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LORENTZIAN GEODESIC FLOWS

JENS CHR. LARSEN

1. Introduction

In this paper we consider time oriented Lorentzian manifolds (M, g)

satisfying condition Cy, i.e., (M, g) is

(1) future 1-connected, nonspacelike complete

(2) the sectional curvatures K(w) > Q? for every timelike two plane
™

for some @ > 0. Recall that (M, g) is future 1 connected if any two

smooth timelike curves from p to ¢ are homotopic through smooth

timelike curves from p to ¢g. Also a Lorentzian manifold is a smooth,

connected Hausdorff manifold with a countable base and a metric g

of signature (—,+, .., +). The Riemannian inclined reader may benefit

from the remark that the curvature assumption (2) corresponds in some

respects to negative Riemannian curvature.

The main results of this paper are the following:

(1) A density theorem for the timelike geodesic flow, cf. Theorem 8.4.
Here it is proven that the closed timelike geodesics are dense in the
quotient of the future timelike unit tangent bundle with a vicious group
of isometries.

(2) A rigidity theorem for Cq surfaces, cf. Theorem 10.3. More
precisely we prove that an orientable Cg surface with a vicious isometry
group and @ positive must have constant curvature.

These results will follow from structure theorems for geometrically
defined subsets of (M, g), notably Theorem 7.4 and Theorem 7.7. In
fact the future null cone K*(p) of any point p € M is a smooth hyper-
surface of constant signature (0,+,...,4+). The implication is that the
boundary N, (N,) of the past ( future ) of a complete timelike geodesic
7 is a C! hypersurface in M of constant signature (0,+,...,4+). In other
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words N, is a singular semi-Riemannian manifold. Some theory is
available for the geometry of singular semi-Riemannian manifolds, cf.
[20], [22], [23], [24]. N,, is the union of null colines to y. These null co-
lines are null axes of a hyperbolic isometry if the induced isometry on
the Riemannian manifold N,N N, has a fixed point, where a and w are
endpoints of a timelike axis for the hyperbolic isometry. These results
are derived in chapter 7. The main tool is the null theory from section
6. This in turn follows from section 2, deriving a triangle comparison
lemma for Cy manifolds. Theorem 5.3 proves the crucial fact that a
hyperbolic isometry has a timelike axis.

On the constantly curved Cg manifolds there are properly discon-
tinuous groups of isometries acting on the future timelike unit tangent
bundle, cf. section 9. If this group is proper, the geodesic flow induced
on the quotient is mixing, hence ergodic. It has a transitive geodesic
and dense periodic orbits. In dimension two a horocycle flow is in-
duced on the quotient. It is mixing of all degrees. These results are
derived from the Riemannian theory, cf. also [17], [25] and [30]. The
Riemannian theory started in the 1920’s, cf. [19] and [29)].

Chapter nine sets the context for the neighbouring sections. A den-
sity theorem for C manifolds with vicious Deck transformation group
is presented in section 8. It relies on the definition of the timelike future
and the timelike past of a Cy manifold, developed in sections 3 and 4.

The same assumption for the isometry group of a Cg surface forces
the curvature to be constant.

To avoid confusion it is emphasized that throughout we shall use
the convention that a mapping F from a subset A of a manifold M is
C", 1 <r < +oo if for every g € A there is a C” map G, defined on an
open neighbourhood U of ¢, whose restriction to A NU coincides with
the restriction of F' to this set. Also the curvature tensor is

nyZ = V[X,y]Z - vayZ + VyVXZ.

The domain of definition of a mapping f is denoted by D(f). Maximal
geodesics with initial velocity v are denoted by -,.

2. Timelike geodesic triangles

This section is fundamental. It provides the main tool in this paper,
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namely a triangle comparison lemma for timelike geodesic triangles in
a Cq manifold (M, g), i.e., a Lorentz manifold satisfying condition Cy.

Recall that two points p and ¢ in M are causally related, i. e., p < g,
sometimes written ¢ > p, provided there exists a nonspacelike future
directed curve from p to q. Also p << ¢, sometimes written q >> p,
provided there is a timelike future directed curve from p to q. As usual

I*(p) ={ge M |p<<gqg}, I"(p) = {ge M| ¢ << p},
Jtp)={¢eM|p<qor p=gq},J (p)={geM|qg<porp=gq}.

Lemma 2.1. For any point p in M, the map

A*(p) = I(p) , v > exp,(v),
At (p) = {w € T,M | w timelike and future directed }

is a C* diffeomorphism.

Proof. In view of [13] we need only show that exp,(A*(p)) = I (p).
Take any q € I"*(p) and a timelike future directed curve c from c(0) = p
to c(a) = q. If ¢ ¢ exp, (At (p)) define

S = {t €]0,a] | c(t) ¢ exp, (AT (p))},
s, =inf§ > 0.

Let 7 denote a timelike geodesic from some c¢(t) = v(0), t € [0, s.] to
c(s.) =v(b), b eD(y) NR,;. Define

t. = inf{t € J0,5{ | 7(0) ¢ exp,(A* (0))).

By ¢(t), t € ]0,t.[ we denote the unique vector in A*(p) such that
exp,(¢(t)) = ¥(t). t = &(t), t €]0,%,[ is then a timelike future directed
curve in A*(p). The function

g(t) = (—(8(2), (1)) t€]0, [

is smooth and concave according to [9]. g is then bounded above. Since
() >> ¢(0) € A*(p) we deduce that ¢(t) is contained in a compact
set in T, M, hence ¢(t,) = w for a suitable sequence ¢, — ¢, and some
w € A*(p). Thus exp,(w) = 7(t,) in contradiction.

To prove the triangle comparison lemma, let p,q and r be three
causally related points in a Cg manifold (M,g = (, )). This means



122 JENS CHR. LARSEN

that p << g, ¢ << r . Throughout the paper a TF (respectively TP)
geodesic is a timelike, complete, unit speed geodesic, which is future
(respectively past) directed. According to Lemma, 2.1 there are unique
TF geodesics 71,7, and y; from p to ¢ = y,(a),q to r = ¥,(b) and p to
r = v3(c), a,b,c € R, . Define

= (1(0),713(0)) < -1,
(2.1) —A = (1(a), 12(0)) < -1,
= (72(b),13(c)) < -1.

When @ =0, Mg denotes Minkowski space R}, whereas
Mg = {z = (21, .., Tn41) € R | (z,2) = -2+ +..+22,, =1/Q%}

with metric induced by the Minkowski metric ( , ) when Q > 0. Ac-
cording to Lemma 2.1, ¢ > a+ b. This means there are causally related
points pg,qqg,To € Mg such that

(22)  a=dq(pg,99), b=dolgq;Te); c=dq(pPe,Tq)-

Here dg is the Lorentzian distance function in Mg, and d will always
denote the Lorentzian distance function in (M, g), cf. [5, Chapter 3].

Lemma 2.2. Let p,q,r be causally related points in a Cq manifold
(M,g), where @ > 0. When pg,qq and rg are causally related points
in Mg, satisfying (2.2), then

Ay <Ay A <Ay, A, <A,

9 LR TQ

Proof. We shall use Karcher’s method, see [16]. Define
r(z) =d(p,z), =z €I(p),
and let yg denote the solution to
Yo = Q%o, y(0)=0, yu(0)=1.

We claim that

H(r)(v,v) < —(v,v)yo(r(2))/yo(r(z))
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for all v L grad r,, where H(r) denotes the hessian of r. To this end
let v : I — I*(p) denote a geodesic with v'(0) = v and let

7(s) = exp,(v(s)),
aft,s) =exp,(tv(s)), t>0, sel.

N = Im o is a Lorentz surface with KV > Q?. A straightforward
differentiation yields

H(r)(v,v) = (ro7)"(0) = —(v,ax(1,0))/r ().

Let E denote a parallel vector field in N orthogonal to t — af(t,0).
Then a,(t,0) = v(t)E(t) for some smooth function v satisfying

v" = vK"r(z).
By standard Liouville theory we have

H(r)(v,v) = —(v,v)v'(1)/(v(1)r(z))
_('Ua U)y'Qr(z) (1)/(er(z) (1)1"(:1}))
—(v, )y (r(2))/yo(r(x)).

Notice that H(r)(v,v) = 0 when v || grad r,. Now define

{%tz, Q=0,
(vo(t) -1)/Q% Q>0

Al

S(t) =

and r, = Sor. Then

H(r,)(v,v) = S"orH(r)(v,v)
< —(v,v)yp(r(z)) = —(v,v)(Q*rs(z) +1), v L grad r,,
H(r,)(v,v) = §"(r(z)) v[r]* = —(v,v)(Q%r,(z) + 1), v || grad r,.

Now let f(t) =7, 0 y2(t), t € [0,b]. Then
') < Q*f(t) +1.

Let pg << go << rg denote a timelike geodesic triangle in Mg with
side lengths a,b and ¢ and sides 42,75 and 7. Also let ro(z) =
d(po,z) and fo(t) = Sorg oy (t), t€ [0,b]. Then

fo(t) = Q*fa(t) + 1.
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Since f(0) = fo(0) and f(b) = fo(b), we deduce that
f Z fQ,

and hence

rom(t) =rqoqs(t), te[0,b].
Finally
(rQ ° ’Y’.’Q)I(O),

(ro'yz)’(O) Ay > Ay, =
< A = (rgo75)'(b).

q —
(rom2)(b) = A,
Time reversal produces A,,‘7 <A,
We shall present a different argument of competitive simplicity. If
A, = 1, then A, = A,,, so to prove A,, < A, we can assume that
A, # 1. Define future directed vectors v(s) in T, M with

72(s) = exp,(v(s)), s €0,
a(t,s) = exp,(tv(s)), t>0.

Choose py € Mg and an isometry
I:T,M - T, Mg .

Define
a®(t,s) = exp,, (tIov(s)), t>0, s€ [0, ],
Y;(t) = as(tas)v
Y2(t) = o2(t).
Then
(2.3) I(limY;(t)) = I(+/(s)) = Y.2'(0),

where Y/(t) denotes the induced covariant derivative of Y, in N =
Im o. Take a unit parallel vector field E? orthogonal to ¢t — a®(t, s)
such that .

Y27 (t) = yo(t) E2().
Let E denote a unit parallel vector field orthogonal to ¢ — «(t,s) in

N. Define
y= <Y,,,E).

Then
yé _ azszQ = O, -—a2 = (at’at)(s)
yu _ a2KNy =0.
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Because of (2.3) we can assume y'(0) = y5(0) > 0 and y(0) = yo(0) =
0. Standard Liouville theory yields
Yo <y,

hence
V)1 = I @I < e (L)l
Thus b
b=L(w) < [ llaf(1,s)llds < do(gz73) = be,

where ¢, = a9(1,0), 73 = a?(1,b). When pg,gq,7q are vertices in a
timelike geodesic triangle in Mg with side lenghts a, b and ¢ we find

cosh(Qb)—cosh(Qa) cosh(Qc) Q >0
Ap, = {

sinh(Qa) sinh(Qc) ’
(b — a® — c*)/2ac, Q=0
S APB = Ap.

(2.4)

Time reversal produces A,, < A,. The same method can be used to
prove A,, < A, for small b. This angle inequality follows for arbitrary
b by a subdivision of v, and an induction argument.

