the following three
topological conditions on F , combined as condition (T).

(T) (i) F = IntF, (ii) Fx = IntFx, (iii) IntFx = (IntF )x

(where IntFx denotes interior with respect to the fiber). It is then easy to

see that the fiber of F̃ at x is given by −(∼ IntFx) =∼ (−IntFx) = (̃Fx),

so there is no ambiguity in the notation F̃x.

Definition 3.2. A subset F ⊂ J2(X) satisfying (T) will be called a
T-subset.

Lemma 3.3. Suppose F ⊂ J2(X) has the property that F = IntF .
Then

(a) F satisfies condition (P) ⇐⇒ F̃ satisfies condition (P).

(b) F satisfies condition (T) ⇐⇒ F̃ satisfies condition (T).

Proof. Assertion (b) is straightforward. To prove (a) we use another
property.

Lemma 3.4. Suppose that F is a T -subset. Then

(4) F̃x + J = F̃x − J for all J ∈ J2
x(X).

Proof. Fix J ∈ J2
x(X). Then J ′ ∈ F̃x + J ⇐⇒ −J ′ /∈ Int(Fx + J) =

IntFx+J ⇐⇒ −(J ′+J) /∈ IntFx ⇐⇒ J ′+J ∈ F̃x ⇐⇒ J ′ ∈ F̃x−J .

Corollary 3.5. Suppose F is a T -subset of J2(X) andM is an arbitrary
subset of J2(X). Then

F is M -monotone ⇐⇒ F̃ is M -monotone.

Proof. Fix J ∈ Mx and assume Fx + J ⊂ Fx, or equivalently Fx ⊂
Fx−J . By (1) this implies that F̃x − J ⊂ F̃x. By (4) we have F̃x − J =

F̃x + J so that F̃x + J ⊂ F̃x. The converse follows from (3) and (b).

Proof of (a). Take M = P in Corollary 3.5.

Given a closed subset F ⊂ J2(X), note that

(3.2) ∂F = F ∩ (∼ IntF ) = F ∩ (−F̃ ).

Definition 3.6. A function u is said to be F -harmonic if

u ∈ F (X) and − u ∈ F̃ (X).

Thus, under condition (T) a function u ∈ C2(X) is F -harmonic if
and only if

(3.3) J2
xu ∈ ∂Fx for all x ∈ X.
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Note also that an F -harmonic function is automatically continuous
(since both u and −u are upper semicontinuous). The topological con-

dition (T) implies that
˜̃
F = F and hence that

u is F -harmonic ⇐⇒ −u is F̃ -harmonic.

The focal point of this paper is the Dirichlet problem, abbreviated
(DP). Given a compact subset K ⊂ X and a function ϕ ∈ C(∂K), a
function u ∈ C(K) is a solution to (DP) if

(1) u is F -harmonic on IntK and (2) u
∣∣
∂K

= ϕ.

Example 3.7. Consider the one variable first-order subset F , defined

by |p| ≤ 2|x|, and its dual F̃ defined by |p| ≥ 2|x|. Of the conditions
(P) and (T), the subset F satisfies all but condition (ii) of (T) and its

dual F̃ satisfies all but (iii) of (T). Both functions x2 − 1 and −x2 + 1
are F -harmonic and have the same boundary values on [−1, 1]. Thus
without the full condition (T), solutions of the Dirichlet problem may
not be unique.

Subequations. Uniqueness for the Dirichlet problem requires a third
hypothesis in addition to (P) and (T). Consider the elementary canon-
ical splitting

J2(X) = R⊕ J2
red(X)

whereR denotes the 2-jets of (locally) constant functions and J2
red(X)x ≡

{J2
xu : u(x) = 0} is the space of reduced 2-jets at x, with the short exact

sequence of bundles

0 → Sym2(T ∗X) → J2
red(X) → T ∗X −→ 0

which is the same as (2.1) except for the trivial factor R.
We define

N ⊂ R ⊂ J2(X)

to have fibers Nx = R− = {c ∈ R : c ≤ 0}.
Definition 3.8. A subset F ⊂ J2(X) satisfies the negativity condi-
tion if

(N) F +N ⊆ F.

A subset F ⊂ J2(X) satisfying (N) will also be called N -monotone.

Now we can add to Lemma 3.2 a third conclusion (assuming F satis-
fies (T)):

(c) F satisfies condition (N) ⇐⇒ F̃ satisfies condition (N)

by taking M = N in Corollary 3.5.
In this paper the main results concerning existence and uniqueness

for the Dirichlet problem assume that F satisfies (P), (T), and (N). This
is formalized as follows.
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Definition 3.9. By a subequation F on a manifold X we mean a
subset

F ⊂ J2(X)

which satisfies the three conditions (P), (T), and (N).

Proposition 3.10.

F is a subequation ⇐⇒ F̃ is a subequation

Proof. See (a), (b), and (c) above.

Our investigation of the (DP) for a subequation involves two addi-
tional subequations, which are constructed from the original and have
two additional properties. One is the cone property:

J ∈ F ⇒ tJ ∈ F for all t > 0,

i.e., Each fiber Fx is a cone with vertex at the origin. Stronger yet is
the convex cone property:

Each fiber Fx is a convex cone with vertex at the origin.

Definition 3.11. A closed subset F ⊂ J2(X) having properties (P),
(T), (N), and the cone property will be called a cone subequation. If
it also has the convex cone property it will be called a convex cone
subequation.

Euclidean (or Constant Coefficient) Subequations. The 2-jet bun-
dle on X = Rn is canonically trivialized by

(3.4) J2
xu =

(
u(x),Dxu,D

2
xu
)

where

Dxu =
(

∂u
∂x1

(x), . . . , ∂u
∂xn

(x)
)

and D2
xu =

((
∂2u

∂xi∂xj
(x)
))

are the first and second derivatives of u at x. That is, for any open
subset X ⊂ Rn there is a canonical trivialization

(3.4’) J2(X) ∼= X ×R×Rn × Sym2(Rn)

with fiber
J2 = R×Rn × Sym2(Rn).

The standard notation J = (r, p,A) ∈ J2 will be used for the coordinates
on J2.

Definition 3.12. Any subset F ⊂ J2 which satisfies (P), (N), and
for which F = IntF determines a euclidean or constant coefficient
subequation on any open subset X ⊂ Rn by setting F = X × F ⊂
J2(X) (with constant fiber Fx ≡ F). For simplicity we shall often denote
this subequation simply by F (with the euclidean coordinates implied),
and refer to the F -subharmonic functions as F-subharmonic functions.

Note that our assumptions on F imply the full condition (T) for F .
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In this paper our first concern will be to start with an arbitrary eu-
clidean subequation F and then to describe those riemannian manifolds
which have a variable coefficient subequation F modeled on F. We will
give an explicit construction of this F . When, for example, F is the eu-
clidean Laplace subequation, this analogue can be constructed on any
riemannian manifold X and is simply the Laplace-Beltrami subequation
on X.

The general linear group GLn(R) has a natural action on J2 given
by

(3.5) h(r, p,A) = (r, hp, hAht) for h ∈ GLn(R).

Each euclidean subequation F ⊂ J has a compact invariance group

(3.6) G(F) = {h ∈ On : h(F) = F}
which will be instrumental in determining which riemannian manifolds
can be fitted with an analogous or companion subequation F . When
G(F) = On, no restriction on X will be required. However, even the
extreme case G(F) = {I} is not vacuous and will prove interesting.

4. The Riemannian Hessian—A Canonical Splitting of J2(X)

4.1. The riemannian hessian. Assume now that X is equipped with
a riemannian metric. Then, using the riemannian connection, any C2-
function u on X has a canonically defined riemannian hessian at every
point given as follows. Fix x ∈ X and vector fields V and W defined
near x. Define

(4.1) (Hessxu)(V,W ) ≡ V ·W · u− (∇VW ) · u
where the RHS is evaluated at x. Since (∇VW ) · u − (∇WV ) · u =
[V,W ] · u, we see that (Hessxu)(V,W ) is symmetric and depends only
on the values of V and W at the point x, i.e., Hess u is a section of
Sym2(T ∗X). Of course, at a critical point the riemannian hessian always
agrees with the hessian defined at the beginning of Section 2.

The subequations we shall consider will be obtained by putting con-
straints on the riemannian 2-jet

(4.2) (u, du,Hess u)

which combines the riemannian hessian with the exterior derivative.

4.2. The canonical splitting. The riemannian hessian provides a
bundle isomorphism

(4.3) J2(X)
∼=−−→ R⊕ T ∗X ⊕ Sym2(T ∗X)

by mapping

J2
xu 7→ (u(x), (du)x,Hessxu)
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for a C2-function u at x. Note that the right hand side depends only
on the 2-jet of u at x, and hence this is a well defined bundle map. It
provides a canonical splitting of the short exact sequence (2.1).

4.3. Local trivializations associated to framings. The picture
can be trivialized by a choice of local framing e = (e1, . . . , en) of the
tangent bundle TX on some neighborhood U . (This framing is not
required to be orthonormal.) The canonical splitting (4.3) determines
a trivialization of J2(U) given at x ∈ U by

(4.4a) Φe : J2
x(U) −→ R⊕Rn ⊕ Sym2(Rn) defined by

(4.4b) Φe
(
J2
xu
)

≡ (u, e(u), (Hess u)(e, e))

where e(u) = (e1u, . . . , enu) and (Hess u)(e, e) is the n× n-matrix with
entries (Hessu) (ei, ej).

Lemma 4.1 (Change of Frame). Under a change of frame e′ = he
(that is, e′i =

∑
j hijej) where h is a smooth GLn(R)-valued function,

one has

(4.5)
(
u, e′(u), (Hess u)(e′, e′)

)
=
(
u, he(u), h(Hess u)(e, e)ht

)
.

Said differently, for a 2-jet J ∈ J2
xX,

(4.6) Φe(J) = (r, p,A) ⇒ Φe′(J) = (r, hp, hAht).

The elementary proof is omitted.

The rest of this section presents some general constructions of sube-
quations using the riemannian hessian. For the sake of continuity the
reader may want to pass directly to Section 5.

Some Classes of Subequations
Based on the Riemannian Hessian

4.4. Pure Second-Order Subequations. These are the subequa-
tions which involve only the riemannian hessian and not the value of
the function or its gradient. That is, with respect to the riemannian
splitting (4.3), a subequation of the form

F = R⊕ T ∗X ⊕ F ′

for a closed subset F ′ ⊂ Sym2(T ∗X) will be called pure (riemannian-)
second-order. In other words, J2

xu ∈ F if and only if Hessxu ∈ F ′.
We now observe that a closed subset F ′ ⊂ Sym2(T ∗X) determines

a pure second-order subequation if and only if positivity F ′ + P ⊂ F ′

holds and

(4.7) IntF ′
x = (IntF ′)x for all x,

where IntF ′
x denotes interior with respect to the fiber J2

x(X). Condition
(N) is obvious. It is clear that condition (P) for F is equivalent to
F ′ + P ⊂ F ′, which implies that IntF ′ + IntP ⊂ IntF ′, because any
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A ∈ IntF ′
x can be extended to a local section of IntF ′. Since A + ǫI

approximates any A ∈ F ′, it follows that condition (P) implies

(i) F = IntF and (ii) Fx = IntFx.

Thus with (4.7) condition (T) holds.

4.5. The complex and quaternionic hessians. Let X be a rie-
mannian manifold equipped with a pointwise orthogonal almost complex
structure J : TX → TX. On this hermitian almost complex manifold,
one can define the complex hessian of a C2-function u by

(4.8) HessCu ≡ 1
2 {Hessu− J(Hess u)J} .

This is a hermitian symmetric quadratic form on the complex tangent
spaces of X. In particular its eigenvalues are real with even multiplicity
and its eigenspaces are J-invariant. (See Section 15 for more details.)

Analogously, suppose X is equipped with a hermitian almost quater-
nionic structure, i.e., orthogonal bundle maps I, J,K : TX → TX sat-
isfying the standard quaternionic identities: I2 = J2 = K2 = −1, IJ =
−JI = K, etc. Then one can define the quaternionic hessian
(4.9)

HessHu ≡ 1
4 {Hess u− I(Hess u)I − J(Hess u)J −K(Hessu)K} .

A number of basic subequations are defined in terms of these hessians.
Primary among them are the following.

4.6. The Monge-Ampère subequations. A classical subequation,
which is defined on any riemannian manifold X and will play an impor-
tant role in this paper, is the (real) Monge-Ampère subequation

(4.10) P ≡ PR ≡ {J2(u) : Hess u ≥ 0}.
WhenX carries an almost complex or quaternionic structure as above,

we also have the associated complex Monge-Ampère subequation

(4.11) PC ≡ {J2(u) : HessCu ≥ 0}
and quaternionic Monge-Ampère subequation

(4.12) PH ≡ {J2(u) : HessHu ≥ 0}.
One easily checks that these sets are in fact subequations and have the
convex cone property. They provide important examples of monotonic-
ity cones for many other subequations and play an important role in the
study of those subequations (see Section 8). In addition, they typify an
important general construction which we now present.

4.7. Geometrically defined subequations—Grassmann struc-
tures. Consider the Grassmann bundle π : G(p, TX) → X with fibres
G(p, TxX), the set of unoriented p-planes ξ through the origin in TxX.
If X is a riemannian manifold, then we can identify ξ ∈ G(p, TxX) with
orthogonal projection Pξ ∈ Sym2(T ∗

xX) onto ξ.
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Given A ∈ Sym2(T ∗
xX) and ξ ∈ G(p, TxX), the ξ-trace of A is de-

fined by

(4.13) trξA = 〈A,Pξ〉
using the natural inner product on Sym2(T ∗

xX). Equivalently,

(4.14) trξA = trace
(
A
∣∣
ξ

)

where A
∣∣
ξ
∈ Sym2(ξ) is the restriction of A to ξ.

Note that for any closed subset Gl x ⊂ G(p, TxX), the set

F (Gl x) = {A ∈ Sym2(T ∗
xX) : trξA ≥ 0 ∀ ξ ∈ Gl x}

is a closed convex cone with vertex at the origin in Sym2(T ∗
xX). More-

over, Fx automatically satisfies positivity since if P ≥ 0, trξP ≥ 0 for
all ξ ∈ G(p, TxX).

Given Gl ⊂ G(p, TX), define F (Gl ) ⊂ Sym2(T ∗X) to be the sub-
set whose fibre at x is F (Gl x). It is left to the reader to verify that:
F (Gl ) is a closed subset if and only if π : Gl → X is a local surjection.
Furthermore, the topological condition (T)(iii), i.e., (4.7), is satisfied in
this case. It now follows from the discussion in 4.4 (Pure Second Order
Subequations) that the following holds.

Proposition 4.2. Given a closed subset Gl ⊂ Sym2(T ∗X) with

π : Gl → X a local surjection, the subset

R⊕ T ∗X ⊕ F (Gl )

is a pure second order convex cone subequation.

The set F (Gl ) is said to be geometrically defined by Gl , and the
F (Gl )-subharmonic functions will be referred to as Gl -plurisubharmonic

functions.

4.8. Gradient independent subequations. On a riemannian man-
ifold X there are the subequations which only involve the riemannian
hessian and the value of the function. That is, with respect to the
riemannian splitting (4.3), a subset of the form

F = T ∗X ⊕ F ′

for a closed subset F ′ ⊂ R⊕Sym2(T ∗X) is said to be gradient-independent.
Note that F ′ ≡ N + P ⊂ R ⊕ Sym2(T ∗X) provides an example of a
gradient-independent subequation. It is also a convex cone subequation.

Note that a closed subset F = T ∗X ⊕ F ′ satisfies (P) and (N) if and
only if

F ′ +N + P ⊂ F ′.

The topological conditions (T)(i) and (T)(ii) then follow from (P) and
(N) by using (r,A) = limǫ→0(r−ǫ,A+ǫI). This proves that F ⊂ J2(X)
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is a gradient-independent subequation if and only if F is of the form
F = T ∗X ⊕ F ′ and F ′ satisfies:

F ′ is closed, F ′ +N +P ⊂ F ′, and IntF ′
x = (IntF ′)x for all x.

Said differently, a closed subset F ′ ⊂ R ⊕ Sym2(T ∗X) with IntF ′
x =

(IntF ′)x for all x is a (gradient-independent) subequation if and only if
F ′ is (N + P)-monotone.

4.9. Subequations of Reduced Type. These are the subequations
F ⊂ J2(X) that do not involve the dependent variable r in the fibers
of J2(X). That is, F = R × F ′ where F ′ is a subset of the reduced
2-jet bundle J2

red(X), and we are using the natural bundle splitting
J2(X) = R× J2

red(X).

5. Universal Subequations on Manifolds with Topological
G-Structure

In this section we construct the subequations of principal interest in
the paper. The construction starts with a “universal model,” which
is a euclidean (constant coefficient) subequation F ⊂ J2. The idea is
to find subequations F ⊂ J2(X) which are locally modeled on F. To
accomplish this, we recall from (3.6) the compact invariance group

(5.1) G = G(F) ≡ {g ∈ On : g(F) = F}
where On acts on J2 by

(5.2) g(r, p,A) ≡ (r, gp, gAgt).

The main point is that whenever a riemannian manifold X is given
a topological G-structure, we can construct the desired subequation by
using this structure and the canonical splitting of J2(X) in the previous
section. Subequations F constructed from an F in this way will be called
riemannian G-subequations.

5.1. Riemannian G-manifolds. Recall that for a fixed subgroup

G ⊆ On,

a topological G-structure on X is a family of C∞ local trivializations
of TX over open sets in a covering {Uα} of X whose transition functions
have values in G, i.e., the transition function from the α-trivialization
to the β-trivialization is just a map gβ,α : Uα ∩ Uβ −→ G. A local
trivialization on Uα is simply a choice of framing eα1 , . . . , e

α
n for TX over

Uα, and one can think of these trivializations as a family of admissible
framings or admissible G-framings for TX. At each point x ∈ X, the
structure determines a family of admissible G-frames, in the subset of
all tangent frames, on which G acts simply and transitively. This gives
a principal G-bundle in the bundle of all tangent frames.
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Definition 5.1. A riemannian G-manifold is a riemannian manifold
equipped with a topological G-structure.

Important Notes. (1) A topological G-structure on X (for G ⊂ On)
determines a second riemannian metric on X by declaring the admis-
sible G frames to be orthonormal. These two metrics coincide if the
admissible frame fields are orthonormal in the original metric, and this
will typically be the case. However, the results will hold without this
assumption.

(2) Furthermore, one can as well consider topological G-structures on
X where G is a subgroup of the full invariance group

G̃ = G̃(F) ≡ {g ∈ GLn : g(F) = F}.
The arguments presented here carry through in this more general case,
as the reader can easily verify. This has genuine applicability since
there are interesting subequations which are invariant under groups like
the conformal group, or GLn(R) or GLn(C). In these cases one can
do local calculations with more general frame fields. However, no new
subequations arise from this generalization, and so our exposition is
restricted to compact G.

Important Point: The compact invariance group G is not the rie-
mannian holonomy group (for either metric). No integrability assump-
tion is made. Topological G-structures are soft and easily constructed.

5.2. Riemannian G-subequations. The idea now is the follow-
ing. Suppose X is a riemannian G-manifold with admissible framings
{(Uα, e

α)}. Then each framing eα determines a local trivialization of
J2(Uα) given by (4.4b). Now if G lies in the invariance group of a eu-
clidean subequation F, the local subequations Uα ×F will be preserved
under changes of framing and thereby determine a global subequation
F on X. We formalize this in the following lemma.

Lemma 5.2. Suppose F is a euclidean subequation with compact in-
variance group G and X is a riemannian G-manifold. For x ∈ X, the
condition on a 2-jet J ≡ J2

xu that

(5.3) Φe(J) ≡ (u(x), ex(u), (Hessxu)(e, e)) ∈ F

is independent of the choice of G-frame e at x. Hence there is a well
defined subset F ⊂ J2(X) given by

(5.4) J ∈ Fx ⇔ Φe (J) (x) ∈ F.

