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THE WEYL PROBLEM WITH
NONNEGATIVE GAUSS CURVATURE

PENGFEI GUAN & YANYAN LI

1. Introduction

Weyl posed the following problem in 1916 [21]: consider the 2-sphere
S2 and suppose g° is a Riemannian metric on S2 whose Gauss curvature
is everywhere positive. Does there exist a global C 2 isometric embedding
X: (S2, g°) -> (i?3, δ) where δ is the standard flat metric in a Euclidean
3-space i?3 ? The first attempt to solve the problem was made by Weyl
himself. He suggested the continuity method and obtained a priori esti-
mates up to the second derivatives. Later Lewy [13] solved the problem in
the case of g° being analytic. The complete solution was given in 1953
by Nirenberg in a beautiful paper [16] under very mild hypothesis that the
metric g° has continuous fourth derivatives. His result depends on the
strong a priori estimates he had derived for uniformly elliptic equations
in dimension two [17]. The result was extended to the case of continu-
ous third derivatives of the metric by Heinz [9] in 1962. In a completely
different approach to the problem, Alexandroff [1] obtained a generalized
solution of WeyFs problem as a limit of polyhedra. The regularity of this
generalized solution was proved by Pogorelov [18], [19].

The uniqueness question was considered by Weyl in [21]. The first proof
of the uniqueness of a solution of the problem (within rigid motion and a
possible reflection), i.e., a proof of the theorem that two closed isometric
convex surfaces are congruent (within a reflection) was given by Cohn-
Vossen [6] in 1927, under the assumption that the surfaces are analytic.
It was later shortened considerably by Zhitomirsky [22]. In 1943 Herglotz
[10] gave a very short proof of the uniqueness, assuming that the surfaces
are three times continuously differentiable. Finally in 1962 it was extended
to surfaces having merely two times continuously differentiable metrics
by Sacksteder [20]. Notice that the rigidity results in [20] hold under
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more general hypotheses than the Gauss curvature of g° being positive
everywhere.

A natural question to ask is: if the Gauss curvature of the metric is
nonnegative instead of positive everywhere, and we assume the smooth-
ness of the metric, do we still have a smooth isometric embedding? Exam-
ples given in [11] and [2] show that for some analytic metrics with Gauss
curvature positive on S except at one point, there exist no C global
isometric embedding into (R3, δ).

It is proved by Iaia in [11] that if g° is a C 4 Riemannian metric on
S2 with Gauss curvature K satisfying, for some P e S2, that

(i) *(/>) = 0, K(Q)>0 for QφP,
(ii) AgoK{Q) > 0 for all Q near P,

then there exists a C 1 ' 1 isometric embedding X: (S2, g°) —> (i?3, δ),

where δ is the standard flat metric on R3.
The loss of strict positivity of K leads to degenerate Monge-Ampere

equations. Certain types of degenerate Monge-Ampere equations have
been studied by Caffarelli, Kohn, Nirenberg, and Spruck [3], [4].

In this note we prove the following result.
Theorem. Suppose that g° is a C4 Riemannian metric on S2 with

Gauss curvature K° > 0. Then there exists a C 1 ' 1 isometric embedding
X: (S2, g°) -»(i? 3, δ) where δ is the standard flat metric in R3.

The proof of this theorem contains the following proposition which is
of independent interest.

Proposition. Let M be any closed convex surface in R3, normalized
so that the smallest ball containing M is centered at the origin. Set

aλ = mm be , aΊ = max \x\
1 xeλf 2 x£M

Then

max|i/(jc)| < a . ^ ) 2 - ( ^ ) 2 ) / ^ 2 ) 2 / ^x{κ{χγ _ }AK(X))9

xeM * y xeM *

where g denotes the metric on M induced from (R3,δ)f K(x) denotes
the Gauss curvature at x e M with respect to g, and H(x) denotes the
mean curvature of M at xeM.

There are many interesting questions which still need to be studied. We
mention a few in the following.

Question 1. Does there exist some smooth Riemannian metric on S2

with nonnegative Gauss curvature which can never be C 2 isometrically
embedded into (R3, δ) ? Or conversely, is it possible to improve our



WEYL PROBLEM WITH GAUSS CURVATURE 333

theorem to a C2 embedding (even C2'a (0 < a < 1) or C 2 ' 1 ?) instead
of a C 1 ' 1 embedding?

Question 2. What are the sufficient conditions (even necessary and suf-
ficient conditions) on the metric with nonnegative Gauss curvature which
give rise to a smooth isometric embedding into (R3, δ) ?

Notice that the problems above are global since Lin proved (see [14])
that for any smooth 2-dimensional Riemannian metric with nonnegative
Gauss curvature, there always exists some smooth local isometric embed-
ding into {R3, δ).