Remark 2.3. We shall now briefly indicate how to combine Lem-
ma 2.2 and Lemma 6.1 to show that a Cy, manifold (M, g) is globally
hyperbolic; see also [13]. To verify that (M,g) is strongly causal at
some p € M take some TF geodesic v through y(0) = p. Given an open
neighbourhood U of p use Lemma 2.2 to find a positive € such that the
causally convex neighbourhood I(y(—¢),y(€)) of p is contained in U.

If p,qg € M are causally related, then J(p,q) 2 J*(p) N J (q) C
J*(p.) NI~ (q.) for any p, << p and q << q,. Now we use Lemma 2.2
and a Q = 0 version of Lemma 6.1 to show that the counterimage
of J(p,q) by the restriction of exp,, to the future cone is closed and
bounded. J(p,q) is then compact.

3. The timelike coray condition

In this section we consider a TF geodesic «y in a C, manifold (M, g).
Recall from [4, p. 33] that a future coray from

zel (y)={qeM|3teR : g<<(t)}
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to v is a future directed, inextendible, nonspacelike limit curve 8 : I —
M through z of a sequence of TF geodesics from z, to (r,) where
{Zn}nen and {r,}.en are sequences in M and R respectively such that
Z, = T, T, << 7¥(r,) and 7, = +oo. Here I is an open interval. We
can and will require that 0 € I and 8(0) = z. A smooth curve , is a
past coray from

yeIt(v.)={ge M |IteR:qg>>v.(t)}

to a TP geodesic v, provided S, is a future coray from y € I (y,) to
7. in (M, g) with time orientation reversed. There is a future coray
to 7y through every € I~ (vy) according to [5, Proposition 2.18]. This
coray definition coincides with the definition in [4]; see also [7]. There
are other definitions in [11], [12], [28] and [3]. By definition (M, g)
satisfies the timelike coray condition if all future and past corays are
timelike; cf. [4, Definition 3.1]. Corays are pregeodesics according to
[5, Proposition 2.21, Remark 2.22, Lemma 3.5 and Theorem 3.13].

Lemma 3.1. The timelike coray condition holds for any TF geodesic
v in a Cy manifold (M, g).

Proof. Assume that z € I~ () has a future coray S to 7, which
is null. Then there are sequences {z,} in I~(y), {r.} in R and TF
geodesics S, from z, to v(r,) such that 8 is a future directed, inex-
tendible, nonspacelike limit curve through z for {3,}. We can suppose
that = and the z,, € I~ (y(r,)) for some ry < 7,. According to Lemma
2.1 there is a TF geodesic 0, and o from z, and z respectively to

v(ro) = g. Put
an, =d(Zn,9), a=d(z,9), by,=d(zn,7(rn)), €n=7n—To.
Looking at the timelike geodesic triangle z,,,q = g,,y(r,) we obtain
1< (ba/cn)? <1+ (an/cn)® +2 (an/cn) 4, — 1

for n — +o00. Hence b, /c, — 1 for n — +00. We have used that A,, is
bounded and that a, — a. Adding two of the cosine laws give us that

-1 > Az,. Z A‘ze = _an/bn—’cn/bnAq,? > _an/bn"’cn/bnAqni Q = Oa

contradicting the fact that A, is unbounded.
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We can now define the Buseman function
bt : I"(y) 2R, zw r_ljgrnco{r —d(z,v(r))}.

The Buseman function is continuous, because (M, g) satisfies the time-
like coray condition, cf. [5].

Let B denote a unit speed future coray from p € I~(y) to some
TF geodesic 7. Proposition 3.2 below shows that it is unique. A dual
statement applies to assert the uniqueness of unit speed past corays
through y € I*(v,) to some TP geodesic 7,.

There exists by definition an sq such that p << «(s) for all s > sp. In
view of Lemma 2.1 this means that for all s > s, there exists a unique
future directed timelike unit vector v, such that y(s) = exp,(tv,) for
some t > 0.

Proposition 3.2. v, — §'(0) as s = +oo.

Proof. We shall consider two timelike geodesic triangles p,~y(sp),
v(s1) and p,7(s1),7v(s2) where sy < s; < s;. Let us for notational
convenience rename them p,py,p; and q, q;, g, respectively. The side
lengths are

a, = d(p,v(s2)), a2 =d(p,v(s1)) = by,
az = d(y(s1),7(s2)), b2 =d(p,7¥(50)), b3 =51~ s0.

Lemma 2.2 gives us

2 _ 52 2
ai =aj +aj + 2a2a3Aq?,
aj = a? + a3 + 2a,a,A0,

which combine to —Age < Ae. Notice that Ay, = —A,,, hence —Age <
-4, Q- Applying Lemma 2. 2 once again provides

b2 < b3 + b5 + 2byb3 Ay,
Given € > 0 we can make b3 /b; > 1 — € for all s; sufficiently large. Use

to conclude that Aje > Aje > —1 — 6 for all s; sufficiently large.
The proposition now follows from the fact that we can take a sequence
{Sn}nen of real numbers s, — +oo such that

5. = B(0).
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Lemma 3.3. Let v;,i = 1,2, be two TF geodesics and

Q= {teR|n(t) << (1)},
f@) =dmn@),7(t), te.

Then f is C* and concave, i.e., f" <O0.
Proof. See [9].

4. The timelike future

We shall now define the timelike future and the timelike past from
the sets Q7r and Qrp of TF and TP geodesics respectively in a Cy
manifold (M, g). We need a preliminary lemma, to assert that the coray
definition is translation invariant in the geodesic affine parameter.

Lemma 4.1. Ifv; € Qrp, @ = 1,2, are future corays to v; € Qrp
through 7, (0) << 72(0), then

Y1 () << 72(2)

for all t € Ry, and there exists a K > 0 such that for these values of t

d(m(t),72(t)) < K.

Proof. Let c,,d, denote TF geodesics from ¢,(0) = 7,(0),ds(0) =
72(0) to
cs(ts) = ds(u,) = 73(s)

for all s exceeding some sy > 0. For t € A = {t > O|c,(t) << ds(t)}
define

fs(t) = d(cs (), ds(2))-
For these values of ¢ let 3{ denote the TF geodesic from 37(0) = c¢,(t)
to B (af) = ds(t), and let

B,(t) = (c,(t), B (0)),
Cs(t) = (d,(£), B;'(a

-~

N—

~
.

Define
hs(u) = d(B; (u),73(s)), u € [0,a;]-
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We have seen that h] < 0, hence
Bs(t) = h;(O) > hls(a:) = Cs(t)a

and thus
f,(t) = Bs(t) - Cs(t) > 0.

s

It follows that [0,u,] C A. For
t€B = {t€[0,+oof | m(t) << 7(t)}
let n; denote the TF geodesic from 7,(0) = 7, (¢) to n:(b;) = ¥2(t) and

f(t) = d(m(t),72(t)).

Then
Fo@) = (72 (), m: (b)) — (71 (8),m(0)) = f'(tF >0

as s = +o0o and then B = [0, 4+o00[.
The Buseman function bt for -y; is differentiable; see [12], with

(gradb™, gradb™) = —1,

hence
bt om(s) > s+ b (n(t), s€[0,b],

and then
K = b"(12(0)) =b* (11(0)) = b* ony(b;) —b* o, (0) > b, = d(7a(2),72(t))-

The lemma follows.

Proposition 4.2. Ifvy, € Qrr is a future coray to v, € Qrp through
71(0) in a Cy manifold (M, g), then v, is a future coray to 2 through
Y1 (t) for every t € R.

Proof. Let at € R be given. Since vy, € Qrr is a future coray to
7. through -, (0) we can find an s € R such that v, (t) << 72(s). This
follows from definitions, when ¢ < 0 and from Lemma 4.1 for £ > 0.
Define

c=c(a) =d(m(t+a),7(s+a) >0, b=dmn(t),n(s+a),
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where a € R,. The function ¢ has an upper bound by Lemma 4.1.
Looking at the timelike geodesic triangle v, (t),v2(s), v2(s + a) we find

(4.4) b? < a®+c? + 2acA,

with ¢ = 7,(s). It follows from (4.4) that b/a > 1 is close to 1, when
a is sufficiently big. Let a positive € be given. Looking at the timelike
geodesic triangle p = 7, (¢), 11 (¢t + a),72(s + a) we see that

Ap > Ay, = ( —a® —b%)/2ab > -—%(1 + (b/a)®) > -1—¢
taking a sufficiently large. This means that 7, is a future coray to 7,
through -, (2).

We can now adopt

Definition 4.3. ~; € Qrp is a future coray to v, € {drr provided
7 is a future coray to v, through some and hence any 7, (%), t € R

Two future corays have the same past. In fact we have

Lemma 4.4. If v, € QrF is a future coray to v, € Qrr in a Cy
manifold , then I~ (v,) = I~ (7).

Proof. Since v, € Qrp is a future coray to v, € §drp, there exists
an s € R such that

11(0) << 72(s) =g¢.

We denote by 8 the TP geodesic through 7(s) and v;(0) = B(a), a €
R, . Assume for contradiction there is no v € R, such that v, (u) €
I*(q). The nonempty subset

A = {t € [0,qa] | There exists no positive s such that s (s) € I'*(q) }

of [0,a] has an infimum z > 0. We are using the notation <) €
Qrr, t € [0,a] for the future coray to 7, through 3(t) € I (7). z €
A because the relation << is open, see [27, Proposition 14.3]. This
proposition also implies that we can take v € [0, 2[ and u > 0 such that

Bv) << vp() ().
Since v ¢ A, there exists r > 0 such that

Yo (r) € I* ().
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We can now apply Lemma 4.1 to get

q << V() () << Yp() (u + 1),

which contradicts the fact that z € A, thus asserting the existence of a
71(s) € I'(q),s € R,. Hence I~ (1) C I (72). A second application of
Lemma 4.1 yields the reverse inclusion, thereby proving the lemma.
We now define a relation 2 ~(— ~) in Qrp(Qrp) by requiring that
g ndaet (m — ~7.) provided v, is a future ( past ) coray to 7,. This
is an equivalence relation. It is reflexive by Proposition 3.2. Symmetry
and transitivity follows from Lemma 4.4, Lemma 4.1, Proposition 3.2
and an application of Lemma 2.2. We can then define the timelike
future M+ (oco) and the timelike past M ~(oo) to be the quotient spaces
of Qrr and Qrp under the coray equivalence relations :) ~ and -~

respectively

M*(o0) = Qrr/ it M~ (00) =Qrp/ = ~.

Equivalence classes in M+ (00) and M~ (oo0) will be denoted [y], and
[v]- respectively. Given w = [y]4 € M*(c0), a = [B]- € M~(c0) we
adopt the convention

IFw=I(y), I'(a)=I%(p),
which is well defined by Lemma 4.4. It will be convenient to have the
following.

Proposition 4.5. Given w = [y]y € M*(00) andp € I~ (w) in a Co
manifold, then there exists a TF geodesic B8 through 3(0) = p such that
[Bl+ = w. If 0 is a TF geodesic through o(0) = p such that [0]; = w,
then o = .