Proof. Note that (5.4) is independent of the G-frame e, since if e′ = he

is another admissible G-frame on a neighborhood of x, then Φe′(J) =
h (Φe(J)) ∈ h(F) = F by (5.1), (5.2), and the change of frame formula
(4.6). Hence, F is well defined by (5.4).

It is easy to see that
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F satisfies (P) ⇐⇒ F satisfies (P),
F satisfies (N) ⇐⇒ F satisfies (N), and
F satisfies (T) ⇐⇒ F satisfies (T),

so that F is a subequation on X.

Definition 5.3. The subequation F defined by (5.4) above will be
called the riemannian G-subequation on X with euclidean model F.
For simplicity the F -subharmonic functions on X will be called F-
subharmonic.

Note that F is G-invariant if and only if F̃ is G-invariant. It is also
easy to show:

Lemma 5.4. The subequation F̃ is the riemannian G-subequation on

X with euclidean model F̃.

The extreme cases are where G = {I} or G = On. Both are interest-
ing.

Example G = {I}. Here F can be any euclidean subequation. A
riemannian {I}-manifold is one which is equipped with n vector fields
which are linearly independent at every point. For example, such fields
can be found on any orientable riemannian 3-manifold. They also exist
on any Lie group with a metric invariant under left translations by
elements of the group. Thus, for an arbitrary euclidean subequation F
there are plenty of riemannian manifolds which support a riemannian
subequation F modeled on F.

Example G = On. Given a euclidean subequation F which is invariant
under the full orthogonal group, there exists a companion riemannian
On-subequation F on every riemannian manifold.

Example G = Un. If X is an almost complex manifold with a compat-
ible (hermitian) metric, then one can consider F = R×R2n×PC where
PC ⊂ Sym2(Rn) are the matrices whose hermitian symmetric part is
≥ 0 (cf. (4.8), (4.11), and Section 15). This leads to solving the Dirich-
let problem for the homogeneous complex Monge-Ampere equation on
domains in X.

Example G = Sp1 · Spn or Spn. There are analogues of the preceding
example on any almost quaternionic or almost hyperkahler manifold
with a compatible metric.

5.3. Riemannian G-subequations in local coordinates. Finally
we derive the key formula needed to prove a comparison result in Section
10. Recall that the riemannian hessian has a simple expression in terms
of local coordinates x = (x1, . . . , xn) on X, namely,

(5.5) (Hessu)

(
∂

∂xi
,
∂

∂xj

)
=

∂2u

∂xi∂xj
−

n∑

k=1

Γk
ij(x)

∂u

∂xk
,
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where Γk
ij denote the Christoffel Symbols of the metric connection de-

fined by the relation ∇ ∂
∂xi

∂
∂xj

=
∑n

k=1 Γ
k
ij

∂
∂xk

. The equation (5.5) can

be written more succinctly as

(5.5’) (Hess u)

(
∂

∂x
,
∂

∂x

)
= D2u− Γx(Du)

where Du and D2u are the first and second derivatives of u in the
coordinates x and

Γx : Rn → Sym2(Rn)

denotes the linear Christoffel map defined above.

Proposition 5.5. Let F be a riemannian G-subequation on X with eu-
clidean model F on a riemannian G-manifold X. Suppose x = (x1, . . . , xn)
is a local coordinate system on U and that e1, . . . , en is an admissible
G-frame on U . Let h denote the GLn-valued function on U defined by
e = h ∂

∂x
. Then a C2-function u is F -subharmonic on U if and only if

(5.6)
(
u, hDu, h

(
D2u− Γ(Du)

)
ht
)

∈ F on U.

Remark 5.6. Fix J ∈ J2
x with x ∈ U . Then by using the standard

isomorphism J2
x

∼= R × Rn × Sym2(Rn) induced by the coordinate
system x = (x1, . . . , xn) to represent J as J = (r, p,A) = (u,Du,D2u),
condition (5.4) can be restated as saying that

J ∈ Fx ⇐⇒ (r, hp, h(A − Γ(p))ht) ∈ F.

Proof. By (5.3) we must show that

(5.7) (u, e(u), (Hess u)(e.e)) =
(
u, hDu, h(D2u− Γ(Du))ht

)
.

The fact that e(u) = hDu, i.e., that ei(u) =
∑n

j=1 hij
∂u
∂xj

, is obvious.

For the proof that the matrix (Hess u)(ei, ej) equals h(D
2u−Γ(Du))ht,

note that

(Hess u)(ei, ej) = (Hess u)

(
n∑

k=1

hik
∂

∂xk
,

n∑

ℓ=1

hjℓ
∂

∂xℓ

)

=

n∑

k,ℓ

hik(Hess u)

(
∂

∂xk
,
∂

∂xℓ

)
hjℓ

and then apply (5.5).
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6. Jet-Equivalence of Subequations

In this section we introduce the important notion of jet-equivalence
for subequations. This concept enables us to solve the Dirichlet prob-
lem for a very broad spectrum of subequations on manifolds—namely
those which are locally jet-equivalent to a euclidean one. They include
the subequations considered so far. In fact, Proposition 5.5 just states
that F is jet-equivalent to F. However, jet-equivalence goes far beyond
this realm, to quite general variable coefficient inhomogeneous equa-
tions. These include the basic Calabi-Yau equation (see Example 6.15
below). It overcomes an important obstacle in understanding, on an
almost complex manifold, the intrinsic homogeneous complex Monge-
Ampère subequation (i.e., intrinsic plurisubharmonic functions) where
no hermitian metric is used (cf. [HL8]).

1

6.1. Automorphisms. To define jet-equivalence, we first need to
understand the bundle automorphisms of J2(X).

Definition 6.1. (a) An automorphism of the reduced jet bundle
J2
red(X) is a bundle isomorphism Φ : J2

red(X) → J2
red(X) such that with

respect to the short exact sequence

(6.1) 0 −→ Sym2(T ∗X) −→ J2
red(X) −→ T ∗X −→ 0

we have

(6.2) Φ(Sym2(T ∗X)) = Sym2(T ∗X)

so there is an induced bundle automorphism

(6.3) g = gΦ : T ∗X −→ T ∗X

and we further require that there exist a second bundle automorphism

(6.3’) h = hΦ : T ∗X −→ T ∗X

such that on Sym2(T ∗X), Φ has the form Φ(A) = hAht, i.e.,

(6.4) Φ(A)(v,w) = A(htv, htw) for v,w ∈ TX.

(b) An automorphism of the full jet bundle J2(X) = R⊕ J2
red(X) is

a bundle isomorphism Φ : J2(X) → J2(X) which is the direct sum of
the identity on R and an automorphism of J2

red(X).

Lemma 6.2. The automorphisms of J2(X) form a group. They are
the sections of the bundle of groups whose fiber at x ∈ X is the group
of automorphisms of J2

x(X) defined by (6.2), (6.3), and (6.4) above.

1Examples show that even on C
n there are hermitian metrics for which not all

the classical psh-functions are hermitian psh (cf. [HL8]).
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Proof. We first show that the composition of two automorphisms of
J2(X) is again an automorphism. Suppose Ψ and Φ are bundle auto-
morphisms. Then Ψ◦Φ clearly satisfies condition (6.2) and one sees eas-
ily that gΨ◦Φ = gΨ ◦gΦ. Finally, (Ψ ◦Φ)(A) = Ψ(Φ(A)) = hΨΦ(A)h

t
Ψ =

hΨhΦAh
t
Φh

t
Ψ = (hΨ ◦hΦ)A(hΨ ◦hΦ)t = hΨ◦ΦAh

t
Ψ◦Φ. The proof that the

inverse of an automorphism is an automorphism is similar.

Proposition 6.3. With respect to any splitting

J2(X) = R⊕ T ∗X ⊕ Sym2(T ∗X)

of the short exact sequence (6.1), a bundle automorphism has the form

(6.5) Φ(r, p,A) = (r, gp, hAht + L(p))

where g, h : T ∗X → T ∗X are bundle isomorphisms and L is a smooth
section of the bundle Hom (T ∗X,Sym2(T ∗X)).

Proof. With respect to a splitting J2(X) ∼= T ∗X ⊕ Sym2(T ∗X), any
bundle isomorphism is of the form Φ(p,A) = (gp+M(A),H(A)+L(p)).
The requirement that Φ leaves Sym2(T ∗X) invariant implies that the
point-wise linear map M is zero, and the property that Φ(0, A) =
(0, hAht) implies that H(A) = hAht.

Example 6.4. Given a local coordinate system (x1, . . . , xn) on an open
set U ⊂ X, the canonical trivialization

(6.6) J2(U) = U ×R×Rn × Sym2(Rn)

is determined by J2
xu = (u,Du,D2u) evaluated at x, where Du =

(u1, . . . , un) and D2u = ((uij)) (cf. Remark 2.8). With respect to
this splitting, every automorphism is of the form

(6.7) Φ(u,Du,D2u) = (u, gDu, h ·D2u · ht + L(Du))

where gx, hx ∈ GLn and Lx : Rn → Sym2(Rn) is linear for each point
x ∈ U .

Example 6.5. The trivial 2-jet bundle on Rn has fiber

J2 = R×Rn × Sym2(Rn)

with automorphism group

Aut(J2) ≡ GLn ×GLn ×Hom (Rn,Sym2(Rn))

where the action is given by

Φ(g,h,L)(r, p,A) = (r, gp, hAht + L(p)).

Note that the group law is

(ḡ, h̄, L̄) · (g, h, L) = (ḡg, h̄Lh̄t + L̄ ◦ g).

Remark 6.6. Automorphisms at a point, with g = h, appear natu-
rally when one considers the action of diffeomorphisms. Namely, if ϕ
is a diffeomorphism fixing a point x0, then in local coordinates (as in



DIRICHLET DUALITY AND THE NONLINEAR DIRICHLET PROBLEM 429

Example 6.4 above) the right action on J2
x0
, induced by the pull-back

ϕ∗ on 2-jets, is given by (6.7), where gx0 = hx0 is the transpose on the

Jacobian matrix ((∂ϕ
i

∂xj
)) and Lx0(Du) =

∑n
k=1 uk

∂2ϕk

∂xi∂xj
(x0).

Cautionary Note 1. Despite the remark above, automorphisms of the
2-jet bundle J2(X), even those with g = h, have little to do with global
diffeomorphisms or global changes of coordinates. In fact, an automor-
phism radically restructures J2(X) in that the image of an integrable
section (one obtained by taking J2u for a fixed smooth function u on
X) is essentially never integrable.

6.2. Jet-Equivalence of subequations.

Definition 6.7. Two subequations F,F ′ ⊂ J2(X) are said to be jet-
equivalent if there exists an automorphism Φ : J2(X) → J2(X) with
Φ(F ) = F ′.

Cautionary Note 2. A jet-equivalence Φ : F → F ′ does not take
F -subharmonic functions to F ′-subharmonic functions. In fact, as men-
tioned above, for u ∈ C2, Φ(J2u) is almost never the 2-jet of a function.
It happens if and only if Φ(J2u) = J2u.

Nevertheless, it is easily checked that if Φ is an automorphism and F
is a subequation, then Φ(F ) is also a subequation.

Definition 6.8. We say that a subequation F ⊂ J2(X) is locally
jet-equivalent to a euclidean subequation if each point x has a co-
ordinate neighborhood U such that F

∣∣
U
is jet-equivalent to a euclidean

(constant coefficient) subequation U × F in those coordinates. Such a
coordinate chart will be called distinguished.

Using Example 6.4, we see that Proposition 5.5 can be restated as
follows. Let F be a euclidean subequation with compact invariance
group G = G(F) (see (3.6)).

Proposition 6.9. Suppose that F is a riemannian G-subequation with
euclidean model F on a riemannian G-manifold X. Then F is locally
jet-equivalent to F on X.

Lemma 6.10. Suppose X is connected and F ⊂ J2(X) is locally jet-
equivalent to a euclidean subequation on X. Then there is a euclidean
subequation F ⊂ J2, unique up to automorphisms, such that F is jet-
equivalent to U × F on every distinguished coordinate chart.

Proof. In the overlap of any two distinguished charts U1 ∩ U2, choose
a point x. Then the local automorphisms Φ1 and Φ2, restricted to Fx,
determine an automorphism taking F1 to F2. Thus the local euclidean
subequations on these charts are all equivalent under automorphisms,
and they can be made equal by applying the appropriate constant au-
tomorphism on each chart.
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6.3. Affine automorphisms and affine jet-equivalence. The auto-
morphism group Aut(J2) can be naturally extended by the translations
of J2. Recall that the group of affine transformations of a vector space V
is the product Aff(V ) = GL(V )×V acting on V by (g, v)(u) = g(v)+u.
The group law is (g, v) · (h,w) = (gh, v + g(w)). There is a short exact
sequence 0 → V → Aff(V )

π−−→ GL(V ) → {I}.
Definition 6.11. The affine automorphism group is the inverse
image

Autaff(J
2) = π−1(Aut(J2))

of Aut(J2) ⊂ GL(J2) under the surjective group homomorphism
π : Aff(J2) → GL(J2).

Note that any affine automorphism Φ̃ can be written in the form

(6.8) Φ̃ = Φ + J

where Φ is a (linear) automorphism and J is a section of the bundle
J2(X).

Using the affine automorphism group, we expand our notion of jet-
equivalence in an important way. Let F and F ′ be subequations on a
manifold X.

Definition 6.12. Two subequations F,F ′ ⊂ J2(X) are said to be
affinely jet-equivalent if there exists an affine automorphism

Φ̃ : J2(X) → J2(X) with Φ̃(F ) = F ′.

Definition 6.13. We say that a subequation F ⊂ J2(X) is locally
affinely jet-equivalent to a euclidean subequation if each point x
has distinguished coordinate neighborhoods U such that F

∣∣
U
is affinely

jet-equivalent to a euclidean (constant coefficient) subequation U × F
in those distinguished coordinates.

Lemma 6.14. Suppose F is a subequation on a coordinate chart U with
a given affine jet-equivalence to a euclidean subequation U × F. Write

the affine automorphism Φ̃ as in (6.8) above so that

J ∈ Fx ⇐⇒ Φx(J) + Jx ∈ F

for x ∈ U . Then

J ∈ F̃x ⇐⇒ Φx(J)− Jx ∈ F̃.

Proof. J ∈ F̃x ⇐⇒ −J /∈ IntFx ⇐⇒ Φx(−J) + Jx /∈ IntF ⇐⇒
−{Φx(J) − Jx} /∈ IntF ⇐⇒ Φx(J) − Jx ∈ F̃. (Recall that IntFx

denotes interior with respect to the fiber.)

Example 6.15. (The Calabi-Yau Equation). Let X be an almost
complex hermitian manifold (a riemannian Un-manifold), and consider
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the subequation F ⊂ J2(X) determined by the euclidean subequation:

AC + I ≥ 0 and detC{AC + I} ≥ 1,

where AC ≡ 1
2(A − JAJ) is the hermitian symmetric part of A. Let

f > 0 be a smooth positive function on X and write f = h−2n. Consider
the global affine jet-equivalence of J2(X) given by
(6.9)

Φ̃(r, p,A) = (r, p, (hI)A(hI)t + (h2 − 1)I) = (r, p, h2A+ (h2 − 1)I)

and set Ff = Φ̃−1(F ). Then

(r, p,A) ∈ Ff ⇐⇒ h2(AC + I) ≥ 0 and detC{h2(AC + I)} ≥ 1

⇐⇒ (AC + I) ≥ 0 and detC{(AC + I)} ≥ f

so the Ff -harmonic functions are functions u with HessCu + I ≥ 0
(quasi-plurisubharmonic) and detC{HessCu+I} = f . If X is actually a
complex manifold of dimension n with Kähler form ω, this last equation
can be written in the more familiar form(

1

i
∂∂u+ ω

)n

= fωn.

One can similarly treat the equation

(
1

i
∂∂u+ ω

)n

= eufωn,

or the same equation with eu replaced by any non-decreasing positive
function F (u).

There are many further examples illustrating the flexibility and power
of using local affine jet-equivalence. We present some of them in Sec-
tion 18.

7. Strictly F-Subharmonic Functions

Consider a second-order subequation F ⊂ J2(X) on a manifold X.
For the more general case of subsets which are just P-monotone, see
Remark 7.8. Strict subharmonicity for C2-functions is unambiguous.

Definition 7.1. A function u ∈ C2(X) is said to be strictly F -
subharmonic on X if

(7.1) J2
xu ∈ IntF for all x ∈ X.

There is more than one way to extend this notion to functions u ∈ F (X)
which are not C2. The choice made in Definition 7.4 will be shown to
be useful in Section 8 and in discussing the Dirichlet problem.

Fix a metric on the vector bundle J2(X). (If X is given a riemannian
metric, this metric together with the canonical splitting (4.3) determines
a metric on J2(X).)
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Definition 7.2. For each c > 0 we define the c-strict subset F c ⊂ F
by

(7.2) F c
x = {J ∈ Fx : dist(J, ∼Fx) ≥ c}

where dist denotes distance in the fiber J2
x(X).

Lemma 7.3. Suppose that F is a subequation. Then the set F c is closed
and is both P- and N -monotone. However, F c does not necessarily
satisfy (T).

Proof. Note that for J ∈ J2
x(X),

(7.3) J ∈ F c
x ⇐⇒ Bx(J, c) ⊆ Fx

where Bx(J, c) ⊂ J2
x(X) is the closed metric ball of radius c about the

point J in the fiber. Suppose now that Ji ∈ F c
xi

is a sequence converging
to J at x. Then Bxi

(Ji, c) ⊆ Fxi
for all i, and since F is closed we

conclude that Bx(J, c) ⊆ Fx. Hence F
c is closed.

Suppose now that P ∈ Px. Then by condition (P) for F we see that
Bx(J, c) ⊆ Fx ⇒ Bx(J + P, c) = Bx(J, c) + P ⊆ Fx, and so condition
(P) holds for F c. The proof that F c satisfies condition (N) is the same.

Example. Let K denote the union of the unit disk {|z| ≤ 1} with the
interval [1, 2] on the x-axis in R2. Let Kc = {z ∈ R2 : dist(x,K) ≤ c}.
Define F by requiring p ∈ Kc. Then F c is easily seen to be equal to
K. Now F is a subset which satisfies (P), (N), and (T), whereas F c is
a subset which satisfies (P) and (N) but not (T).

Definition 7.4. A function u on X is strictly F -subharmonic if
for each point x ∈ X there is a neighborhood B of x and c > 0 such
that u is F c-subharmonic on B. Let Fstrict(X) denote the space of such
functions.

For a C2 function it is easy to see that the two definitions of strictly
F -subharmonicity, given in Definitions 7.1 and 7.4, agree (see Remark
7.8). Moreover, it is easy to see that Definition 7.4 is independent of
the choice of metric on the bundle J2(X).

Strictly F -subharmonic functions are stable under smooth perturba-
tions.

Lemma 7.5. (Stability). Suppose u ∈ F c(X) and ψ ∈ C2(X). For
each precompact open subset Y ⊂⊂ X

u+ δψ ∈ F
c
2 (Y ) if δ is sufficiently small.

Proof. By Definition 2.2 it will suffice to show that for all δ > 0 suffi-
ciently small

(7.4) F c
x + δJ2

xψ ⊂ F
c
2
x for all x ∈ Y.
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Choose δ > 0 so that

(7.5) δ‖J2
xψ‖ < c

2 for all x ∈ Y.

Fix J ∈ F c
x with x ∈ Y . By (7.3) we have Bx(J, c) ⊂ Fx. Note then

that Bx(J + δJ2
xψ,

c
2 ) = Bx(J,

c
2) + δJ2

xψ is contained in Bx(J, c) ⊂ Fx

by (7.5). Again using (7.3), this shows that J + δJ2
xψ ∈ F

c
2
x .

Corollary 7.6. Suppose u ∈ Fstrict(X) and ψ ∈ C∞
cpt(X). Then

u+ δψ ∈ Fstrict(X) if δ is sufficiently small .

