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ON LIMITS OF TAME HYPERBOLIC 3-MANIFOLDS

RICHARD D. CANARY & YAIR N. MINSKY

Abstract

We show that if a purely hyperbolic Kleinian group is the strong
limit of a sequence of topologically tame purely hyperbolic Klei-
nian groups, then it is topologically tame. We then apply this
result to purely hyperbolic algebraic limits of purely hyperbolic
topologically tame Kleinian groups. We observe that such a
limit is topologically tame if its quotient is not homotopy equiv-
alent to a compression body, or if it has non-trivial domain of
discontinuity.

1. Introduction

A hyperbolic 3-manifold is said to be topologically tame if it is home-
omorphic to the interior of a compact 3-manifold. This seemingly topo-
logical property has strong geometric and analytic consequences (see
theorem 1.1), and it is conjectured that all hyperbolic 3-manifolds with
finitely generated fundamental groups are topologically tame [29]. One
approach to this conjecture is to try to prove it for hyperbolic mani-
folds obtained as limits, in various senses, of manifolds already known
to be tame. This approach is partially motivated by another conjecture
(see Bers [4] or Thurston [40]) that every hyperbolic 3-manifold with
finitely generated fundamental group is an algebraic limit of geometri-
cally finite manifolds (which are in particular topologically tame).

In the 1970’s, Bill Thurston proved that if M is a compact 3-manifold
with incompressible boundary, then any type-preserving algebraic limit
of a sequence of geometrically finite hyperbolic 3-manifolds homeomor-
phic to the interior of M is topologically tame and is itself homeo-
morphic to int(M). In the 1980’s, Francis Bonahon [9] made use of

Received July 12, 1993, and, in revise form, May 4, 1994. Both authors partially
supported by the National Science Foundation.
1



2 RICHARD D. CANARY & YAIR N. MINSKY

Thurston’s techniques in his proof that every hyperbolic 3-manifold
homotopy-equivalent to a compact 3-manifold with incompressible
boundary is topologically tame.

Our main theorem is that, in the absence of parabolics, strong lim-
its of topologically tame hyperbolic 3-manifolds are topologically tame.
We will further show that, again in the absence of parabolics, any alge-
braic limit of a sequence of topologically tame hyperbolic 3-manifolds,
whose fundamental group is not a free product of surface groups and
free groups, is topologically tame. To obtain this generalization of our
main theorem, we make use of the ideas of Ohshika [33] and Paulin and
the results of Anderson-Canary [2]. We hope that our ideas might be
useful to others attempting to prove the entire conjecture.

Before continuing, we recall for the reader some of the geometric and
analytic consequences of topological tameness.

Theorem 1.1. Let N = H3?/T' be a topologically tame hyperbolic
3-manifold, and let Ar be the limit set of T'.

1. ([13], [89]) Either Ar = S or Ar has measure zero. Moreover,
if Ar = S2, T acts ergodically on S2,.

2. ([13], [38], [39]) The geodesic flow of N is ergodic if and only if
AF = Sgo

3. ([12]) N is geometrically finite if and only if Ao(N) # 0, where
Xo(N) = inf spec(—A), and A denotes the Laplacian acting on
L2?(N).

We now introduce some of the notation which will be necessary to
make more formal statements of our results. Let M be a compact 3-
manifold, and let {p; : m; (M) — Isom, (H?)} be a sequence of discrete
faithful representations. The sequence{p;} is said to converge alge-
braically to a representation py, : m (M) — Isom(H?) if it converges
as a sequence of representations; that is, if for each g € m; (M), {p:(9)}
converges, in Isom (H?), to ps(g). In this case, Jgrgenson [25] proved
that p is also discrete and faithful (except in the case that m; (M) is
abelian, which has been completely analyzed by Jgrgensen [24]).

Let Fi = pi(ﬂ'l(M)), Foo = poo(ﬂ'l(M)), N,; = Hg/Fi and Noo =
H3/T,. Since p; is an isomorphism onto its image there is an inverse
isomorphism p; ' : T'; — m; (M) (and similarly for p).

We say that {p;} converges strongly to p,, if it converges algebraically
and {I';} converges geometrically to 'y, (see section 3). This implies,
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roughly, that larger and larger portions of N; look more and more like
portions of N,,. We will discuss this in more detail in section 3.

We will call a representation p : 7 (M) — Isom,(H?) purely hy-
perbolic if p(m;, (M)) consists entirely of hyperbolic elements, i.e., con-
tains no elliptics or parabolics. A discrete faithful representation p :
m (M) — Isomy(H?) is said to be topologically tame if N =
H3/p(m;(M)) is topologically tame.

Main Theorem. Let M be a compact irreducible 3-manifold, and
let {p; : m(M) — Isom, (H?)} be a sequence of purely hyperbolic,
discrete, faithful, topologically tame representations converging strongly
to a purely hyperbolic representation py, : (M) — Isom(H®). Then
Poo iS5 topologically tame. Moreover, for all sufficiently large i there
ezists a homeomorphism ®; : N; = Ny, such that (®;), = po, 0 p; .

Ohshika [33] independently proved a result similar to our main theo-
rem, by techniques that differ substantially from ours. In particular he
makes key use of the work of Otal [34] on pleated surfaces in compres-
sion bodies and his proof is modeled more closely on the original proof
of Thurston in the case where m, (M) is freely indecomposable. We note
that Otal previously proved Theorem 1.2 in the cases where p; (m;(M))
is a function group isomorphic to either ;(S;) * Z or 7, (S;) * m,(S2),
where S; are closed surfaces.

Theorem 1.2. (Ohshika [33]) Let M be a compact irreducible 3-
manifold which is not a handlebody. Let {p; : m,(M) — Isom,(H?)} be
a sequence of quasiconformally conjugate, convex cocompact representa-
tions of (M) converging strongly to a purely hyperbolic representation
Poo : T (M) — Isom(H?). Then po, is topologically tame.

Ohshika then combines Theorem 1.2 with the clever observation that,
for a purely hyperbolic algebraic limit p., of a sequence of quasicon-
formally conjugate convex cocompact Kleinian groups, if the domain
of discontinuity of p., is non-empty, then p, is in fact a strong limit.
As a consequence he observes that the limit set of p., either has mea-
sure zero or is the entire sphere. This represents progress towards the
Ahlfors measure conjecture. (Although Theorem 1.2 and part (1) of
Corollary 1.3 are not explicitly stated in his paper, they seem to be
implicit consequences of his techniques. Ohshika actually states part
(2) of Corollary 1.3 as his main theorem.)

Corollary 1.3. (Ohshika [33]) Let M be a compact irreducible 3-
manifold and let {p; : m (M) — Isom,(H3)} be a sequence of quasi-
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conformally conjugate, convex cocompact representations of (M) con-
verging algebraically to a purely hyperbolic representation p, : 7 (M) —
Isom, (H3).
1. If poo(m1(M)) has nontrivial domain of discontinuity, then ps, 1s
topologically tame.

2. The limit set of peo(m (M)) either has measure zero or is the
entire 2-sphere.

Motivated by Ohshika’s work and the ideas of Paulin, we use results
of Anderson-Canary [2] to generalize Ohshika’s Corollary 1.3. Recall
that a compression body is a compact 3-manifold M with a boundary
component T such that the inclusion map ¢ : T — M induces a surjec-
tion ¢, : m (T) — m (M) (see Bonahon [7] or McCullough-Miller [30].)
If M is a compression body, then 7; (M) is the free product of surface
groups and free groups (again see [7] or [30].)

Corollary A. Let M be a compact irreducible 3-manifold, and let
{pi : m (M) — Isom,(H3)} be a sequence of purely hyperbolic, topolog-
ically tame discrete faithful representations of m, (M) converging alge-
braically to the purely hyperbolic representation ps : m(M) —
Isom, (H?).

1. If poo (7 (M)) has nontrivial domain of discontinuity, then po, is
the strong limit of {p;} and po,(m1(M)) is topologically tame.

2. If M is not homotopy equivalent to a compression body, then py
is the strong limit of {p;}, and po,(m1(M)) is topologically tame.

3. The limit set of poo(m1(M)) either has measure zero or is the
entire 2-sphere.

One nearly immediate consequence of part 2 of corollary A is the
following:

Corollary B. Let I' be a torsion-free convex cocompact Kleinian
group and let QC(T') denote its quasiconformal deformation space. If
H?3/T is not homotopy equivalent to a compression body, then there is
a dense G5 in OQC(T') consisting entirely of topologically tame, purely
hyperbolic, geometrically infinite hyperbolic 3-manifolds.

A more concise way of stating our main theorem is simply to say
that the set of topologically tame purely hyperbolic representations is
a closed subset of all purely hyperbolic representations in the strong
topology. This is stated formally in Corollary C, in section 9.

A further consequence, given in Corollary D, is that the bottom ),
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of the spectrum of the Laplacian is a continuous function on the set of
topologically tame purely hyperbolic representations, in the algebraic
topology. We remark (see section 9) that it is known that )\, is not a
continuous function in the algebraic topology on the whole representa-
tion space. It is conjectured that )\ is continuous with respect to the
strong topology.

Outline of the argument

Geometric convergence of {N;} to N,, implies (see section 3) that
there are bilipschitz diffeomorphisms f; that take large portions V; of
N; to subsets of N,. Moreover, the sequence {f;(V;)} is an exhaustion
of N by compact submanifolds.

If E; are ends of N;, then each E; has a neighborhood U; which is
homeomorphic to a product F' x R, where F is a closed surface, and we
may ask why this product structure cannot simply be pushed via f; into
the limit manifold. The main trouble is that the product neighborhoods
U; may be disjoint from the regions V; where f; is defined. An additional
topological difficulty is posed by the fact that it is not sufficient to show
that a manifold may be exhausted by compact cores in order to prove
that it is topologically tame. Both of these difficulties are illustrated
by the example below.

The following construction of a non-tame 3-manifold, analogous to
a construction of Whitehead, appears essentially in [41] (see also [36]).
Let H denote a handlebody of genus 2, and let ¢ : H — H be an
embedding of H into its own interior which is a knotted homotopy
equivalence. That is, g, : m(H) — m(H) is the identity, 0H and
g(0H) are both incompressible in H—g(H), and 7, (0H) and m,(g(0H))
generate a proper subgroup of m;(H — g(H)). (See Figure 1).