Proof. The existence of 3 follows from the fact that (M, g) satisfies
the timelike coray condition. Suppose o is a TF geodesic with o(0) =
B(0) and [o] = w. Then B(0) << o(s) for a fixed positive s. Now
apply Lemma 4.1 to assert the existence of a positive K such that

B(t) << o(s+t) r=r(t)=d(B(t),o(s+t)) <K
for all t > 0. In the timelike geodesic triangle p = 5(0),8(t),o(t + s),
using Lemma 2.2 we have the following estimates
—t2 4+ (t +5)°

> >
A2 e 2 =550
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The right-hand side converges to —1 as ¢ — +o00, hence 4, = —1.
Consequently o = 3.

Given p € M we shall say that p << w € M™*(00) provided there
exists v € Qrp such that v(0) = p, [y]y = w. Similarly p >> a €
M~ (o0) if there exists v € Qrp such that v(0) = p, [y]- = @. We can
then define subsets

I5(p) = {w € MT(00) |[p<<w}, IL(p)={a€ M (c0)|p>>a}

of M*(oo0) and M~ (o00) respectively. Also a << w, a € M~ (0), w €
M*(00) provided there exists p € M such that p >> o, p << w. In
this case a and w are causally related.

A sequence {wp}nen in MT(00) converges to w € It (p) with
respect to p € M if there exists an ny € N such that w, € I1(p) for

all n > ny and

¢,(0) = 7/(0)
as n — +o0o. Here c, is the unique TF geodesic from p to w, and vy
is the unique TF geodesic from p to w = [y]; . As usual time reversal

produces a definition of convergence for a sequence {ay, }nen in M~ (00).
We will adopt the notation

Wy -—)p w, [0 —)p a,

when {wp}nen and {a,}nen converge with respect to p to w and «
respectively.

Also a sequence {p,}.en in M converges to w € I (p) with respect
to p provided there exists an ny € N such that p,, € I (p) and

cn(0) = 7'(0),  d(p,pa) = +o0,

as n — +oo. Here ¢, and +y are the TF geodesics from ¢, (0) = p = v(0)
to p, and [7]+ = w respectively. We write

Dn _'>p w, Dn —)p «,

whenever p,, converges with respect to p to w and @ € M~ (o0) respec-
tively.
In the rest of this section (M, g) is a Cg manifold with @ > 0.
Proposition 4.6. If w, =, w, then w, =, w for every ¢ € M such
that w € I (q).
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Proof. Take TF geodesics ;, i = 1,2, with 7,(0) = p, 12(0) = ¢
and [y1]+ = w = [y2]+. Given an € > 0, take r > 0 such that

cosh?(Qr)/sinh?(Qr) < 1 +e.

Now 7, is a future coray to -y, through p. We can therefore find at > r
such that p << y,(t). But , is also a coray to 7, through +,(t). There
is then an s € R such that v,(t) << 7 (s). Recall from [27, p.403] that
It (7,(t)) is an open neighbourhood of 7; (s). Since w,, —, w, there exist
an no € N and TF geodesics ¢, for n > ng having ¢, (0) = p, [c,]+ = wp.
Their initial tangent vectors converge to 7; (0). We can therefore assume
ng is chosen to render c,(s) € I't(y,(t)) for all n > ny. It implies that
w, € If(q) for these values of n. Looking at the timelike geodesic
triangles g, 72(t), c.(s) with side lengths a,,b, and e, we can estimate

cosh(@b,,) — cosh(Qe,) cosh(Qay,)

Ay 2 Agq = sinh(Qe,) sinh(Qa,)
_ cosh(Qe,) cosh(Qt) S 11—
= sinh(Qe,) sinh(Qt) ©

showing that w, —, w.

The proof of the next proposition is quite similar to that of the
previous one and is omitted.

Proposition 4.7. If p, =, w, then p, =, w for every g € M such
that w € It (q).

Time reversal of a TF geodesic produces a TP geodesic 7y_, that is,
v—(t) = y(—t) for all ¢ € R. Translations on the real line are denoted
T.(t) =t+a, a,t €R

Proposition 4.8. Let o € M~ (00) and w € M*(00) be causally re-
lated in a Cg manifold (M, g) where Q > 0. There ezists a TF geodesic
v with [y_]- = @ and [y]+ = w. If 0 is a TF geodesic with [c_]_ = a
and [o]+ = w, then 0 = yo 7, for some a € R.

Proof. According to the definitions there exists a p € M such that
a << p << w. In other words there exist a TF geodesic v; and a TP
geodesic <y, such that

My =w, [Ml-=a, %(0)=p.

For all s larger than some positive sy, the TF geodesic v* from v*(0) =
72(8) to ¥¥(as) = 1 (s) , as € Ry gives rise to the definition

ts =sup{ t 20| y°(t) € J(12(s),p) }-
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Due to [27, 14.1 and 14.5] there exists an NP geodesic g, from §,(0) =
to Bs(1) = ~,(¢s). Lemma 6.1 implies that

cosh(Qso)
~ Qsinh(Qso)’

which means we can take a sequence of real numbers s,, — +00, indexed
by n € N, such that the sequence {3; (0)} is convergent with limit v.
But then v*~(¢,,) = ¢ £ exp,(v) asn — +oo. Define 8, = d,,o7,,. The
sequences {8, }nen and {8, _}nen have unit speed, future directed limit
curves §; and &,. They are by definition corays to y; and -y, respectively.
For an appropriate sequence {n;} in N we have convergence of

Bn.(0) 5 B2 (0)

to £;(0) and —&;(0), which means that & = «y is a future coray to i,
and 7_ is a past coray to 7,. This proves the existence.

In the uniqueness proof we may assume o(0) << 7(0). Due to
Lemma 4.1 o(t) << 7(t) for all ¢ € R and for these values of ¢t we
may then define

—(6,(0),72(0)) <

f(#) =d(o(2),7(2))-

Since f is concave, f'(t) > 0 for allt € R. Let a; denote the TF geodesic
from o(t) to y(t) and define

80: Ba Ja

55 (5 0)-

Using [5, p.374] we can estimate

f(0)
1O <-Q [N, N)(s)ds,
0
where (N, N)(0) = —1 + (0'(0), 32(0))> > 0. If this scalar product is

nonzero, then f”(0) < 0, leading to the existence of a t; € R with
f'(t1) > 0, in contradiction. We conclude that ¢'(0) = 22(0) and hence

a(t+ f(0)) = ()

for all t € R Hence the Proposition follows.
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5. Hyperbolic isometries

Recall that the time orientation of our C, manifold (M, g) is a time-
like continuous vector field X on M.

Definition 5.1. An isometry p of (M, g) is time orientation pre-
serving provided

(Tu(X), X)(u(p)) <0

for all p in M.
Associated with a time orientation preserving isometry u on (M, g)
is a natural map on M*(o0) and M~ (oc0) defined by

p+ : MF(00) = M*(c0), [v]+ = [monl4,
p- : M~(00) > M~(0), [y]- = [pon]-.

p+ and p_ have inverses ', and p~'_.
Definition 5.2. A time orientation preserving isometry u on
(M, g) is hyperbolic, provided there exists a p in M such that

(5.1) u(p) <<p or p<<p(p).

A timelike axis -y of an isometry p is a timelike TF geodesic or TP
geodesic such that

po(t) =~(t+d,)

for all ¢ € R and some d, € R,.
A null axis § of an isometry p is an NF geodesic or NP geodesic such
that

wo B(t) = B(M +d,)

for all t € R and some A,d, € R.

Theorem 5.3. A hyperbolic isometry p on a Co manifold, Q > 0,
has a timelike azis.

Proof. Since u is hyperbolic, there exists a p € M such that (5.1)
holds. By considering u~! instead if necessary we can suppose that
p << u(p), hence

p << p(p) << .... << p™(p) << ...

By cp,n > 1, we denote the TF geodesic through c,(0) = p and u"(p),
and d,, denotes the TF geodesic through d,,(0) = u(p) and p"(p),n > 2.
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We claim that {c},(0)},>1 and {d,(0)}.>2 are convergent sequences. To
this end notice that

r=d(u"(p), k"' (p)) = d(p,u(p)), n2>1,

and define s, £ d(p,p"(p)),n > 1. The timelike geodesic triangle
pu™(p)u"*+(p) gives us

cosh 0, & —Ap < —Ape
_ —cosh(Qr) + cosh(Qs,) cosh(Qsp41)
B sinh(Qs,,) sinh(Qs,+1)
< (14 2exp(—2Qs,))%(1 + 2exp(—2Qs,41))?
<1+ aexp(-2Qnr)21+z,

for all n greater than or equal to some ny € N, because s, > nr. Here
0; is a nonnegative real number and z,,a € R, . But then

Tnzno On S Lzn, 108(1 + 20 + (1 +24)° — 1)%)
< Lnzn, 10g(1 + Bexp(—nQr))
< Ynsn, Bexp(—nQr)
= Bexp(—noQr)/(1 — exp(-Qr))

for some sufficiently large positive 5. Let A} denote the future time
cone in T,M, and T, ' M* the set of unit length future directed vectors
in T,M. According to [27, pp. 144 and 156],

(5.2)

dt : T;'M* xT,'M* - R, (z,y)+ cosh |TRI\R_(—(aE,y))

is well defined and a metric on 7,/*M*. Due to (5.2) the sequence
{c.,(0) }nen is contained in the compact set

fw € T, M* | d* (w,¢,(0)) < R},

when R € R, is large enough. d* induces a complete metric space
structure on this set. According to (5.2), {c},(0)},en is a Cauchy se-
quence in this metric space and hence convergent as claimed. It follows
that also {d],(0)},>2 is convergent.

By c and d we denote the TF geodesics with initial velocities

lim ¢,(0) and lim d(0)

n—-+00 n—+o00
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respectively. To show that ¢ and d are future corays argue as in Lem-
ma, 4.1 to verify that c(¢) << d(t) for all ¢ > 0 and that there exists a
positive real number K such that

d(c(t),d(t)) < K

for all ¢ > 0. Hence [c]+ = [d];. Notice that d(p, u"(p)) > nr by the
reverse triangle inequality. By the definition of convergence in Chapter
four we have

p"(p) = [c]+-
Proposition 4.7 yields

1 (D) = u) [t

Since we also have
p(p™(P)) =ue) [k o+,

we deduce that [c]; is a fixed point for .. Time orientation reversal
produces a fixed point [e]_, e € Qrp, for u_. Proposition 4.8 asserts
the existence of a TF geodesic v with [y]y = [c]+ and [y_]- = [e]-.
This v is an axis for u due to the uniqueness part in Proposition 4.8,
i.e., poy=yory,. To see that d, > 0 let s, denote the smallest real
number such that y(s.) € J*(p), hence v(s.) ¢ I (p). Since p << u(p),
we conclude that

v(s.) & J*(u(p))-

But po7y(s.) = v(s. +d,) € J*(u(p)). Using [27, Corollary 14.1] we
deduce that d, > 0, and the Theorem follows.
Ezample 5.4. The linear map with matrix representation

cosh ¢ sinh¢ 0

sinh¢ cosh¢ 0|, ¢eR,,
0 0 1

in the standard basis in R? is an isometry of R3. The restriction of this
isometry to Mg, @ > 0 is a hyperbolic isometry p. For appropriately
chosen causally related points p and ¢ a suitable conformal change of
the metric on I(p,q) and its translates by p result in a nonconstantly
curved Cg manifold with a hyperbolic isometry and @ > 0.
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6. Null colines

The concept null coline is crucial to the structure theorems in chap-
ter 7. Their definition relies on Lemmas 6.1 and 6.2 to be derived. To
this end let v, and y; be TF geodesics, and 7, an NF geodesic in a
Cgo manifold, @ > 0. So 7, is a future directed complete null geodesic.
The three geodesics 71,7, and 73 form a nonspacelike geodesic triangle
with vertices

T (0) =D N (a) =q,
720) =g, 7(1)=r
73(0) = p, y3(c) =

Let us introduce the following notation:

e=—(1(a),(0)), d=—-(1(1),71()),

Then we have the following inequalities.
Lemma 6.1.

cosh(Qc) < cosh(Qa) + Qesinh(Qa),
(6.1,2,3) 1 < cosh(Qa) cosh(Qc) + sinh(Qa) sinh(Qc) A,,
cosh(Qa) < cosh(Qc) — sinh(Qc)Qd.