We shall need the following two properties.

Lemma 7.7.

(i) u, v ∈ Fstrict(X) ⇒ max{u, v} ∈ Fstrict(X).
(ii) If F satisfies the negativity condition (N), then

u ∈ Fstrict(X) and c > 0 ⇒ u− c ∈ Fstrict(X).

The proof is straightforward and omitted.

Remark 7.8. (P-monotone subsets). The results of this section
remain true for P-monotone subsets and for (P + N )-monotone sub-
sets which are not necessarily subequations (i.e., condition (T) may not
be satisfied). This is important in Section 11, on boundary convexity,

where the results are applied to a P-monotone subset
−→
F which is open.

Everything is straightforward except the proof of the assertion

(7.6) ψ ∈ C2(X) ∩ Fstrict(X) ⇒ J2
xψ ∈ IntF for all x ∈ X.

In general, (7.6) cannot be proved by establishing that F c ⊂ IntF . For
example, take X = R and define F by requiring p ≥ 0 if x ≤ 0 and

p ≥ 1 if x > 0. Then the point x = 0, p = 1
2 belongs to F

1
2 but not

IntF .
We prove (7.6) as follows. Fix x0 ∈ X and trivialize J2(X) = U × J2

on a neighborhood U of x0 via a choice of orthonormal frame field. For
such a choice, the fiber metric on J is constant. Now ψ is c-strict for
some c > 0 in a smaller neighborhood U of x0, i.e., B(J2

xψ, c) ⊂ Fx

for x ∈ U . By continuity we have |J2
xψ − J2

x0
ψ| ≤ c

2 on a neighborhood

V of x0, and therefore B(J2
x0
ψ, c2) ⊂ Fx for x ∈ W ≡ U ∩ V . Thus

W ×B(J2
x0
ψ, c2) ⊂ F and in particular J2

x0
ψ ∈ IntF .

The following elementary example shows that J2
xψ ∈ Int(Fx) for x

near x0 (rather than J2
x0
ψ ∈ (IntF )x0 as in (7.1)) is not sufficient to

guarantee that ψ is c-strict near x0. Let F be the one variable sub-
equation defined by {|p| ≤ |x|} ∪ ({0} × [−1, 1]). Take ψ ≡ 0. Then:

1) ψ is not strictly F -subharmonic since J2
0ψ /∈ IntF ,

2) ψ is not c-strict near x = 0 since F c
x = ∅ for 0 < |x| < c, but

3) J2
xψ ∈ Int(Fx) for all x.
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8. Comparison Theory—Local to Global

In this section we begin our analysis of the uniqueness/comparison
question for F -harmonic functions with given boundary values on a
compact subset K of X. Let us set the notation

F (K) ≡
{
u ∈ USC(K) : u

∣∣
IntK

∈ F (IntK)
}
.

Then the comparison principle can be stated as follows:

(8.1)
For all u ∈ F (K) and − w ∈ F̃ (K)

u ≤ w on ∂K ⇒ u ≤ w on K.

However, we prefer to state it in the following form which invokes du-
ality.

Definition 8.1. We say that comparison holds for F on X if for
all compact sets K ⊂ X, whenever

u ∈ F (K) and v ∈ F̃ (K),

the Zero Maximum Principle holds for u+ v on K, that is,

(ZMP) u+ v ≤ 0 on ∂K ⇒ u+ v ≤ 0 on K.

If comparison holds, it is immediate that

Uniqueness for the Dirichlet problem holds, that is:

If two F -harmonic functions agree on ∂K, they must agree on K.

Local comparison does not imply global comparison. However, for a
weakened form of comparison, local does imply global. This is the main
result of this section.

Definition 8.2. We say that weak comparison holds for F on X
if for all compact subsets K ⊂ X, and functions

u ∈ F c(K), v ∈ F̃ (K), c > 0,

the Zero Maximum Principle (ZMP) holds for u+ v on K. We say that
local weak comparison holds for F on X if for all x ∈ X, there
exists a neighborhood U of x such that weak comparison holds for F on
U .

Theorem 8.3. Suppose that F is a subequation on a manifold X. If
local weak comparison holds for F on X, then weak comparison holds
for F on X.

Proof. Suppose weak comparison fails for F on X. Then there exist

c > 0, u ∈ F c(X), v ∈ F̃ (X), and compact K ⊂ X with

u+ v ≤ 0 on ∂K but sup
K

(u+ v) > 0.

Choose a maximum point x0 ∈ IntK and let M = u(x0) + v(x0) > 0
denote the maximum value. Fix local coordinates x on a neighborhood
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of x0 containing U = {x : |x − x0| < ρ}. By choosing ρ sufficiently
small, we can assume that weak comparison holds for F on U .

By the Stability Lemma 7.5, we have u′ = u− δ|x−x0|2 ∈ F
c
2 (U) if δ

is chosen small enough. Now x0 is the unique maximum point for u′+ v
on U , with maximum value M . Choose K0 = {x : |x− x0| ≤ ρ/2} ⊂ U .
Then sup∂K0

(u′ + v) = M ′ < M . Set u′′ = u′ −max{0,M ′}. Then by

condition (N) for F
c
2 (see Lemma 7.3), we have u′′ ∈ F

c
2 (U). Moreover,

sup
∂K0

(u′′ + v) ≤ 0 while u′′(x0) + v(x0) = M −max{0,M ′} > 0.

Thus, weak comparison fails for F on U , contrary to assumption.

Weak comparison can be strengthened as follows. Define

(8.2) Fstrict(K) =
{
u ∈ USC(K) : u

∣∣
IntK

∈ Fstrict(IntK)
}
.

Lemma 8.4. Suppose weak comparison holds for F on X. For all

compact sets K ⊂ X, if u ∈ Fstrict(K) and v ∈ F̃ (K), then u + v
satisfies the (ZMP).

Proof. We assume u+ v ≤ 0 on ∂K. Since u ∈ USC(K), for each δ > 0
the set

Uδ = {x ∈ K : u(x) + v(x) < δ}
is an open neighborhood of ∂K in K. Exhaust IntK by compact sets
Kǫ with IntK =

⋃
ǫ IntKǫ. Then ∂Kǫ ⊂ Uδ for ǫ > 0 small. Now

u− δ + v ≤ 0 on ∂Kǫ. However, u− δ is F c-subharmonic on IntKǫ for
some c > 0. Hence, (WC) for Kǫ states that u− δ+ v ≤ 0 on Kǫ. Thus
u− δ + v ≤ 0 on IntK. Hence u+ v ≤ 0 on K.

9. Strict Approximation and Monotonicity Subequations

In this section we discuss certain global approximation techniques
which can be used to deduce comparison from weak comparison. Con-
sider a general second-order subequation F on a manifold X.

Definition 9.1. We say that strict approximation holds for F on
X if for each compact set K ⊂ X, each function u ∈ F (X) can be
uniformly approximated by functions in Fstrict(K).

When strict approximation is available, it is easy to show that weak
comparison implies comparison.

Theorem 9.2. (Global Comparison). Suppose F is a subequation
on a manifold X. Assume that both local weak comparison and the strict
approximation property hold for F on X. Then comparison holds for F
on X.
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Proof. Suppose u ∈ F (K), v ∈ F̃ (K), and u + v ≤ 0 on ∂K. By
Theorem 8.3 we can assume that weak comparison holds. By strict
approximation, for each ǫ > 0, there exists u ∈ Fstrict(K) with u − ǫ ≤
u ≤ u+ ǫ on K. Now property (N) implies that u− ǫ ∈ Fstrict(K). Note
that u− ǫ+ v ≤ u+ v ≤ 0 on ∂K. Lemma 8.4 states that u− ǫ+ v ≤ 0
on K. This proves that u+ v satisfies the (ZMP).

Example 9.3. (The Eikonal Equation). This subequation F on
Rn is defined by |∇u| ≤ 1. Given u ∈ F(K), set uǫ = (1 − ǫ)u. Then
uǫ ∈ F ǫ(K) because if ϕ is a test function for (1− ǫ)u at x0, then

1
1−ǫ

ϕ

is a test function for u at x0. Thus |∇ϕ(x0)| ≤ 1− ǫ.

In contrast to this example, for the geometric subequations F that
are of primary interest in this paper, the approximations uǫ will be of
the form

(9.1) uǫ = u+ ǫψ 0 < ǫ ≤ ǫ0

where ψ is a C2-function independent of u. The function ψ will be
referred to as an approximator for F .

Suppose M ⊂ J2(X) is a subset such that the fiber-wise sum

(9.2) F +M ⊂ F and ǫM ⊂ M for 0 < ǫ ≤ ǫ0.

If ψ is a C2-function which is strictly M -subharmonic, then ψ is an
approximator for F (see the proof of Theorem 9.5). However, condition
(9.2) implies that at each point x

(9.3) Fx+α1J1+α2J2 ⊂ Fx for all α1 > 0, α2 > 0 and J1, J2 ∈Mx.

Hence we might as well assume that M is a convex cone, but at this
point it is convenient not to assume that M is a subequation, i.e., that
M satisfies (P) and (N). See Remark 9.11.

Definition 9.4. A subset M ⊂ J2(X) will be called a convex mono-
tonicity cone for F if

(1) M is a convex cone with vertex at the origin, and

(2) F +M ⊂ F .

Theorem 9.5. Suppose M is a convex monotonicity cone for F as
above. If there exists ψ ∈ C2(X) which is strictly M -subharmonic, then
strict approximation holds for F on X.

Proof. It will suffice to establish the following.

Assertion 9.6. For each compact subset K ⊂ X, there exists δ > 0
such that

u+ ǫψ ∈ F ǫδ(K) for all u ∈ F (K) and for all ǫ > 0.

To begin, note that u − ϕ has local maximum 0 at a point x if and
only if u + ǫψ − (ϕ + ǫψ) has local maximum 0 at x. Hence we must
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show that under the hypothesis J2
xϕ ∈ Fx we have that J2

x(ϕ + ǫψ) =
J2
xϕ+ ǫJ2

xψ ∈ F ǫδ
x ; in other words, that Fx + ǫJ2

xψ ⊂ F ǫδ
x .

Since ψ ∈ C2(X), J2
xψ is a continuous function of x. Hence {J2

xψ :
x ∈ K} is compact. That ψ is strictly M -subharmonic implies that
{J2

xψ : x ∈ K} is a compact subset of IntM . Take δ = the distance
from {J2

xψ : x ∈ K} to ∼ IntM . Then B(J2
xψ, δ) ⊂ Mx for all x ∈ K

where B denotes the ball in the fiber. Suppose now that J ∈ Fx and
x ∈ K. Then

B(J + ǫJ2
xψ, ǫδ) = J + ǫB(J2

xψ, δ) ⊂ Fx +Mx ⊂ Fx

as desired.

Combining Theorem 9.2 with Theorem 9.5 yields the version of global
comparison that will be used in this paper.

Theorem 9.7. Suppose F is a subequation on a manifold X. Assume
that X supports a C2 function which is strictly M -subharmonic, where
M is a monotonicity cone for F . Then local weak comparison for F
implies global comparison for F on X.

Remark 9.8. (Circular Monotonicity Cones). In a situation where
the C2-function ψ is given, the simplest monotonicity cone to consider is
one whose fiber at each point x is a circular cone C(J) about J ≡ J2

xψ.
If δ = dist(J2

xψ,∼ IntM), as in the above proof, then the circular cone
can be taken to be the cone Cδ(J) on the ball B(J, δ). The cross-section
of this cone Cδ(J) by the hyperplane (through J) perpendicular to J ,
is a ball of radius R in this hyperplane, where, setting γ = 1/R, one
calculates that

δ =
|J |√

1 + γ2|J |2
.

This same cone will be denoted by Cγ(J) when γ is to be emphasized.

Lemma 9.9. Suppose that F is a subequation with Fx 6= ∅ and Fx 6=
J2
x(X), and fix J ∈ J2

x(X). The following are equivalent.

(1) Fx is Cγ(J)-monotone.

(2) The boundary ∂Fx can be graphed over the hyperplane J⊥ with
graphing function f which is γ-Lipschitz, i.e., for J0 ∈ J⊥,

J0 + tJ ∈ Fx ⇐⇒ t ≥ f(J0),

and for all J̄0, J0 ∈ J⊥,

−γ|J0| ≤ f(J̄0 + J0) ≤ γ|J0|.
The elementary proof is left to the reader.

Remark 9.10. Suppose F is a universal model (i.e., a constant coeffi-
cient subequation) which is G-invariant. If F has a convex monotonicity
cone M which is G-invariant, then on a manifold X with topological
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G-structure, the induced subequation F and the induced convex mono-
tonicity cone M satisfy F +M ⊂ F , i.e., M is a convex monotonicity
cone for F on X.

Remark 9.11. The global comparison Theorems 9.2 and 9.7 are useful
even locally. In Section 10 we will prove that weak comparison holds for
any constant coefficient subequation F on Rn. Consequently, if F has
a monotonicity cone M with non-empty interior, then local comparison
holds for F. To prove this, fix a point x0 and pick a point (r, p,A) ∈
IntM above x0. Let ψ denote the quadratic function whose 2-jet at x0
equals (r, p,A). Then ψ is strictly M-subharmonic in a neighborhood
of x0.

Therefore, given a constant coefficient subequation F, the key ques-
tion is:

(9.4) When does F have a monotonicity cone M with interior?

We might as well assume that M = IntM, and (as noted prior to Defi-
nition 9.4) that M is convex.

Now M need not satisfy conditions (P) or (N), i.e., M need not be
a subequation. (For a useful example, let M = C(J) in Remark 9.8.)
However, such anM can always be enlarged toM′ = M+(R−×{0}×P)
which satisfies:

(1) M′ = IntM′ and M′ is convex (as is true of M),
(2) M′ is both N - and P-monotone, i.e., M′ is a subequation,
(3) F+M′ ⊂ F, i.e., M′ is also a monotonicity cone for F .

This proves that the question (9.4) is equivalent to the question:
(9.5)
When does F have a convex conical monotonicity subequation M?

Each such M is a convex cone with interior, andM contains R−×{0}×
P. HenceM can be thought of as a fattening of R−×{0}×P to a convex
set with interior. The bigger M is, the more can be concluded about
F. However, as illustrated by the example M ≡ C(J), (9.4) may not be
easier to answer since M′ cannot be described directly without defining
M = C(J) and then defining M′ as the sum M+ (R− × {0} × P).

In the next subsection we present a few of the basic examples of
monotonicity subequations M on a manifold. They are all based on a
universal euclidean model M satisfying Definition 9.4. We leave it to
the reader to explicitly describe the model M in the examples.

Examples of Strict Approximation Using Monotonicity.

Most of the following examples are purely second-order. We use the
canonical splitting from Section 4.2,

(9.6) J2(X) ∼= R⊕ T ∗X ⊕ Sym2(T ∗X),
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on the riemannian manifold X. They are the subequations F ⊂ J2(X)
which are the pull-backs of subsets F ′ ⊂ Sym2(T ∗X) under the projec-
tion J2(X) → Sym2(T ∗X) induced by (9.6). (See Section 4.4.)

Example 9.12. (The Real Monge-Ampére Monotonicity Sub-
equation). For all pure second-order subsets F the positivity condition
(P) is equivalent to F being P -monotone where

P = R⊕ T ∗X ⊕ P
is the Monge-Ampére subequation discussed in Section 4.6. For a gen-
eral riemannian manifold X, strict P -subharmonicity is the same as
strict convexity.

Theorem 9.13. Suppose X is a riemannian manifold which supports a
strictly convex C2 function. Then strict approximation holds for every
pure second-order subequation F on X.

For example, in Rn the function |x|2 is strictly P -subharmonic. More
generally, if X has sectional curvature ≤ 0, the function δ(x) =
dist(x, x0)

2 is strictly P -convex up to the first cut point of x0. In partic-
ular, if X is complete and simply connected, then δ is globally strictly
P -convex. Of course, on any riemannian manifold X the function δ
is strictly P -subharmonic in a neighborhood of x0 since Hessx0δ = 2I.
Thus strict approximation holds for all pure second-order subequations
in these cases.

Example 9.14. (The Complex Monge-Ampère Monotonicity
Subequation). Suppose now that (X,J) is a hermitian almost complex
manifold and consider the projection

J2(X) → Sym2
C(T

∗X)

given by projecting onto Sym2(T ∗X) and then taking the hermitian
symmetric part (cf. 4.5). A subequation defined by pulling back a
subset of Sym2

C
(T ∗X) will be called a complex hessian subequation.

Each such F is PC-monotone where PC is the complex Monge-Ampère
subequation defined in 4.6.

The C2 functions ψ on X which are strictly PC-subharmonic are just
the classical C-plurisubharmonic functions if X is a complex manifold.
We will use this terminology even if J is not integrable.

Theorem 9.15. Suppose F is a complex hessian subequation on a
hermitian almost complex manifold X. If X supports a strictly C-
plurisubharmonic function of class C2, then strict approximation holds
for F on X.

Example 9.16. (The Quaternionic Monge-Ampère Monotonic-
ity Subequation). We leave it to the reader to formulate the analogous
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result on an almost quaternionic hermitian manifold which supports a
strictly H-plurisubharmonic function.

Note that P ⊂ PC ⊂ PH so the corresponding subharmonic functions
are progressively easier to find.

Example 9.17. (Geometrically Defined Monotonicity Sube-
quations). Suppose MGl is geometrically defined by a subset Gl of
the Grassmann bundle G(p, TX) as in Section 4.7. For example, the
three Monge-Ampère cases over K = R,C, and H are geometrically
defined by taking Gl to be the Grassmannian of K-lines G(1, TX),
GC(1, TX) ⊂ G(2, TX), and GH(1, TX) ⊂ G(4, TX), respectively.
Other important examples are given by taking Gl to be all of G(p, TX),
GC(p, TX), and GH(p, TX) for general p.

Any calibration φ of degree p on a riemannian manifold X determines
the subset

Gl (φ) = {ξ ∈ G(p, TX) : φ(ξ) = 1}
of calibrated p-planes, and hence a convex cone subequation geometri-
cally defined by Gl (φ), as long as π : Gl (φ) → X is a local surjection (see
Prop. 4.2). That is, a C2 function u is Gl (φ)-plurisubharmonic if

trξHessu ≥ 0 for all ξ ∈ Gl (φ).

Theorem 9.18. Suppose Gl is a subset of the Grassmann bundle G(p, TX)
as in Section 4.7. If X supports a C2 strictly Gl -plurisubharmonic func-
tion, then strict approximation holds for any subequation on X which is
MGl monotone.

Of course, one such equation is MGl itself.

Example 9.19. (Gradient Independent Subequations). These
are subsets F ⊂ J2(X) which are the pull-backs of subsets F ′ ⊂ R ⊕
Sym2(T ∗X) under the projection J2(X) → R⊕Sym2(T ∗X) induced by
(9.4). See Section 4.8. All such sets are M−-monotone where

(9.7) M− ≡ R− ⊕ T ∗X ⊕ P
if and only if they satisfy (P) and (N). Hence, gradient independent
subequations are automatically M−-monotone.

More generally, ifM ′ is any one of the pure second-order monotonicity
subequations discussed above, then

M = R− ⊕ T ∗X ⊕M ′

is a gradient independent monotonicity subequation. Each subequation
F which is M monotone must be gradient independent. The same ψ’s
used in the previous examples will work for F . This is because on a
compact subset K, ψ− c is strictly negative for c >> 0. More precisely,
Theorem 9.15 (and its complex and quaternionic versions) continues to
hold for the more general gradient independent subequations.
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10. A Comparison Theorem for G-Universal Subequations

The main result of this section can be stated as follows.

Theorem 10.1. Suppose F is a subequation on a manifold X which
is locally affinely jet-equivalent to a constant coefficient subequation F.
Then weak comparison holds for F on X.

A case of particular interest in this paper is the following. Suppose
X is a riemannian manifold equipped with a topological G-structure,
for a closed subgroup G ⊂ On. Suppose F ⊂ J2 is a euclidean G-
invariant subequation on Rn. Let F ⊂ J2(X) denote a riemannian
G-subequation with model fiber F on X given by Lemma 5.2.