For n > 0 let H, be a homeomorphic copy of H equipped with an
identification v, : H — H,, and let g, = 9,4 0 go ;. The direct
limit H,, of the sequence of inclusions Hy &3 H, & -.- 3" H, &3 ...
will then be a topologically non-tame 3-manifold with finitely generated
fundamental group.

More explicitly, let B,, denote H,, — int(g,—,(H,—,)) for n > 0, and
let By = Hy. Defining 8yB,, = ¢gn—1(0H,_,) forn > 0 and 0,B,, = 0H,
for n > 0, we see that the map g/, = g.|s, 5, identifies 0B, to 0yBni1
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for each n > 0. The union H, = J*_, B,, with these identifications, is

homeomorphic to Hy, and the infinite union o> o By, is Heo-

FIGURE 1

Note that the inclusion of H, into H,, is a homotopy equivalence,
since the inclusion of H, into every H, is a homotopy equivalence. Thus
7 (H) is the free group on two generators, and Hy (in fact every H})
is a compact core. However, note also that the knotting of the compact
core Hy in H;, gets progressively more complicated as k — oo.

In fact it is easy to see that H,, — H, has infinitely generated funda-
mental group, and it follows that H,, must not be topologically tame.

We can metrize these spaces so that H, is a “geometric limit” of the
manifolds H;. Let o be any complete Riemannian metric on H,,. Let
oy be a complete metric on the interior of H; which is equal to o on

+—1- Then, for each k, H;_, is a region in (H}, o) which is isometric
to the corresponding region in (H.,0), and as k — oo these regions
contain arbitrarily large neighborhoods of a pre-chosen basepoint in
H,. (Compare Lemma 3.1.)

The example suggests that, in the hyperbolic context, we need a way
to “pull down” the product structure neighborhoods of the ends of N;
so that they meet uniformly bounded neighborhoods of the basepoints.
We use a tool developed by Bonahon [9], known as simplicial hyperbolic
surfaces, which have two important features. They are determined by
triangulations, on which we can perform elementary moves, and they
have intrinsic metrics of negative curvature, which allow us to bound
their diameter.

In each end of N; there exists a simplicial hyperbolic surface, ho-
motopic to a level surface in a product neighborhood of the end. We
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show how to homotope this surface to one that lies uniformly near the
basepoint. For example, if the surface is compressible, we perform a
sequence of elementary moves on the triangulation which terminate in
a triangulation with a compressible curve. The resulting homotopy of
simplicial hyperbolic surfaces eventually reaches a bounded neighbor-
hood of the basepoint. We then use results of Freedman, Hass and
Scott to obtain nearby embedded surfaces which are also homotopic
to level surfaces. Classical results about 3-manifolds imply that the
embedded surfaces bound product neighborhoods of the ends of N,.

We can moreover obtain (after restricting to a suitable subsequence,
reindexed as N,,) large product regions X,, in N, such that one bound-
ary component 0yX,, lies uniformly near the basepoint and the other,
0, X, is increasingly distant (but still in the domain of the bilipschitz
map f,). These regions give rise to regions Y,, = f,(X,) in N, whose
geometry is similarly controlled. A topological argument then shows
that the Y,, “interlock”: 0,Y,, is isotopic in Y,,,; to a level surface. We
conclude that |JY,, contains a product neighborhood for an end of N,.

Remarks. 1. Many of these considerations were unnecessary in
Thurston’s proof of tameness for limits of hyperbolic 3-manifolds whose
compact cores have incompressible boundary. In this setting, there is no
possibility of knotting of the compact core. In particular, it suffices to
obtain a sequence of surfaces homotopic to the boundary of the compact
core, exiting every compact set. For example, if the approximating
manifolds NV; are geometrically finite, let A be a limit of the pleating
loci of the boundaries of the convex cores of N; corresponding to a given
end E of N,. If E is geometrically infinite then, using a sequence 7y,
of simple closed curves coverging to A, Thurston constructs from their
geodesic representatives in N, a sequence of pleated surfaces leaving
every compact set in N,,. (In general when the approximating ends are
geometrically infinite, A can be taken to be the limit of the sequence of
ending laminations.)

2. Extending our main theorem to the case where parabolics occur
seems to be more difficult than one might expect. The main problem is
the possibility of “new” parabolics: elements of m; (M) which are taken
to parabolics by p., but not by p;. In this case the uniform diameter
bounds on simplicial hyperbolic surfaces provided by Corollary 5.3 are
not valid. Attempts to circumvent this encounter surprising topological
difficulties. For example, it may not be true that a curve in a cusp is
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homotopic, in the complement of the compact core, into the boundary
of the compact core.

We conclude the introduction with a brief section-by-section sum-
mary. Section 2 contains some background topological results which
we believe are well-known. In particular we describe the compact core
of a 3-manifold, and discuss the results of Freedman-Hass-Scott.

In section 3 we discuss geometric limits, and show that, if C,, is
a compact core of N, then the preimages C; = f'(Cy) are com-
pact cores for N;, for large enough i (where f; are the bilipschitz maps
discussed above). It is important for topological reasons that the ho-
motopies described above be performed in the complements of these
compact cores.

In section 4 we introduce simplicial hyperbolic surfaces, and elemen-
tary moves on their triangulations. The goal of the section is Propo-
sition 4.5, which states that any given end-homotopic simplicial hy-
perbolic surface can be deformed through a continuous family of such
surfaces to one that intersects a uniformly bounded neighborhood of
C,;.

In section 5 we prove a bounded diameter lemma that implies in par-
ticular that the final surface produced by Proposition 4.5 lies entirely
in a bounded neighborhood of C;. This lemma will be also used later,
to control the diameter of surfaces further out in the ends.

Section 6 is quite technical. Here we pay the price for the ease
of using simplicial hyperbolic surfaces instead of Thurston’s related
notion of pleated surfaces. The surfaces which naturally arise in a
geometrically finite manifold as the boundaries of the convex core are
pleated surfaces, so in this section we show how to approximate these by
simplicial hyperbolic surfaces. We write the proof in somewhat greater
generality than we require, in the hope that it may be of use elsewhere.

In section 7 we briefly discuss geometrically finite and infinite ends,
and apply the results of section 6 to obtain simplicial hyperbolic sur-
faces in neighborhoods of the ends of the approximating manifolds.

Section 8 contains the proof of the main theorem. The proofs of
Corollaries A through D are found in section 9.
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2. Topological preliminaries

In this section we collect together some of the topological background
which will be used in the proof. We imagine that all the results in this
section are well-known.

Let us briefly recall some of the language of 3-manifolds. A 3-
manifold M is said to be irreducible if every embedded 2-sphere in
M bounds a region homeomorphic to a ball. Let f : S - M be a
map of a closed orientable surface (of positive genus) into an orientable
3-manifold M. f is said to be m-injective if f, : m;(S) = 7 (M) is in-
jective. If f is a m;-injective embedding, it is said to be incompressible.
We will abuse notation by referring to any map f : S — M such that
f+ is not injective as compressible.

The ends of a topological space X can be defined in terms of their
neighborhoods (see [9]). That is, an end of X is a maximal family
{U.}ier of open sets, called its neighborhoods, with the following prop-
erties: Each U; has compact boundary but non-compact closure, and
for each i, j there exists k so that Uy C U; NU;. An end of the inte-
rior of a compact 3-manifold is just the family of neighborhoods of a
boundary component.

Peter Scott [35] proved that every irreducible 3-manifold N with
finitely generated fundamental group contains a compact submanifold
C, called the compact core, such that the inclusion map of C into N
is a homotopy equivalence. (Notice that this implies that C itself is
irreducible.) Moreover, if N is an open 3-manifold, each component of
N —C is a neighborhood of exactly one end of N (see Proposition 1.3 in
[9]). Let N be a topologically tame 3-manifold and C a compact core
for N. We will say that a continuous map f : § — N is end-homotopic
if f(S) is contained within a component of N — C whose associated
end has a neighborhood U homeomorphic to S x (0,00) and f(S) is
homotopic (within N — C) to an embedding with image S x {1}. (We
note that the existence of a fixed choice of compact core will be implicit
in our use of the term end-homotopic.)

We will make use on several occasions of the following fundamental
result of Waldhausen.

Proposition 2.1. (Corollary 5.5 in [42]) Let M be an irreducible 3-
manifold and let f : S — M and g : S — M be two disjoint, homotopic,
incompressible surfaces. Then there is a region bounded by f(S) and
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g(S) which is homeomorphic to S x I.

Waldhausen’s result will first be used in our proof that any end-
homotopic surface is incompressible in N — C' and homeomorphic to
the appropriate boundary component of C.

Proposition 2.2. Let N be a topologically tame, orientable, irre-
ducible 3-manifold with compact core C. Let g : S — N be an end-
homotopic map. Let V be the component of N — C which contains g(S)
and let F be the boundary of V. Then:

1. S is homeomorphic to F, and

2. g is m-injective as a map from S to N —C.

Proof of 2.2. Since N is topologically tame, we may identify it with
the interior of a compact 3-manifold M. Let V be the component of
M — C containing V. Notice that S is homeomorphic to the boundary
component S’ of V which lies within M, and that 9(S) is homotopic
within M — C to S".

The proof of both parts of our proposition make use of the following
lemma:

Lemma 2.3. Let ¥ be a boundary component of a compact irre-
ducible 8-manifold M. If ¥ is homotopic into a compact submanifold
K of int(M), then ¥ is incompressible in M — K.

Proof of 2.3. Suppose that T is compressible in M — K. Then Dehn’s
Lemma (see [20], for example) would imply that there exist a simple,
homotopically non-trivial curve 8 on ¥ and a properly embedded disk
D bounding B which lies entirely in M — K. The Seifert-van Kampen
theorem then guarantees, if M; is the component of M — D containing
K, that m;(M) can be written as a non-trivial free product G, * G,
where G; = m;(M;), and the inclusion (is).(m;(X)) is not conjugate
to a subgroup of G; or G,. This would contradict the fact that X is
homotopic into K. q.e.d.

Returning to the proof of 2.2, Theorem 2 of McCullough-Miller-
Swarup [31] asserts that if C; and C, are any two compact cores of an
irreducible, orientable 3-manifold M, then there exists a homeomor-
phism h : C; = C; such that h, = (i2);! o (41)., where i; : C; > M is
the inclusion map. Notice that M is certainly a compact core for itself.
Therefore, there exists a homeomorphism h : M — C which is homo-
topic (in M) to the identity map. Thus, there exists a component F’
of the boundary of C such that h(S') = F'. If F' = F, then statement
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1 holds.