Proof. According to [15, Corollary 2.5]. there are open neighbour-
hoods U of v;(0) and V of 73(c) such that

F=expyy U2V
is a diffeomorphism. Define nonnegative reals ¢, and d, by

c; = —(exp, " (13(5)), exp; (13(5))),
dy = —(F~}(13(5)), F 7 (13(5)))

for s > c¢. Looking at the timelike geodesic triangle p,q = g¢,,73(s) we
find that
sinh(Qd,)A,, — Qe

for s & c¢. Then Lemma 2.2 yields
cosh(Qc;) < cosh(Qd,) cosh(Qa) + sinh(Qd,) sinh(Qa)A,,.

Convergence to s = c leads to (6.1). (6.2) and (6.3) are similar.
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Suppose we are given an NF geodesic and a point p € M such that
p << B(s.),s. € R. We can then define v, by

(6.4) B(s) = exp, (v, d(p, B(s)))

for s > s,.
Lemma 6.2. There ezists a v € T, ' M™* such that

d(p, B(s)) = +o0, v, >,

as s — +00.
Proof. Letting a = d(p,3(s.)), B, = (v,,,v,) and ¢, = d(p, 8(s))
for s > s, we find, in consequence of Lemma 6.1,

B, > — cosh(Qa) cosh(Qc,)/[sinh(Qa) sinh(Qc,)]
> — cosh’(Qa)/ sinh*(Qa) = K.

This follows from the fact that s — ¢, is smooth for s > s, with

d
Tre = ~(B(5),To, expy (v2):

s
We can then take a sequence {si}ren, Sk > S. such that v,, converges
to some v € T,M as k — +o0. If the Lorentzian distance from p to

B(s) were bounded by some d we would have

ﬂ(sk) € expp(c)v
C = {swjw e T,"M*, K < (w,v,,) < -1,0<5<d}

for all k larger than some ko € N. This however contradicts [27, 14.13]
because 3 is future inextendible and (M, g) is strongly causal by Re-
mark 2.3.

To show the second statement in this lemma use Lemma 6.1 in the

estimate

(vs,,v1,) 2 — cosh(Qc;,) cosh(Qcy,)/(sinh(Qc, ) sinh(Qec, ))-

Given K < —1, the right-hand side is greater than or equal to K for
all t;,t, larger than some t,. This means that {v,},>,, is a Cauchy net
in the metric space

T,'M* = {w € T,M | (w,w) = -1, (v,,,w) <0}
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with metric
d(v,w) = coshz'p_((v,w)), v,we T, 'M*:

cf. [27, p.156]. From this the second statement in the lemma follows.
Definition 6.3. The NF geodesic 3 is a future null coline to the
TF geodesic v through «(0) = p, provided

lim v, =+'(0).

8—+00

Fortunately, we have

Proposition 6.4. If (3 is a future null coline to vy, then B is a future
null coline to any TF geodesic o, which is a future coray to -.

Proof. According to Lemma 6.2 and the definitions,

Bn) =pw £ 4
as n — +o0o, where p = v(0). Proposition 4.7 tells us that
B(n) =4 w = o]+

as n — +o0o0 where now ¢ = ¢(0). Thus the proposition follows.

7. Structure theorems

The future null cone in a Cp manifold M of a point p € M is by
definition

(7.1) K*(p)={geM|p<gq, ¢¢ I"(p)}
Also define
(7.2) D" ={(p,g) eMxM|p<gq, ¢ I*(p)}.

We shall show that (7.1) and (7.2) are C* submanifolds of M and M x
M respectively. K*(p) is degenerate of constant signature (0,4+,...,+).
This will imply that the square of the Lorentzian distance function is
smooth on

(7.3) C*={(p,q) e M x M |p<q}.
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We start with

Lemma 7.1. Suppose q = exp,(v) for some future directed null
vector v € T,M in a Cq manifold (M,g), Q > 0. Then q & I'*(p).

Proof. Assume for contradiction that p << ¢. According to Lemma
2.1 there exists a TF geodesic v from p to ¢ = y(a),a € R,.. Take open
neighbourhoods U around v in D(exp,) and V around g such that the
restriction of exp, to U is a diffeomorphism onto V. An open interval
I around a is mapped by < into V. Define

o: I->T,M, tr—wexppru1 o y(t),
@) =(o(t),0(t)), tel

Notice that av'(0) ¢ U, since this would imply that the timelike
vector ay'(0) is equal to the null vector v. Since the scalar product

(7 (@), Toe ¥, (0(a))) = 3.f'(a)

of two future directed nonspacelike vectors is negative, there exists a
positive ¢ € I such that o(t) # t7'(0) is a timelike future directed
vector. But this means that

exp, (0(t)) = 7(t) = exp,(t7'(0)),

contradicting Lemma 2.1.
We continue with a lemma, involving

(7.4) A = {weTM | (w,w) <0, (w,X) < 0}.

Dually A°~ consists of the set of w in TM such that —w € A°*.

Lemma 7.2. Letv be a future directed null vector in a Cq manifold,
Q > 0. Then there ezists an open neighbourhood W around v in D(E)
such that

(7.5) E(w) ¢ Cf ={(p,g9) e M x M |p<gq}

for any w € W\A*.
Proof. Take a timelike future directed vector

w = T, exp,(2),
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where p = 7(v). Let Y denote a smooth vector field on an open neigh-
bourhood D(Y') of z in TM with Y (v) = z. We can assume that
Tn(Y) = 0. Since

A° = {z € TM | z is a future directed null vector }
is a hypersurface in TM, we can take a local flow
®:]-6e[xU—-DY)
for Y around v and adapted to A°. Since Y (v) = z, we can assume that
expo®, :]-—e[> M

is a smooth timelike future directed curve for all w € U, by taking
a smaller U and € > 0 if necessary. We can now define F' to be the
restriction of ® to | — ¢,e [ x AY, where Ay, = A° N U. By adjusting
the domain of definition we can assume that F' is a diffeomorphism,
because T{o,,)F is an isomorphism. In fact Y (v) ¢ T, A° due to the fact
that Y (v) = z; cf. [13, Proposition 2.2]. If the domain of definition of
F is sufficiently small, the restriction of

E :DE) M x M, v~ (n(v),exp(v))

to W = Im F will be a difftomorphism onto its open image; cf.
[13, Proposition 2.1].

Suppose w € W\A%*, that is w = F(t,u), (t,u) € D(F). By con-
struction F, is a smooth timelike future directed curve in T,M, q =
m(w). If t was nonnegative, using the causality relations in T,M we

would have
= F(t t=
0, <u (¢, u), %
<< F(t,u), t>0.

Consequently w is in the causal future J*(0,) of the zero vector 0,
in T,M. This contradicts the fact that w € W\A°". Thus ¢ < 0. If
(z,y) = E(w) was in C}, we would have

z <y = exp(F(¢,u)) << exp(F(0,u)) = exp(u),

contradicting Lemma 7.1. Consequently F(w) ¢ C} and the lemma
follows.
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From Lemmas 7.1 and 7.2 we deduce

Proposition 7.3. The square of the Lorentzian distance function
d’>: M x M — R is smooth on C+.

Proof. Let us first consider (p,q) = (p, exp,(v)) € D* C C*, where
v € A°. Take an open neighbourhood W around v in TM such that the
restriction of E to W is a diffeomorphism onto its open image and such
that (7.5) holds. A careful choice of W ensures that E(W) has empty
intersection with the diagonal in M x M. Define a smooth function
F on E(W) by

(7.6) F(z,y) = —~(w,w) , w=Ey(z,y).
If (z,y) € C* N E(W), then by [5, Theorem 10.16] we have
(7.7) d(z,y)* = F(z,y),

whenever z << y. We can obtain (7.7) by (7.5) when z < y, y ¢ I'*(z).
The remaining cases p << q and p = q follow from the openness of <<,
the strong causality of (M, g) and (5, Theorem 10.16].

Given a point p in a Cqg manifold (M, g), @ > 0, we can now prove

Theorem 7.4. Dt and K+(p) are C*™ hypersurfaces of M x M and
M respectively. The metric induced on K+ (p) has constant signature
(0,+,...,+).

Proof. If (p,q) € D, then according to [27, p. 404], there exists
a future directed null vector v € T,M such that ¢ = exp,(v). By
Lemma 7.2 there exists an open neighbourhood W around v such that
the restriction of £ to W is a diffeomorphism onto its open image and

(7.8) E(w) ¢ C;,
whenever w € W\A%". We claim that
(7.9) E(WNA°) = E(W)ND*.

The left-hand side is a subset of the right-hand side according to
Lemma 7.1. The reverse inclusion follows from (7.8). Combining (7.9)
with the fact that A° is a hypersurface in TM we conclude that D is
a hypersurface in M x M.

To show that the smooth submanifold M(p) = {p} x M of M x M
is transversal to Dt take (p,q) = E(v), v € A° and observe that

T(p,q)]D)+ + T(p,q)M(P) = T,,E(T,,AO + T,,i(T,,M)),
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where i : T,M — TM denotes the inclusion. If we define a(t) = v+tw
for some timelike w € Tyr(,)M, then T,i(co/(0)) ¢ T,A°. Thus D* is
transversal to M(p). It follows that

D* N M(p) = {p} x K*(p)

is a smooth submanifold of M x M. A codimension count shows that
K*(p) is a C™ hypersurface of M.

The squared Lorentzian distance function f is smooth on C*t by
Proposition 7.3 and

T,K*(p) = grad f,(q)*.

Since grad f,(g) is null, the last statement of the lemma follows.

Lemma 7.5. C* is closed.

Proof. Let (p,q) € M x M denote the limit point of some
sequence {(Pn,qn) }nen from C*, converging in M x M. To show that
(p,q) belongs to C* take r € M such that p,q € I (r). According to
Proposition 7.3 there exist an ng € Nand K > 0 such that p, << r and
¢n = d(pn,r) > K for all n > ny. Let 3, and +y, denote nonspacelike or
constant geodesics from p,, to ¢, = B,(1) and r = ,(c,) respectively.
It follows from Lemmas 2.1 and 6.1 that

(7.1) —(8n(0),7(0))

is bounded above by some C' > 0 for all n > ny. We can assume that the
sequence {P,}.>n, belongs to the domain of some orthonormal frame
E,,...,E, with E,; timelike, future directed, and write

vn = B,(0) = Z ME; wn,=7,(0) = ZMiEi-

We have an upper bound D on y; since w, is a convergent sequence.
We can now use (7.10) and the Schwartz inequality to get

A < C+ X\ (2 —1)3,
and hence
A —20M(D?-1):-C? <.