Corollary 10.2. Suppose F is a riemannian G-subequation on X.
Then weak comparison holds for F -subharmonic functions on X.

Proof. On any coordinate chart U with an admissible local framing, F
is jet-equivalent to F (by Proposition 5.5).

Remark. The following proof of local weak comparison uses the The-
orem on Sums, which is discussed in Appendix C. The argument for
equations which are honestly constant coefficient is particularly easy—
see Corollary C.3.

Proof of Theorem 10.1. For clarity, we first present the proof in the
case where F is locally (linearly) jet-equivalent to a constant coefficient
equation as in Definition 6.7.

By Theorem 8.3 we need only prove weak comparison on a chart U
where F is jet-equivalent to F. Suppose weak comparison fails on U .
We will derive a contradiction using the Theorem on Sums. Failure of

comparison means that there exist u ∈ F c(U) and v ∈ F̃ (U) such that
u + v does not satisfy the Zero Maximum Principle on some compact
subset K ⊂ U . Let h(x) and Lx determine the field of automorphisms
taking F to F. Theorem C.1 says that there exist a point x0 ∈ IntK,
a sequence of numbers ǫ ց 0 with associated points zǫ = (xǫ, yǫ) →
(x0, x0), and 2-jets:

αǫ ≡ (xǫ, rǫ, pǫ, Aǫ) ∈ F c
xǫ

and βǫ ≡ (yǫ, sǫ, qǫ, Bǫ) ∈ F̃yǫ

with the following properties:

(10.1) rǫ = u(xǫ), sǫ = v(yǫ), and rǫ + sǫ =Mǫ ց M0 > 0

(10.2) pǫ =
xǫ − yǫ
ǫ

= −qǫ and
|xǫ − yǫ|2

ǫ
−→ 0

(10.3)

(
Aǫ 0
0 Bǫ

)
≤ 3

ǫ

(
I −I
−I I

)
.
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The jet-equivalence of F and F says that

(10.4) α′
ǫ ≡ (r′ǫ, p

′
ǫ, A

′
ǫ) ∈ Fc and β′ǫ ≡ (s′ǫ, q

′
ǫ, B

′
ǫ) ∈ F̃

where

(10.5) r′ǫ = rǫ, p′ǫ = g(xǫ)pǫ, A′
ǫ = h(xǫ)Aǫh(xǫ)

t + Lxǫ(pǫ)

(10.6) s′ǫ = sǫ, q′ǫ = g(yǫ)qǫ, B′
ǫ = h(yǫ)Bǫh(yǫ)

t + Lyǫ(qǫ).

Since α′
ǫ ∈ Fc, we also have that α′′

ǫ ≡ (rǫ −Mǫ, p
′
ǫ, A

′
ǫ + Pǫ) ∈ Fc for

any Pǫ ≥ 0.
By, (10.4) we have −β′ǫ /∈ IntF. Hence

(10.7) 0 < c ≤ dist(α′′
ǫ ,−β′ǫ) = |α′′

ǫ + β′ǫ|.
To complete the proof, we show that α′′

ǫ + β′ǫ converges to zero. The
first component of α′′

ǫ +β
′
ǫ is rǫ−Mǫ+sǫ, which tends to zero by (10.1).

The second component of α′′
ǫ + β′ǫ is

p′ǫ+ q
′
ǫ = g(xǫ)

(xǫ − yǫ)

ǫ
− g(yǫ)

(xǫ − yǫ)

ǫ
=

(
g(xǫ)− g(yǫ)

)
(xǫ − yǫ)

ǫ

which converges to zero as ǫ→ 0 by (10.2).
It remains to find Pǫ ≥ 0 so that the third component of α′′

ǫ + β′ǫ,
namely A′

ǫ + Pǫ +B′
ǫ, converges to zero. This will contradict (10.7).

Multiplying both sides in (10.3) by
(
h(xǫ) 0
0 h(yǫ)

)
on the left and

(
h(xǫ)

t 0
0 h(yǫ)

t

)
on the right

gives
(
h(xǫ)Aǫh(xǫ)

t 0
0 h(yǫ)Bǫh(yǫ)

t

)
≤ 3

ǫ

(
h(xǫ)h(xǫ)

t −h(xǫ)h(yǫ)t
−h(yǫ)h(xǫ)t h(yǫ)h(yǫ)

t

)
.

Restricting these two quadratic forms to diagonal elements (x, x) then
yields

h(xǫ)Aǫh(xǫ)
t + h(yǫ)Bǫh(yǫ)

t

≤ 3

ǫ

[
h(xǫ)(h(xǫ)

t − h(yǫ)
t)− h(yǫ)(h(xǫ)

t − h(yǫ)
t)
]

=
3

ǫ
(h(xǫ)− h(yǫ))(h(xǫ)

t − h(yǫ)
t)

≤ λ

ǫ
|xǫ − yǫ|2 · I for some λ > 0.

Thus there exists Pǫ ∈ P so that

h(xǫ)Aǫh(xǫ)
t + h(yǫ)Bǫh(yǫ)

t + Pǫ =
λ

ǫ
|xǫ − yǫ|2 · I.

It now follows from the definitions in (10.5) and (10.6) that

(10.8) A′
ǫ +B′

ǫ + Pǫ =
λ

ǫ
|xǫ − yǫ|2 · I + Lxǫ(pǫ) + Lyǫ(qǫ).
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However,

|Lxǫ(pǫ) + Lyǫ(qǫ)| =
∣∣∣∣(Lxǫ − Lyǫ)

(
xǫ − yǫ
ǫ

)∣∣∣∣

≤ ‖Lxǫ − Lyǫ‖
|xǫ − yǫ|

ǫ

= O

( |xǫ − yǫ|2
ǫ

)
.

Using (10.2), this shows that

(10.9) A′
ǫ +B′

ǫ + Pǫ
∼= |xǫ − yǫ|2

ǫ
→ 0 as ǫց 0.

This completes the proof in the case of linear jet-equivalence.
Suppose now that our local jet-equivalence is affine and can be written

in the form Φ̃x = Φx+J0(x), where Φ is a linear jet-equivalence as above
(cf. (6.8)). Then the proof above goes through essentially unchanged
except that, in light of Lemma 6.9, we must replace (10.4) with

(10.4’)
α′
ǫ + J0(xǫ) ≡ (r′ǫ, p

′
ǫ, A

′
ǫ) + J0(xǫ) ∈ Fc

and β′ǫ − J0(yǫ) ≡ (s′ǫ, q
′
ǫ, B

′
ǫ)− J0(yǫ) ∈ F̃,

We now observe that J0(xǫ) − J0(yǫ) → 0, and the rest of the proof is
exactly as written above.

Combining Corollary 10.2 with Theorem 9.7 yields comparison for a
wide class of riemannian G-subequations.

Theorem 10.3. Suppose F is a riemannian G-subequation on a mani-
fold X. If X supports a C2 strictly M -subharmonic function, where M
is a monotonicity cone for F , then comparison holds for F on X.

11. Strictly F-Convex Boundaries and Barriers

In this section we introduce the notion of a strictly F -convex bound-
ary for a general subequation F . This notion implies the existence
of barriers, which are crucial for our main results. Strictly F -convex
boundaries have a relatively simple geometric characterization in terms
of the second fundamental form of ∂Ω (see Section 11.4). Thus even for
very general equations, the geometry of the boundary enters explicity
into the study of the Dirichlet problem.

The idea of an F -convex boundary is the following. Start with a gen-
eral subequation F . For each λ ∈ R, there is a reduced subequation
Fλ defined by setting the r-variable equal to λ (e.g., ∆u ≥ eu becomes

∆u ≥ eλ). To each Fλ we associate an asymptotic interior
−→
Fλ. This is an

open, point-wise conical set obtained by taking rays with conical neigh-
borhoods that eventually lie in F . In many examples (such as ∆u ≥ eu)
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the asymptotic interiors
−→
Fλ all agree. Of course this includes the case

where the subequation is independent of r to start with. Furthermore,

in this case, if F is itself a cone, then
−→
F = IntF . In general these as-

ymptotic interiors are simpler than F , and as examples will show, the
process of computing them is often quite straightforward.

Now the boundary of a domain ∂Ω is called locally
−→
Fλ-convex if it

has a local defining function which is strictly
−→
Fλ-subharmonic, and it

is said to be locally F -convex if it is locally
−→
Fλ-convex for all λ. The

main point of these definitions is that
−→
Fλ-convexity at a point x implies

the existence of a “λ-barrier” for F at x, and these barriers are exactly
what is needed for existence of solutions to the Dirichlet problem.

One might ask about the simpler concept where one just takes the
asymptotic interior of F directly. This can be done, but for many im-
portant equations involving the dependent variable (e.g. the Calabi-
Yau–type equations in Example 6.15), this näıve F -convexity rules out
all boundaries, whereas the refined one gives just the right condition
(see Section 19). Moreover, if F is independent of the r-variable and
has constant coefficients, one can show that the existence of barriers is
actually equivalent to our notion of boundary convexity.

We note that for constant coefficient, pure second-order subequations
on Rn, convexity and the existence of barriers were analyzed in [HL4].

We also note that under a mild hypothesis on F , the boundaries of
small enough balls in any coordinate system are strictly F -convex (see
Proposition 11.9 below).

11.1. Asymptotics. Consider the canonical decomposition J2(X) =
R ⊕ J2

red(X) with fiber coordinates J ≡ (r, J0), and refer to a sub-
equation of the form R ⊕ F with F ⊂ J2

red(X) as a subequation of
reduced type / independent of the r variable (cf. Section 4.9). These
subequations must be handled first.

Our first step is to replace F by an (asymptotically) smaller open set−→
F which is a cone (i.e., each fiber is a cone with vertex the origin).

Definition 11.1. Suppose that F ⊂ J2
red(X) is a subequation inde-

pendent of the r-variable. The asymptotic interior
−→
F of F is the set

of all J ∈ J2
red(X) for which there exists a neighborhood N (J) in (the

total space of) J2
red(X) and a number t0 > 0 such that

(11.1) t · N (J) ⊂ F for all t ≥ t0.

Note that:

(11.2) If F is a cone, then
−→
F = IntF,

but otherwise
−→
F is smaller than F asymptotically, and may be empty.

Proposition 11.2. The asymptotic interior
−→
F is an open cone in

J2
red(X) which satisfies condition (P).



DIRICHLET DUALITY AND THE NONLINEAR DIRICHLET PROBLEM 445

Proof. Obviously
−→
F is open and is a cone (i.e., t

−→
F =

−→
F for all t > 0).

To prove (P), suppose J ∈ −→
F and Px0 ∈ Px0 ⊂ J2

x0
(X). Extend Px0

to a smooth section P of P near x0. Note that the fiber-wise sum
N (J) + P is a neighborhood N (J + Px0) of J + Px0 . (The fiber at x of
the sum is defined to be empty if N (J)x is empty.) Finally note that
tN (J +Px0)x = tN (J)x+ tPx ⊂ F if t ≥ t0, since tN (J)x ⊂ F if t ≥ t0.

Lemma 11.3. Suppose F ⊂ J2
red(X) is a reduced subequation. If F is

defined by a G-invariant universal model F as in Lemma 5.2, then the

asymptotic interior
−→
F of F is the bundle of open cones induced by the

universal model
−→
F via (5.3), where

−→
F is the asymptotic interior of F.

More generally, jet-equivalence preserves asymptotic interiors.

Proof. Exercise.

Definition 11.4. A C2-function u with J2
xu ∈ −→

F for all x will be called

strictly
−→
F subharmonic.

This is the notion required for boundary convexity and barriers for
the Dirichlet problem. In particular, the question of when the closure

of
−→
F is a subequation having

−→
F as its interior can be avoided.

We next observe that for many subequations F there are many local−→
F -subharmonic functions. Suppose we are in a local coordinate system
for X with standard fiber coordinates (p,A) for J2

red(X).

Proposition 11.5. If
−→
F x0 is non-empty, then for all ǫ > 0,

−→
F contains

a subset of the form

B(x0, r0)×B(p0, δ0)× (ǫI + IntP).

Moreover, if
−→
F x0 contains a point of the form (0, A), then the function

ρ ≡ |x − x0|2 − R2 is strictly
−→
F -subharmonic on B(x0, R) for R > 0

sufficiently small.

Proof. If (p,A) ∈ −→
F x0 , then by positivity we may replace A by λI

(since λI − A > 0 for large λ). By the openness of
−→
F there exist

r0, δ > 0 such that B(x0, r0) × B(p, δ) × {λI} ⊂ −→
F , and therefore

by positivity B(x0, r0) × B(p, δ) × (λI + P) ⊂ −→
F . Applying the cone

property proves the first assertion. For the second, note that if p = 0

then B(x0, r0)×B(0, δ0)× (I + P) ⊂ −→
F .

Without a point (0, A0) ∈
−→
F x0 , the second assertion can fail. Con-

sider the subequation A ≥ p ≥ 0 on R, or the subequation A ≥ p0I ≥ 0
on Rn.
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11.2. Boundary Convexity. Suppose Ω is a domain with smooth
boundary ∂Ω in X (or some open subset which we also call X). By
a defining function for ∂Ω we mean a smooth function ρ defined on a
neighborhood of ∂Ω such that

∂Ω = {x : ρ(x) = 0}, dρ 6= 0 on ∂Ω, and ρ < 0 on Ω.

Note that for x ∈ ∂Ω we have J2
xρ = {0} × J2

red,xρ. For simplicity of

notation, we set J2
xρ = J2

red,xρ.

Proposition 11.6. Suppose F is a reduced subequation on X with

asymptotic interior
−→
F . Let Ω ⊂ X be a domain with smooth boundary.

Then for x ∈ ∂Ω the following are equivalent.

(1) There exists a local defining function ρ for ∂Ω near x such that

(11.3) J2
xρ ∈ −→

F x

(so that ρ is strictly
−→
F -subharmonic near x).

(2) There exists a local defining function ρ for ∂Ω near x and t0 > 0
such that

(11.4) J2
xρ+ t(dρ)x ◦ (dρ)x ∈ −→

F x for all t ≥ t0.

(3) Given any defining function ρ for ∂Ω near x, there exists t0 > 0
such that

(11.4) J2
xρ+ t(dρ)x ◦ (dρ)x ∈ −→

F x for all t ≥ t0.

Note that if (11.4) holds for t = t0, then it holds for all t ≥ t0 by

positivity for
−→
F .

Definition 11.7. (Boundary Convexity). Let F be a reduced sub-
equation on X and Ω ⊂ X a smoothly bounded domain. Then ∂Ω is
strictly F -convex at x ∈ ∂Ω if the equivalent conditions (1), (2), and
(3) hold at x. The boundary ∂Ω is said to be strictly F -convex if this
holds at every point x ∈ ∂Ω.

Proof of Proposition 11.6. (1) ⇒ (3): Assume that (1) is true for
the defining function ρ. Any other local defining function for ∂Ω is of
the form ρ̃ = uρ for some smooth function u > 0. At x ∈ ∂Ω we have
dρ̃ = udρ and J2ρ̃ = uJ2ρ+ du ◦ dρ. Hence with ǫ > 0 we have

J2ρ̃+ tdρ̃ ◦ dρ̃ = uJ2ρ+ du ◦ dρ+ tu2dρ ◦ dρ
= u

(
J2ρ− ǫ · I

)
+
(
tu2dρ ◦ dρ+ du ◦ dρ+ uǫ · I

)

at x. Now for ǫ > 0 sufficiently small we have u
(
J2ρ− ǫ · I

)
∈ −→
F by

the assumption on ρ, the openness of
−→
F and the cone property for

−→
F .

For all t sufficiently large, the remaining term in the second line above
lies in IntPx ⊂ Sym2(T ∗

xX). Now apply the positivity condition (P)

for
−→
F .
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(2) ⇒ (1): Assume that (2) is true for the defining function ρ for ∂Ω
and consider ρt ≡ ρ+ 1

2tρ
2 for t ≥ 0. Then ρt is also a defining function

for ∂Ω and it has 2-jet

J2ρt = J2ρ+ tdρ ◦ dρ on ∂Ω.

Hence ρt satisfies (1) if t ≥ t0.
Evidently (3) ⇒ (2), and (1) ⇒ (2) by positivity.

From Proposition 11.6(3) we conclude the following.

Corollary 11.8. Let Ω ⊂⊂ X be a pre-compact domain with a smooth
strictly F -convex boundary, and ρ a global defining function for ∂Ω.
Then for all t > 0 sufficiently large, the defining function ρt = ρ+ 1

2 tρ
2

is strictly F -subharmonic in a neighborhood of ∂Ω.

Proof. Since ρ+ 1
2tρ

2 is strictly
−→
F -subharmonic in a neighborhood Ux

of x in ∂Ω for t ≥ some tx, we can pass to a finite covering of ∂Ω by
such sets Ux and take t to be the largest tx in the family. Then ρt is
strictly F -subharmonic at all points of ∂Ω and hence in a neighborhood
of ∂Ω.

The question of a global strictly F -subharmonic defining function on
a neighborhood of Ω will be discussed later.

A different question, namely, the local existence of strictly F -convex
domains, has already been answered in Proposition 11.5. We restate it
here in the language of F -convexity.

Proposition 11.9. Let F be a reduced subequation on X and fix q ∈ X.
Suppose the fiber Fq contains a critical jet (0, A). Then in any local
coordinate system, the balls {x : ‖x − x(q)‖ < R} are all strictly F -
convex for all R > 0 sufficiently small.

Example. The strictness condition J2
xρ ∈ −→

F in (1) is not independent

of the defining function ρ. Suppose F = P̃, the constant coefficient sub-
equation defined by requiring at least one eigenvalue of D2u to be ≥ 0,

and note that F =
−→
F . The defining function ρ(x) = 1−|x|2 for the unit

sphere Sn−1 (with inwardly pointing gradient) is not P̃-subharmonic,

whereas the defining function ρ + ρ2 is strictly P̃-subharmonic near
Sn−1.

We now complete Definition 11.7 by extending boundary convexity
from reduced subequations to the general case.

Associated to a general subequation F ⊂ J2(X) is a family of reduced
subequations Fλ ⊂ J2

red(X), λ ∈ R, obtained by setting the r-variable
equal to the constant λ. Said differently, Fλ is defined by

{λ} × Fλ = F ∩
{
{λ} × J2

red(X)

}
.
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Each reduced subequation Fλ has an asymptotic interior
−→
Fλ. (It is not

uncommon for all the asymptotic interiors
−→
Fλ to agree even though F

is not a reduced subequation.)

Definition 11.10.(Boundary Convexity Continued). Given a gen-
eral subequation F ⊂ J2(X) and a domain Ω ⊂ X with smooth bound-
ary, we say that ∂Ω is strictly F -convex at a point x if ∂Ω is strictly
Fλ-convex at x for each λ ∈ R (cf. Definition 11.7). The boundary ∂Ω
is called (globally) F -convex if it is F -convex at every x ∈ ∂Ω.

11.3. Barriers. The existence of barriers at a boundary point x0 ∈ ∂Ω
of a domain Ω is needed for establishing boundary regularity for the
Dirichlet problem.

Definition 11.11. Given λ ∈ R, x0 ∈ ∂Ω, and a local defining function
ρ for ∂Ω near x0, we say that ρ defines a λ-barrier for F at x0 ∈ ∂Ω if
there exist C0 > 0, ǫ > 0, and r0 > 0 such that the function

(11.5) β(x) = λ+ C

(
ρ(x)− ǫ

|x− x0|2
2

)

is strictly F -subharmonic on B(x0, r0) for all C ≥ C0. If F is a reduced
subequation, then we say ρ defines a barrier for F at x0, since the same
ρ works for all λ ∈ R.

Theorem 11.12. (Existence of Barriers). Suppose Ω ⊂ X is a
domain with smooth boundary ∂Ω which is strictly F -convex at x0 ∈ ∂Ω.
Then for each λ ∈ R there exists a local defining function ρ for ∂Ω near
x0 which defines a λ-barrier for F at x0.