Suppose that F' # F. Theorem 1.1 of McCullough-Miller [30] (see
also [9]) asserts that there exists a (possibly disconnected) incompress-
ible surface T separating F' from F'. Therefore, T is an incompressible
surface in M separating F' from S’. Let M; be the component of
M — T which contains S’. Lemma 2.3 guarantees that S’ is incom-
pressible in M; since it is homotopic to a surface disjoint from M;.
Since T is incompressible, m;(M;) injects in m;(M). Therefore, S’ is
also incompressible in M. Hence, F' is incompressible in M as well.
Proposition 2.1 guarantees that the region C' between S’ and F' is
homeomorphic to S’ x I.

Now since F' is incompressible, 7, (C") injects into 7, (M), and since
C’' contains a compact core C for M, m;(C’) surjects onto m(M).
Therefore, C' is a compact core for M. Since C is homeomorphic to
C' (by the above result of McCullough-Miller-Swarup), every boundary
component of C is homeomorphic to S'. In particular, F' is homeomor-
phic to S’. This completes the proof of part 1.

We may also apply Lemma 2.3 to prove part 2. Since C is a compact
core for M, S’ is homotopic into C. Lemma 2.3 then implies that S’
is incompressible in M — C. Recalling that ¢(S) is homotopic to S’
(within M — C), we have completed the proof of part 2. q.e.d.

We also make use of the following fact, due to E.H. Brown [11].

Theorem 2.4. (Theorem 7.2 in [11]) Let S be a closed surface and
let f:S — S x[0,1] be an embedding such that f(S) separates the
boundary components of S x [0,1]. Then f(S) is isotopic to S x {3}.

Often the end-homotopic surfaces produced by our techniques will
fail to be embedded. We now observe that near any end-homotopic
surface there lies an end-homotopic embedded surface. Bonahon (Lem-
ma 1.22 in [8]) was the first to observe that the following type of result
was implicit in the work of Freedman-Hass-Scott [18]:

Theorem 2.5. (Freedman-Hass-Scott [18]) Let g : S — M be a
1 -injective map of a closed (orientable) surface S into a compact, ori-
entable, irreducible 3-manifold M such that g is homotopic to an em-
bedding. If W is any open neighborhood of g(S), then g is homotopic
to an embedding ¢' : S — M with image in W.

We can apply Theorem 2.5 to the situation where g : S — N is an
end-homotopic surface.

Proposition 2.6. Let N be a topologically tame hyperbolic 3-manifold
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and let C be a compact core for N. If g : S — N is an end-homotopic
map, then g is homotopic, within N — C, to an embedding g' : S — N,
such that g'(S) C N(1,9(S)), where N'(1,9(S)) denotes a neighborhood
of g(S) of radius 1.

Proof of 2.6. Since N is topologically tame, we may identify it with
the interior of a compact, orientable, irreducible 3-manifold M. Let
V be the closure of the component of M — C containing g(S). Then
V is a compact 3-manifold and, by Proposition 2.2, g : § — V is an
incompressible surface in V', which is homotopic to a component of V.
To complete the proof, we apply Theorem 2.5 to the open neighborhood
W =N(1,9(S))NV of g(S) in V.

Remark. As a statement of Theorem 2.5 is not contained in
the paper [18], we will sketch the proof. The main theorem of [18]
guarantees that, under our hypotheses, if M is given a metric with
convex boundary, then there exists a minimal area surface homotopic
to g, which is either embedded or double covers the base surface of a
twisted /-bundle X embedded in M such that ¢(S) is homotopic to
the boundary of X. We therefore choose a metric on M which is “very
large” in the complement of W. Properly done, this guarantees that
the minimal area surface homotopic to g must lie in W. We note that
if the minimal area surface double covers the base surface of a twisted
I-bundle in M, then there exists an embedded surface homotopic to
g in an arbitrarily small neighborhood of the base, so this poses no
additional difficulties.

It is technically simpler to make this proof precise using the parallel
theory of PL-minimal surfaces developed by Jaco and Rubinstein [23].
Jaco and Rubinstein showed that all the results of [18] held for PL-
minimal surfaces. Let W’ be an open neighborhood of g(S) such that
the closure of W' is contained in W. One may assume that M has
been triangulated so that the closure of W' is a subcomplex K of M.
In order to insure that the PL-minimal surface homotopic to g lies
entirely in W it suffices to subdivide the simplices of M — K a large
number of times.
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3. Geometric convergence and a uniform choice of
compact core

In this section we recall the basic definitions and characterizations
of geometric convergence. We will apply these, in Proposition 3.3,
to obtain a “uniform” choice of compact cores for the approximating
manifolds in a strongly convergent sequence of hyperbolic 3-manifolds.
We will then prove Lemma 3.4, which gives a uniform bound on the
diameter of a compact subset in an approximating manifold, in terms
of the distance of its boundary from the basepoint.

A sequence of closed subsets X; of a locally compact metric space X
converges geometrically to a subset X, if every point in X, is a limit
of a convergent sequence {z; € X;}, and every accumulation point of
any sequence {z; € X;} is in X,,. We recall (see e.g. Proposition 3.1.2
in [15]) that the set of closed subsets of X is compact in the topology
of geometric convergence.

As a special case we obtain the geometric topology on the set of
Kleinian groups, viewed as closed subsets of Isom(H?). The following
lemma indicates the geometric significance, on the level of the quo-
tient manifolds, of the geometric convergence of a sequence of Kleinian
groups. (For a proof, see Theorem 3.2.9 of [15], and Theorem E.1.13
and Remark E.1.19 of [3].)

Lemma 3.1. A sequence of torsion-free Kleinian groups {I';} con-
verges geometrically to a torsion-free Kleinian group I's if and only if
there ezists a sequence {(R;, K;)} and a sequence of maps f; : Bg,(0) —
H3, where Br(0) is a ball of radius R centered on the origin in H3,
such that the following hold:

1. R;— o0 and K; — 1.

2. The map f, is a K;-bilipschitz diffeomorphism onto its image,
f,(O) = 0, and for any compact set A, f;|a converges to the iden-
tity.

3. If N; = H3/T; and N, = H?/T,, then f; descends to a map
fi : V; = Ny, where V; = Bg,(0)/T'; is a submanifold of N;.
Moreover f; is also a K;-bilipschitz diffeomorphism onto its im-
age.

For the remainder of the paper we shall fix a compact irreducible 3-

manifold M, and let {p; : m;(M) — Isom(H?)} be a sequence of topo-
logically tame, purely hyperbolic discrete faithful representations con-



14 RICHARD D. CANARY & YAIR N. MINSKY

verging strongly to a purely hyperbolic representation p, : 7 (M) —
Isom, (H3). We will maintain the following notation: T'; = p;(m; (M)),
T = poo(m(M)), N; =H3/T;, and N, = H®*/T . Let f;, V;, K;, and
R; be as given in Lemma 3.1. Let b; € N; be the images of the origin
0e H3 fori=1,...,00. Note that f;(b;) = boo-

Throughout the paper, we shall denote by N (r, X) the open neigh-
borhood of radius r of X, where X is either a subset or single point in
a metric space.

In particular, the image f;(V;) contains N (R;/K;,bs) in Nu, by
virtue of the following simple property of bilipschitz diffeomorphisms,
which we state without proof. We will be using this fact throughout
the paper.

Lemma 3.2. Let M and M' be two Riemannian manifolds of the
same dimension. Suppose that U C M and f : U — M' is a K-
bilipschitz diffeomorphism (onto its image). If R > 0, z € M and
N(R,z) C U, then N(R/K, f(z)) C f(U).

We are now prepared to produce the desired sequence {C;} of com-
pact cores of the N;.

Proposition 3.3. If C, is a compact core for N, then there ezists
I such that if i > I, then Cy, C fi(V;) and C; = f7(Cw) is a compact
core for N;.

Proof of 3.3. Note that we may assume that the basepoint b,
lies in C,. We shall make the natural identifications I'; = m; (&V;) for
i=1,...,00, and also m;(Cy,) = m;(N,), where the use of basepoints
b; € N; is implicit.

Now if we choose I so that for ¢ > I we have K; < 2 and R; >
2 diam(C.), it is clear that Cy, C f;(V;), and we may set C; = f; ! (C)-

Fix an element g € m;(M) and let 7, = po(g). Represent v, by
a loop ay in Cy based at by, and let o; = f (). Let 7; € T be
the element represented by «;, and let &; be the lift of o; joining 0
to 7;(0). For sufficiently large 7, &; is contained in Bg,(0), and then
fi(@) = Goo. Since {f;} converges to the identity on compact sets, we
conclude that {7;(0)} converges to v (0).

On the other hand, since p; converges algebraically to p,,, we may
apply the Margulis lemma to conclude that there is a neighborhood U
of 7,(0) such that, for any 7, there is at most one element §; in I';
such that 3;(0) € U. (See e.g. Lemma 3.7 in Jgrgensen-Marden [26].)
Since p;(g)(0) converges to p.,(g)(0), it follows that -y; = p;(g) for large
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enough 1.

Let ¢; = f{'c.. : Coo — Ny, and let (¢;). : 71 (Cs) — 71 (NV;) be the
induced map on fundamental groups. We have shown that, for each
Yoo € Tooy (¢:)4(Yoo) = pi © px (Yoo) for large enough i. Since m;(C.) is
finitely generated, this implies that, for large enough i, (¢;). = p;op}t,
which is an isomorphism.

Now let (¢;), denote the map induced by ¢; from m; (Cs,) to m;(C;),
and note that this is an isomorphism. Let j; : C; — N, be the inclu-
sion map. Then (¢;). = (4;)« © (¢;),, and it follows that (j;). is an
isomorphism, so that C; is a compact core of N;. q.e.d.

We can thus assume, by truncating the sequence if necessary, that
for all i, C; = f7!(Cy) exists and is a compact core for N;. We may
also assume, again by truncating if necessary, that K; < 2 for all i.
Both of these assumptions are made only to simplify later choices of
constants.