This shows that there is an upper bound to the absloute value of the \;.
A subsequence {v,, } of {v,} will then converge to some nonspacelike
or zero vector v showing that (p,q) = (p,exp,(v)) € C*.
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Lemma 7.6. F : A°* - C*v — (n(v),exp(v)) is a homeomor-
phism.

Proof. To prove injectivity suppose that F(v;) = F(v;), so that
p = m(v;) = w(vy). If v; and v, are timelike, then v; = v, by Lem-
ma 2.1. v; = 0 and v, nonspacelike contradicts the strong causality of
(M, g). v, timelike and v, null is impossible by Lemma 7.1. It remains
to consider the case, where v, and v, are both null vectors. To this end
define §;(s) = exp,(sv;), i = 1,2 and observe that

Bi(1) € Tp,0) K™ (p).-

It follows from Theorem 7.4 that 3;(1) = £5(1)A for some A # 0. The
strong causality of (M, g) implies that A = 1, so that v; = v,.

Since F is onto by [27, p. 402] we conclude that F is a bijection with
inverse G. Due to Lemma 2.1, G is smooth on some open neighbourhood
of the image by F of any timelike future directed vector.

1) We now insist that G is smooth in the image by F of some zero
vector v € A°* by taking an open neighbourhood V around 0 in T'M.
We shall require that 0,,) € V whenever v € V and also that the
restriction of E to V is a diffeomorphism onto its open image. Take a
causally convex open neighbourhood U of w(v) such that U x U C
E(V) and define W = E;}(U x U).

Suppose exp(w) € J*(w(w)) for some w € W. By definition this
means that either w = 0 or there exists some smooth nonspacelike
curve a : [0,a] = M from a(0) = 7n(w) = ¢ to exp,(w) = a(a) # ¢
Since U is causally convex we can define

B(t) = Ejw(g,a(t)), t€[0,a],

which is a smooth curve in the future causal cone of T,M by
[27, Lemma 5.33], hence B(a) = w € A°". We have shown

(7.11) E(w) ¢ Ct,

when w € W\A*.

2) Around any null vector v there is an open neighbourhood W in
D(E) such that (7.11) holds and such that the restriction of E to W is
a diffeomorphism onto its open image. This follows from Lemma 7.2.

In both cases the restriction of G to E(W) N C™* coincides with the
restriction of El;i} to E(W) N C*. G is hence smooth in the image by
F of any null or zero vector. The lemma follows.
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Theorem 7.7. Let w = [y]+ and a = [y_]- belong to the timelike
future M*(co) and the timelike past M~ (o0) of a Cq manifold (M, g)
with @ > 0. Then the following hold:

1) I~ (w) (0I'*()) is a C* hypersurface in M of constant signature
(0,+,...,+). Through every point in I~ (w) there is a future null coline
B to 7.

2) The intersection I~ (w) NAI*(a) is a C* Riemannian manifold
of dimension dim M — 2.

Proof. To prove 1) for any w = [y]; € M*(00), suppose z € 01~ (w).

We claim that there exists a future null coline 3 to y through 3(0) =
z. To this end let { denote some TF geodesic through ¢(0) = z. {(¢) is
in I~ (v) for t < 0 because then I'*({(t)) is an open neighbourhood of z.
For a suitable increasing sequence {u,} converging to 0, the sequence
v(u,) with

v(w) £ =V o CW)/(V,¢), u<0

will converge to some v € T, M. Here V denotes the vector field, that
assigns to each z € I~ (vy) the tangent vector to the future coray from
z to . We need to know that for every ¢t > 0 such that z ¢ J*(vy(t)),
the set
Ky =1I"(w) N (K*(v() U {7(t)})

is contained in a compact set, C; say. But to any ¢q € K, there exists an
NF geodesic 8 from (t) to q. Since ¢ € I~ (w) there is a TF geodesic
o from g to some (¢t + ¢) = o(a) with cosh(Qc)/sinh(Qc) < 2. The
existence of a compact set C; containing K; now follows from Lemma
6.1 showing that

—(6'(0),7'(t)) < (cosh(Qc) — cosh(Qa))/@sinh(Qc) < 2/Q.
For every u < 0 there exists an s, > 0 such that
exp(syv(u)) € I (y(t + 1)),
and hence also a t, € [0, s,[ such that
qu = exp(t,v(u)) € Kiyy.

If D is a compact neighbourhood of z, then for all © < 0 sufficiently
close to 0, we have

ty v(u) = F71(((u),q.) € F7((D x Cyyy) NC).
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This set is compact by Lemma 7.5 and Lemma 7.6. This means that
the convergence of {t,,v(u,)}nen to some w can be assumed by taking
a subsequence of {u,} if necessary. The nonspacelike geodesic B(s) =
exp,(sw) is then in I*(y(¢)) for all s > 1. Looking at the timelike
geodesic triangle v(0)y(t)3(s) with side lengths ¢,c and b we find

(c3(0),7'(0)) = (cosh(Qc) — cosh(Qb)cosh(Qt))/[sinh(Qb)sinh(Q1)]
> —cosh?(Qt)/sinh?(Qt).
Here ¢, is the TF geodesic from ¢,(0) = (0) to ¢,(b) = B(s). Since
z ¢ I~ (w) we infer that 3 is a future null coline to 7y through z, thereby
proving the claim. Notice that o(s) € I~ (w) for all s € R, due to the
convergence of {t,, v(u,)} to w.

Define p = 3(s), ¢ = B(—s) and f, : J7(B(s)) = R by
fs(y) = dly, B(s))

for s > 0. Take some z € I*(p). Since z >> z, there exists some past
directed timelike vector v in T, M such that ~,(t,) = z for some ¢, > 0.
We shall now prove a sequence of four claims, leading to a proof of the
first statement.

First claim. We claim the existence of an open neighbourhood U of
v in the set T, M~ of past directed timelike unit vectors in T,M and
a C*™ function t, on U such that ¢,(v) = ¢, and for all w in U we have

Yo(ts(w)) € J7(B(s)) »  falryu(ts(w))) =0.

To see this take an open neighbourhood V' of —sf3'(s) in TM\A%* such
that the restriction of exp, to V is a diffeomorphism onto its open image
and such that exp,(w) ¢ J~(p) for any w € V\A’"; cf. Lemma 7.2.
Define

gs(y) = -<w’ w) y W= exppl'vl(y)

for y € exp, (V). For some open neighbourhood Q of (v,t,) in T; ' M~ x
R, exp,(wt) € exp,(V) for all (w,t) € Q2. The claim now follows from
an application of the inverse function theorem to the function

G, : Q- R, (t,w)— g,(exp,(wt)).

Second claim. For all w € U and all 4 > s there exists a unique
t,(w) € [0,%,(w)] such that

(7.12) Y(tu(w)) € J7(B(w),  fulyuw(tu(w))) =0.
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Notice that 7, (ts(w)) € J=(8(s)) € J~(B(u)); cf. [27, 14.1 and 14.6].
This means that

tu(w) = inf{t € [0,2,(w)] | 7 () € J7(B(u))} >0

satisfies (7.12). If some ¢ € ]0, ¢, (w)[ also satisfies the claim, then

Y (tu(w)) << 70 (t) < B(uw).

Consequently v, (t,(w)) € I~(B(w)). Since this is untrue, the unique-
ness of t,(w) follows.

Third claim. The function u — t,(w) = t,(u) > 0,u > s is decreas-
ing, hence convergent.

This follows from the above definition of ¢,(w) and the fact that
J~(B(u1)) C J~(B(uz)), whenever s < u; < u,.

We can now define a function ¢ on U by declaring

t(w) = 11‘r>1£ tuy(w), wel.

Clearly r = 7,(t(w)) € closure I~ (w); cf. [27, 14.6 (2)]. Assume for
contradiction that r € I~ (w); i.e., r << 7y(a) for some a € R. Since
is a null coline to v, B(b) € I'*(y(a)) for some b > s. Define

A= {t €[0,t(w)] | exp,(tw) € J(r, (b))},

which is closed by global hyperbolicity of (M, g). Hence t, € A, where
t, = inf A € [0, ¢(w)[. Since << is open,

exp(t,w) € J~(B(b)), fo(exp(t.w)) =0,

contradicting the definition of ¢t(w). Thus r = v, (t(w)) € I~ (w).

Fourth claim. t is C*.

To see that ¢ is differentiable in w € U define y = exp,(wt(w)) €
0I~ (w). We know that there exists a future null coline §, to v through
B,(0) = y. Take some s > 0 and some z € I*(8,(s)). According to
the first claim and its past dual around any w € U there exist an
open neighbourhood U,, of w and C* functions ¢t* and ¢~ such that
tt(w) =t~ (w) = t(w) and

Yu(t™(u)) € K=(By(5)),  7ul(t™(u)) € K¥(By(—s))



LORENTZIAN GEODESIC FLOWS 149

for all u € U,,. Since 7, (t*(u)) € J~(B,(s)) C closure I~ (w), t*(u) >
t(u).

Lemma 14.1 in [27] tells us that there is no ¢ > 0 such that 3,(t) €
I~ (w). This will not happen for a negative ¢ either according to Lem-
ma 7.1. Using [27, 14.1] once more we deduce that v, (¢~ (u)) ¢ I~ (w)
and hence ¢~ (u) < t(u). From the fact that t~(w) = t(w) = tH(w) it
follows that ¢ is differentiable.

To see that t is C! in w € U let s denote a C* function on an open
neighbourhood Q of (w, 8,(1)) in T, ' M~ x M such that s(w,y) = t(w)
and

Yo(s(v,2)) € K™ (2)

for every (v,z) € Q. Give some open neighbourhood W of y in 01~ (w)
a Riemannian metric h. The tangent vectors to differentiable curves
through ¢ in W span a subspace

A, =T,K~ (ﬂy(l))

in T,W. It has signature (0,+,..,+) according to Theorem 7.4. We can
then define a vector field X on W. The value of X at q is the unique
future directed null vector of unit Riemannian length in A,. Notice that
Bx(q) is a future null coline to y for all g € W.

If X is not continuous at some g € W, there exists a sequence {g¢, }
in W such that {g,} and {X(g,)} converge to g and Y, # X(q) respec-
tively. For some s < 0, By(q)(s) € I"(w), because Y (q) and X (q) are
linearly independant null vectors and Gx(g) (1) € 01~ (w). Continuity of
the geodesic flow implies that

Bx(g.)(s) € I™(w)

for some sufficiently large n. This contradicts Lemma 7.1. Thus

v db, = ds(v,ﬂx(exp,(t(v)v))(l))

is continuous.

The map w — exp, (wt(w)) from U to 01~ (w) gives rise to a chart in
a C! submanifold structure on 8/~ (w). The tangent space to 91~ (w)
at z € I (w) coincides with the tangent space to K~ (8,(s)), where
B, is a future null coline to vy through =z and s > 0. Theorem 7.3. now
tells us that 01~ (w) has constant signature (0,+,...,+).
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2) To verify that I~ (w) N8I () is nonempty let o denote some
TF geodesic with ¢(0) = (0) and

A= (0'(0),7'(0)) # —1.
Choose t > 0 subject to the requirement
A? — cosh?(Qt)/sinh?(Qt) > 0.