Proof. Choose a local defining function ρ for ∂Ω near x0 with J ≡
(Dx0ρ,D

2
x0
ρ) ∈ −→

F λ′ (λ′ > λ). Then by the definition of
−→
F there exists

a neighborhood N (J) in the total reduced 2-jet space J2
red(X), and a

number C0 > 0 such that

C · N (J) ⊂ IntFλ′ for all C ≥ C0.

By shrinking we may assume that N (J) = B(x0, r0)×B(Dx0ρ, δ0)×
B(D2

x0
ρ, ǫ0) is a product neighborhood in some local coordinate system.

Set α(x) ≡ ρ(x) − ǫ |x−x0|2

2 so our desired barrier will be β(x) =
λ+ Cα(x). Then

(11.6) Jred,xα =
(
Dxρ− ǫ(x− x0), D

2
xρ− ǫI

)
.

By choosing ǫ and r0 sufficiently small we have

Jred,xα ∈ N (J) if x ∈ B(x0, r0).

This proves that

Jred,xβ = CJred,xα ∈ IntFλ′

if C ≥ C0 and x ∈ B(x0, r0).
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Now by the negativity condition (N) we have that Fµ ⊃ Fλ′ if µ < λ′.
Hence,

(−∞, λ′)× IntFλ′ ⊂ F

is an open subset in the full jet space J2(X), and it contains Jxβ for all
C ≥ C0 and all x ∈ B(x0, r0).

Remark 11.13. (Existence of Barriers—Refinements). Actually,
less than is stated in Definition 11.10 is required for the application to
the Dirichlet problem. Namely, one only needs that for each λ ∈ R,
there is a continuous defining function ρ such that there exist C0 ≥ 0,
ǫ > 0, and r0 > 0 so that

(11.7) β(x) = λ+ C

(
ρ(x)− ǫ

|x− x0|2
2

)
∈ Fstrict

(
B(x0, r0) ∩ Ω

)

is strictly F -subharmonic on B(x0, r0) ∩Ω for all C ≥ C0. (See Section
7 for the definition of Fstrict(K).)

This applies to the intersection Ω = Ω1 ∩ Ω2 where Ω1,Ω2 ⊂ X

are two domains with smooth, strictly
−→
F -convex boundaries. Fix x0 ∈

∂Ω1 ∩ ∂Ω2 and λ ∈ R. Assume that there exist local defining functions
ρk for each ∂Ωk near x0 and constants r0 > 0, ǫ > 0, and C0 ≥ 0 such

that βk(x) ≡ λ+C
(
ρk(x)− ǫ|x− x0|2

)
∈ Fstrict

(
B(x0, r0) ∩Ω

)
for all

C ≥ C0. Then

max{β1, β2} ∈ Fstrict(B(x0, r0) ∩ Ω1 ∩ Ω2)

for all C ≥ C0 by Lemma 7.7(i).

This remark is particularly useful in establishing existence for para-
bolic equations.

Our notion of strict boundary convexity for a subequation F is suffi-
cient to ensure the existence of a family of F -barriers (Theorem 11.12).
Might there be other different conditions which also ensure the exis-
tence of barriers? For reduced euclidean subequations, the answer is
essentially no.

Proposition 11.14. Let F be a reduced constant coefficient subequation
on Rn and consider a domain Ω ⊂⊂ Rn. Suppose ρ is a defining
function for ∂Ω at x0 which defines a barrier for F at x0. Then J2

x0
ρ ∈

−→
Fx0 , i.e., ∂Ω is strictly F -convex at x0.

Proof (Outline). By hypothesis we have C(Dxρ − ǫ(x − x0), D
2
xρ −

ǫI) ∈ IntF if |x − x0| and ǫ are small and C is large. One must show
that (Dxρ− ǫ(x− x0), D

2
xρ− ǫI) fills out a neighborhood N (J) of J =

(Dx0ρ, D
2
x0
ρ) in the total space J2

red(X). The only difficulty is in the
p-variable. The map x 7→ Dxρ− ǫ(x− x0) has derivative at x0 equal to
D2

x0
− ǫI, which is invertible for almost all ǫ. Hence this map fills out a

ball about p0 = Dx0ρ.
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Finally we point out that the asymptotic interior
−→
F of a reduced

subequation F ⊂ J2
red(X) could have been defined using another section

J1 of J2
red(X) as the vertex rather than the zero section. Define the

asymptotic interior of F based at J1, denoted
−→
FJ1 , to be the set of J

for which there exists a neighborhood N (J) of J in J2
red(X) and t0 > 0

such that J1 + tN (J) ⊂ F for all t ≥ t0. Then

(11.8)
−→
FJ1 =

−→
FJ2 for any two sections J1 and J2.

The proof is left to the reader.

11.4. A Geometric Characterization of Boundary Convexity.
In this subsection we see that on a riemannian manifold X, Proposition

11.6 enables us to characterize the
−→
F -convexity of a boundary ∂Ω in

terms of its second fundamental form II∂Ω with respect to the outward-
pointing normal n. Recall the canonical decomposition of the 2-jet
bundle given in Section 4.2:

(11.9) J2(X) = R⊕ T ∗X ⊕ Sym2(T ∗X).

Proposition 11.15. The boundary ∂Ω is strictly F -convex at a point
x ∈ ∂Ω if and only if

(11.10) (0, n, tPn ⊕ II∂Ω) ∈ −→
Fx for all t ≥ some t0

where Pn is orthogonal projection onto the normal line R · n at x.

Note. Blocking with respect to the decomposition TxX = R · n ⊕
Tx(∂Ω), (11.10) can be rewritten

(11.10′)

(
0, (1, 0),

(
t 0
0 II∂Ω

))
∈ −→
Fx for all t ≥ some t0.

Proof. Choose ρ to be the signed distance function on a neighborhood
U of ∂Ω. That is,

ρ(y) =

{
−dist(y, ∂Ω) if y ∈ U−

+dist(y, ∂Ω) if y ∈ U+

where U − ∂Ω = U+ ∪ U− and signs are chosen so that ∇ρ = n on the
boundary ∂Ω. Then it is a standard calculation (cf. [HL2, (5.7)]) that

Hessxρ =

(
0 0
0 II∂Ω

)

with respect to the splitting TxX = (R · ∇ρ) ⊕ Tx∂Ω. Since ∇ρ = n
at x, the assertion follows directly from Proposition 11.6 and Definition
11.7.
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11.5. Example: Equations Involving Curvatures of the Graph.

The condition of
−→
F -convexity is nicely illustrated by the following class

of equations. Fix a closed subset S ⊂ Rn, invariant under permutation
of coordinates and satisfying S + (R+)n ⊂ S. Consider a function
u : Ω → R on a smoothly bounded domain Ω ⊂ Rn. At each point
x ∈ Ω let κ(x) = (κ1(x), . . . , κn(x)) be the principal curvatures of the
graph of u in Rn+1. We define our subequation F by the condition that
κ(x) ∈ S for all x. The simplest case, S = {∑j κj ≥ 0}, corresponds
to the graph having non-negative mean curvature, and the resulting
equation on u is the classical minimal surface equation.

This subequation determined by S involves only first and second
derivatives (Du,D2u) = (p,A) and can be defined as follows. Consider
E ∈ Sym2(Rn) given by

E ≡ I − 1
ν(1+ν)p ◦ p where ν =

√
1 + |p|2.

Then the principal curvatures κ1, . . . , κn of the graph of u are the eigen-
values of the linear transformation 1

ν
EAE. Thus we have that

F =
{
(p,A) : the eigenvalues of 1

ν
EAE lie in S

}
.

Straightforward computation shows that
−→
F ⊇

{
(p,A) : the eigenvalues of P⊥AP⊥ lie in IntS

}
.

where P⊥ is orthogonal projection onto the hyperplane p⊥. Thus we
find the following.

Proposition 11.16. The boundary ∂Ω is strictly
−→
F -convex if its own

principal curvatures κ∂Ω1 , . . . , κ∂Ωn−1, satisfy

(0, κ∂Ω1 , . . . , κ∂Ωn−1) ∈ IntS at each x ∈ ∂Ω.

Thus for the minimal surface equation we obtain the classical con-
dition that the boundary has positive mean curvature at each point.
More generally, let Sk be the closure of the component of {σ1(κ) >
0, . . . , σk(κ) > 0} containing (1, . . . , 1), and let Fk be the corresponding
subequation. Then we get the condition that σ1(κ) > 0, . . . , σk(κ) > 0
for the principal curvatures of ∂Ω. Similarly one could restrict further
to the set σk/σℓ > 1 (or σℓ/σk > 1) as in [LE], and the correspond-
ing condition comes out for the boundary. Of course Proposition 11.16
applies to very general sets S.

Existence for the Dirichlet problem for these examples is the topic of
Section 17.

12. The Dirichlet Problem—Existence

Throughout this section we assume that F is a subequation on a
manifold X and that Ω ⊂⊂ X is a domain with smooth boundary ∂Ω.
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Furthermore, we assume that both Fstrict(Ω) and F̃strict(Ω) contain at
least one function bounded below. (See (8.2) for this notation.) This
assumption is “minor;” for example, it is obvious locally for all sube-

quations with Fx 6= ∅ and F̃x 6= ∅ for all x. Our key assumption in the

existence theorems is that ∂Ω is both F and F̃ strictly convex.

Definition 12.1. Given a boundary function ϕ ∈ C(∂Ω), consider the
Perron family

F(ϕ) ≡
{
u ∈ USC(Ω) : u

∣∣
Ω
∈ F (Ω) and u

∣∣
∂Ω

≤ ϕ
}

and define the Perron function

U(x) ≡ sup{u(x) : u ∈ F(ϕ)}
to be the upper envelope of the Perron family.

We shall begin by isolating all the conclusions that hold only under
the assumption of weak comparison. This is done in the next theorem
and its corollary. In the two subsequent theorems the remaining gap in
existence is filled in two different ways. In the first we see that, assuming
comparison, the gap is easy to fill. In the second we assume constant
coefficients and apply an argument of Walsh ([W]) to fill the gap.

The method of proof for the next theorem is the classical barrier
argument. In the case where F = PC on Cn, these arguments can be
found as far back as Bremermann ([B]) except for the “bump argument”

for part (3), given in the proof of Lemma F̃ below, which is due to
Bedford and Taylor ([BT]). This argument was rediscovered by Ishii
([I]).

Theorem 12.2. Suppose that ∂Ω is both F and F̃ strictly convex, and
that weak comparison holds for F on X. Given ϕ ∈ C(∂Ω), the Perron
function U satisfies:

(1) U∗ = U = U∗ = ϕ on ∂Ω,

(2) U = U∗ is F -subharmonic on Ω,

(3) −U∗ is F̃ -subharmonic on Ω.

Corollary 12.3. If U is lower semicontinuous on Ω, i.e., if U∗ = U ,
then:

(a) U ∈ C(Ω),

(b) U is F harmonic on Ω,

(c) U = ϕ on ∂Ω,

i.e., U solves the Dirichlet problem on Ω for boundary values ϕ.

Theorem 12.4. Assume that comparison holds for F , and suppose

that ∂Ω is both F and F̃ strictly convex. Then for each ϕ ∈ C(∂Ω),
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the Perron function U solves the Dirichlet problem on Ω for boundary
values ϕ.

Theorem 12.5. Suppose that F is a constant coefficient subequation
on X = Rn, or more generally suppose that X = K/G is a riemannian
homogeneous space and that F is a subequation which is invariant under
the natural action of the Lie group K on J2(X).

If ∂Ω is both F and F̃ strictly convex, then existence holds for the
Dirichlet problem on Ω as above.

Remark 12.6. There is a hidden hypothesis in these existence results:

the sets
−→
Fλ and

−→̃
F λ for λ ∈ R (see Section 11) must be non-empty in

order for there to exist any domain Ω whose boundary is both F and

F̃ strictly convex. For example, for the Eikonal subequation |p| ≤ 1
this fails and, as is well known, existence fails for general ϕ ∈ C(∂B)
where B is a ball in Rn. However, Theorem 12.5 does apply to the
infinite Laplacian, defined by taking F to be the closure of the set
{(r, p,A) ∈ J2(Rn) : 〈Ap, p〉 > 0}. This example is self-dual, i.e.,

F̃ = F , and it is also a cone with
−→
F = IntF . It is easy to check that

(r, p,A) ∈ IntF if and only if either 〈Ap, p〉 > 0 or A > 0 and p = 0.
Hence, strictly convex functions are strictly F -subharmonic and define
domains for which existence holds.

Now for the proofs.

Lemma F.

U∗
∣∣
Ω

∈ F (Ω)

Lemma F̃.

−U∗

∣∣
Ω

∈ F̃ (Ω)

Proposition F. Suppose ∂Ω is strictly F -convex at x0 ∈ ∂Ω. For each
δ > 0 small, there exists u ∈ F(ϕ) with the additional properties:

• u is continuous at x0,
• u(x0) = ϕ(x0)− δ,
• u ∈ Fstrict(Ω).

Proposition F̃. Suppose ∂Ω is strictly F̃ -convex at x0 ∈ ∂Ω. For each

δ > 0 small, there exists u ∈ F̃(−ϕ) with the additional properties:

• u is continuous at x0,
• u(x0) = −ϕ(x0)− δ,

• u ∈ F̃strict(Ω).

Corollary F.

ϕ(x0) ≤ U∗(x0)
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Corollary F̃.
U∗(x0) ≤ ϕ(x0)

Conclusion 1. (Boundary Continuity). We have U∗ = U = U∗ =
ϕ on ∂Ω. In particular, U is continuous at each point of ∂Ω.

Proof. By Corollaries F and F̃, we have ϕ(x0) ≤ U∗(x0) ≤ U(x0) ≤
U∗(x0) ≤ ϕ(x0) ∀x0.
Conclusion 2. U∗ ∈ F(ϕ).

Proof. Use Corollary F̃ together with Lemma F.

Conclusion 3. U = U∗ on Ω.

Proof. We have U∗ ≤ U on Ω since U∗ ∈ F(ϕ).

Proof of Lemma F. Because of the families locally bounded above
property, it suffices to show that F(ϕ) is uniformly bounded above.

Pick ψ ∈ F̃strict(Ω) bounded below. Pick c >> 0 so that ψ − c ≤ −ϕ
on ∂Ω. By Lemma 7.7(ii,) we have ψ − c ∈ F̃strict(Ω). Given u ∈ F(ϕ),

we have u + (ψ − c) ≤ 0 on ∂Ω. Weak comparison for F̃ implies that
u+ ψ − c ≤ 0 on Ω. Hence, u ≤ − infΩ ψ + c for all u ∈ F(ϕ).

Proof of Proposition F. Assume ψ ∈ Fstrict(Ω) is bounded below on
Ω. Since ∂Ω is strictly F -convex at x0, Theorem 11.12 states that there
exist a local defining function ρ for ∂Ω near x0, and r > 0, ǫ0 > 0, and
C0 > 0 such that in some local coordinates

(12.1)
β(x) ≡ ϕ(x0)− δ + C(ρ(x)− ǫ|x− x0|2)

∈ Fstrict(B(x0, r) ∩ Ω) ∀C ≥ C0 and ∀ǫ ≤ ǫ0.

Shrink r > 0 so that

(12.2) ϕ(x0)− δ < ϕ(x) on ∂Ω ∩B(x0, r).

Pick N > sup∂Ω |ϕ|+ supΩ ψ so that

(12.3) ψ −N < ϕ− δ on ∂Ω.

Choose C so large that on A ≡ (B(x0, r) ∼ B(x0, r/2)) ∩ Ω we have

(12.4) β < ψ −N,

This is possible since ρ(x)−ǫ|x−x0|2 is strictly negative on A and ψ−N
is bounded below on A.

By (12.4) we have that

u(x) = max{β, ψ −N}
is a well defined function on Ω which is equal to ψ−N outsideB(x0, r/2).

Now we have ψ −N ∈ Fstrict(Ω), because condition (N) is satisfied.
Thus Lemma 7.7(i) and condition (12.1) imply that u ∈ Fstrict(Ω).
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Outside the set B(x0, r/2) ∩ Ω, we have u = ψ −N which is ≤ ϕ on
∂Ω by (12.3), while on B(x0, r/2) ∩ ∂Ω we still have ψ − N ≤ ϕ, but
also

β = ϕ(x0)− δ + C(ρ(x)− ǫ|x− x0|2) = ϕ(x0)− δ − Cǫ|x− x0|2

≤ ϕ(x0)− δ ≤ ϕ(x)

by (12.1). Thus u
∣∣
∂Ω

≤ ϕ. This proves that u ∈ F(ϕ). Finally note
that β(x0) = ϕ(x0) − δ which is > ψ(x0) − N by (12.3). Continuity
of β and the upper semicontinuity of ψ implies that β > ψ − N in a
neighborhood of x0. That is u = β in a neighborhood of x0. Thus u is
continuous at x0, and u(x0) = ϕ(x0)− δ.

Proof of Proposition F̃. This is merely Proposition F with an ex-
change of roles.

Proof of Corollary F. Since u ∈ F(ϕ), we have u ≤ U . Hence,
u∗ ≤ U∗. By the continuity of u at x0 and the fact that u(x0) = ϕ(x0)−δ,
we have ϕ(x0)− δ ≤ U∗(x0) for all δ > 0 small.

Proof of Corollary F̃. Here we use weak comparison again. Choose
u ∈ F(ϕ). Since u ≤ −ϕ on ∂Ω, we have u + u ≤ 0 on ∂Ω. Since

u ∈ F̃strict(Ω), weak comparison implies that u+u ≤ 0 on Ω. Therefore,
U + u ≤ 0 on Ω, i.e., U ≤ −u on Ω. Since u is continuous at x0 and
u(x0) = −ϕ(x0)− δ, this implies that U∗(x0) ≤ ϕ(x0) + δ for all δ > 0
small.

Proof of Lemma F̃. Note that the Conclusions 1, 2, and 3 are now

established. Suppose −U∗

∣∣
Ω
/∈ F̃ (Ω). Then by Lemma 2.4 there exist

x0 ∈ Ω, ǫ > 0, and ψ ∈ C2 near x0 so that in local coordinates

(1) − U∗ − ψ ≤ −ǫ|x− x0|2 near x0

(2) − U∗ − ψ = 0 at x0

but

J2
x0
ψ /∈ F̃x0 , i.e., − J2

x0
ψ ∈ IntFx0 .

Then there exist r > 0, δ > 0 so small that

u ≡ −ψ + δ is F−subharmonic on B(x0, r)

Moreover, (1) implies that for δ > 0 sufficiently small,

(1)′ u < U∗ on a neighborhood of ∂B(x0, r).

Since U∗ ≤ U , statement (1)′ implies that the function

u′ ≡
{

U on Ω−B(x0, r)

max{U, u} on B(x0, r)



456 F.R. HARVEY & H.B. LAWSON, JR.

is F -subharmonic on Ω. Conclusion 1 says that U = ϕ on ∂Ω, which
implies u′ ∈ F(ϕ). Therefore, u′ ≤ U on Ω, which implies in turn that
u ≤ U on B(x0, r).

Now statement (2) above says U∗(x0) = u(x0) − δ. Pick a sequence
xk → x0 with limk→∞U(xk) = U∗(x0). Then

(i) lim
k→∞

U(xk) = u(x0)− δ

(ii) lim
k→∞

u(xk) = u(x0).

This implies that u(xk) > U(xk) for all k large, contradicting the fact
that u ≤ U on B(x0, r).

This completes the proof of Theorem 12.2 and its Corollary 12.3. In-
terior continuity is all that remains in showing that U

∣∣
Ω
is F -harmonic.

Proof of Theorem 12.4. (Assuming Comparison). By Corollary

F and Lemma F̃
−U∗ ∈ F̃(−ϕ).

In particular,
U − U∗ ≤ 0 on ∂Ω.

