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NORMAL GENERATION OF VECTOR BUNDLES
OVER A CURVE

DAVID C. BUTLER

Introduction

Many algebro-geometric calculations simplify when a particular multi-
plication map of global sections on vector bundles surjects. For example, a
line bundle over a smooth variety X is normally generated iff L embeds
X as a projectively normal variety. Equivalently, L is normally generated
iff L is ample and for all n > 1 we have surjectivity for the multiplication
map

Sn(H°(X,L))^H°(X,L®n).

This characterization means normal generation allows us to calculate di-
mensions of the spaces of quadrics, cubics, and so forth which vanish
on X, using Riemann-Roch. So we want optimal numerical conditions
forcing normal generation. Mumford [30] shows that if Lx and L2 are
line bundles over a smooth curve C of genus g with deg(Lj) > 2g and
deg(L2) > 2g + 1, we have surjectivity of the multiplication map

τ:H°(C, Lx)®lf{C9 L2) -> H°(C, Lχ®L2).

So L is normally generated whenever deg(L) > 2g + 1, which was first
discovered by Castelnuovo [5], then rediscovered by Mattuck [27], and
again by Mumford [30]. Examples show this result is optimal.

Recent work generalizes the " 2g + 1" theorem to higher syzygies. We
recall notation introduced by Green and Lazarsfeld [16]. L has property
No iff L is normally generated. L has property Nχ iff L is normally
presented, meaning L has property iV0 and the homogeneous ideal is
generated by quadrics. L has property N2 iff L has property N{ and
the relations among the quadrics are generated by the linear relations.
L has property iV3 iff L has property N2 and the relations among the
relations are generated by the linear relations. And so on. Still working
over a smooth curve C, Fujita [9] and Saint-Donat [36] built upon work of
Mumford and showed L is normally presented provided deg(L) > 2g-\-2.
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Generalizing these results, Green shows L has property Np whenever
d e g ( L ) > 2 g + l + / ? .

Algebraic geometers have not yet generalized Green's Theorem, or even
the special case of Castelnuovo's Theorem to higher dimensions. But the
form such a generalization ought to take now seems clear. Mukai observes
that a line bundle L over a curve C of genus g with deg(L) > 2g + 1 is
of the form L = Ω c <g> A®*, where t > 3 and A is ample. This leads him
to conjecture that there should be some explicit number t0, such that any
line bundle B over a smooth surface S is normally generated if B is of
the form B = Ks<8> S®(, where t > tQ and A is ample. Since recent work
of Reider [35] shows Ks <g> A®* is very ample for t > 4, Mukai suggests
t0 = 4. We of course expect similar statements for higher syzygies.

Towards an ultimate goal of solving Mukai's conjecture, it seems worth-
while to consider special classes of varieties. We prove "Mukai" type re-
sults for ruled varieties with a curve as base. To do so, we first consider a
simple and natural question. What are the optimal numerical conditions
on vector bundles E and F over a smooth curve C of genus g which
force suqectivity of the natural multiplication map

τ: H°{C, E) <g> H°(C, F) -+ H°(C, E ® F)Ί

We answer this question for char(fc) = 0 or g < 1, and now state our
main result.

Theorem 1 (char(/c) = 0, or g < 1). Let E and F be semistable
vector bundles over a smooth projective curve C of genus g. If μ(E) > 2g
and μ(F)>2g, then τ surjects.

Examples show Theorem 1 is optimal. It generalizes Mumford's The-
orem even if char(A:) Φ 0 and g > 2 because Theorem 1 remains true
in this case provided either E or F is a line bundle. Furthermore, in
Theorem 2.1, we generalize Theorem 1 to possibly unstable bundles by
considering a numerical invariant which Mehta [28] defines in terms of a
vector bundle's unique Harder-Narasimhan filtration [19]. Then in The-
orem 4.1 we further generalize Theorem 1 to vector bundles over ruled
varieties with a curve as base. The numerical invariants we consider in
Theorem 4.1 basically involve stability of the push down bundle, and reg-
ularity of restriction to a fiber. The result is somewhat technical but allows
us to prove the following theorems.

Theorem 2A (char(fc) = 0, or g < 1). Let E be a rank-n vector
bundle over a smooth projective curve C, and set t0 = 2n + 1. If A is an
ample line bundle over X, then B is normally generated provided B is of
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the form B = Kχ®A®1 for some t >tQ. More generally, ifΆ. is an ample

line bundle over X = P(E) for I <i<tQ, then B = Kχ® Aχ® ®At

is normally generated.