We would like to thank the referee for some helpful suggestions in regard
to the presentation of the results and clearing up some grammatical errors
in this paper.

2. Proof of the Theorem

We first approximate g° in C 4 by a sequence of C°° metrics gε, with
corresponding Gauss curvature {Kε} being positive everywhere. This can
be achieved very easily, for instance, by first setting

~ ε lew 0

g =e g

with ε > 0 and w e C4'a(S2) (0 < a < 1). It is well known that Kε

satisfies

-εA ow + K = K e

Clearly if we choose w such that -Δ ow = 1 in {x e S2\K°(x) = 0}

(notice that K has to be positive somewhere due to the Gauss-Bonnet

theorem, so it is easy to find such w), and then choose ε to be very small,

gε will be close to g° in C 4 and Kε will be positive everywhere. Next

we fix w , ε, and hence gε. Then we choose a C°° metric gε, which is

C 4 as close to gε as we want (hence Kε > 0 everywhere).

Now we can apply Nirenberg's theorem to gε (since Kε > 0 every-

where and gε is smooth) and therefore obtain a C°° isometric embedding

Xε:(S2,'g°)-+(R\δ).

It is not difficult to see that there exist constants aχ, βχ > 0 (indepen-

dent of ε), such that, for al ε > 0,

(1) 0 < ϋ : ε ( ω ) < ^ 1 V ω e S 2 ,

(2) R{Xε) = m i n m a x \X\ω) -Y\<ax.
YR3 ωes2
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From now on we can simply assume that the origin is the center of the
smallest ball containing the surface. It is elementary to see that R(Xε) =

2) - With this normalization and (1) we immediately have

(3) \\Xε\\co=R(Xε)<C,

where C is some constant independent of ε.
Write g° and gε in local coordinates,

/ = E° du + 2F° du dv + G° dv2,

gε = Eε du2 + 2Fε du dv + Gε dv2.

We already known that Xε: (S2, gε) -> (i?3, δ) is an isometric embed-
ding, so we have dXε dXε = gε, namely,

Xε

u Xε

u=Eε, Xε

u Xε

v=Fε, Xε

v-Xε

v = Gε.

It follows easily from the above that

(4) \\VgoXε\\co<C,

where C is some constant independent of ε.
The following will be devoted to establishing a bound on ||V^oXε||co.

Once we obtain such a bound, the limit of Xε (along a subsequence) as
ε —> 0 will be a C 1 ' 1 isometric embedding of °̂ . For convenience, we
drop the dependence on ε in our notation in the following.

Let us recall some elementary differential geometry formulas. Let X:
(S2

 5 g) -^ (R3

 5 δ) be an isometric embedding where δ — dx2 + dy2 + dz2

is the standard flat metric in i? 3. Let (u, v) denote local coordinates on
part of the sphere and write

g = gndu2 + 2gι2 du dv + g22 dv2 = Edu2 + IF dudv + G dv2.

Suppose X(u, v) = (x(u, v), y(u, v), z(u, υ)). Then the first funda-
mental form is given by

I = dX dX = g.

Namely,

Let the orientation be chosen so that the inner unit normal is given by

XuxXυ _ XuxXv
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where | | denotes the Euclidean norm, and x the standard cross product
between vectors in R3.

The second fundamental form is then given by

= -dX -dX = Ldu2 + IMdudv + Ndv2,

where

Therefore the Gauss and mean curvatures are (determinant and j trace of
the second fundamental form with respect to the first fundamental form):

(5) K = {LN - M2)/{EG - F2),

(6) H = \{GL - 2FM + EN)/{EG - F2).

Furthermore the Gauss theorem egregium asserts that K can be ex-
pressed in terms of up to the second derivatives of E, F, G only.

The Gauss equation takes the form

where Γy7 are called Christoffel symbols associated with the metric tensor
g.j, given by

(8) Γ*=i* W (βiβ>ι + β/*//

with dχ = du and d2 = dv.

The Weingarten equations take the form

where {LιΛ are expressions involving L, M, N and E, F> G.
The Mainardi-Codazzi equations take the form

Lυ-Mu = LT\2 + M(lt 2 - Γ !

u) -

Mv-Nu = LT\2 + M{T\2 - T\2) -
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Let Δ denote the Laplace-Beltrami operator associated with the metric
g, namely,

where (gιj) is the inverse matrix of (g.), and V, the covariant differen-
tiation with respect to g in the direction dt. It follows from (7) that

(11) AgX = 2HX.

We remark that in order to obtain a C2 bound on X it is enough to
obtain an L°° bound on H, since the second fundamental form is positive
definite, and an L°° bound on H (^ trace of the second fundamental
form with respect to the first fundamental form) will give rise to an L°°
bound of L, M, N. Now the desired L°° bound on Xuu, Xuv , and
Xvv will follow immediately from the Gauss equation (7) and the gradient
estimate (4).