Since U
∣∣
Ω
∈ F (Ω) and −U∗

∣∣
Ω
∈ F̃ (Ω), comparison implies

U − U∗ ≤ 0 on Ω,

that is, U ≤ U∗ ≤ U . Since U = U∗, we are done.

Proof of Theorem 12.5. (Assuming Constant Coefficients): We
suppose that X = Rn and that F has constant coefficients. Let Ωδ ≡
{x ∈ Ω : dist(x, ∂Ω) > δ} and Cδ ≡ {x ∈ Ω : dist(x, ∂Ω) < δ}.
Suppose ǫ > 0 is given. By the continuity of U at points of ∂Ω and
the compactness of ∂Ω, it follows easily that there exists a δ > 0 such
that

(12.5) if |y| ≤ δ, then Uy ≤ U + ǫ on C2δ

where Uy(x) ≡ U(x+ y) is the y-translate of U and where we define U

to be −∞ on Rn − Ω. We claim that

(12.6) if |y| ≤ δ, then Uy ≤ U + ǫ on Ω,

Setting z = x+ y, this implies that

if z ∈ Ω, x ∈ Ω, and |z − x| ≤ δ, then U(z) ≤ U(x) + ǫ

and therefore by symmetry that |U(z) − U(x)| ≤ ǫ. Thus the proof is
complete once (12.6) is established.

To prove (12.6), note first that Uy − ǫ ∈ F (Ωδ) for each |y| < δ by
the translation invariance of F and property (N). Since Uy ≤ U + ǫ on
the collar C2δ, one has

gy ≡ max{Uy − ǫ, U} ∈ F (Ω).
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Now (12.5) implies that gy = U on C2δ. Therefore,

gy ∈ F(ϕ),

and hence gy ≤ U on Ω. This proves that

Uy − ǫ ≤ gy ≤ U on Ωδ.

Combined with (12.5), this proves (12.6).

This Walsh argument evidently applies to domains Ω in any riemannian
homogeneous spaceX = G/H, provided that the equation F is invariant
under the action of G on J2(X).

Our existence result for general constant coefficient subequations can
be restated as follows.

Theorem 12.7. Suppose that F ⊂ J2(Rn) is a constant coefficient
subequation, and that Ω is a domain with smooth boundary ∂Ω which

is both F and F̃ strictly convex. Given ϕ ∈ C(∂Ω), let U denote the
F -Perron function on Ω with boundary values ϕ, and let V denote the

F̃ -Perron function on Ω with boundary values −ϕ. Then both −V and
U are solutions to the Dirichlet problem for F with boundary values ϕ.
Furthermore, any other such solution u satisfies

−V ≤ u ≤ U on Ω.

Proof. This follows easily from Theorem 12.5.

Example 12.8. (Existence without Uniqueness). Consider the
dual subequations

(12.7)
F ≡

{
(r, p,A) : A− 1

2 |p|
1
2
(
I + P[p]

)
≥ 0
}

and

F̃ ≡
{
(r, p,A) : A+ 1

2 |p|
1
2
(
I + P[p]

)
≥ 0
}

(where P[p] is orthogonal projection onto the p-line). First note that

IntP is the asymptotic interior of both F and F̃ . Consequently, the

boundaries ∂Ω which are strictly F - and F̃ -convex are precisely the
boundaries which are classically strictly convex. Consider now the
Dirichlet problem for the R-ball Ω = {x : |x| < R} with boundary-
value function ϕ = 0 (hence ϕ̃ = −ϕ = 0 also). Then Theorem 12.7
applies. Moreover,

• The F -Perron function is U ≡ 0.
• The F̃ -Perron function is V (x) ≡ 1

12 (R
3 − |x|3).

Thus, in particular, while existence and weak comparison hold (cf. The-
orem 10.1 or Corollary C.3), local comparison fails here.

Proof. Obviously U ≡ 0 is F -harmonic. Moreover,

(12.8) −U(x) + ǫ
2 |x|2 = ǫ

2 |x|2 is strictly F̃−subharmonic.



458 F.R. HARVEY & H.B. LAWSON, JR.

Assuming (12.8), weak comparison implies that on Ω:

u(x) + (−U(x) + ǫ
2 |x|2) ≤ ǫ

2R
2 for all u ∈ F(ϕ).

Thus, u ≤ U for all u ∈ F(ϕ), i.e., U is the F -Perron function for ϕ = 0.

Similarly, calculation shows that V (x) = 1
12(R

3−|x|3) is F̃ -harmonic.
Moreover,

(12.9) −V (x) + ǫ
2 |x|2 is strictly F−subharmonic.

Assuming (12.9), weak comparison implies that on Ω:

(−V (x) + ǫ
2 |x|2) + v(x) ≤ ǫ

2R
2 for all v ∈ F̃(−ϕ).

Thus, v ≤ V for all v ∈ F̃(ϕ), i.e., V is the F̃ -Perron function for
−ϕ = 0.

To prove (12.8), simply note that the Hessian of −U(x) + ǫ
2 |x|2 is

A = ǫ · I and apply the definition. To prove (12.9), note that for the
function −V (x) + ǫ

2 |x|2

p =
(
|x|
4 + ǫ

)
x and A =

(
|x|
4 + ǫ

)
· I + |x|

4 P[x].

The eigenspaces for A− 1
2 |p|

1
2 (I + P[p]) are:

[x] with eigenvalue |x|
2 + ǫ−

(
|x|2

4 + ǫ|x|
) 1

2
and

[x]⊥ with eigenvalues |x|
4 + ǫ− 1

2

(
|x|2

4 + ǫ|x|
) 1

2
.

It is easy to see that these eigenvalues are > 0 on Ω.

Despite the above examples of strict approximation, it must fail in
general for this equation since otherwise uniqueness would hold. More

precisely, U has no F -strict approximation and V has no F̃ -strict ap-
proximation.

Remark 12.9. (Refinements).
1) Note that in the proof of Proposition F we only needed the barrier

β defined in (12.1) to be strict on the Ω-portion of the ball, that is, we
only really needed

β ∈ Fstrict(Ω ∩B(x0, r)).

This can sometimes be established even though ∂Ω is not strictly F -
convex. For example, suppose F is defined by

(12.10) A ≥ 0 and detA ≥ er

and note that
−→
F is defined by

A > 0 and r < 0.

Consider Ω = {x : |x| < R} and set ρ(x) = 1
2(|x|2 − R2). Note that

with λ = ϕ(x0) − δ the barrier satisfies β(x) ≤ λ on the Ω-portion of
B(x0, r). Then it is easy to see that for C > 0 sufficiently large, we
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have β ∈ Fstrict(Ω ∩ B(x0, r)). This is because J2
xβ = (β(x), C(x −

2ǫ(x−x0)), C(1−2ǫ)I), so that detA−er ≥ Cn(1−2ǫ)n−eλ > 0 for all
x ∈ Ω∩B(x0, r). Thus Proposition F and Corollary F are valid for this F

in spite of the fact that ∂Ω is not strictly
−→
F -convex. In fact, Proposition

F and Corollary F are false for the subequation H ≡ closure{−→F } unless
ϕ(x0) ≤ 0. It is now easy to show that existence and uniqueness hold
for the subequation F defined by (12.10), since ψ(x) = 1

2 (|x|2 − R2) is
a good approximator for F .

2) Notice that the weakened form of Proposition F, with u ∈ F (Ω)
but not necessarily strict, is all that is needed to prove Corollary F.

However, to prove Corollary F̃ from Proposition F̃, weak comparison

was used so that the strictness of u ∈ F̃strict(Ω) cannot be dropped.

13. The Dirichlet Problem—Summary Results

We present here several summary results which follow from the work
above. We make the following standing hypotheses in this section.

(i) F is a subequation on a riemannian manifold X.
(ii) Ω ⊂⊂ X is a domain with smooth boundary ∂Ω.

(iii) Both Fstrict(Ω) and F̃strict(Ω) have at least one function bounded
below.

Consider the following

Dirichlet Problem for F :

Given ϕ ∈ C(∂Ω), consider the Perron function

U ≡ sup
u∈F(ϕ)

u where F(ϕ) =
{
u ∈ F (Ω) : u

∣∣
∂Ω

≤ ϕ
}
.

Existence. For each ϕ ∈ C(∂Ω), the Perron function satisfies

• U is F -harmonic,
• U = ϕ on ∂Ω,
• U ∈ C(Ω).

Uniqueness. U is the only function with these three properties.

In what follows, MF denotes a monotonicity cone for F .

Theorem 13.1. Suppose F is a riemannian G-subequation where X
is provided with a topological G-structure. Suppose there exists a C2

strictly MF -subharmonic function on X.
Then for every domain Ω ⊂⊂ X whose boundary is strictly F - and

F̃ -convex, both existence and uniqueness hold for the Dirichlet problem.

Theorem 13.1′. Theorem 13.1 also holds for any subequation F which
is locally affinely jet-equivalent to a riemannian G-subequation on X.
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Theorem 13.2. Suppose F is a subequation for which weak comparison
holds. Suppose there exists a C2 strictly MF -subharmonic function on
X.

Then for every domain Ω ⊂⊂ X whose boundary is strictly F - and

F̃ -convex, both existence and uniqueness hold for the Dirichlet problem.

Theorem 13.3. Suppose comparison holds for a subequation F on X.
Then for every domain Ω ⊂⊂ X whose boundary is strictly F - and

F̃ -convex, both existence and uniqueness hold for the Dirichlet problem.

Theorem 13.4. Let F be a constant coefficient subequation on Rn.
(Existence.) Then for every domain Ω ⊂⊂ X whose boundary is

strictly F- and F̃-convex, existence holds for the Dirichlet problem.

(Comparison.) If F is pure second-order, or more generally, inde-
pendent of the gradient, then comparison holds for F on Rn.

This provides a new proof of existence and uniqueness for pure second-
order subequations, established in [HL4] using a result of Slodkowski [S].

Proof. The existence is just a restatement of Theorem 12.7. Since weak
comparison holds for any constant coefficient subequation, comparison
will follow from strict approximation. A closed subset F ⊂ J2 is a
pure second-order subequation if and only if M = R × Rn × P is a
monotonicity set for F. Since |x|2 is strictly M -subharmonic, strict
approximation holds for F. More generally, recall that a closed subset
F ⊂ J2 is independent of the gradient if and only if M ≡ R− ×Rn ×P
is a monotonicity set for F. In this case, the function |x|2−R2 is strictly
M -subharmonic on the ball of radius R about the origin. Since each
compact subsetK ⊂ Rn is contained in such a ball, strict approximation
holds for F.

More generally we have the following (see Theorem 9.13).

Theorem 13.5. Let X = K/G be a riemannian homogeneous space
and suppose F is a subequation which is invariant under the natural
action of the Lie group K on J2(X).

(Existence.) Then for every domain Ω ⊂⊂ X whose boundary is

strictly F - and F̃ -convex, existence holds for the Dirichlet problem.

(Comparison.) If X supports a strictly convex C2-function, then
comparison holds for F on X.

14. Universal Riemannian Subequations

In this section we consider subequations defined on any riemannian
manifold by the requirement that Hessxu ∈ F (for u ∈ C2), where F is
a closed subset of Sym2(Rn) which is On-invariant. Recall from Section
4.4 that for such purely second-order closed subsets of J2(X), condition
(N) is automatic and condition (P) implies condition (T).
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Each On-invariant closed subset F ⊂ Sym2(Rn) determines a closed
subset Λ, invariant under the permutation group πn, and consists of
all n-tuples of eigenvalues of A where A ∈ F. Conversely, each closed
subset Λ ⊂ Rn invariant under πn determines a closed On-invariant
subset F ⊂ Sym2(Rn), namely, F ≡ {A : λ(A) ∈ Λ}. Moreover,

(14.1) F satisfies (P) ⇐⇒ Λ +Rn
+ ⊂ Λ

where R+ = [0,∞). The implication from left to right in (14.1) is
obvious since Λ can be taken to be the subset of diagonal elements in
F, and Rn

+ the set of diagonal elements in P. To prove the reverse
implication, consider the ordered eigenvalues

(14.2) λ1(A) ≤ · · · ≤ λn(A)

of A ∈ Sym2(Rn). Here λk(A), the kth smallest eigenvalue, is a well
defined continuous function on Sym2(Rn). The standard fact needed is
the monotonicity of the ordered eigenvalues:

(14.3) A ≤ B ⇒ λk(A) ≤ λk(B) for all k

which follows from the minimax definition of λk(A).
Set

λ(A) = (λ1(A), . . . , λn(A)).

Now assume A ∈ F and P ≥ 0 so that B = A+ P ≥ A. Monotonicity
(14.3) says that λ(B) equals λ(A) plus a vector in Rn

+. Since λ(A) ∈ Λ,
the assumption Λ+Rn

+ ⊂ Λ implies that λ(B) ∈ Λ. Hence B ∈ F, that
is, F satisfies (P), and (14.1) is proved.

Definition 14.1. Suppose Λ is a closed subset of Rn invariant under
the permutation group πn. If Λ satisfies

(14.4) Λ +Rn
+ ⊂ Λ,

then Λ will be referred to as a positive (or Rn
+-monotone) set in Rn.

In the final Remark 14.11 we give a canonical description of all pos-
sible Rn

+-monotone sets. Otherwise, the remainder of this section is de-

voted to examples. Our discussion is confined to subsets F ⊂ Sym2(Rn),
but each F corresponds to a universal subequation in riemannian geom-
etry, and our language reflects that fact.

Example 14.2. (Monge-Ampère—The Principal Branch). The
Monge-Ampère equation det(A) = 0 gives rise to several subequations
or branches. The principal branch is just the subequation P. In terms
of the ordered eigenvalues, it is given by:

λ1(A) ≥ 0.

We call P a branch because ∂P ⊂ {det = 0}. However, there are further
natural subequations with this property, as we shall see below.
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One can show that on a connected open set X ⊂ Rn a function u is
P-subharmonic if and only if u is convex (or ≡ −∞).

The dual subequation P̃ is defined by

λn(A) ≥ 0.

In [HL4] we proved that on open sets X ⊂ Rn, a function u is P̃-
subharmonic if and only if u is subaffine, that is,

u ≤ a on ∂K ⇒ u ≤ a on K

for each affine function a and each compact subset K ⊂ X. Thus u
is P-harmonic if and only if u is convex and −u is subaffine. Since

∂P̃ ⊂ {det = 0}, the subequation P̃ is another branch of the Monge-
Ampère equation.

Example 14.3. (The Other Branches of the Monge-Ampère
Equation). Define the qth branch Pq by the condition that

λq(A) ≥ 0 (at least n− q + 1 eigenvalues ≥ 0).

This gives n branches or subequations

P = P1 ⊂ · · · ⊂ Pq ⊂ · · · ⊂ Pn = P̃
for the Monge-Ampère equation since, for each q,

∂Pq ⊂ {det = 0}
and the positivity condition

Pq + P ⊂ Pq

is satisfied by (14.3). Duality becomes

P̃q = Pn−q+1

since λq(−A) = −λn−q+1(A). The principal branch P is a mono-
tonicity subequation for each branch Pq. Since each Pq is a cone, we
have −→P q = Pq.

Thus the boundary of a domain Ω ⊂ X is strictly Pq-convex at a point
x iff its second fundamental form II∂Ω (with respect to the interior-
pointing normal) has at least n − q principal curvatures > 0. Thus,

∂Ω is strictly P̃q = Pn−q+1-convex if II∂Ω has at least q − 1 principal
curvatures > 0.

Theorem 13.1 gives us the following result.

Theorem 14.4. Let Ω ⊂⊂ X be a domain with smooth boundary in
a riemannian manifold X. Suppose Ω admits a smooth strictly convex
global defining function. Then the Dirichlet problem for every branch of
the real Monge-Ampère equation is uniquely solvable for all continuous
boundary functions.
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Furthermore, if X carries a strictly convex function defined on a
neighborhood of Ω, then one can uniquely solve the Dirichlet problem
for the branch Pq if the second fundamental form of ∂Ω has at least
max{q − 1, n− q} principal curvatures > 0 at each point.

Example 14.5. (Geometric p-Plurisubharmonicity). LetG(p,Rn)
denote the Grassmannian of all p-dimensional subspaces of Rn. Define
F(G(p,Rn)) by requiring that

(14.5) trWA ≥ 0 for all W ∈ G(p,Rn),

As with all geometrically defined subequations, this is a convex cone sub-
equation. Functions which are F (G(p,Rn))-subharmonic are more ap-
propriately called geometrically p-plurisubharmonic since one can prove
that a function u is F(G(p,Rn))-subharmonic if and only if its restric-
tion to every minimal p-dimensional submanifold of X is subharmonic
with respect to the induced riemannian metric (or ≡ −∞).

The subequation F(G(p,Rn)) can be written in terms of the ordered
eigenvalues as

λ1(A) + · · ·+ λp(A) ≥ 0,

i.e., all p-fold sums of the eigenvalues are ≥ 0.

The dual subequation F̃(G(p,Rn)) can be described by either of the
two equivalent conditions:

trWA ≥ 0 for some W ∈ G(p,Rn)

λn−p+1(A) + · · ·+ λn(A) ≥ 0.

Both the subequation F(G(p,Rn)) and its dual F̃(G(p,Rn)) are branches
of a polynomial equation. Define a polynomial Mp on Sym2(Rn) by

(14.6) Mp(A) =
∏

|I|=p

′ (
λi1(A) + · · · + λip(A)

)

where the prime indicates that the product is over all multi-indices
I = (i1, . . . , ip) with i1 < i2 < · · · < ip. Then

A ∈ ∂F(G(p,Rn)) or A ∈ ∂F̃(G(p,Rn)) ⇒ Mp(A) = 0.

The equation Mp(A) = 0 has many branches, or subequations. Let

λI(A) ≡ λi1 + · · ·+ λip

denote the Ith p-fold sum of ordered eigenvalues. These N =
(
n
p

)
real

numbers can be ordered as

λ1(p,A) ≤ · · · ≤ λN (p,A).

Define Fk, k = 1, . . . , N by the condition that

λk(p,A) ≥ 0.
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That is, A ∈ Fk has at least N − k + 1 p-fold sums of its eigenvalues
≥ 0. Note that if B ∈ F1 = F(G(p,Rn)) (the principal branch) and
A ∈ Fk, then A+B ∈ Fk. That is,

F(G(p,Rn)) is a monotonicity subequation for each branch Fk.

Since Fk is already a cone, we have that
−→
F k = Fk. The dual is given

by

F̃k = FN−k+1.

Note that by (11.6)′ strict boundary convexity of a domain Ω means
that (

t 0
0 II∂Ω

)
∈ Fk for all t > 0 sufficiently large.

Note that the top
(
n−1
p−1

)
p-fold sums of eigenvalues of this matrix are

automatically positive for large t. Hence, if
(
n
p

)
− k + 1 ≤

(
n−1
p−1

)
every

boundary is automatically strictly Fk-convex. Otherwise, Fk-boundary
convexity means that II∂Ω has at least

(
n
p

)
− k + 1−

(
n−1
p−1

)
p-fold sums

of its principal curvatures ≥ 0.
We leave it to the reader to formulate corollaries of Theorem 13.1 for

these equations (as we did for the Monge-Ampère equation above).

Remark 14.6. Each A ∈ Sym2(Rn) acts as a derivation DA on ΛpRn

and DA ∈ Sym2(ΛpRn). The polynomial Mp is the restriction of the
determinant on Sym2(ΛpRn) to Image(DA)

Mp(A) = det (DA) .

Example 14.7. (Elementary Symmetric Functions). Recall that
the cone P can be defined by requiring that

σ1(A) ≥ 0, σ2(A) ≥ 0, . . . , σn(A) ≥ 0

where σk(A) is the kth elementary symmetric function of the eigenvalues
of A. For each k, 1 ≤ k ≤ n, the condition

σ1(A) ≥ 0, σ2(A) ≥ 0, . . . , σk(A) ≥ 0

defines a convex cone subequation F(σk). One can show that this set
F(σk) is exactly the closure of the connected component of the comple-
ment of {σk(A) = 0} which contains the identity I.