T h e o r e m 2 B ( c h a r ( f c ) = 0 , or c h a r ( f c ) = q > p + 1 and g<\). L e t E
be a rank-n vector bundle over a smooth projective curve C. Fix a positive
integer p and set tp = 2n + 2np. If A is an ample line bundle over X,
then B has property Np provided B is of the form B = Kχ <g> A®' for
some t > t . More generally\ if A. is an ample line bundle over X — P(E)
for \ <i <t , then B = Kχ &A.®-- ®A has property N .

We also use Theorem 4.1 to study Koszul rings on curves and ruled
varieties over a curve. Our main result is Theorem 3. The first part of
this result was conjectured by Kempf (cf. [23]), and then reproven by the
same, subsequent to our work, using his results for Koszul rings on points
in projective space and hyperplane sections [24]. Recall the definition of
a Koszul ring (which is known by other names such as wonderful).

Definition. Let S = k Θ Sx Θ S2 θ be a graded ring and k a field.

S is a Koszul ring iff Torf (k, k) has pure degree / for all /.
Theorem 3. (1) A linearly normal curve C of deg > 2g + 2 has a

Koszul homogeneous coordinate ring.
(2) (char(A:) = 0, or g < 1) Let E be a rank-n vector bundle over a

smooth projective curve C, and set tk = 4n. If A is an ample line bundle
over X = P(E), then the homogeneous coordinate ring for the complete
embedding determined by B = Kχ <g> A®* is Koszul for t > tk. Moreover,
the above holds for B = Kχ <g> Aχ <g> ® At if A. is ample for 1 < i < tk.

When n — 1, Theorem 2A yields Castelnuovo's Theorem. Likewise,
with n = 1 and p = 1, Theorem 2B gives a theorem of Fujita and Saint-
Donat. Green's Theorem does not, however, follow from Theorem 2B.
When n > 2 Theorems 2A or 2B may or may not be optimal. We do not
know. But for all n we produce a ruled variety X of dimension n and
a line bundle B = Kχ <S> ^4<8>(n+1) (with A ample) which is not normally
generated. In fact we produce examples were B is very ample, but not
normally generated, and examples where B is not even very ample. We
also produce line bundles of the form B = Kχ<8> A^n+2^ (with A ample)
which are not normally presented.

Kempf shows a variety with a Koszul homogeneous coordinate ring
is projectively normal and defined by quadrics [22], so the above gives
examples of line bundles of the form B = Kχ <g> ^<g>("+2) which do not
determine Koszul homogeneous coordinate rings. Thus at least part (1) of
Theorem 3 is optimal.
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We should point out that modifying Mukai's conjecture by considering
very ample bundles instead of merely ample bundles makes the problem
solvable for all varieties. Bertram, Ein, and Lazarsfeld [4] show that for a
very ample bundle A over a smooth n-dimensional variety X, Kχ®A®n

is normally generated, provided it is very ample. (This was discovered
independently by Andreatta, Ballico, and Sommese [1], [2].) Furthermore,
Ein and Lazarfeld [6] show that Kχ <g> ^ 0 ( l l + 1 + p ) satisfies property Np .

We approach vector bundle multiplication on a curve via the vector
bundle ME associated to a bundle E generated by global sections. To
understand the map τ we need to understand cohomological properties
of ME Θ F. So we consider stability properties of ME . In §1 we prove
Theorem 1.2 and Corollary 1.3, which relate stability properties of ME

to those of E under certain numerical conditions. This is useful because
semistability is preserved under tensoring when char(/c) = 0 or g < 1,
and stability properties allow us to kill higher cohomology groups under
certain, useful numerical conditions. In §2, we use that technique to prove
Theorem 1 and related results. We then gather some familiar and ele-
mentary results on the regularity of vector bundles over ruled varieties in
§3. With that done, we turn to §4 where we consider bundles V and W
over X = P(E), and relate cohomological properties of Mπ v®π^lV to
those of nJ^My <g> W). This allows us to prove Theorem 4.1 which gen-

eralizes Theorem 1 to ruled varieties over a curve. Since property N is
implied by surjectivity of a particular multiplication map ([17] and [25]),
we derive Theorems 2A and B from Theorem 4.1 in §5. Then in §6 we
give a reinterpretation due to Kempf [22] of Koszul rings, and then a fur-
ther reinterpretation, suggested by Lazarsfeld, of Koszul rings in terms of
vector bundle multiplication. Theorem 3 then follows from Theorem 4.1.

We owe special thanks to R. Lazarsfeld for introducing us to the sub-
ject of vector bundle multiplication and its applications, then guiding us
through it. We also thank G. Kempf for introducing us to Koszul rings
and related problems, and we are grateful to A. Bertram, D. Gieseker, and
M. Green for useful discussions, comments, and encouragement.

0. Notation and conventions

C denotes a smooth projective curve of genus g over an algebraically
closed field k.