The existence of a strong limit allows us to obtain various uniform
estimates on our sequence of manifolds. The following lemma describes
a uniform sense in which the diameter of a compact region is bounded
in terms of the location of its boundary. This will be applied in the
proof of the main theorem to bound the diameter of product regions in
N;, enabling us to conclude that they are contained in the regions V;
and hence map to product regions in N,.

Lemma 3.4. For each R > 0 there ezxist L(R) and no(R) such that,
if 1 > ng and A C N; is a compact subset for which 0A C N(R,b;),
then A C N (L, b;).

Proof of 3.4. Without loss of generality, we may assume that
R is sufficiently large that C; C N(R,b;) for all ¢, and that C,, C
N(R/2,by,). Furthermore we may suppose that R is simultaneously a
regular value for the functions d(b;,-) for all 4; thus N (R, b;) is always
a smooth surface.

Let Lo, = Lo (R) denote the least number such that every compact
component of Ny, — N(R,by) is contained in N (Le(R),bs) (such a
number exists because there are only finitely many such components).

Let ny be sufficiently large that, for all 1 > ng, N (2L, (2R),b;) is
contained in the region V; where the bilipschitz map f; is defined.

We shall need the following observation: a component U of N — C,
where C' is a compact core of a 3-manifold N, contains no closed surface
F which is non-separating in N. If there were such a surface, there
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would be a curve v intersecting it exactly once, which can therefore
not be deformed off of F. This contradicts the assumption that C' is a
compact core.

Let X be a component of N; — N(R,b;) for i > ny. We claim
that 0X is connected. If it were not, none of the components would
separate the manifold since N'(R,b;) is connected. However, by our
initial assumption on R, X must be contained in a component U of
N; — C;, which has no non-separating closed surfaces.

Similarly, let Q; = f;(N (R, b;)) and let Y be a component of N, —Q;.
Since (by Lemma 3.2) C,, C N(R/2,b,) C Q;, the same argument
shows that 0Y is also connected. Thus, Y = f;(0X) for some compo-
nent X of N;—N (R, b;). We may number these components X1,... , X}
and Yi,...,Y; so that 9Y; = f;(0X;).

Let Y; be a compact component of N, —Q;. Since f; is 2-bilipschitz,
9Y; C N(2R,bs) which implies that Y; C M(Lw(2R),bs). By Lem-
ma 3.2, this neighborhood is contained in the image of f;, so that
f71(Y;) must be an entire component of N; — N'(R,b;), namely X;. In
particular X; is compact as well, and contained in N (2L, (2R), b;).

Each non-compact Y; contains a neighborhood of an end of N, and
each end of N, has a neighborhood contained in some non-compact
Y;. Since Cy separates the ends, and lies in Q;, each Y; can be a
neighborhood of at most one end. It follows that the non-compact
components among the Y; are in one-to-one correspondence with the
ends of N,,. The same is true, by the same argument, for the X; and
the ends of N;. Thus the number of non-compact components is equal
in both sets. It follows that X; is compact if and only if Y} is compact.
Hence we have proved that all compact X; are contained in N(L,b;)
where L = 2L, (2R).

Now if A is any compact subset of N; for ¢ > ngy such that 04 C
N (R,b;) then, for each X;, (AN X;) C 8X;, so that either int(X;) C
A, or int(X;) N A = 0. In the first case X; must be compact, so we
may conclude that A ¢ N (L, b;).

4. Simplicial hyperbolic surfaces

We first recall a generalized definition of a triangulation of a surface
(following Harer [22] and Hatcher [21]). Let F be a closed surface and
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let V denote a finite collection of points in F'. (We will often restrict to
the case where V is a single point.) A curve system {o4,... ,a,,} is a
collection of arcs with disjoint interiors and endpoints in V, no two of
which are ambient isotopic (rel V), and none of which is homotopic to
a point (rel V). A triangulation T of (F,V) is simply a maximal curve
system for (F,V). We will say that two triangulations are equivalent
if they are ambiently isotopic (rel V). Note that the faces of 7 are
triangles, possibly with some of their vertices or edges identified.

A continuous map f : S — N from a closed surface S into a hyper-
bolic 3-manifold N is said to be a simplicial pre-hyperbolic surface if
there exists a triangulation 7 of S such that the image of each face of
T is an immersed, totally geodesic, non-degenerate triangle. The map
f induces a piecewise Riemannian metric on S, and f is said to be a
simplicial hyperbolic surface if the angle about each vertex of 7 is at
least 2.

For simplicity, we will often work with what we call useful simplicial
hyperbolic surfaces. A simplicial hyperbolic surface p : § - N (with
associated triangulation 7") is useful if T has only one vertex v and if
one of the edges e (called the distinguished edge) of T is mapped to a
closed geodesic.

Let f : S — N be a continuous map. We will say that a homotopi-
cally non-trivial curve « in S is compressible if f(7) is homotopically
trivial in N. We will also refer to its image in f(S) as compressible.

Lemma 4.1. If f : S — N, is an end-homotopic simplicial hyper-
bolic surface such that f(S) C N; — N(1,C;), then every compressible
curve on f(S) has length at least 1.

Proof of 4.1. Recall first, from Proposition 2.2, that any end-
homotopic map f : S — N, is incompressible as a map into N; —
C;. Let v be a compressible curve on S. By subdividing v into its
intersections with the faces of the triangulation and straightening, we
may replace it by a homotopic curve 4’ such that f(vy') is a polygonal
curve with length at most that of f(y). Since 7' is compressible it
bounds an immersed disk D which we may assume is triangulated by
totally geodesic triangles whose vertices lie on f(v'). D thus inherits
a hyperbolic metric. Since f(S) is incompressible in N; — C;, we see
that D must intersect C; in some point . So D is a hyperbolic disk
such that every point on the boundary has distance at least one from z.
This implies that f(7') = 0D has length at least 27 sinh 1 > 27 > 1.
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q.e.d.

Let T be a triangulation of (F,V) and consider a quadrilateral in 7
bounded by e, es, es, and e4; and with diagonal e5s. One may obtain
a new triangulation 7' of F' by replacing es; with the other diagonal of
the quadrilateral, which one may denote eg. 7 is said to be obtained
from 7T by performing an elementary move. Harer [22] (see also Hatcher
[21]) proved that any two triangulations of (F, V) are related by a finite
sequence of such elementary moves.

The following sequence of lemmas, from [14], allows us to construct
continuous families of simplicial hyperbolic surfaces. Lemmas 4.2 and
4.3 allow us to construct continuous families of simplicial hyperbolic
surfaces joining any two useful simplicial hyperbolic surfaces whose
associated triangulations differ by an elementary move. Lemma 4.4
assures us that if the associated triangulation of a useful simplicial hy-
perbolic surface can be changed to one which contains a “compressible
edge”, then one can construct a continuous family of simplicial hyper-
bolic surfaces in which the length of that edge converges to 0.

Lemma 4.2. Let h: S — N be a useful simplicial hyperbolic surface
with associated triangulation T, vertez v and distinguished edge €. Let
€ be another edge of T such that h(€Uv) has a closed geodesic represen-
tative h(€Uv)*. Then there exists a continuous family J : Sx[0,1] - N
of simplicial hyperbolic surfaces joining h to a useful simplicial hyper-
bolic surface h with associated triangulation T and distinguished edge
€.

Lemma 4.3. Leth: S — N be a useful simplicial hyperbolic surface
with associated triangulation T, vertez v and distinguished edge é. Let
e1, ez, e3 and eq bound a quadrilateral in T with diagonal es # €. Let
es be the other diagonal of this quadrilateral and T' the triangulation
obtained by replacing es with eg. Assume that h(egUv) is homotopically
non-trivial. Then we may construct a continuous family of simplicial
hyperbolic surfaces joining h to a useful simplicial hyperbolic surface h'
with associated triangulation T' and distinguished edge é.

Lemma 4.4. Let h : S — N be a useful hyperbolic surface with
associated triangulation T, vertex v and distinguished edge é. Let e,
ey, e3 and e4 form a quadrilateral with diagonal es # é such that the
other diagonal es determines a compressible curve eg Uv. Then there
exists a continuous family H : S x [0,1) = N of simplicial hyperbolic
surfaces such that H(-,0) = h, and the length of H(eg X {t}) converges
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monotonically to 0 as t — 1.

Given a useful end-homotopic simplicial hyperbolic surface g : S —
N; far away from C;, we may use these lemmas to construct a continu-
ous family of simplicial hyperbolic surfaces which eventually come near
to C,'.

Proposition 4.5. Let h : S — N; be a compressible useful end-
homotopic simplicial hyperbolic surface such that h(S) C N;—N(1,C}).
There ezists a continuous family H : S x [0,1] — N;, such that h =
H(-,0), H(S x {t}) C N; =N (1,C;) for allt € [0,1], and H(S x {1})N
cd(N(1,C;)) #0.

Proof of 4.5. Let v be the vertex of the triangulation 7 of S asso-
ciated to h. By Dehn’s lemma v is contained in a simple compressible
curve on S, which we may extend to a triangulation 7 of (S, {v}). Let
T=T5,Th,..., To="T be a sequence of triangulations such that 7,4,
is obtained from 7; by an elementary move for j < n. Such a sequence
is guaranteed to exist by Harer’s theorem. Let 7; be the first trian-
gulation in this sequence which has a compressible edge. Then one
may use lemmas 4.2 and 4.3 to obtain a continuous family of simpli-
cial hyperbolic surfaces F' : S x [0,1] — N; such that F(-,0) = h and
F(-,1) is a useful simplicial hyperbolic surface with associated triangu-
lation 7;_;. One may then use Lemma 4.4 to construct a continuous
family of simplicial hyperbolic surfaces F' : S x [1,2) — N, such that
F'(-,1) = F(-,1) and the length of the image of some compressible edge
of 7; converges to 0 as ¢t approaches to 2. Concatenate F' and F' to
form G : S x[0,2) - N;. Notice that Lemma 4.1 guarantees that there
must exist some s such that G(S x {s}) "N (1,C;) # 0. Let

d = inf{s € [0,2)|G(S x {s}) NN (1,C;) # 0}.

Then we may define H : S x [0,1] = N;, by H(z,t) = G(z, td).

5. A uniform bounded diameter lemma

We recall that the injectivity radius injy(z) of a point z € N is
defined to be half the length of the shortest homotopically non-trivial
closed curve passing through z. We define

Nthick(e) = {(C € Nll‘an(.'L') 2> E}
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and
Nthin(e) = {.’L‘ € N|zan(z) < 6}.