The equation {σk(A) = 0} has k − 1 other branches

(14.7) F(σk) = F1(σk) ⊂ F2(σk) ⊂ · · · ⊂ Fk(σk),

each of which is F(σk)-monotone, and for which F̃j(σk) = Fk−j+1(σk).
(See the general discussion in [HL7].) The last branch Fk(σk), which is
the dual to F1(σk), is given by the condition

σ1(A) ≥ 0 or − σ2(A) ≥ 0 or σ3(A) ≥ 0

or . . . or (−1)k−1σk(A) ≥ 0.
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Theorem 14.8. Let Ω ⊂⊂ X be a domain with smooth boundary in
a riemannian manifold X. Suppose Ω is globally strictly F(σk)-convex;
that is, suppose there is a strictly F(σk)-subharmonic defining function
for Ω. Then for every branch of the equation σk(Hess u) = 0, the Dirich-
let problem is uniquely solvable for all continuous boundary data.

Proof. The existence of a strictly F(σk)-subharmonic defining func-
tion ρ implies that the boundary is strictly F(σk)-convex, and from the

inclusions (14.7) it is also Fj(σk)-convex for each j. Since F̃j(σk) =
Fk−j+1(σk), the boundary convexity hypothesis of Theorem 13.1 is sat-
isfied. Since F(σk) is a monotonicity subequation of Fj(σk) and ρ is
strictly F(σk)-subharmonic, the other hypothesis is satisfied and Theo-
rem 13.1 applies.

Example 14.9. (The Special Lagrangian Potential Equation).
This is the subequation Fc defined by the condition

tr arctanA = arctan(λ1(A)) + · · ·+ arctan(λn(A)) ≥ cπ

2

for c ∈ (−n, n). Since arctan is an odd function, the dual equation is
again of this form. That is,

F̃c = F−c.

For values of c where Fc is convex, the Dirichlet problem for this
equation was studied in detail by Caffarelli, Nirenberg, and Spruck
[CNS] who established existence, uniqueness, and regularity. Existence,
uniqueness, and continuity for all other branches Fc were established in
[HL4].

One computes that the asymptotic interior of Fc is

(14.8)
−→
Fc = IntPq = {A : λq(A) > 0}

(λq(A) is the q
th, ordered eigenvalue) where q is the unique integer such

that

(14.9)
n− c

2
≤ q <

n− c

2
+ 1.

Theorem 14.10. Let X be a riemannian n-manifold X on which there
exists some global strictly convex function. Let Ω ⊂⊂ X be a domain
with smooth boundary and suppose ∂Ω is strictly Pq-convex for an inte-
ger q satisfying

(14.10) 1 ≤ q <
n

2
+ 1.

Then the Dirichlet problem for Fc-harmonic functions is uniquely solv-
able on Ω for all continuous ϕ ∈ ∂Ω and for all c with

(14.11) |c| < n− 2q + 2.
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Proof. Recall that strict Pq-convexity implies strict Pq′-convexity for
q ≤ q′ ≤ n. Suppose c ≥ 0 and (14.9) holds. Let q̃ be the integer
satisfying (14.9) with c replaced by −c ≤ 0. Then q̃ ≥ q. Hence, by
the first remark and (14.8) the hypothesis on the boundary is satisfied
and Theorem 13.1 applies to Fc. As c descends to zero, the q in (14.9)
increases, so by the initial remark, the boundary hypothesis continues
to be satisfied.

The subequations Fc are related to the equation

(14.12) Im
{
e−iθdetC(I + iHessu)

}
= 0

(for fixed θ) which arises in Special Lagrangian geometry [HL1]. If u
satisfies (14.12), then the graph {y = ∇u} in Rn × Rn is absolutely
volume-minimizing. Note that Im

{
e−iθdetC(I + iA)

}
= Im

{
e−iθ

∏
k

(I + iλk(A))} = 0 yields the congruence
∑

k

arctan(λk(A)) ≡ θ (mod π).

Thus the equation (14.12) has many disjoint connected sheets corre-
sponding to the subequations F2( θ

π
+k) for either n or n−1 integer values

of k. The maximal (and minimal) values were treated in [CNS] and the
other values in the euclidean case in [HL4].

An interesting case where all of the above applies is the cotangent
bundle T ∗K of a Lie group K. Fixing an orthonormal framing e1, . . . , en
with respect to a left-invariant metric gives a splitting

T ∗K = K ×Rn

which determines in an obvious way a hermitian almost complex struc-
ture and an invariant (n, 0)-form, i.e., an almost Calabi-Yau structure.
By Theorem 14.10 we can solve the Dirichlet problem for the special
Lagrangian potential equation on Pq-convex domains Ω ⊂ K for q as
above. For each solution u the graph of ∇u in T ∗K will be a special
Lagrangian submanifold.

Remark 14.11. (A canonical form for general Rn
+-monotone

sets Λ). Consider the hyperplane H in Rn perpendicular to e =
(1, . . . , 1). The boundary of the positive orphant Rn

+ is a graph over
H. More precisely for µ = (µ1, . . . , µn) ∈ H, set ‖µ‖+ ≡ −µmin where
µmin = min{µ1, . . . , µn}. Then

∂Rn
+ = {µ + ‖µ‖+e : µ ∈ H}.

Similarly,

∂Rn
− = {µ− ‖µ‖−e : µ ∈ H}

where ‖µ‖− = µmax = max{µ1, . . . , µn}.
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One can characterize the positive sets Λ as follows. There exists a
function f : H → R, invariant under the action of πn on H, which is
‖ · ‖±-Lipschitz, i.e.,
(14.13) −‖µ‖− ≤ f(λ+ µ)− f(λ) ≤ ‖µ‖+ for all λ, µ ∈ H

such that

(14.14) Λ = {µ + te : µ ∈ H and t ≥ f(µ)}.
Finally note that ‖λ+ µ‖± ≤ ‖λ‖± + ‖µ‖± and ‖µ‖− = ‖ − µ‖+.

15. The Complex and Quaternionic Hessians

Virtually all the results of the previous section carry over directly to
the complex and quaternionic hessians, that is, to the case of Un and
Sp1 · Spn invariant equations.

The Complex Case. Consider Cn = (R2n, J) where J : R2n →
R2n denotes the standard complex structure. Then we have the set of
hermitian symmetric matrices

Sym2
C(C

n) = {A ∈ Sym2(R2n) : AJ = JA}
and the natural projection

π : Sym2(R2n) −→ Sym2
C(C

n) given by π(A) = 1
2(A− JAJ).

If A ∈ Sym2
C
(Cn) and A(e) = λe, then A(Je) = λJe, and so Cn

decomposes into a direct sum of n complex eigenlines with eigenvalues
λ1(A) ≤ · · · ≤ λn(A). Let PC = π(P) = {λ1(A) ≥ 0} be the cone of
positive hermitian symmetric matrices.

Note that closed subsets F ⊂ Sym2
C
(Cn) invariant under Un are

uniquely determined by their eigenvalue set Λ ⊂ Rn (invariant under
πn). Moreover, one again has monotonicity of the ordered eigenvalues,
so that positivity for invariant sets can be expressed as

π−1(F)+P ⊂ π−1(F) ⇐⇒ F+PC ⊂ F ⇐⇒ Λ+Rn
+ ⊂ Λ.

Thus each positive πn invariant set Λ ⊂ Rn determines a pure second-
order Un-invariant subequation π

−1(F). All these equations carry over
to any complex (or almost complex) manifold X with a hermitian -
metric.

The complex Monge-Ampère equation

detCA = λ1(A) · · · λn(A)
behaves exactly as in the real case with principal branch PC defined by
{λ1(A) ≥ 0} and the remaining branches defined by PC

q = {λk(A) ≥ 0}.
The cone PC is a monotonicity subequation for each of the branches.
The PC-subharmonic functions are exactly the classical plurisubhar-
monic functions on X. The boundary of a domain is strictly PC-convex
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if and only if it is classically strictly pseudo-convex. Theorem 13.1 now
gives the following.

Theorem 15.1. Let Ω ⊂⊂ X be a domain with smooth boundary in
an almost complex hermitian manifold X. Suppose Ω admits a smooth
strictly plurisubharmonic global defining function. Then the Dirichlet
problem for every branch of the complex Monge-Ampère equation is
uniquely solvable for all continuous boundary functions.

Furthermore, if X carries some strictly plurisubharmonic function on
a neighborhood of Ω, then one can uniquely solve the Dirichlet problem
for the branch PC

q if the hermitian symmetric part of the second funda-
mental form of ∂Ω (i.e., the Levi form) has at least max{q − 1, n − q}
strictly positive eigenvalues at each point.

This generalizes a result of Hunt and Murray [HM] and Slodkowski
[S] to the case of almost complex manifolds.

The discussion of geometric p-plurisubharmonicity, elementary sym-
metric functions, and the special Lagrangian potential equation all carry
over, and analogues of Theorems 14.8 and 14.10 hold.

The Quaternionic Case. ConsiderHn = (R4n, I, J,K) where I, J,K :
R4n → R4n denote right scalar multiplication by the unit quaternions
i, j, k. Then we have the set of quaternionic hermitian symmetric ma-
trices

Sym2
H(Hn) = {A ∈ Sym2(R4n) : AI = IA,AJ = JA and AK = KA}

and the natural projection

π : Sym2(R2n) −→ Sym2
C(C

n)

given by π(A) = 1
4 (A− IAI − JAJ − IKI).

If A ∈ Sym2
H
(Hn) and A(e) = λe, then A(Ie) = λIe, A(Je) = λJe,

and A(Ke) = λKe, and so Hn decomposes into a direct sum of n
quaternionic eigenlines with eigenvalues λ1(A) ≤ · · · ≤ λn(A). Let
PH = π(P) = {λ1(A) ≥ 0} be the cone of positive quaternionic hermit-
ian symmetric matrices. The discussion now completely parallels the
one given for the complex case above. The discussion carries over with
no change.

16. Geometrically Defined Subequations—Examples

The subequations F(Gl ) which are geometrically defined by a subset
Gl of the Grassmann bundle G(p, TX) (as in Section 4.7) are always
convex cone subequations. As we have seen, the universal subequations
F(Gl ) where Gl is one of the Grassmannians G(p,Rn), GC(p,C

n), or
GH(p,Hn) for p = 1, . . . , n are particularly interesting. These are prin-
cipal branches of a polynomial equation Mp = 0. However, there are
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many additional interesting examples. For some of them there is no
known polynomial operator.

We begin with the general result. Fix a closed subset Gl ⊂ G(p,Rn).
Set G = {g ∈ On : g(Gl ) = Gl } and let X be a riemannian manifold with
topological G-structure so that the riemannian G-subequation F (Gl ) is
defined on X. A domain Ω ⊂⊂ X is strictly Gl -convex if it admits
a strictly Gl -plurisubharmonic defining function. The existence and
topological structure of such domains has been studied in [HL2,5]. It is

shown there that if ∂Ω is strictly Gl -convex and if Ω supports a strictly
Gl -plurisubharmonic function, then Ω is itself strictly Gl -convex. From
Theorem 13.1 we have the following.

Theorem 16.1. Let X be a riemannian manifold with topological G-
structure. Then for any strictly Gl -convex domain Ω ⊂⊂ X the Dirichlet
problem for F (Gl )-harmonic functions is uniquely solvable for all con-
tinuous boundary data.

Example 16.2. (Calibrations). Fix a form φ ∈ ΛpRn with comass
1, i.e.,

‖φ‖comass ≡ sup

{∣∣∣∣
φ|W
volW

∣∣∣∣ :W ∈ G(p,Rn)

}
≤ 1.

Given such a form, we define

Gl (φ) ≡
{
W ∈ G(p,Rn) :

∣∣∣∣
φ|W
volW

∣∣∣∣ = 1

}
.

Let Gφ = {g ∈ SOn : g∗φ = φ} and note that Gφ preserves Gl (φ).
Therefore, when X has a topological Gφ-structure, Theorem 16.1 ap-
plies. In this case the Gl (φ)-plurisubharmonic and F (Gl (φ))-harmonic
functions are simply called φ-plurisubharmonic and φ-harmonic func-
tions. Specific examples are given at the end of the introduction.

Note that ifX has a topological Gφ-structure, the form φ determines a
global smooth p-form φ on all of X with ‖φ‖comass ≡ 1. If dφ = 0, then φ
is a standard calibration [HL1], and all φ-submanifolds are automatically
minimal. For this case an analysis of φ-plurisubharmonic functions, φ-
convexity, φ-positive currents, etc. is carried out in detail in [HL2,3].

Example 16.3. (Lagrangian Plurisubharmonicity). Take Gl ≡
LAG ⊂ GR(nC

n) to be the set of Lagrangian n-planes in Cn. These
planes have many equivalent descriptions. They occur, for example, as
tangent planes to graphs of gradients overRn ⊂ Cn and also as rotations
of Rn ⊂ Cn by an element of the unitary group Un. In particular, the
invariance group which fixes LAG is Un. There exists a polynomial
M on Sym2(R2n) which is I-hyperbolic and of degree 2n with the top
branch of {M = 0} equal to F(LAG). This is discussed in a separate
paper [HL6].
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Example 16.4. F(Gl (φ)) as a Monotonicity Subequation. To
be specific, consider the associative calibration φ on R7 = ImO and
the set Gl (φ) of associative 3-planes. The convex cone subequation
F(Gl (φ)) is not the principal branch of a polynomial equation {M =
0}. Nevertheless, one can construct subequations F which are Gl (φ)-
monotone. For example, define F by the condition that A ∈ F if

∃ ξ, η ∈ Gl (φ) with ξ ⊥ η and trξA ≥ 0, trηA ≥ 0.

17. Equations Involving the Principal
Curvatures of the Graph

Let FS be one of the constant coefficient subequations inRn discussed
in Section 11.5. This is defined by the requirement that for C2-functions
u, the principal curvatures (κ1, . . . , κn) of the graph of u lie in a given
subset S ⊂ Rn which is symmetric and satisfies positivity. Now one can
check that

F̃S = F
S̃

and in many interesting cases (such as those arising from G̊arding hyper-

bolic polynomials) we have S ⊂ S̃ (or the reverse), and so FS-convexity
implies F

S̃
-convexity. From Theorem 12.7 and Proposition 11.16 we

have the following.

Theorem 17.1. Let FS be as above, and suppose Ω ⊂⊂ Rn is a
smoothly bounded domain which satisfies the geometric convexity condi-
tion:

(0, λ1(x), . . . , λn−1(x)) ∈ S ∩ S̃ at each x ∈ ∂Ω,

λ1(x), . . . , λn−1(x) are the principal curvatures of the boundary at x.
Then existence holds for the Dirichlet problem for FS for all continuous
boundary data. In fact, the further statements in Theorem 12.7 hold.

Remark 17.2. For many interesting equations involving the elemen-
tary symmetric functions σk(κ) = σk(κ1, . . . , κn), one also has unique-
ness. See the very nice paper [LE] for example.

18. Applications of Jet-Equivalence—
Inhomogeneous Equations

The notion of affine jet-equivalence is flexible and powerful. Given
Theorem 10.1, it is possible to treat a vast array of equations on mani-
folds. One important case is the Calabi-Yau equation examined in 6.15.
That example can be greatly generalized as follows.

Example 18.1. Let F be the riemannian G-subequation for G = On

(or Un or Spn) defined by

σ1(A+ I) ≥ 0, σ2(A+ I) ≥ 0, . . . , σk−1(A+ I) ≥ 0 and σk(A+ I) ≥ 1



DIRICHLET DUALITY AND THE NONLINEAR DIRICHLET PROBLEM 471

where σℓ(A) is the ℓ
th elementary symmetric function in the eigenvalues

of A (or the complex or quaternionic hermitian symmetric part of A).

Let Φ̃ be the global affine jet-equivalence

Φ̃(r, p,A) = (r, p, (hI)A(hI)t + (h2 − 1)I) = (r, p, h2A+ (h2 − 1)I)

defined in (6.9) and set f = h−2k. Let Ff = Φ̃−1(F ). Then a smooth
Ff -harmonic function is one that satisfies

σ1(Hess u+ I) ≥ 0, . . . , σk(Hess u+ I) ≥ 0 and

σk(Hess u+ I) = f.

This example immediately generalizes by replacing σk(A) with any
homogeneous On-invariant polynomial on Sym2(Rn) which is hyperbolic
with respect to the identity I (see 18.4 below).

Example 18.2. There is another (simpler) version of the examples
above. Let F be the riemannian G-subequation for G = On (or Un or
Spn) defined by

σ1(A) ≥ 0, . . . , σk−1(A) ≥ 0 and σk(A+ I) ≥ 1

with σℓ(A) as above. Let Φ̃ be the global affine jet-equivalence Φ̃(r, p,A) =
(r, p, (hI)A(hI)t) = (r, p, h2A) and set f = h−2k. Then the smooth

Ff = Φ̃−1(F ) harmonic functions satisfy

σ1(Hess u) ≥ 0, . . . , σk(Hess u) ≥ 0 and

σk(Hess u) = f.

Example 18.3. (Inhomogeneous Equations for λq(Hess u)). Let
F be a subequation on a manifold X and J any section of J2(X). Then
FJ ≡ F + J (fiber-wise translation) is a subequation affinely equivalent
to F . These two subequations have the same asymptotic interior (cf.
Section 11). Furthermore, any monotonicity cone for one is a mono-
tonicity cone for the other (cf. Section 9).

A simple but illustrative example, forX riemannian, is given by using
the canonical splitting (4.3) and taking Jx = f(x)Id where f is a smooth
function on X and Id is the identity section of Sym2(T ∗X). Let F = Pq,

the qth branch of the Monge-Ampère subequation (see Example 14.3).
Then the FJ -harmonic functions are solutions of the equation

λq(Hess u) = f(x)

where λq(Hess u) is the q
th-ordered eigenvalue of Hess u.

Another example comes from F = F (Gl ), as in Section 4.7. Translat-
ing F (Gl ) by J = 1

p
f · Id gives the subequation

trξ(Hessxu) ≥ f(x) for all ξ ∈ Gl and all x ∈ X.

The FJ -subharmonic functions are quasi-Gl -plurisubharmonic with vari-
able right hand side.
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Further interesting examples are given by translating the subequa-
tions arising as branches of any G̊arding I-hyperbolic polynomial on
Sym2(Rn).

Example 18.4. (G̊arding Hyperbolic Polynomials). The exam-
ples above can be vastly generalized by using G̊arding’s theory of hyper-
bolic polynomials [G]. (For details of what follows the reader is referred
to [HL7].) Let M : Sym2(Rn) → R be a homogeneous polynomial of
degree ℓ which is hyperbolic with respect to the identity I. Then the
G̊arding cone FM is defined to be the connected component of {M > 0}
containing I. It is a convex cone in Sym2(Rn) and is a monotonicity
cone for the sets FM (c) ≡ {A ∈ FM : M(A) ≥ c} and also for the
branches FM = FM

1 ⊂ FM
2 ⊂ FM

3 ⊂ · · · described in the introduction.
Suppose now that this G̊arding polynomial M is invariant under a

subgroup G ⊆ On and that X is a riemannian manifold with topological
G-structure. Then each of the sets above determines a pure second-order
subequation on X. For each of these, the basic one FM , associated to
FM , is a monotonicity cone. Suppose now that B is a smooth section
of FM ⊂ Sym2(T ∗X) and h is a positive smooth function. Consider the
affine jet-equivalence Φ defined by Φ(r, p,A) = (r, p, hI(A + B(x))hI)
using the canonical splitting of J2(X). Set FΦ ≡ Φ−1(FM (1)) and let
f = h−2ℓ. Then one finds as above that at any point x ∈ X

A ∈ FΦ ⇐⇒ A+B(x) ∈ FM and M(A+B(x)) ≥ f(x).

Then a smooth FΦ-harmonic function u is one that satisfies

Hessxu+B(x) ∈ FM and M(Hessxu+B(x)) = f(x)

One can also translate the various branches FM
k of the main sub-

equation by the section B.