The reverse triangle inequality shows that we can find some s, such
that o(s.) € J~(y(¢t))\I~ ((t)). Using Lemma 6.1 we derive

(7.13)  (cosh?(Qs) — 1)sinh?(Qt) A® < (cosh(Qt)cosh(Qs) — 1)2.

We conclude that cosh(Qs) < K for some positive K regardless of
the value of t. It follows that y = o(s*) € 01~ (w) for some s* > 0.
We have seen that there exists a future null coline 3, to v through
By(0) = y and that the counter image by the restriction of exp, to
A~ (y) = A" NT,M of K~(y) N I'*(e) is contained in some compact
set in T,y M. We can then find a ¢, < 0 such that

z = B,(t.) € 8 (a) N O™ (w).

Combining Proposition 4.8. and Lemma 7.1 we see that 3, (t.) cannot
belong to the tangent space to dI*(a) at z, because the signature of
this vector space is (0,+,..,+). We conclude that I~ (w) and 0I*(c)
have nonempty transversal intersection in a C' submanifold N of M.
There is also a past null coline 3, through z to y_. N is Riemannian
because

B,(t.) — B,(0)

is a timelike vector orthogonal to T, N. Hence the Theorem follows.
Ezample 7.8. There are Cy Robertson Walker spacetimes of non-
constant sectional curvature ¢ > 0. In fact let go denote the metric on
Mg, C R*1, and fq the restriction to Mg of a smooth function f on
R"*! depending only on the first coordinate. With a suitable choice
of f the timelike sectional curvatures of (Mg, fogq) will be bounded
below from zero by some Q. € ]0,Q[. Nonspacelike completeness of
(Mg, fqgq) follows from [26, Lemma 14.13]. It is future 1-connected,
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because this is invariant under conformal changes of the metric. Dy-
namic properties of the geodesic flow on Lorentzian manifolds have
been considered in [1], [10] and [32].

8. Density of timelike periodic geodesics

In this section we shall show that the timelike periodic geodesics are
dense in the future timelike unit tangent bundle

T'M* = {v € TM|({v,v) = —1, v future directed

of a Cg manifold (M, g) with Q positive and with vicious Deck trans-
formation group. We shall proceed to define this concept.

Let w denote the tangent bundle projection, and D : TTM — TM
the connection map; see [18]. The tangent bundle to M at v € TM
decomposes into

T,TM = HORT,TM & VER T,TM,

where HOR T,TM is the kernel of D,, and VER T,TM is the kernel
of Tyw. Any w € T,TM decomposes uniquely as

w=w"+w’, w" € HOR T,TM, w® € VER T,TM.
The tangent bundle to M carries a canonical metric G, defined by
G(wl’wZ) =g(w{11w3) +g(wf,w;) Wy, Wy ET,,TM

and this induces a Lorentzian metric on the future timelike unit tangent
bundle T-1M+*.

Definition 8.1. A group I' of isometries on (M, g) acting properly
discontinuous on T-!M+ is vicious provided T-'M*/T' = N is time
orientable and totally vicious, that is,

I'(pnI-(p)=N

for allp € N.

Remark 8.2. Suppose I is a group of isometries on (M, g) acting
properly discontinuous on T-*M*. According to [27, p. 191] there is
a unique differentiable structure and metric on T-*M* /T making the
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natural map nr : T7!M* — T7'M*/T = N a semi Riemannian
covering map. N will always be given this differentiable structure.
The reader may consult remark 9.6 for examples of vicious groups of
isometries.

Suppose w € M*(00) and @ € M~ (0o) are causally related, i.e.,
there exists a p € M such that p << w and p >> « respectively.
According to Proposition 4.5 there exist a unique TF geodesic y; and a
unique TP geodesic v, from p to [y]; = w and [y_]- = a respectively.
It will be convenient to define

B(w,p) = {[1u]+ € M*(00) | w € T M* (w,7(0)) > —1 - ¢},
B(a,p) = {[1u]- € M~ (c0) |w € T M~ (w,73(0)) 2 -1 - e}

Proposition 8.3. If T is a totally vicious group of isometries on
(M,g) and p >> a, p << w for some p € M, then for every ¢ > 0
there exists a TF axis ¢ of a hyperbolic isometry £ € I' such that

[Yel+ € Be(w,p) [v:_]- € Be(a,p).

Proof. 'To prove this we first apply Proposition 4.5 to give us a TF
geodesic v, and a TP geodesic v, with v;(0) = ¥,(0) = p, [11]+ = w and
[12]- = a. We will first show that there exist isometries p, and p_ in
I" such that

(8.1) pr(p) € IT(m (1), p-(p) € I (1(t)).

We have chosen t > 0 to satisfy
cosh?(Qt)/sinh?(Qt) < 1+ .

It will suffice to find a p, € I satisfying (8.1). To introduce notation let
X,Y and Z denote the time orientations of T7'M*, T'M*+/T = N
and M respectively. These time orientations may be compatible or
incompatible at some v € T7'M*,7(v) = v, (¢). That is,

(T (X (v)), Z (7 (v))UY (7 (v)), Tymr (X))

may be either (i) positive or (ii) negative. Since N is totally vicious,
there exists a smooth timelike curve 8 : [0,1] — T-!M*/T from



LORENTZIAN GEODESIC FLOWS 153

mr(v) = B(0) to some mp(w) = B(1), w € T,'M* with n(w) = p.
We can assume it is future directed in case (i), and past directed in
case (ii). The projection mon to M of the lift n : I — T-*M™* of
through 7(0) = v is then a future directed smooth timelike curve in
T-'M™ by definition of the metric on T-!M*. But this means that
there exists a py € I' such that Tp, (w) = n(1) hence v, () << u(p)
as claimed.

Having found p_ € T satisfying (8.1) by logically equivalent reason-
ing we define £ = pu, o u~! and combine

p<<ps(p), p<<p'(p)

to assert that p << £(p). Let the TF geodesic v, denote a timelike axis
for £ with £ o ¢ = 7, o 74,; its existence is guaranteed by Theorem
5.3. Recall that we can assume that [y¢|; € It (p) and [y¢_]- € I (p).
Combining

(T€(7(0)), X) = (7¢(74,(0)), X) <0

with the fact that T-!M™* is path connected we conclude that T¢
preserves time orientation. Let o denote some TF geodesic through
0(0) = p. Then

p << pi(p) << pi([o]4).

Looking at the timelike geodesic triangle p v;(t) p o o(s) with side-
lengths t,v = d(p, p4 0 0(s)) and u = d(71(¢), p+ © o(s)) we find

(cosh(Qu) — cosh(Qv)cosh(Qt))/[sinh(Qv)sinh(Qt)]

Ap 2 Apy =
> —cosh?(Qt)/sinh?(Qt) > —1 —e.

We deduce that p (I (p)) C Be(w,p). Similarly p_ (I (p)) C Be(e, p).
Hence also

[vel+ € &I (P)) C Be(w,p),  [re_]- € 21 (I (p)) C Be(a,p),

and the proposition follows.

We can now prove the density of timelike periodic geodesics in the
future timelike unit tangent bundle of a Cy manifold.

Theorem 8.4. Let (M,g) denote a Cq manifold ,Q > 0, with a
vicious group of isometries acting on the future timelike unit tangent
bundle. Given an open set U in T-*M™, there ezists a v € U such that
the geodesic with initial velocity mr(v) is periodic.
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Proof. We shall prove more, namely: On any Cg manifold with
Q@ > 0, the tangent vectors to TF geodesics joining any pair [y,_]- =
a € M~ (c0) and [y,]+ = w € M*(00) depend continuously on the
endpoints. By this we mean that to any neighbourhood U around v
in T-'M* there exists an € > 0 such that any TF geodesic -y joining
[7]+ = w. € Bi(a,p) and [y-]- = @, € B.(w,p) has a tangent vector
in U.

Choose some ¢, > 0 and open neighbourhoods W, U; and U, around
t,v in At and p; = 7,(0) = v, (¢1), P2 = 7»(t2) in M such that

Ew : WU xU, ww (n(w),exp(w))

is a C* diffeomorphism. We can assume that z << y for all z € U;
and y € U, cf. [27] p.404 and also that u/||u|| € U for all u in W.
Let Ey, =~,, ..., E, denote a parallel orthonormal basis along +y,. There
exists b; > 0 such that any z,, € T,, M, j = 1,2 satisfying

| (25, Ei(0)) | < 2b;

for all i = 1,..,n is mapped into U; by exp,, .
We claim that there exists an A; > 1 such that for any TF geodesic
B with

Bl+ = [c]+ [B-]- =[di]-, ¢ € Qrr, di € Qrp,
(ci(0),d;(0)) < Ai;,  c:i(0) =di(0) = p;,

there exists a past directed null or zero vector z; € T, M with
exp,, (z;) € B(R) and

(8.2)

| (zi,d;(0)) | < bi.
To prove this claim choose A; > 1 such that
f@) 2 (1-z+ (& -1))/Q < b/2

whenever z € [1, A;[. This A; will work. To see this we denote by d,
the TF geodesic from d;(s) = d,(0) to c;(s) = d,s(u;), s > 0, and define

t, = sup{t > 0| d,(t) € J(d(s),p)}

Then d,(t,) € J~(p)\I~(p) by global hyperbolicity of (M, g). Accord-
ing to [27, 14.5] there exists a past directed null or zero vector z;(s)
satisfying the requirement

€XPy, (zi(s)) = ds (ts)'
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If z; = 0, the claim follows. Otherwise define 7(t) = exp,(tz;). Lem-
ma 6.1 gives us the following inequalities involving

h=u,—t, l=t, d=(d(),n'(1)=e d=—(n(0),d(0)),
namely

cosh(Qs) < cosh(Qh) — sinh(Qh)Qd,
(8.3,4,5) cosh(Q@s) < cosh(Q!) + sinh(Q!)Qe,
cosh(Q!) < cosh(Qs) — sinh(Qs)Qd,

Combine (8.3) and (8.4) to get
(8.6) cosh(Qs)(sinh(Q!) + sinh(Qh)) < sinh(Q(I + h)).
We will also need to combine

cosh(Q(h +1)) < cosh?(Qs)(1 + 4,) — 4,
with (8.6) to yield

(cosh(Q(h +1)) + A,) (sinh(Q!) + sinh(Qh))?
< (1+ A,)sinh?(Q(I + h)).
Squaring the brackets and rearranging the terms we obtain

cosh(Q(h + 1))(sinh?(QI) + sinh?(Qh)) + 2 sinh?(Q!)sinh?(Qh)
< cosh?(Ql)sinh?(Qh) + sinh?(Q!)cosh?(Qh)
+2A,sinh(Ql)sinh(Qh)(cosh(Q(h + 1)) — 1),

and then finally
sinh?(Qh) — 24,sinh(Q!)sinh(Qh) + sinh?(Q!) < 0.
We deduce immediately that
sinh(Qh)/sinh(Ql) < A, + (A2 -1)% £ a.

The reverse triangle inequality tells us that h > s. For s greater than
or equal to some sy, we may then compute from (8.5)

sinh(Q!)cosh (Qh) — cosh(Qs)sinh(Q!)
Qsinh(Qh)sinh(Qs)

cosh(Qs)(1 — 1/@)/(Qsinh(Qs))

cosh(Qs) f(A,)/sinh(Qs) < b/2

d.