This is known as the thick-thin decomposition of N. There exists a
constant M, called the Margulis constant (see chapter D in Benedetti-
Petronio [3]) such that if e < M and N is a hyperbolic 3-manifold with-
out cusps, then every component of Ny4in() is a tubular neighborhood
of a closed geodesic. There is also a constant s > 0, depending only on
€, such that the distance between any two components of Npin(c) is at
least s.

The following is a version of Bonahon’s bounded diameter lemma
(for a proof see [9] and [13].)

Proposition 5.1. (Bounded Diameter Lemma) Given xo > 0 and
€ > 0, there exists A(xo,€) such that if f : S — N is a simplicial
hyperbolic surface, |x(S)| < xo0, every compressible curve on f(S) has
length at least 1, and z,y € S, then x and y may be joined by a path R
such that f(R) N Ninick(e) has length at most A(xo,€)-

This lemma is the key use of hyperbolicity of the simplicial hyper-
bolic surfaces. Hyperbolicity and the Gauss-Bonnet theorem give a
bound on area of the surface, and this together with a lower bound
on injectivity radius in the parts of the surface that map to Npick(e)
implies the bound on diameter.

Since, for a fixed ¢, each component of (IV;)¢hin(e) is compact, and the
separation between components is at least s, Proposition 5.1 implies a
bound on the diameter of any simplicial hyperbolic surface without
short compressible curves passing through a fized point z € N;. By
applying such reasoning to the convergent sequence N; = N, we can
obtain a uniform bound:

Proposition 5.2. (Uniform Bounded Diameter Lemma) Given
L > 0 and xo > 0 there ezists D(L,xo) such that if g : S — N; is
a simplicial hyperbolic surface, g(S) N N(L,b;) # 0, |x(S)| < xo and
every compressible curve on g(S) has length at least 1, then g(S) has
diameter less than D(L,x,). Moreover, we may assume that D(L, xo)
is a monotone increasing function of L (for all xo > 0.)

Proof of 5.2. For ¢ < M and for z,y in a hyperbolic manifold N
define dipick(e)(z,y) to be the infimum over all paths v from z to y of
2(y N Ninick(ey)- Now since, for any ¢ = 1,... ,00, each component of
(Ni)thin(e) is compact and the components are uniformly separated, the
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function
Ri(K,€) = sup{d(b;,z) : ihick(e) (biyz) < K}

is finite for any ¢, K,e. Fixing €, we shall prove that these functions
are eventually uniformly bounded in the sense that, for each K, there
exists I = I(K) such that if i > I, then R;(K,¢/2) < 2R, (2K, ¢).

Given K and R = R, (2K, ¢€), let I be such that for ¢ > I the region
V; contains N'(2R + 3¢,b;). Now if R;(K,€/2) > 2R, then there would
exist a path 7 contained in N (2R + ¢,b;) and connecting b; to a point
y such that d(b;,y) > 2R but £(y N (N;)shick(e/2)) < K.

However, it is easy to see that

[i((Ni)thin(es2) NN (2R + €)) C (Noo)thinge)-

In fact, for any z € (N;)thin(e/2) NN (2R + €) there is a non-trivial loop
[ passing through = with length no more than e, so that £(f;(5)) < 2e.
If f;(B) were trivial it would span a disk which, by negative curvature,
would have diameter at most € and would thus (applying Lemma 3.2)
be contained in f;(V;), contradicting the non-triviality of 3. It follows
that f,(.’L’) € (Noo)thin(e)-

We conclude that

Fi(Y) N (Noo)thick(e) C fily 0V (Ni)thick(es2)),

s0 that dipick(e) (boo, fi(y)) < 2K. But then d(bs, fi(y)) < R which con-
tradicts our assumptions that d(b;,y) > 2R and that f; is 2-bilipschitz.

The bound R;(K,€/2) < 2R, (2K, ¢) follows for i > I(K) and, tak-
ing a maximum over the finitely many ¢ < I(K), we obtain a uniform
bound R;(K,€/2) < R'(K) for all i. Now let Ay = A(xo,€/2), and
suppose that g : § — N; is a simplicial hyperbolic surface such that
g(S)NN(L,b;) # 0, |x(S)| < xo and every compressible curve on g(S)
has length at least 1. By Proposition 5.1 we have dipick(e/2)(bsi,y) <
L + A, for any y € ¢g(S), so applying the above argument we find that
g(S) € N(R'(L + Ap),b;), which gives the desired diameter bound,
D(L,x0) = 2R'(L + Ap). Moreover the bound is clearly monotonic in
L, by the construction. q. e.d.

Combining Proposition 5.2 with Proposition 2.2 and Lemma 4.1, we
obtain:

Corollary 5.3. Given L > 0, there exists D(L) such that if g :
S — N; is an end-homotopic simplicial hyperbolic surface, such that
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g(S) NN(L,b;) # 0 and g(S) NN (1,C;) = 0, then g(S) has diameter
less than D(L). Moreover, we may assume that D(L) is a monotone
increasing function of L.

Proof of 5.83. We first notice that Proposition 2.2 assures us that
S is homeomorphic to a boundary component of C,. Thus there is an
upper bound x, on |x(S)| depending only on the topological type of M.
Lemma 4.1 implies that, since g(S) NN (1,C;) = 0, every compressible
curve on g(S) has length at least 1. Therefore, we may take D(L) =
D(L, xo) where D is the function obtained in Proposition 5.2.

6. Simplicial approximations to pleated surfaces

Although simplicial hyperbolic surfaces serve us for the most part
as a simplified substitute for Thurston’s pleated surfaces, there is one
point in the next section where the use of pleated surfaces could not be
avoided. To bridge the gap we provide the following technical lemmas.

A pleated surface in a hyperbolic 3-manifold N (see [15, 39]) is a map
g : F — N which is a pathwise-isometry with respect to a hyperbolic
metric o on a surface F, totally geodesic on the complement of a o-
geodesic lamination A on F, and maps the leaves of A geodesically. (A
geodesic lamination on a hyperbolic surface F is a closed set foliated
by geodesics.) The smallest A that works in the definition is known as
the pleating locus of g.

The following lemma states that a pleated surface g can be per-
turbed by an arbitrarily small amount to a simplicial hyperbolic surface
h, whose associated triangulation is an approximation to the pleating
locus A.

Lemma 6.1. Let N be a hyperbolic 3-manifold and F a closed
surface of genus at least 2. Given a pleated surface g : F — N and
any € > 0 there exists a homotopy H : F x [0,1] = N such that
g = H(-,0), the map h = H(-,1) is a simplicial hyperbolic surface, and
the trajectories H(p x [0,1]) have lengths at most e.

Furthermore, the triangulation T of F corresponding to h contains
a closed curve that is mapped to a closed geodesic, and there is a bound
G on the number of vertices in T, depending only on the genus of F.

Proof of 6.1. In the following arguments, we work with the hyper-
bolic metric o on F described in the definition of a pleated surface. Let
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A be the pleating locus of g. It is known (see [15, Theorem 4.2.8]) that
A can be written uniquely as A\g U¥4; U---U £, with m > 0, where )\,
is a non-empty union A\; U --- U A, of minimal laminations and ¢; are
geodesic leaves that accumulate on Ay. (A minimal lamination is one
that has no proper (closed) sublamination.) A hyperbolic area argu-
ment (see §4 in [16]) bounds the number m + k of these components in
terms of the genus of F.

Let [ be a leaf of A\. Let P, : I — T;(N) be the map which takes a
point z € [ to the point in the unit tangent bundle T} (N) associated
to the tangent vector to g(l) at g(z). Notice that P, is well-defined up
to a choice of orientation of [.

Pick €; > 0. If ); is not a closed geodesic, then as in Lemma, 4.2.15
in [15] we may approximate \; by a geodesic subarc «; of a leaf I; of \;
of length at least 1 together with a “jump” ;' of length less than ¢,
such that A\; C N (€1,7;). Moreover, we may assume that if v} and v?
are the endpoints of v}, then d(P, (v}), P, (v?)) < €. Let v} =~/ U~!,
and let ; be the geodesic representative of ;" in F. If ); is itself a
closed geodesic we choose v; = v/ = A;.

Basic hyperbolic trigonometry (see for example Theorem 4.2.10 in
[15], or Lemma 5.5 in [9]) then implies that -y; is e;-near to +”, and
that the geodesic representative g(7;)* of g(;) in N is e;-near to g(7;),
where €; = O(ey). (We say that two paths o, 3 in N are e-near if
there are lifts &, 8 to the universal cover N such that & C NV (e, ,5) and
B C N(e@).)

We can then define a homotopy H : «; x [0,1] — N such that
H(7:,0) = g(v:) and H(v;,1) = g(v:)*. Moreover, H(z x [0,1]) can
be made to have length O(e;) for each z € «;.

For each of the additional arcs ¢; of A, the intersection £; N (F —
N (€1, X)) consists of just one arc ¢, if €; has been chosen sufficiently
small. We may also assume that o; has length at least 1. We may
append arcs of length at most 2¢; between the endpoints of «; and the
curves 7y, and 7y, nearest those endpoints, and straighten the resulting
arc to get a geodesic segment ¢; which is €z-near to «;, where €3 =
O(€&1)-

Let X denote the 1-complex obtained by adjoining the £; to U;:
along their endpoints, and note that, because geodesics minimize in-
tersection number, X is embedded in F'. (If a component of X consists
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of an isolated ; which meets no £}, we may add one vertex on +; at an
arbitrary point.) Let g(I})* denote the geodesic arc in N homotopic to
g(l;) with endpoints fixed. Notice that g(I})* is es-near to g(a;) where
€4 = O(€;). Thus we may extend H to a homotopy H : X x [0,1] - N
such that H(-,1) maps the edges of X to geodesics, and so that for any
z € X, the trajectory H(z x [0,1]) is a path of length O(e;).

Say that two curves a and 8 in N or F are e-nearly parallel if their
lifts to the unit tangent bundle (with suitable orientation) are e-near
to each other. Notice that €; may be chosen so that any edge of X is
es-nearly parallel to a segment of A, and that A C N (e3, X).