Therefore the only thing we need to do is to establish an L°° bound on
H. Notice that with the choice of inner unit normal, H > 0.

Define
p(u,v) = ±X.X.

The above function has been used by Darboux (see [7, §707] and also [16]).
Differentiating p(u, υ) and using (7), we have

We consider the following function on S2,

(13) f = ea"H,

with constant a > 0 being chosen later.
Consider the maximization

There exists some point P e S2 , such that f(P) - fmsa . Let us write the
metric g = gε near P in conformal coordinates:

(14) g = e2h{du+dυ2),
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where (u, υ) = (0, 0) corresponds to P, and

(15) h = duh = dvh = 0 at ( 0 , 0 ) .

It is not difficult to calculate in the uv coordinates, using (7), that

Here and in the following, hι=dih = dji and h2 = d2h = dvh.
For the formulas (5) and (6) the Gauss and mean curvatures become

(16) K = (LN-M2)/e4h,

(17) H=frL + N)/e2k,

(18) K = -Ah/e2h,

where Δ = dn + d22 . Also, the Mainardi-Codazzi equations take

L2Mχh2{L + N)

M2-Nλ= -hλ{N + L) = -2He hx.

Clearly (see (14))

(20) AgK = e~2hλK.

Differentiating (16), we have

Kχ = -^[LιN + LNχ - 2MMι - Ah^LN - M2)]

(21) *
= -jri^N + LN{ - 2MMχ) - 4hχK,

e

Ah
--±{L.N + LN. -2MM.)-4huK-4h,K.

(22) e4h l l 1 U ' '

= -L(LnN + LNn +2NχLχ - 2M2 - 2MMn)

-%hλKλ-4hnK-\6h]κ,

K2 = \[L2N + LN2 - 2MM2 - 4h2(LN - M2)]

(23) e

= -\{L2N + LN2 - 2MM2) - 4h2K,
e
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( 2 4 ) K22 = ±(L22N + LN22 + 2N2L2 - 2M\ - 2MM22)

-Sh2K2-4h22K-l6h2

2K,

where the last equality of (22) follows from (21).
Apply d2 to the first equation of (19), and dχ to the second, and add

together to obtain

{-L2 + 2He2hh2)2 = (-Nx + 2He2hhι)ι,

which yields

Nn = L22 + 2Hλh/h - 2H2h2e
2h + 2(hn - h22)He2h

+ 4(h2-hl)He2h.

Differentiating (17) gives

CJfλ

(27)

(28)

(29)

(30)

1

?H —

2H2 =

2HLΓ1\2

2H
Z / 1 2 2

Lχ + Nχ

e2h

Ln + Nχ

e2h

Ln+N{

e2

(L2 + iV2

^22 + ^ 2

e2h

L22 + N2

Ίh

1

1 ?/j

1 8Λ

)/e2 Λ -

2 4/z

2 g/.

L + i

^ 1

-4Λ2

7 ^ 7

V L , +

H,

-4hnH-

%h\H

Nχ

'' '

) - 4Λ,#,

4ΛU//,

- 4Λχ//2

4hnH.

\\n

-4hnH

Rh h H
1 2 >

Applying d, to the first equation of (19) and d2 to the second, we
obtain

(31) Mn={L2-2h2He2\

= Ln - 2Hιe
2hh2 - 2He2hhn - 4Hhιh2e

2h,

(32) M22 = (Nι-2hιHe2h)2

= Nn - 2H2e
2hhi - 2He2hhn - 4Hhιh2e

2h.
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A use of (22) and (24), leads to

e A K = e ΔK

= LnN + LNn+ 2LχNχ - 2Mχ - 2MMχχ

+ L22N + LN22 + 2L2N2 - 2M\ - 2MM22

- e*h[%hχKχ + U2K2 + 4{hu + h22)K + 16(ΛΪ + h\)K]

= N(LU + L22) + L(NU + N22) - 2M(Mn + M22)

+ 2{L{NX + L2N2 - M\ - M\)

- eA\mχKχ + U2K2 + 4(hxx + h22)K + I6(h2

χ + h\)K].

In the above equation substituting (25) for L22 and also for Nxx, and

substituting (31) for Mχχ and (32) for M22 , we get

e6hΔgK = N[Lxχ + Nxx - 2Hχhxe
2h + 2H2h2e

2h

-2(hxx-h22)He2h-4{h2

χ-h2

2)He2h]

+ L[L22 + N22 + 2Hxhxe
2h - 2H2h2e

2h

+ 2{hxx - h22)He2h + 4(h2 - h2

2)He2h]

- 2M[Lχ2 + Nχ2 - 2(Hχh2 + H2hχ)e2h

-4He2hhx2-SHhxh2e
2h]

+ 2{LχNχ + L2N2 - M2

χ - M2

2)

- eAh[UxKx + U2K2 + 4(hn + h22)K + I6{h2 + h\)K\.