(8.7)

A A
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when s, is sufficiently large. From (8.7) it follows that the {z;(s)}s>5, lie
in a compact subset of T, M. We can then take a sequence of real num-
bers s, > so converging to +o0o and such that z;(s,) — z; as n — +o0.
Now exp,, () € B(R) because d,, o7, = " and 3" have nonspace-
like limit curves £ and ¢ through d;_ (t,,), which are TF geodesics with
€'(0) = —¢'(0) and £(0) = ¢(0) = exp,, (2;). This is due to the fact that

exp,, (2i(sn)) = d,, (ts,) — exp,, (2:)

for n — +o00. Thus £ is a future coray to ¢, and £_ a past coray to d.
By the uniqueness in Proposition 4.8 we conclude that 8 = £ o 7, for
some a € R and hence exp,, (z;) = £(0) = B(—a). This establishes the
claim.

Due to the claim there are A; = cosh a;, a; > 0, such that the
conclusion following (8.2) is true. We can also assume that b;4; +
(A2 — 1)%b,- < 2b;, i = 1,2. Now take s; < t;, s > t; subject to the
requirement that any ¢; € Qrp and d; € Qrp with

[eil+ € IT(1u(s2)),  [di]- € I"(%(s1)),  ¢;(0) = d;(0) =p;
satisfy the inequalities
(8:8)  —(c;(0), 1 (t;)) < cosh(a;/2),  (d;(0),7,(¢;)) < cosh(a;/2).
There exists a TF geodesic § with

[eil+ = [Bl+ € 1L (7 (52)),
[d;]- = [B-]- € I5 (7 (s1)),

where ¢;(0) = p;. Now (8.8) implies that (c},d}) < A;. According to
the claim (8.2) there are past directed null or zero vectors z; € T,, M

and s; € R such that
28 (zj) = 13(3.7)? | (Z],d;(())) I < bj’ .7 =1,2.

It follows that

(8.9)

| (25,75(t;)) | < Ajbj + (A2 —1)%b; < 2b;.
Hence 8(s;) € U;. Since B(s;) << B(s,) we conclude that

(s2 = 51)B'(s1) = Eyw ™ (B(s1),B(s2)) € W,
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so that ('(s;) € U. Due to Proposition 8.3, we can assume that 3 is an
axis of an isometry p € I'. This finishes the proof.

9. Constant curvature

In this section we will show that there are discrete groups of isome-
tries acting on the future timelike unit tangent bundle of the complete
Co manifolds of constant sectional curvature @ > 0. To do this consider

X={(z,v) e RI™ xR | (z,2) = 1/Q*, (z,v) =0,
(’U,'U) —I/Q y U1 > 0},

Y ={(yw) ER xR | (y,9) = ~1/Q?, (y,w) =0,
<w’ _I/Qayl>0}

Riemannian hyperbolic space is denoted by

n+1
My ={z e R}*" | (z,z) = -zl + )z} =-1/Q%}.

=2
We have the natural maps Gx and Gy from the future timelike unit
tangent bundle
T-'M} = {v € TMg | {v,) = —1, (v, X) < 0}

of My and unit tangent bundle T* My of My to R**! x R+, defined
by the sequences

T—lMa- — TR R x Rl ,
T'My — TR 5 R+ x R+

In each row the first map is the inclusion, the second map the natural
identification. The map that takes (z,v) € R™*! x R**! to (z,v-1/Q)
is denoted by hq. Notice that hg o Gx and hg o Gy map onto X and Y.
This means that

Fx IT-IM-QF—)X , U'—')hQOGx(U),
Fy :TlMH—')Y y 'Uf—)hQOGy(’U)

are diffeomorphisms to X and Y with their submanifold structures from
the ambient R**! x R**1, Also

G :X->Y (z,v)- (v,2)
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is a diffeomorphism, showing that T~ M and T" My are diffeomorphic
via the composition
U=FloGoFx

of diffeomorphisms. We have geodesic flows

®qg : RxT M} - T M,
by : RxT'My —» T My

on Mg and My respectively. The diffeomorphism ¥ conjugates these
two flows. In fact, we have

Proposition 9.1. Uo ®q(t,v) = By (¢, U(v)) for allv € T MY
and allt € R

Proof. Given t € R and Fx(v) = (z,y) € X define

v(t) = z cosh(Qt) + y sinh(Q?),
B(t) = = sinh(Qt) + y cosh(Qt).

They are geodesics in Mg and My with initial velocities 4'(0) = v
and ¥(v) = £'(0). The proposition follows from a direct computation,
showing that Fy o ¥(v'(t)) = Fy(8'(t)).

The tangent maps of a properly discontinuous group I' of isometries
on My induce a properly discontinuous group I'y of diffeomorphisms
of T* My. The properly discontinuous groups of diffeomorphisms

Py={Fy0COFY—1 |C€PH},
Fx={G—10COGlcery},
PQz{Fx_1°C°Fx|C€Fx}

give rise to the following commutative diagram:

T'M§ - X = Y « T'My

(9.1) ] X 1 1
T—lMg/PQ — X/Fx - Y/Fy — TlMH/FH

where the vertical maps are the natural maps, and the maps in the
bottom row are induced by the maps Fx, G and Fy in the top row. The
restriction maps

Rq : I(R*') - I(Mg), Ry : O} (n+1)UOF(n+1) - I(My)
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from the isometry group I(Ri*") of Rf*" to the isometry groups I(Mpg)
and I(Mpy) of Mg and My are isomorphisms, according to [27, 9.8].
Hence

To={T¢ : T'M} - T'M} | p €T C I(Mp),
£ = Rq(Ry' (1))}

Thus I'g is a properly discontinuous group of tangent maps of isome-
tries of Mg. It follows that the commutative diagram in (9-1) pro-
vides a link between the geometries of Riemannian and Lorentzian hy-
perbolic manifolds, making available Riemannian theory applicable to
Lorentzian hyperbolic manifolds.

Remark 9.2. 1t is also clear that the composition 1 of diffeomor-
phisms from left to right in the bottom row of diagram (9.1) conjugate
the geodesic flows g and %y of T‘lMg)L /Tq and T*My /Ty respec-
tively.

Propositions 9.3 and 9.4 below will enable us to deduce results about
the dynamic properties of the geodesic (horocycle) flow on T-* Mg /T'q.
These results set the context for Theorem 8.4; see Remark 9.6.

We shall now show that ¥ and hence 9 preserve Liouville measures
7@ and 7y on My /Tq and T My /Ty when My /T is orientable.

Proposition 9.3. ¢.7y = A1g, for some A € R\{0}.

Proof. 1t is clear that for some v € T‘lMg we have

U.Cu(v) = Mq(v)

for some A € R\{0}. We have used {g and (g to denote Liouville
measures on T'Mg and T'My. Given w € T'MJ = Ng we can
take an orientation preserving isometry u on My such that

(9.2)

Tp(¥(v)) = ¥(w) = ¥ o TE(v),
where ¢ = Ro(Ry' (1)) Suppressing evaluation in v, compute
AT‘E"CQ = ACQ = ‘Il*gH = \I,*TN*CH = Tf*\II*CHa

hence ¥,(y = A{p. This property descends to the quotients.

We can define a horocycle flow on My when the dimension of Mg
is two. We proceed to define it. First of all we need Mg and My to
have compatible orientations. The restrictions of the position vector
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field on R3\{0} to Mg and My provide normal vector fields Uy and
Uy on Mg and My. The orientation w = —dz, A dz, A dz; in R gives
us orientations

LUQ(IL") =w(UQ(z)7'>')’ TE MQ7
wH(y) = w(UH(y)v K ')a Y€ My

of T,Mg = z* and TyMy = y*. Given v € T"' M, let b} denote the
Buseman function for +,, defined on I~ (w),w = [y,]+. The horosphere

B, ={g € I"(w) | b](q) = b5 (r(v))}

is a smooth, spacelike hypersurface of My, since (grad b} ,grad b)) =
—1. There is a unit speed geodesic 3, : R — B, through m(v) such that
B.(0) and v are positively oriented. The horocycle flow

hg : RxT'M§ — T 'M{

is then
ho(t,v) = grad b} (B,(t)), teR

Similarly the horocycle flow on My is denoted
hg : RxT'My — T' M.

We need to know
Proposition 9.4. Tohg(t,v) = hyu(t,¥(v)), (t,v) € RxTMJ.
Proof. Let us find the horocyclic orbits of v, € T‘IMS and wy €
T'My, where Fx(vo) = 1/Q(es,e;) and Fy(wp) = 1/Q(e;,e3). Here
{e;} denotes the canonical basis in R®. We find that

FX(hqu (t)) = ((_%t21 ta 1/Q - %t2)7 (I/Q + %tza _t7 %tz))
= G o Fy(hi3, (1)),

showing
(9-3) Vo hg(t,vo) = hu(t, ¥(vo)).

Since I(Mp) acts transitively on the orthonormal bases of My (cf.
[27, 4.30]), there exists an orientation preserving isometry u € I(Mp)
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taking some w = ¥(v), v € T'MJ to Tu(w) = wo. Define ¢ =
Ro(Rg' (1)) and observe that

Tpo¥ =ToT¢,
T¢ o hQ(t) = hie ) (), teR

Combining this with (9.3) we conclude
U o TE(RY(8)) = hi(y)(t) = Tho T(h2(2)) = Tuo by (t).

Thus the proposition follows.

Definition 9.5. The group I'g in (9.2) is proper when I' acts prop-
erly discontinuously on My such that My /T is a connected, orientable
Riemann surface of finite volume.

The horocycle flow descends to the quotient of the future unit time-
like tangent bundle T“1M$ with a proper group I'q.

Remark 9.6. In view of Propositions 9.3. and 9.4. a number of
available results are now applicable to the quotient X = T'lMg /Tao
of the future timelike unit tangent bundle with a proper group I'g. We
mention a few as follows.

1) The geodesic flow is mixing and ergodic; cf. [18].

2) The horocycle flow is mixing of all degrees; cf. [26].

3) The timelike periodic geodesics are dense in X; cf. [18].

4) There exists a transitive timelike geodesic in X; cf. [18].

Notice that I'g is a vicious group of isometries.

Remark 9.7. A referee pointed out that there is another way of see-
ing the existence of properly discontinuous groups of isometries acting
on T~' M. The isometry group of Mg is O; (n+1); see [27, p. 239]. The
group O; (n+1) also acts transitively on Mg. According to [27, p. 307]

Take
Vo = ele"“ € T-1M+,
where ey, ..,e,,; is the canonical basis in R**!. The isotropy group at
Vo is
100

On—-1)={Le€0O;(n+1)|L=[0c0]| ,ceO(n—-1)}
001
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under the transitive action of
Of(n+1) =0t (n+1)UOF (n+1)
on T‘lMg . From this group we obtain the coset manifolds

p:0f(n+1)/O(n—1) 5 T'MS L O(n—1) = Tu(w,),
p:0F(n+1)/O(n—1) - T'Myg L O(n— 1) — TE(¥(v)),

where
Loig=1igop,
LO'I:H='I:HOE.

Then we find

p(L O(n — 1)) = Tp(vo),
p'(L O(n - 1)) = TE(¥ (o)) = ¥(Tp(vo)) = ¥(p(L O(n — 1))).