Let R denote the subsurface F — X. Since each component of R is
convex, we may triangulate it by adding geodesic arcs whose endpoints
lie on vertices of X. If § is such an arc, let Jy, J; be the components of
BN N (es, X) containing the endpoints of 3, and let 8’ = 8 — (Jo U J;).
Then any component of 8’ N N(e3, X) is O(e3)-nearly parallel to a
segment of X. It follows that, at any point p € 8'N A, the angle between
B and X is 6(p) = O(e3). Thus there is a constant £, independent of
€; for sufficiently small €;, such that p is the midpoint of a segment of
[ of length 24, which is es-near to a segment of the leaf of A containing
p, for e = O(e;). Further, if J C B’ is any segment lying es-near to
a segment u of A, then J can be lengthened on both sides by ¢, to a
segment J' which is eg-near to p' D u, for €5 = O(es).

It follows that (' can be divided into segments Iy,... , I, each of
length at least £, such that each I; is either in F' — A, or lies €g-near to
a segment p of \. Thus we may form a chain of geodesics I; (eg-near
to I;) such that g(I;) are geodesics too, and successive endpoints are
separated by short jumps, as before - if v; = I;N1;,, and v;, v} are the
corresponding endpoints of I}, I},,, then d(Pr(v;), Pr_, (v))) < €z =
O(&).

Hence, g(f') is eg-near to g(f')*, for g = O(e;). To extend this
estimate to g(3), consider one of the terminal segments, say J,. Let
a,b be the endpoints of J, where b = Jy N ', and we may assume
(possibly lengthening 3’ and shortening Jp) that b € A, and that a
punctured neighborhood of b in #' is disjoint from A.

Let ¢ be the length of Jy, and let 4 and p' be segments of A of length
at least ¢ passing through a and b, respectively, which are are €5-nearly
parallel, where ¢ = O(e3). It is easy to see that the acute angle of
intersection 8 of u' and [ at b is O(e3/9d).
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Since g is a pleated map, an arc from u to u' of length O(e3) maps
to an arc in N of the same length, and thus the images g(u) and g(u')
are still O(e;)-nearly parallel. If v C N is the geodesic homotopic to
9(Jo) with endpoints fixed, then the projection of v to g(u) has length
at least § — €, where €90 = O(€3), and therefore that v makes an acute
angle with g(u') of 8’ = O(e3/9).

Thus, the geodesics g(4')* and v meet at an angle 7 — O(0). Now,
it is easy to see that, if ABC is a hyperbolic triangle such that AB >
0—0(e3) and £B > m—0(e3/d), then AC lies in an O(e3)-neighborhood
of ABU BC. Applying this to our situation, and repeating for J;, we
conclude that g(3)* is O(e3)-near to g(3).

Thus, H may be extended to all the edges of the triangulation of
R so that H(-,1) takes each edge to a geodesic, and each trajectory
H(xx[0,1]) is of length O(e; ). Extending H to the remaining triangular
regions is now a simple matter, since the image of each such region by
a lift g of g to H? lies in an O(€,)-neighborhood of a totally geodesic
triangle.

The simplicial map h which results is hyperbolic because through
each vertex passes a segment of one of the +;, which is mapped geodesi-
cally. It follows that the total angle around such a vertex is at least
27.

The bound G on the number of vertices of 7 follows from the bound
on the number of components of A, and the fact that all the vertices of
T come from endpoints of leaves ¢;, or isolated components ;.

The simplicial hyperbolic surface obtained in Lemma 6.1 may not be
useful — it may have more than one vertex. The following lemma shows
that after a bounded adjustment we may obtain a useful simplicial
hyperbolic surface.

Lemma 6.2. Let g : F — N be a simplicial hyperbolic surface
whose associated triangulation has a closed curve which g maps to a
closed geodesic, and at most G vertices. Then there is a homotopy
H :F x[0,1] - N such that H(-,0) = g, and h = H(-,1) is a useful
simplicial hyperbolic surface, and such that

H(F x [0,1]) C N((¢ - 1)c, g(F))

for an independent constant c.
Proof of 6.2. We first describe the process of collapsing an edge join-
ing two distinct vertices of the associated triangulation of a simplicial
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pre-hyperbolic surface. Let g : F — N be a simplicial pre-hyperbolic
surface with associated triangulation 7;. Let e be an edge of 7; with
distinct vertices v; and v,. We first construct a new triangulation 7,
from 7; by squeezing e to a point in F', and then identifying the re-
maining sides of any triangle which has E as an edge. We now define a
map G : F x[0,1] = N. Define G(v,t) such that G (v, x [0,1]) = g(e),
G(v2,0) = g(v;) and G(vy,1) = g(v). For any vertex v # v, of T
let G(v,t) = g(v). There is a natural continuous extension of G' to
G : F x [0,1] — N such that G(-,t) is a simplicial pre-hyperbolic
surface with associated triangulation 7; for all ¢ € [0,1), and G(-,1)
is a simplicial pre-hyperbolic surface with associated triangulation 75.
(This is related to the process of dragging a simplicial hyperbolic sur-
face along a path, which is discussed in section 5 of [14].) We may also
arrange that G(z x [0, 1]) is a geodesic for any = € F.

Our next claim is that there exists a constant ¢ > 0 such that G(F x
[0,1]) € N(c,G(F x {0})). Let G : F x [0,1] — H3 denote a lifting
of G to the universal covers. Let A be a face of the lift 7 of 7~ with
vertices @;, W, and @s. Then G(A x [0,1]) is a polyhedron spanned by
G(Ax{0}), G(Ax {1}), and the three edges G(, x [0,1]) (¢ = 1,2,3).
Notice that G(A x {0}) and the G(@, x [0,1]) are all contained in
G(F x{0}). We may write G(A x[0, 1)) as the union of three tetrahedra
(any of which may be degenerate), such that the first tetrahedron 7}
has as edges the three edges of G(A x {0}) and G(@, x [0,1]), T; shares
three edges with T; and has G(w, x [0,1]) as an edge, and T3 shares
three edges with T, and has G(ws x [0,1]) as an edge. We now recall
that there is a constant a such that any tetrahedron in H? is contained
in an a-neighborhood of any four of its edges. Our claim therefore
follows with ¢ = 3a.

Now starting with our original simplicial hyperbolic surface g, let v°
be a vertex of the triangulation lying on a closed curve v that maps to
a closed geodesic. We may repeat the above collapsing process G — 1
times, each time collapsing an edge joining v° to an adjacent vertex. If
we first collapse all such edges which lie on 7 and only then collapse
the rest, then the resulting simplicial pre-hyperbolic surface h will have
an edge mapped to a closed geodesic, and only one vertex, so it will
be a useful simplicial hyperbolic surface. Since the homotopy in each
step is contained in a c-neighborhood of the previous one, we obtain
the desired bound on the whole homotopy.
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7. Far out simplicial hyperbolic surfaces

In this section we discuss the existence of end-homotopic useful sim-
plicial hyperbolic surfaces in the ends of the approximating manifolds
N;. Let us begin by recalling some definitions and results.

A hyperbolic 3-manifold N is said to be non-elementary if 7; (V) is
non-abelian. Recall that the convez core CH(N) of a non-elementary
hyperbolic manifold N = H3/T' is the smallest convex submanifold
whose inclusion is a homotopy equivalence. Alternatively CH(N) is
obtained as the quotient by I" of the convex hull CH(Ar) of the limit set
Ar. Ahlfors’ finiteness theorem [1] implies that if I" is finitely generated
(and has no parabolics), then ICH(N) consists of a finite number of
closed hyperbolic surfaces.

An end E of a non-elementary hyperbolic manifold N without cusps
is called geometrically finite if E has a neighborhood U disjoint from
CH(N). If E is geometrically finite, then we let Iz denote the bound-
ary of the component O of N —C#(N) which contains a neighborhood
of E. Og is homeomorphic to IIg x R (see Marden [29] or Epstein-
Marden [17].)

A non-elementary hyperbolic 3-manifold N with finitely generated
fundamental group is called geometrically finite if its convex core has
finite volume (see Bowditch [10] for many equivalent definitions.) In
particular, a hyperbolic 3-manifold without cusps is geometrically finite
if and only if it has finitely generated fundamental group and all of
its ends are geometrically finite (see section 1.2 in Bonahon [9]). A
geometrically finite hyperbolic 3-manifold without cusps is often called
convex cocompact.

An end E of N is geometrically infinite if it is not geometrically
finite. In this case, by Ahlfors’ finiteness theorem, there exists an entire
neighborhood of E which is contained in the convex core.

Consider first the following simple lemma about convergence of con-
vex cores under geometric limits.

Lemma 7.1. Let ['; be a sequence of torsion-free Kleinian groups
converging geometrically to a non-abelian, torsion-free Kleinian group
Fw- Let fi : V; & N, be the maps given by Lemma 3.1. Then,
possibly after restricting to a subsequence, f;(CH(N;) NV;) converge
geometrically to a conver submanifold C containing CH(Ny).

Proof of 7.1. Since the geometric topology on closed subsets of H?
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is compact, we may restrict to a subsequence so that the convex hulls
of the limit sets {C#(Ar,)} converge geometrically. Let C denote the
limit. Let z and y be any two points in C, and let {z; € CH(Ar,)}
and {y; € CH(Ar,)} be sequences converging to z and y respectively.
Since z;,y; € CH(Ar,), the geodesic arc [z;,y;] joining them lies in
CH(Ar,). Thus, since [z,y] is the geometric limit of {[z;,y;]}, we see
that [z,y] C C. Therefore, C is convex.

It is also easy to see that C is invariant by the limit group T',. It
therefore projects to a convex submanifold C C N, which contains
the convex core CH(N,,). (Remark. This is closely related to the fact
that the limit set Ar is contained in the geometric limit of the limit
sets Ar,. See [27].)

Let f; : B, (0) — H3 be the maps given in Lemma 3.1 which de-
scend to f;. Since { ﬁ} converges to the identity on compact sets,
{f:(CH(Ar,) N B, (0))} converges geometrically to €, and the lemma
follows.

Let us set some notation for the next proposition, as well as for the
proof of the main theorem. Fixing an end E of N, let U, be the
(unique) component of N, — C,, which is a neighborhood of E. Notice
that we may assume that C,, was chosen to be contained in the interior
of CH(Nw). Let F = 0U,, and let U; be the component of N; — C;
bounded by f;"!(F). Then U; is a neighborhood of an end E;, and we
say that E; corresponds to E.