19. Equations of Calabi-Yau Type in the Almost
Complex Case

Let X be an almost complex hermitian manifold and consider the
subequation

(19.1) HessCu+ I ≥ 0 and detC (HessCu+ I) ≥ F (u)f(x)

with F, f > 0 and F non-decreasing (e.g. F (u) = eu) (cf. Example
6.15 and Section 15). Let Ω ⊂⊂ X be a domain with smooth bound-
ary ∂Ω. To address the Dirichlet problem for (19.1) on Ω we need to
analyze the condition of F -convexity for ∂Ω. For this we fix λ ∈ R
and consider the subequation Fλ (independent of the r-variable) given
in (p,A)-coordinates by

(19.2) AC + I ≥ 0 and detC (AC + I) ≥ F (λ)f(x).

Recall the complex positivity cone PC = {A : AC > 0}.
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Definition 19.1. The domain Ω ⊂ X is strictly pseudo-convex if there
exists a defining function ρ for Ω which is strictly PC-subharmonic on
Ω (i.e., HessCρ > 0 on Ω).

Lemma 19.2. The boundary of a strictly pseudo-convex domain is

strictly F and F̃ convex.

Proof. One computes directly that the open cone IntPC lies in the

asymptotic interior
−→
Fλ for any value of λ. One also sees directly that

IntPC lies in the asymptotic interior
−→̃
F λ for any value of λ. (Details are

left as an exercise.) The assertion now follows from Definition 11.10.

Theorem 19.3. Let Ω be a strictly pseudo-convex domain in an al-
most complex hermitian manifold X. Then the Dirichlet problem for
the Calabi-Yau equation (19.1) is uniquely solvable for any continuous
function on the boundary ∂Ω.

Proof. First recall from Example 6.15 that F is locally affinely jet-
equivalent to a constant coefficient subequation on X. It is straight-
forward to see that PC is a monotonicity cone for F , and by hypoth-
esis there exists a global defining function for Ω which is strictly PC-

subharmonic. We have already seen that ∂Ω is strictly F and F̃ convex.
Hence Theorem 13.1′ applies.

Admittedly the Calabi-Yau equation holds more interest in the (in-
tegrable) complex manifold case. However, it is surprising that the
Dirichlet problem is uniquely solvable in this very general setting.

Example 19.4. Many examples can be obtained by starting with a
strongly pseudo-convex domain Ω0 in a complex manifold X0 and then
deforming the complex structure J0 to a nearby almost complex struc-
ture which is not integrable. Any given hermitian metric on X0 can
be continuously deformed by averaging over the nearby J ’s. For small
enough deformations any given strongly plurisubharmonic defining func-
tion for Ω0 will remain PC-subharmonic. Thus, the Dirichlet problem
for (19.1) can be solved for all sufficiently nearby structures.

Appendix A. Equivalent Definitions F -Subharmonic

In this appendix we assume the following for each fiber Fx ⊂ J2 =
R×Rn × Sym2(Rn). The positivity condition is not required, nor is F
required to be closed. Our assumption is that for some P > 0:

(A.1) If (r, p,A+ αP ) ∈ Fx for all α > 0 small, then (r, p,A) ∈ Fx.

Remark. Assuming the positivity condition (P), condition (A.1) is
equivalent to requiring that the J1-fibers of F , that is, the fibers of F
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under the natural map J2(X) → J1(X), are closed. In terms of the
standard coordinates, this means that

(A.1’) Each Fx,r,p = {A ∈ Sym2(Rn) : (x, r, p,A) ∈ F} is closed.

For the proof, note that if A ∈ F x,r,p, then for each ǫ > 0 there exists
Aǫ ∈ Fx,r,p with Aǫ − A ≤ ǫP . By (P) this implies A + ǫP ∈ Fx,r,p.
Assuming (A.1), this proves that A ∈ Fx,r,p, i.e., this proves (A.1)′.
The converse obviously holds for all P > 0. Thus, assuming positivity,
(A.1) holds for one P > 0 if and only if it holds for all P > 0.

Proposition A.1. Suppose that u ∈ USC(X) and x0 ∈ X. Let x =
(x1, . . . , xn) be local coordinates on a neighborhood of x0. Then the
following conditions I, II, III, and IV are equivalent.

I. For all ϕ ∈ C2 near x0,

(1)

{
u− ϕ ≤ 0 near x0

= 0 at x0

}
⇒ J2

x0
ϕ ∈ Fx0

II. For all (r, p,A) ∈ J2,

(2)

{
u(x)−

[
r + 〈p, x− x0〉+ 1

2〈A(x− x0), x− x0〉
]

≤ 0 near x0
= 0 at x0

}

⇒ (r, p,A) ∈ Fx0 .

III. For all (r, p,A) ∈ J2,

(3)





u(x)−
[
r + 〈p, x− x0〉+ 1

2〈A(x− x0), x− x0〉
+o(|x− x0|2)

]
≤ 0 near x0
= 0 at x0





⇒ (r, p,A) ∈ Fx0 .

IV. For all (r, p,A) ∈ J2 and α > 0,

(4)





u(x)−
[
r + 〈p, x− x0〉
+1

2〈A(x− x0), x− x0〉
]

≤ −α|x− x0|2 near x0
= 0 at x0





⇒ (r, p,A) ∈ Fx0 .

Proof. (I ⇒ II): Given (r, p,A) ∈ J2 satisfying (2), set

ϕ = r + 〈p, x− x0〉+ 1
2〈A(x− x0), x− x0〉.

Since the quadratic function ϕ satisfies (1), the condition I implies
(r, p,A) = J2

x0
ϕ ∈ Fx0 .

(II ⇒ III): Given (r, p,A) ∈ J2 satisfying (3), it follows that ∀α > 0

u(x)−
[
r + 〈p, x− x0〉+ 1

2〈A(x− x0), x− x0〉
]
≤ α|x− x0|2 near x0

= 0 at x0



DIRICHLET DUALITY AND THE NONLINEAR DIRICHLET PROBLEM 475

or equivalently

u(x)−
[
r + 〈p, x− x0〉+ 1

2〈(A+ 2αI)(x − x0), x− x0〉
]
≤ 0 near x0

= 0 at x0.

However, this is just (2) for (r, p,A+2αI). Hence by II we have (r, p,A+
2αI) ∈ Fx0 for all α > 0, proving that (r, p,A) ∈ Fx0 because of the
assumption (A.1).

(III ⇒ I): Given ϕ satisfying (1), the Taylor series for ϕ satisfies (3).

(II ⇒ IV): This holds since (4) ⇒ (2).

(IV ⇒ II): Suppose that (r, p,A) ∈ J2 satisfies (2). Equivalently,

u(x)−
[
r + 〈p, x− x0〉+ 1

2 〈(A+ 2αI)(x − x0), x− x0〉
]

≤ −α|x− x0|2 near x0

= 0 at x0.

That is, (r, p,A+ 2αI) satisfies (4). Therefore, by IV, (r, p,A+ 2αI) ∈
Fx0 for all α > 0. Finally (A.1) implies that (r, p,A) ∈ Fx0 .

Appendix B. Elementary Properties of F -Subharmonic
Functions

The proof of Theorem 2.6, which lists the elementary properties of
F -subharmonic functions, is given in this appendix. As explained in
Remark 2.6, the positivity condition is not needed in these proofs. For
Property (A), only condition A.1 is required. For Property (B), we only
require that the J1-fibers of F be closed (cf. (A.1)′). Not surprisingly,
for (C), (D), and (E) the full hypothesis that F be closed is used.
Proofs.
(A) The condition that max{u, v} − ϕ ≤ 0 near x0 with equality at x0
implies that for one of the functions u, v, say u, we have u(x0) = ϕ(x0).
In this case, u− ϕ ≤ 0 near x0 with equality at x0. Hence, J

2
x0
ϕ ∈ Fx0 .

(B) This follows from condition III in Proposition A.1.
The remaining properties are proved by a common method which

uses Lemma 2.4.
(C) Recall the basic fact that if {vj} ⊂ USC(X) is a decreasing sequence
with limit v, then

(B.1) lim
j→∞

{
sup
K

vj

}
= sup

K

v

This is proven as follows. Given δ > 0, the upper semicontinuity of vj
implies that the set Kj = {x ∈ K : vj(x) ≥ supK v + δ} is compact.
The sets Kj are decreasing since {vj} is decreasing. The pointwise
convergence of {vj} to v implies that

⋂
j Kj = ∅. Hence, there exists j0

with Kj = ∅ for all j ≥ j0. That is, vj(x) < supK v + δ for all j ≥ j0
and x ∈ K.
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Suppose now that u /∈ F (X). Then by Lemma 2.4 there exists x0 ∈
X, local coordinates x about x0, α > 0, and a quadratic function ϕ(x) =
r + 〈p, x− x0〉+ 1

2〈A(x− x0), x− x0〉 such that

(B.2)
u(x)− ϕ(x) ≤ −α|x− x0|2 near x0 and

= 0 at x0

but J2
x0
ϕ = (r, p,A) /∈ Fx0 .

Pick a small closed ball B about x0 so that u − ϕ has a strict max-
imum over B at x0. Choose a maximum point xj ∈ B for the function
uj −ϕ over B. Fix a smaller open ball B′ about x0 and let K = B−B′

denote the corresponding compact annulus. Apply (B.1) to the de-
creasing sequence vj ≡ uj − ϕ. Since supK(u− ϕ) < 0, this proves that
supK(uj − ϕ) < 0 for all j sufficiently large.

Since the maximum value of uj−ϕ ≥ u−ϕ over B is ≥ 0, this proves
that xj /∈ K i.e., xj ∈ B′ for j large. Since B′ was arbitrary, we have

(B.3) lim
j→∞

xj = x0.

In particular, xj ∈ IntB is an interior maximum point for uj − ϕ. Set

rj = uj(xj), pj = Dxj
ϕ = p+A(xj − x0), Aj = D2

xj
ϕ = A.

This proves that

(rj , pj, Aj) ∈ Fxj

since uj ∈ F (X).
Applying (B.1) to K = B yields that rj = supB uj ց supB u = r.

Hence, limj→∞ rj = r. This proves that

(B.4) lim
j→∞

(xj , rj , pj, Aj) = (x0, r, p,A).

Since F is closed, this proves that (x0, r, p,A) ∈ Fx0 , contrary to hy-
pothesis.

(D) Since (B.1) is valid if {vj} converges uniformly to v, the proof of
(D) is essentially the same as the proof of (C), except easier.

(E) Suppose u /∈ F (X). Then exactly as in the previous proofs we have
(B.2) for v∗. Since

r = v∗(x0) = lim
k→∞

sup
|y−x0|≤

1
k

{
sup
f∈F

f(y)

}
,

it follows easily that there exists a sequence yk → x0 in Rn and a
sequence fk ∈ F such that

lim
k→∞

fk(yk) = r.
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Choose a maximum point xk for fk − ϕ over B, a small closed ball
about x0 on which the condition (B.2) holds. By taking a subsequence,
we may assume that xk → x̄ ∈ B. Now

(B.5) fk(yk)− ϕ(yk) ≤ fk(xk)− ϕ(xk).

The left hand side has limit zero. Hence,

(B.6)

0 ≤ lim inf
k→∞

fk(xk)− ϕ(x̄)

≤ lim sup
k→∞

v(xk)− ϕ(x̄) ≤ v∗(x̄)− ϕ(x̄),

since by definition fk ≤ v. This proves that x̄ = x0 by (B.2). In
particular, each xk is interior to B for k large. Therefore, since each fk
is F -subharmonic, we find that

(
fk(xk), Dxk

ϕ, D2
xk
ϕ
)

∈ Fxk
.

Note that (B.6) implies limk→∞ fk(xk) = v∗(x0) = ϕ(x0). Since F is
closed, we conclude that

J2
x0
ϕ = lim

k→∞

(
fk(xk), Dxk

ϕ, D2
xk
ϕ
)

∈ Fx0 ,

which is a contradiction.

Appendix C. The Theorem on Sums

In this appendix we recall the fundamental Theorem on Sums, which
plays a key role in viscosity theory ([CIL], [C]). We restate the result in
a form which is particularly suited to our use.

Fix an open subset X ⊂ Rn, and let F,G ⊂ J2(X) be two second-
order partial differential subequations. Recall that a function w ∈
USC(X) satisfies the Zero Maximum Principle on a compact subset
K ⊂ X if

(ZMP) w ≤ 0 on ∂K ⇒ w ≤ 0 on K.

Theorem C.1. Suppose u ∈ F (X) and v ∈ G(X), but u+ v does not
satisfy the Zero Maximum Principle (ZMP) on a compact set K ⊂ X.
Then there exist a point x0 ∈ IntK and a sequence of numbers ǫ ց 0
with associated points zǫ = (xǫ, yǫ) → (x0, x0) in X×X, and there exist

Jxǫ ≡ (rǫ, pǫ, Aǫ) ∈ Fxǫ and Jyǫ ≡ (sǫ, qǫ, Bǫ) ∈ Gyǫ

such that

(1) rǫ = u(xǫ), sǫ = v(yǫ), and rǫ + sǫ = Mǫ ց M0 > 0,

(2) pǫ =
xǫ − yǫ
ǫ

, qǫ =
yǫ − xǫ
ǫ

= −pǫ, and
|xǫ − yǫ|2

ǫ
→ 0,

(3) −3

ǫ
I ≤

(
Aǫ 0
0 Bǫ

)
≤ 3

ǫ

(
I −I
−I I

)
.
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Remark C.2. In fact, we have

Jxǫ ∈ J2,+
xǫ u and Jyǫ ∈ J2,+

yǫ v,

where J2,+
x u denotes the upper 2-jet of u at x.

Restricting the right hand inequality in (3) to the diagonal yields

(3’) Aǫ +Bǫ = −Pǫ where Pǫ ≥ 0.

This is enough to prove a result which lies between weak comparison
and comparison for a constant coefficient subequation F on Rn.

Corollary C.3. Suppose H and F are constant coefficient subequations
with H ⊂ IntF. Suppose K is a compact subset of Rn. If u ∈ H(K)

and v ∈ F̃(K), then

u+ v ≤ 0 on ∂K ⇒ u+ v ≤ 0 on K.

Proof. By (1), (2), and (3)′ we have

(−sǫ,−qǫ,−Bǫ) = (rǫ −Mǫ, pǫ, Aǫ + Pǫ).

Now (rǫ, pǫ, Aǫ) ∈ H implies (rǫ −Mǫ, pǫ, Aǫ + Pǫ) ∈ IntF.

However, (sǫ, qǫ, Bǫ) ∈ F̃ says that (−sǫ,−qǫ,−Bǫ) /∈ IntF.

Appendix D. Some Important Counterexamples

One might wonder whether comparison, or at least uniqueness for the
Dirichlet problem, can be established if one weakens the assumption
that there exists a strictly M -subharmonic function where M + F ⊂
F . Consider, for example, the case of domains which are strictly F -
convex (i.e., for which there exists a globally strictly F -subharmonic
defining function) but the condition F +F ⊂ F is not satisfied. We give
here an example of a strongly P3-convex domain in a non-negatively
curved space where comparison and, in fact, uniqueness for the Dirichlet
problem fail.

Consider the standard riemannian 3-sphere S3 = {x ∈ R4 : ‖x‖ = 1}
and the great circle γ = {(x1, x2, 0, 0) : x21 + x22 = 1} ⊂ S3. Define

δ : S3 → R by δ(x) ≡ dist(x, γ)

where distance is taken in the 3-sphere metric. The level sets Ts ≡
δ−1(s) for 0 < s < π/2 are flat tori, which are orbits of the obvious
T 2 torus action on R4 = R2 ×R2. The eigenvalues λ1(s), λ2(s) of the
second fundamental form IIs of Ts are constant on Ts and, by the Gauss
curvature equation, satisfy

λ1(s) = − 1

λ2(s)
.
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Straightforward calculation (cf. [HL2, (5.7)]) shows that the riemannian
hessian

Hess δ =

(
0 0
0 IIs

)
where δ = s ∈ (0, π/2),

from which it follows easily that

Hess
(
1
2δ

2
)

=

(
1 0
0 δ · IIs

)
=



1 0 0
0 sλ(s) 0
0 0 − s

λ(s)




where δ = s ∈ (0, π/2). As sց 0, λ(s) = 1
s
+O(1), and so

Hess
(
1
2δ

2
)∣∣

s=0
=



1 0 0
0 1 0
0 0 0




In particular, we see the following. Let

U ≡ S3 − γ̃

where γ̃ = {(0, 0, x3, x4) : x23 + x24 = 1} is the “opposite” or “focal”
geodesic to γ. Then
(D.1)
Hess

(
1
2δ

2
)

has 2 strictly positive eigenvalues everywhere on U, and

(D.2) Hess
(
−1

2δ
2
)

has 1 eigenvalue ≥ 0 everywhere on U.

Conclusion D.1. (Co-convex 6⇒ Maximum Principle). Example
(D.2) shows that on spherical domains the Maximum Principle fails for

co-convex, i.e., P̃-subharmonic functions (where P̃ means at least one
eigenvalue ≥ 0). In euclidean space, co-convex functions do satisfy the
maximum principle. They are called subaffine functions and play an
important role in [HL4].

Consider now the product

U × U ⊂ S3 × S3

and define δk = δ ◦ πk where πk : U × U → U denotes projection onto
the kth factor. Set

ρ ≡ 1
2δ

2
1 +

1
2δ

2
2

and note that

Hess ρ = Hess
(
1
2δ

2
1

)
⊕Hess

(
1
2δ

2
2

)
.

In particular, ρ has four strictly positive eigenvalues everywhere on U ×
U . In the terminology of Section 7 this means that ρ is strictly P2-
subharmonic on U×U . (Recall that Pq-subharmonic means that Hessu
has at least n− q = 6− q eigenvalues ≥ 0.) Therefore the domain

(D.3) Ωc ≡ {(x, y) ∈ U × U : ρ(x, y) ≤ c} is strictly P2 convex
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for 0 < c < π2

8 .
Consider now the functions

u1 = −1
2δ

2
1 and u2 = −1

2δ
2
2 .

By (D.2) have the following. Recall that u is Pq-harmonic if λq+1 ≡ 0
where λ1 ≤ · · · ≤ λ6 are the eigenvalues of Hessu.

Lemma D.2. Each Hessuk, k = 1, 2 has two negative eigenvalues,
three zero eigenvalues, and one non-negative eigenvalue at every point
of U × U . In particular,

u1, u2 ∈ P2(U × U) and − u1,−u2 ∈ P1(U × U).

Furthermore, each uk is P2, P3, and P4-harmonic, whereas each −uk is
P1, P2, and P3-harmonic on U × U .

Conclusion D.3. (Comparison Fails). Each domain Ωc is strictly
P2-convex. Furthermore, there are smooth functions

u1 ∈ P2(Ωc) and u2 ∈ P̃2(Ωc)

(since P2(Ωc) ⊂ P3(Ωc) = P̃2(Ωc)) such that

u1 + u2 ≡ −c < 0 on ∂Ωc and sup
Ωc

(u1 + u2) = 0.

Hence, the Comparison Principle fails for P2 on each Ωc.

Conclusion D.4. (Uniqueness fails for the Dirichlet problem).
Each domain Ωc is strictly P3-convex (since P2 ⊂ P3, and so P2-subharmonic
⇒ P3-subharmonic). By the lemma we have that

Both functions u1 and (c− u2) are P3− harmonic on Ωc,

and
u1 ≡ c− u2 on ∂Ωc.

Remark D.5. (Existence without uniqueness (again)). Note

that the domains Ωc are strictly
−→
P 2 and

−→̃
P2-convex (since Pk =

−→
P k

and P2 ⊂ P3). Since the isometry group of S3 × S3 is transitive and
preserves these subequations, Theorem 12.5 guarantees the existence of
solutions to the Dirichlet problem for all continuous boundary data on
each Ωc. However, as seen above, uniqueness fails in general.
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