Using (27), (29), and (30) to replace Ln + Nχχ, Lχ2 + N2, L22 + N22

by 2Hxxe
2h, 2Hx2e

2h, 2H22e
2h respectively, plus some lower order terms,

we obtain

e6hAgK = N[2e2hHχχ + 6Hχhxe
2h

+ 2H2h2e
2h + 2(hxx + h22)He2h + 4{h\ + h2

2)He2h]

+ L[2e2hH22 + 6h2H2e
2h

+ 2Hxhxe
2h + 2{hxx + h22)He2h + 4{h\ + h\)He2h\

- 2M[2e2hHχ2 + 2{Hχh2 + H2hχ)e2h]

+ 2(LχNχ + L2N2 - M2 - M2)

- eΛh{%hχKχ + &h2K2 + 4{hxx + h22)K + \6{h] + h\)K].



340 PENGFEI GUAN & YANYAN LI

1h

Regrouping the terms and using (18) to replace hn + h22 by —e K
yield

e6hAgK = 2e2h(NHu - 2MHn + LH22)

+ 2(L,JV, + L2N2 - M\ - M2)

+ N[6Hιhιe
2h

( 3 3 ) + 2H2h2e
2h + 2(ΛU + h22)He2h + 4{h\ + h\)He2h\

+ L[6h2H2e
eh

+ 2Hχhxe
2h + 2(An + h22)He2h + 4(h2 + h2

2)He2h]

= 4M(Hιh2 + H2hι)e2h

- e4h[ShιKι + Sh2K2 - 4K2e2h + I6(h2 + h2

2)K\.

Notice that we derive from (26) and (28) that

LjΛΓ, < i(L, + Nι)
2 = e4h(Hι +2hιH)2,

L2N2 <\{L2 + N2f = e4h(H2 + 2h2H)2.

Using the relation hn + h22 = -e2hK and (34), evaluating (33) at P

(so h = hι=h2 = G), and noticing that K <H2 we have

(35) Δ,A" < 2{NHχ, - 2MHn + LH22) + 2{H2 - H2).

It follows from (13) that the following hold at P, in consequence of

f,(P) = 0,

Hχ = -<xpχH, H2 = -ap2H,

Hn = -aHpn+a2p2H + fne~ap,

Hn = -aHpn + a2

Plp2H + fne~ap,

H22 = -aHp22 + a2p2

2H + f22e~ap.

Since / has P as the maximum point, we also have

(36) (fu(P))<0,

and therefore

( 3 7 )

 L^22 " 2MHn + NHu < H[L{-ap22 + a2pi)

- 2M(-apl2 + apγp2) + N(-apn + a p\)},

(38) (H2 + H2) = H2a2(p2 + p2

2).
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Using (35), (37), and (38) we obtain, at point P, that

*gK < ~ 2aH(Lp22 - 2Mpn + Npn)

+ 2a2H(Lp2

2 - 2MPιp2 + Np\) + 2(H2 + H2) ,

so that at P in consequence of H2 = a2p2H2 and L, M, N < 2H,

AgK < - 2aH(Lp22 - 2Mpn + Npn)

2a2H(L + N){p] + p\) + 2H2a2(p2 + p\)

\)- - 2aH(Lp22 - 2Mpn + Npn) + 6H2a2{p\ + p\).

Since we are in a geodesic normal coordinate system, it follows from (12)
that, at P,

and

Pn =

Therefore

\

:LX

at P

κ<

•X + E, P]

-4aH(LN -

+ 6H2a{p\ -\

12 =

M2

•p\

MX-

)X Ύ

)

X + F, p22

- 2aH(LG -

= NX

2MF-

•X + G.

\-NE)

= -AaHKX - Ύ - 2aH(L + N) + 6H2a{p] + p\)

< 4aHK\X Ύ\ - 4aH2 + 6H2a2(p2 + p\)

< -4aH2 + 6a2H2\X\2

Choose a = \R~2 , where R = R(X) is as in (2), we have at P that

H2<R2(K2-lAgH2<R2(K2-lAgk).

Thus, H{P) < C, and it follows easily that

max/ = f{P) = eap{P)H{P) < C,
2

ma a apf<maxCe ap <C.
s2 s2 s2

Hence we have obtained the desired estimate on H.
Notice that if we keep track of the above constants in the above com-

putation, we immediately obtain the proof of the proposition mentioned
in §1.
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