Proposition 7.2. Let M be a compact irreducible 3-manifold with
non-abelian fundamental group, and let {p; : m (M) — Isom,(H?)}
be a sequence of purely hyperbolic, discrete, faithful, topologically tame
representations converging strongly to a purely hyperbolic representa-
tion py. Let E be a geometrically infinite end of N, and let E; be the
corresponding end of N;. Then given R, there ezists n(R) such that if
i > n(R), then N; contains an end-homotopic useful, simplicial hyper-
bolic surface (homotopic to the end E;) with image in N; — N'(R,b;).

Proof of 7.2. 1If E; is geometrically infinite, we may apply directly
the main theorem of [13], which states that, if V; is topologically tame,
then every neighborhood of E; contains an end-homotopic, useful sim-
plicial hyperbolic surface.

If E; is geometrically finite, then the convex hull of N; contains a
boundary component corresponding to E;, which should be far from C;
since the ends E; are converging to the geometrically infinite end E.
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After verifying this we apply the results of section 6 to approximate this
boundary component by a nearby useful simplicial hyperbolic surface.

For simplicity let us assume (extracting a subsequence if necessary)
that E; is geometrically finite for all i. Let U, and U; be neighborhoods
of E and E; as above. Let O; denote the component of N; — CH(N;)
which contains a neighborhood of E;, and let II; = 90;.

Since C,, separates the ends of N, and Cy, is contained in CH(N,),
it follows that U,, can meet N, — CH(N,,) only if it contains an entire
component of N, — CH(N). Since U, is a neighborhood of a geo-
metrically infinite end, this cannot happen, and we conclude that U,
is contained in the convex core.

We can now show that the distance of II; from b; grows without
bound as ¢ — oco. If not, let us suppose (possibly restricting again to
a subsequence) that II; NN (D, b;) # @ for some D > 0 and all i > 0,
and obtain a contradiction.

Thus, II; N V; # 0 as soon as R; > D. Passing if necessary to a
subsequence, the images {f;(II; N V;)} converge to a subsurface II,, in
the boundary of C, the geometric limit of f;(CH(N;) N V;). Since, by
Lemma, 7.1, C contains CH(N,), I, must be disjoint from int(CH(N))-

On the other hand, Lemma 7.1 implies that C; is eventually con-
tained in CH(N;), since C, is eventually contained in the interior of
fi(CH(N;)) . Therefore, O;, and hence also II; must eventually be con-
tained in U;. It follows that II,, C U, but this contradicts the fact
that Uy, C CH(Ns). Thus we have established that d(IL;, ;) — oo.

We may now approximate II; by a simplicial hyperbolic surface. Re-
call, from Proposition 2.2, that II; is homeomorphic to f;”!(F), and
hence to F for all i. Recall also (see [17]) that II; is the image of a
pleated surface, since it is the boundary of a convex hull. Now let
gi : F — N; be the pleated surface with image II; and pick € > 0.
Lemmas 6.1 and 6.2 guarantee that there exist a useful simplicial hy-
perbolic surface h; : F — N; and a homotopy G; : F x [0,1] —» N;
such that G;(-,0) = g;, Gi(-,1) = h; and G;(F x [0,1]) C N (K +¢,1L),
where K depends only on the genus of F.

If i is sufficiently large that II; lies outside N (R',b;) for R' = R +
diam(C;) + K + ¢, then the homotopy G; lies outside N'(R,C;), and
in particular the resulting surface is still end-homotopic and does not
intersect V'(R,b;).
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8. Proof of the main theorem

In this section we will finally assemble the proof of our main theorem,
which we restate here.

Main Theorem. Let M be a compact irreducible 3-manifold, and
let {p; : m(M) — Isom, (H3?)} be a sequence of purely hyperbolic,
discrete, faithful, topologically tame representations converging strongly
to a purely hyperbolic representation po, : ™ (M) — Isom, (H?). Then
Poo 15 topologically tame. Moreover, for all sufficiently large i there
exists a homeomorphism ®; : N; — N, such that (®;), = peo © p; '

Proof of Main Theorem.  When m;(M) is abelian the groups in
question are elementary, and this case is well-understood (see Jgrgensen
[24]). For the remainder of the proof we assume that m (M) is not
abelian.

Let E be a geometrically infinite end of N, and let U, be the
(unique) component of N, — Cy, which contains a neighborhood of E.
Let F be the boundary of U, and let U; be the component of N; — C;
bounded by f7'(F).

If F is incompressible, then we may lift to the cover Nr of N,
associated to m;(F'). Notice that U, is isometric to a neighborhood
Ur of an end Er of Np. Bonahon’s theorem [9] guarantees that Ng
is topologically tame and hence that there is a neighborhood U’ of Er
which is contained in Ur and homeomorphic to F' x (0,00). Thus, in
this case, E has a neighborhood homeomorphic to F x (0, 00).

For the remainder of the proof we will assume that F' is compressible
in N.

Let ¢ denote the diameter of C,, so that 26 bounds the diameters
of C; for all . Recall the function D from Corollary 5.3, which gives
a bound D(s) on the diameter of an end-homotopic useful simplicial
hyperbolic surface that meets N (s,b;) for any 7 € Z,. Recall also the
functions L(R) and no(R) from Lemma 3.4 which bound the diame-
ters of compact regions in N, in terms of their boundaries. Define
inductively a pair of sequences t(n),u(n) € R such that:

1. ¢(0) =26 + 2,

2. u(n) = D(t(n)) + t(n),
3. t(n+1)=4L(u(n)+1)+ 1.

Note that if an end-homotopic simplicial hyperbolic surface meets
N (t(n),b;) and misses N'(1+24,b;), then it will be contained, by Corol-
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lary 5.3, in N (u(n), b;).

We can now begin to construct the product regions X, referred to
in the outline of the proof.

First let us restrict to a subsequence i, such that i, > ng(u(n) + 1)
and such that N(L(u(n) + 1),b;,) C Vi , where V; is the subset on
which the K;-bilipschitz map f; is defined. Additionally, Proposition
7.2 guarantees that we may choose the subsequence so that there exists
a useful, end-homotopic, simplicial hyperbolic surface j; : F — U, C
N;_ such that j; (F) NN (t(n),b;,) = 0. From here on we reindex the
sequence so that we may write N,, for N; , j, for j; , etc.

We shall use j,(F) to obtain two end-homotopic embeddings g, :
F — N, and h,, : F = N, such that, for n > 0,

ho(F)NN(t(n) — 1,b,) =0

and
9n(F) C N(u(0),5,),

and such that the region between them is a product F x [0,1], and is
contained in N (L(u(n) + 1),b,); see Figure 2.

\‘llo)

J\Fs1)  §o(F)

FIGURE 2
We first need to pull down j,(F) to a surface near the basepoint by,.
Proposition 4.5 guarantees that there exists a homotopy

. Ja(2,0) = ju(z),

J, : F x[0,1] - N,, such that { T.(F x {1}) N (N (1, C.)) # 0,
and so that for all s € [0,1], J.(-,s) is an end-homotopic simplicial
hyperbolic surface, and J,,(F x [0,1]) NN (1,C,) = 0.
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To obtain a surface near the boundary of N (¢(n),b,), let
vn = sup{s € [0,1] | Jn(F x {s}) NN (¢(n), bn) = 0}.

Then J,(F X {v,}) meets the boundary of N (t(n),b,), but not its
interior. Corollary 5.3 guarantees that J,,(F X {v,}) C cl(N (u(n), b,)).

Lemma 2.6 assures us that there exists an end-homotopic embedding
h, : F = N, homotopic to j,, such that

ho(F) C N(1, Jo(F x {v,})).

Similarly, there is an end-homotopic embedding g, : F — N, ho-
motopic to j, such that g,(F) C N(1, J.(F x {1})). Note also that,
since J,(F x {1}) meets cl(N(1,C,)), its diameter is bounded by
D(1+26), and we may conclude that g,(F) C N (u(0),b,) since u(0) =
2+ 26 + D(2 + 24). Thus g,, and h, have the desired properties.

Lemma 2.1 implies that the region X,, between g,(F) and h,(F) is
homeomorphic to F x [0,1]. Since 8X,, C N (u(n) + 1,b,), Lemma 3.4
guarantees that X, C N(L(u(n) + 1),b,), and in particular X,, C V.

Let Y, = fu(X5), O0Yn = fn(9a(F)) and 0,Y, = fn(h.(F)). Notice
that, since f, is 2-bilipschitz,

&Y, C N(2u(0),bs),

Y, C N(2L(u(n) + 1), bs)

and

8 Yo NN ((t(n) = 1)/2,bs0) = 0,

where for the last assertion we must apply Lemma 3.2.
By property (3) of the sequences t(n) and u(n), we have

ttn+1) -1
2

for all n. This implies that Y, is disjoint from Y,,. We now claim
that 0,Y,, is contained in Y, ,;.

In N, 9.(F) is homologous to the boundary F,, of U,. The two sur-
faces bound a submanifold which must be contained in N'(L(u(0)), b,),
by Lemma 3.4. Since this is contained in V,, (by our choice of subse-
quence and the monotonicity of L and the u(n)’s), we conclude that

= 2L(u(n) + 1)



ON LIMITS OF TAME HYPERBOLIC 3-MANIFOLDS 33

O0oY,, is homologous to the boundary F of U,,. Thus the surfaces 8,Y,,
are also homologous to F', and we denote by P, the region bounded
by 0,Y, and F. It must be that P, C P,, or P,,, C P,, since both
regions are contained in Uy. But 0,Y,4; is not in Y,,, and certainly
not in P, — Y, which is contained in N'(2L(u(0)),bs,). Thus 8,Y,, is
contained in Y, ., and is homologous in Y, ;; to 0,Y,,,.

Let A4, be the subset of Y;,;; bounded by 0,Y,, and 0,Y,,,,. Theo-
rem 2.4 assures us that 0,Y,, is isotopic to the one-half level surface in
the product structure on Y,,,, and therefore that A, ,; is homeomor-
phic to F x [0,1]. Thus if we set

Zo =Y U ] Ay,
n=2
we have Z,, homeomorphic to F x [0,00). Since {0A,} eventually
leaves every compact set, the same is true for {A,}. Therefore Z
has compact boundary (namely 0pY;) while its interior is unbounded
in Uy, which implies that it must contain an entire neighborhood of
the end E.