Thus
U=pop :T'M$ - OF(n+1)/O(n —1) - T'My.

Taking a properly discontinuous group I' of isometries of My we obtain
a properly discontinuous group of isometries I'g of T‘lMg via p.

10. Cg surfaces

The existence of null axes for a hyperbolic isometry x on a Cgp man-
ifold (M, g) with @ > 0 is related to the existence of fixed points for a
Riemannian isometry in the following way.

Proposition 10.1. Let o = [y_]- € M~ (00) and w = [y]4 €
M*(00), where v denotes an azis for p. If £ € 0~ (w) NAI*(a) = N,
and v, denotes a null vector in T,0I~ (w), then the following hold:

1) N,0I" (w) and 8I'*(a) are p invariant.

2) If z is a fized point for u, then 7, is a null azis for p.

Proof. 1) I~ (w) is p invariant and so is I~ (w), hence also I (a).
The intersection N is then p invariant. 2) Simply observe that Tu(v,) =
Av, for some X\ > 0.

This fixed point problem can be solved completely on Cg surfaces
with @ > 0 and a volume form w. If 7y denotes a timelike axis for the
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orientation preserving hyperbolic isometry p and w = [y]4, a = [v]-
we have indeed

Proposition 10.2. Every future null coline 8, through z € 81~ (y)
to v is a null azis for p. Furthermore there exists a t, € R such that
Bz(tz) € I~ (w) N8It (a) is a fized point for p.

Proof. Due to the definition of a null coline there exists a positive
s such that 8;(s) = y € I'*(p), p = 7(0). Let 3, denote a future null
coline to vy through y. We need only prove y invariance of §3,.

To this end let E denote a timelike parallel vector field along v with
exp,(sE(0)) = y for some s > 0. Define a geodesic variation

a :{(s,t) eR?|t>0} = M, (s,t)— exp(sE(t)).
We claim that for every ¢ > 0 there exists an s(t) > 0 such that

a(s(t),t) € By(R).

This is true for positive ¢ values in a neighbourhood of 0 by the implicit
function theorem. If the claim is untrue we can define

t.=inf {t>0]a(s,t) ¢ B,(R) forall s >0 } > 0.

Notice that s(t) < K for some K > 0 and all ¢t € [0,t.[; cf. (7.13).
We can assume convergence of {s(¢,)} to s, for a suitable increasing
sequence {t,} of positive real numbers, converging to t.. There exists
real numbers z, such that

(5(tn),tn) = By(2n).

Taking subsequences if necessary we can assume the convergence of
{2} to z. too, because {z,} is a bounded sequence. This follows from
global hyperbolicity and [27, 14.13]. Since

Bile) s S2(snt

are linearly independant, we can apply the inverse function theorem to
assert the existence of s(t) for ¢ values in a neighbourhood of ¢,. This
contradiction verifies the claim. The uniqueness of s(t) > 0 follows
from Lemma 7.1 and the strong causality of (M, g).
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Suppose pu translates v with a > 0, i.e., poy = 7o 7,. Then
Tu(E(0)) = E(a), because p is orientation preserving, hence

(10.1) poa(s,0) = a(s,a).

Now B,(R) C 8I~(w). In view of Proposition 10.1 this implies that
s(0) = s(a), so that

p(By(u1)) = po a(s(0),0) = a(s(a), a) = By(uz)

for some u;,u; € R Since 0]~ (w) is one dimensional, we conclude that
By is a null axis for p.

According to the proof of Theorem 7.7 2), there exists a ¢ < 0 such
that u = 3,(t) € I~ (w) N OI* (). A past null coline 5, to v through
u is also p invariant. Assume for contradiction that some s < ¢t makes
B:(s) = Bu(v), v € R For v < 0 this contradicts Lemma 7.6. For
v = 0 it contradicts strong causality of (M,g). For v > 0 reach a
contradiction by applying Lemma 7.2 to find a w € ]0,v[ such that
Bu(w) ¢ J*(Bu(v)). The uniqueness of t just proven combined with p
invariance of §, and (3, implies that (3,(t) is a fixed point for p.

Definition 10.3. If the NF ( NP ) geodesic 3 is a future coray to
the TF ( TP ) geodesic v, then 3 has future ( past ) endpoint

wB) =hl+,  (alB) =D1l-)

We can now introduce relations :) ~, and — ~, In the sets QyFr

and Qyp of NF geodesics and NP geodesics respectively. For 3,3, €
Qnr (Qnp) we define

ﬂl '_? ~nﬁ2 (ﬂl t) Nn,B2)

if
w(Br) =w(Be) ((Br) = a(Be)).
Since :) ~n and — ~,, are equivalence relations, we can finally intro-

duce the null future and the null past as

MI_VF(OO) = QNI*"/ ’:) ~n,
MA_,(OO) = QNP/ -j ~ne.
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Finally, we have

Theorem 10.3. An orientable Cq surface with Q > 0 and vicious
isometry group T' has constant curvature.

Proof. We shall first verify that a future null coline 3, to some TF
geodesic y through §,(0) = z € M maps into 81~ (v). To see this take
s > 0 such that

Ba(s) € I'(7(0)).

Let v, denote the TF geodesic from ~,(0) = (0) to v,(as) = B:(s),a, >
0. If z was not in I~ (7), then it would neither be in I~ (v) according
to Lemma 7.1. For some t, € ]0,a,[, 7.(t.) € I~ (v). Let o, denote
the TF geodesic from v,(t,) to B;(u), u > s and v be the limit of ¢/, (0)
as u — +oo; see Lemma 6.2. «, is not a future coray to v because
Ys(t.) € OI= (7). For any t < t., v,(t) € I"(y) NI (v,)- By 7, we
denote the TF geodesic from 7,(t) to B;(v),v > s. 7,(0) converges as
v — 400 again by Lemma 6.2. This is incompatible with the fact that
[vo]+ # [V]+, hence z € 91 (7).

Now take some p € M and a future directed respectively past di-
rected null vector w;,w_ € T,M. We need them to be linearly inde-
pendant. There exists a TF geodesic o with

0]+ = w(Bu,), lo-]- =a(Bu_).

We aim to assert that
(10.2) oI (o) = B:(R) U B,(R), B=(R) N B,(R) =0,

where 3, and S, are future null colines to o through z,y € I~ (o). Let
X; = 0'(0), X, denote an orthonormal basis in T;,(0)M, and define

v =coshl X; +sinhl X,;, w=coshl X; —sinhl X,.

We have already seen that there exists s, > 0 such that ~,(s) =
T, Yu(t) = y € 81~ (o). Theorem 7.7 asserts the existence of future
null colines 3, and B, to v through z and y. For positive s we let
o} and o? denote the TF geodesics from o(0) to B;(s) >> o(0) and
By(s) >> o(0) respectively.

The two bases ¢'(0),01'(0) and ¢'(0),02'(0) have opposite orienta-

tions which do not depend on s. We have already seen that 3, and 8,
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map into 81~ (o), which is a C' degenerate hypersurface. It follows
that G,(R) and B,(R) are disjoint.

We can assume o is an axis of a hyperbolic isometry u € T'; cf. Propo-
sition 8.3. u has fixed points p; = B,(t;) and p_ = B,(t,), tz,t, € R
according to Proposition 10.2. We know from Proposition 10.2 that
the future null colines 3,, and 3,  to o through G,,(0) = p; and
Bp_(0) = p_ respectively are null axes for 4 € I'. That is,

po ﬁp+ (S) = ﬁp+(A+s + T+),
Ko :Bp_ (5) = ﬂp_ (A—s + T—)

for real constants A, A_,r,,r_. Here r, = r_ = 0 since p; and p_ are
fixed points for u. B,, being a future null coray to o, there exists s > 0
such that 3,, (s) >> r = (0) and hence also s, > 0 such that

Bp (s.) € T*(r)\I*(r).
If A\, <1, then we would have

r<< M('f') < po ,Bp+ (St) S :Bp+ (3,),

a contradiction, hence A; > 1. Similarly A_ > 1.

Consider now an arbitrary ¢ € M. Take an arbitrarily small open
neighbourhood U around ¢ € M on which we have defined two linearly
independant smooth, future and past directed null vector fields X, and
X _ respectively. Notice that the integral curves of X_ and X, are null
pregeodesics. There exists a TF geodesic 7 with

[T+ =w(By), [7-]- =a(B-),
Bt = Bxy@y  B- = Bx_(a)-

We can assume that U is chosen to render

H,(r) 2 w(Bx, ) € I1((0)),
H_(r) £ w(Bx_(r) € I5(1(0))

for all r € U.
For some orthonormal basis ¥; = 7/(0),Y, we can define invertible
maps
I, :R— I;(T(O)), S [7coshs Yy +sinh s Yz],
I_:R— IO_O(T(O)), S [’)’—coshs Y1 +sinh s Yz]‘
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Lemma 2.2 tells us that f,(t) = I;'oH,0B_(t) and f_(t) = I"'oH_o
B+(t),t € I, are both continuous functions. Here I is an open interval
around 0 such that g, (I),8-(I) C U.

Assume for contradiction that Hy o B_(t,) = Hy o B_(t2) = [¢]+
for some TF geodesic { and ¢, < ¢, such that B_(t,),8-(t;) € U.
Then B_(t;) € 01~ (€) hence B_(t;) € I~(£). This however contradicts
Lemma 7.1. Consequently H, o 3_ and also H_ o 3, are both injective
on I.

It follows from the Implicit Function Theorem that there exists a

smooth mapping
G I_x I+ = U

such that B_(t_), B4 (¢t+) € U, and G(t_,t;) is a point of intersection
of Bx,(s_(t-y) and Bx_(a,(t4) for every (t_,t,) € I_ x I,.. Here I_ and
I, are open intervals around 0. There are e_, e, > 0 such that

] - £+1€+[ C Im fy, ]— 6_,6_.[ C Im f,
f-:l(s) EI—, f:l(s) €I+7

whenever s € ] —e_,e_[, and s € ] — €4, €, [. According to the proof of
Proposition 8.3 there exists a £ € I" such that

wy = §([0]+) = Li(s4),
where s, € | — €, €, [. Define s_ € | —e_,e_[ by
a, =[r_]- =1_(s-),
and also t_ = f7'(sy), t4+ = f2'(s-). Then using our first assertion
G(t-,t4) €0 (w,) =€ 0 By, (R) UL 0 By (R)

We conclude that G(t_,t,) is equal to € o §B,, (v4) or € 0 B,_(v_) for
some v, ,v_ € R Notice that

K(Bp, (v4)) = K(€ 0 By, (v4)) = K(u™(Bp, (v4))) = K(p4),
K(Bp_(v-)) = K(£ 0 Bp_(v-)) = K(u™"(Bp_ (v-))) = K(p-),

as n — +00, hence

K(Bp, (v+)) = K(£ 0 By, (v4)) = K(p4),
K(Bp_(v-)) = K(¢oB,_(v-)) = K(p-)-
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It follows that we can take a sequence {{,}nen in I and {v}} or {v;}
in R such that {&, 0 B,, (v;})}nen or {&n 0 Bp_ (v ) }nen is a sequence in
M converging to q. The sectional curvatures at the arbitrary point ¢ is
then either K(p_) or K(p, ), and the Theorem follows.
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