We have shown that every geometrically infinite end £ of N, has a
neighborhood homeomorphic to Fg x (0,00) where Fg is some closed
surface. Since it is well-known (see for example [17]) that every geo-
metrically finite end E of N, has a neighborhood with such a product
structure, we see that N, is topologically tame.

It remains to find the homeomorphism ®;. Let ¢; : C; = C, be
the restriction of f;. Recall, from the proof of Proposition 3.3, that,
for large enough i, (¢;)x = poo © p;'. Theorem 2 of McCullough-
Miller-Swarup guarantees that, since C; is a compact core for N; for
i=1,...,00, there exists a homeomorphism h; : int(C;) — N, which
induces the identity on ;. Thus for large enough i, ®; = ho 0 ¢p; 0 b
is the desired homeomorphism. This completes the proof of the main
theorem.

Remark. One can use the same argument to handle the case
where F' is incompressible as we did when F is compressible, and hence
avoid using Bonahon’s theorem. However, one would have to prove an
analogue of Proposition 4.5 which guarantees that given a useful end-
homotopic simplicial hyperbolic surface h : F — N, there exists a
homotopy of end-homotopic simplicial hyperbolic surfaces terminating
in an end-homotopic simplicial hyperbolic surface which intersects a
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bounded neighborhood of C;. (In the incompressible case the bound
cannot necessarily be taken to be 1.) To accomplish this one first fixes
a simple curve -y on F' and observes that the geodesic representative of
f () always lies within a bounded neighborhood of f;"(F). One then
constructs a triangulation 7' with only one vertex and v as an edge.
Lemmas 4.2 and 4.3 then provide a homotopy of simplicial hyperbolic
surfaces ending in a simplicial hyperbolic surface which has the geodesic
representative of f;!(7) in its image. (If this homotopy hits C;, it can
be truncated at that point, so that it remains end-homotopic.) This
homotopy gives the desired analogue of Proposition 4.5.

9. Applications

This section contains applications of our main theorem to algebraic
limits, boundaries of quasiconformal deformation spaces, and variation
of spectral data.

Corollary A. Let M be a compact irreducible 3-manifold, and let
{pi : m (M) — Isom,(H3)} be a sequence of purely hyperbolic topolog-
ically tame discrete faithful representations of m,(M) converging alge-
braically to p, : (M) = Isom . (H?).

1. If poo(m(M)) has nontrivial domain of discontinuity, then py, is
the strong limit of {p;}, and p(m1(M)) is topologically tame.

2. If M is not homotopy equivalent to a compression body, then py
is the strong limit of {p;}, and pe(m1(M)) is topologically tame.

3. The limit set of peo(m(M)) either has measure zero or is the
entire 2-sphere.

Proof of Corollary A. Part 1 follows directly from our main theorem
and the following theorem:

Theorem 9.1. (Anderson-Canary [2]) Let M be a compact irre-
ducible 3-manifold. Suppose that {p; : m;(M) — Isom,(H?3)} is a se-
quence of purely hyperbolic discrete faithful representations, which con-
verges algebraically to py, : m (M) — Isom,(H?). If po, is purely hy-
perbolic, and p,(m;(M)) has non-trivial domain of discontinuity, then
{pi} converges strongly to p..

Part 2 follows directly from our main theorem, part 1 and the fol-
lowing result:

Theorem 9.2. (Anderson-Canary [2]) Suppose that {p; : 71 (M) —
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Isom,(H?)} is a sequence of discrete faithful representations which
converges algebraically to py : m (M) = Isom (H?). If poo(m (M))
has empty domain of discontinuity and M is not homotopy equivalent
to a compression body, then {p;} converges strongly to poo.

Part 3 now follows by observing that if p(m;(M)) has non-trivial
domain of discontinuity, then it is topologically tame. Hence by Theo-
rem 1.1 its limit set has measure zero. If, alternatively, p., (7 (M)) has
empty domain of discontinuity, then the limit set is the entire sphere.

The general form of Ahlfors’ measure conjecture includes the asser-
tion that a finitely generated Kleinian group whose limit set is S? acts
ergodically on S%. Thus Corollary A does not give a complete answer
to the general form of the conjecture for purely hyperbolic algebraic
limits of topologically tame Kleinian groups, in the case where M is
homotopy equivalent to a compression body. q.e.d.

Let T be a convex cocompact (torsion-free) Kleinian group and let
QC(T') be its quasiconformal deformation space (see Bers [5] for a dis-
cussion of quasiconformal deformation spaces of Kleinian groups). One
may show, as in Corollary 1.5 in McMullen [32], that purely hyperbolic
representations form a dense G5 in QC(T"). Thus, Corollary B is a
nearly immediate consequence of Corollary A.

Corollary B. Let I" be a convex cocompact (torsion-free) Kleinian
group and let QC(T') denote its quasiconformal deformation space. If
H?3/T is not homotopy equivalent to a compression body, then there is
a dense G5 in OQC(T') consisting entirely of topologically tame, geo-
metrically infinite hyperbolic 3-manifolds.

Proof of Corollary B. We observed above that there exists a dense
G; of purely hyperbolic representations in the boundary of QC(T).
Part 2 of Corollary A then assures that each of these representations is
topologically tame. If any of these representations were geometrically
finite, then (see Marden [29]) it would have an open neighborhood con-
sisting entirely of quasiconformally conjugate convex cocompact repre-
sentations, which would contradict its presence on the boundary of the
quasiconformal deformation space. q.e.d.

We note that one could extend Corollary B to all convex cocompact
(torsion-free) Kleinian groups other than Schottky groups if one had a
positive solution to the following conjecture.

Conjecture. Let I' be a convex cocompact Kleinian group with at
least two inequivalent components of its domain of discontinuity. Then
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the set of purely hyperbolic representations with non-empty domain of
discontinuity intersects OQC(T') in a dense Gs.

The following notation will allow us to give a concise restatement
of our main theorem and part 2 of Corollary A. Let D(M) denote the
set of all discrete faithful representations of m; (M) into Isom, (H?).
Let AD(M) and GD(M) denote the set D(M) with the topology
of algebraic and strong convergence respectively. Now let H(M) =
D(M)/Isom..(H3) where Isom, (H?) acts by conjugation. Let AH (M)
denote H(M) with the quotient topology inherited from AD(M); this
is called the algebraic topology. Let GH (M) denote the set H (M) with
the topology inherited from GD(M); this is called the strong topology.
We let TT (M) denote the set of topologically tame representations in
H(M). Let Hp,(M) denote the set of purely hyperbolic representations
and let TT,,(M) = TT(M) N Hyp(M). Let GH,p(M) denote Hpy (M)
with the topology inherited as a subset of GH (M), and let AH,,(M)
denote H,,(M) with the topology inherited as a subset of AH (M). We
can then state:

Corollary C. If M is a compact irreducible 3-manifold, then T'T,,(M)
is a closed subset of GH,,(M). If M is not homotopy equivalent to a
compression body, then TT,,(M) is a closed subset of AH,,(M).

We can also consider the variation of spectral data on deformation
spaces of hyperbolic manifolds. Define a function )y : D(M) — R by
letting Ao(p) denote inf spec(—A), where A is the Laplacian acting on
L?(H3/p(m;(M))). This function descends to a function Ay : H(M) —
R. It is conjectured that )\, is a continuous function on GH (M), al-
though it is known not to be continuous on AH (M) (see below).

It is a corollary of our techniques that the algebraic and strong
topologies agree when restricted to TT,,(M). Thus we are able to
apply the results of Gehring-Vaisala, Marden and Canary to obtain:

Corollary D. If M is a compact 3-manifold, then X\ is a continuous
function on TTy,(M) in the algebraic topology.

Proof of Corollary D. Let CC(M) denote the set of convex cocom-
pact representations of m;(M). Marden [29] showed that CC(M) is an
open subset of AH(M). In particular, if p € CC(M), and {p;} con-
verges to p, then for large-enough i there exists a K;-quasiconformal
conjugacy of p; to p, where K; converges to 1. Thus (see Gehring-
Vaisala [19]) the Hausdorff dimension D(p;) of the limit set of p;(m; (M))
converges to D(p). Sullivan [37] showed that if 7 € CC(M), then
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Mo(7) = D(7)(2 — D(7)) unless D(7) < 1 in which case A\o(7) = 1.
Thus, Ao(p;) converges to A\o(p), and we conclude that ), is continuous
at every point in CC(M).

If p € TT,n(M) — CC(M), then part 3 of Theorem 1.1 implies that
Xo(p) = 0. Let {p;} be a sequence in T'T,, (M) converging algebraically
to p. We may conclude that {p;} converges strongly to p. If p(m, (M))
has non-trivial domain of discontinuity, then this follows from Theo-
rem 9.2. If p(m; (M)) has empty domain of discontinuity, then it follows
from Theorem 9.2 of [14].

Let N; = H3/p,(m (M)). Since in this case the convex core of
H3/p(m1(M)) has infinite volume, it is an immediate corollary of Lem-
ma 7.1 that the volume of the convex core CH(NV;) goes to infinity.
Theorem A in [12] states that

A |x(OCH(NV;))|
vol (CH(N;))

It follows that X\o(p;) converges to 0. q.e.d.

It is well-known that ), is not continuous in the algebraic topology
on all of AH(M). We will outline one example. If p is a maximal
cusp in the boundary of a Bers slice, then p is geometrically finite,
hence Ao(p) # 0 (see Lax-Phillips [28].) On the other hand (see [32]),
degenerate groups are dense in the boundary of a Bers slice, and if p’ is
degenerate, then \o(p') = 0 (see [12].) Thus, Ay cannot be continuous
in the algebraic topology on the boundary of a Bers slice. In fact,
McMullen (see again [32]) proved that maximal cusps are also dense in
the boundary of a Bers slice (in the algebraic topology). Therefore Ag
is discontinuous at a dense set of points in the boundary of the slice.

One similarly conjectures that Hausdorff dimension of the limit set
is a continuous function on GH(M). Bishop and Jones [6] have re-
cently announced a proof that the Hausdorff dimension of any finitely
generated geometrically infinite Kleinian group is 2. This suffices to
show that Hausdorff dimension is a continuous function on TT,,(M).

Ao(pi) <
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