All vector bundles are algebraic.
A vector bundle E over C has slope μ(E) = deg(2?)/rank(2?).
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A vector bundle E over C is semistable iff for every proper subbundle
S, μ(S) < μ(E). It is stable iff the inequality is strict.

The Harder-Narasimhan filtration of a vector bundle E over C is the
unique filtration

Σ:O = EocEx c "CEs = E,

such that EJEi_l is semistable, and μ^E) = μ{EJEi_χ) is a strictly
decreasing function of i.

If E is unstable (i.e., not semistable), then Eχ is called the maximal
destabilizing subbundle.

If Dχ and D2 are divisors on X, then Dχ = D2 means Dχ and Z>2

are numerically equivalent.

1. The stability of ME

If a vector bundle E over C is generated by V c H°(C, i?), as in
[17] the evaluation map a determines an exact sequence of bundles:

(1.1) o->AfK f j B-> A

When V = H°(C, E) we write Λf̂  . This section considers how stability
properties of ME relate to those of E. Our main result is:

1.2 Theorem. LetE be a semistable vector bundle over C with μ{E) >
2g. Then ME is semistable, and μ(ME) = -μ(E)/(μ{E) - g) > - 2 .
Furthermore, if E is stable and μ(E) > 2g, then ME is stable unless
μ(E) = 2g and either C is hyper elliptic or Ω c

 c-> E.
To understand unstable bundles, we consider the unique Harder-

Narasimhan filtration of E and its relation to the Harder-Narasimhan
filtration of ME . For this we need some invariants of a bundle we believe
Mehta first defined [28].

Definition/Remark. Let Σ : £ o c Eχ c ••• c Es = E be the Harder-
Narasimhan filtration of a vector bundle E over C. Define the following:

(1) μ-(E) = μs(E) = μ(Es/Es_χ).

(2) μ+{E) = μx(E) = μ(Eχ).

Alternatively, we may state the definitions of μ+ and μ~ as follows:

(1) μ+ = max{μOS)|0 -> S -» E} .
(2) μ-=mm{μ(Q)\E^Q->0}.

We have μ+(E) > μ(E) > μ~~(E) with equality iff E is semistable, since
the vector bundles S and Q in the above definitions need not be proper
subbundles and quotient bundles.
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For some applications, we want to consider only proper subbundles, so
we have the following.

Definition. prop+(£) = s u p ^ μ ^ l S c E] .
1.3 Corollary. Let C be an irrational curve and E a vector bundle over

C.IfE hasHarder-Narasimhanfiltration Σ:0 = EQ c Eχ c c Es = E
and μ~(E) > 2g, then ME has Harder-Narasimhan filtration

Σ:0 = MF cMF C" CMF = MF

and μ~(ME) > -μ
On the rational curve, it is well known, and easy to show, that ME

is always a direct sum of < ĉ(— l)'s. It also happens that on an ellip-
tic curve, ME is stable, semistable, or indecomposable, as E is stable,
semistable, or indecomposable, and hence we can always determine the
Harder-Narasimhan filtration of ME from that of E if it is generated by
global sections. When g > 2 and μ~ (E) < 2g, on the other hand, de-
termining the Harder-Narasimhan filtration of ME becomes fairly subtle.
In general, the best we can do is to bound the instability of ME .

1.4 Proposition. Let E be a vector bundle over C generated by global
sections,

Furthermore,

and if prop+(i?) < 2g, then prop+(ME:) < - 2 unless C is hyperelliptic
or Ω c ^ E.

1.5 Proposition. Let C be a curve of genus g > 2 and let E be a
vector bundle over C. Suppose further that E has no trivial summands,
and E is generated by global sections. If μ(E) < 2g, then

μ~(ME) > mnk(E)(μ-(E) -2g)-2 + 2h\c, E).

1.6 Remark. The proof of Proposition 1.5 shows that optimality of
Proposition 1.5 implies optimality of Proposition 1.4. The proofs of The-
orem 1 and its generalizations show stability properties of ME are inti-
mately connected to surjectivity of multiplication maps. Consequently,
Examples 2.6, where multiplication maps fail to surject, show Proposition
1.5 is optimal in general. However, assuming E = L is a line bundle,
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we can improve our results by considering geometry of the curve. Un-
published work of the author shows numerology in Propositions 1.4 and
1.5 can be improved by considering the Clifford index of the curve. The
author also shows that on a general curve, ML is always semistable and
typically stable.

We now prove the results already stated in this section. Theorem 1.2
and Proposition 1.5 will follow from Proposition 1.4. To prove 1.4, we
generalize a familiar argument for showing ML is stable for deg(L) >
2g + 1 (cf. [33]) to vector bundles of arbitrary rank. Doing so requires
some technical lemmas.

1.7 Lemma. If F is a vector bundle over C with hι(C, F) = 0 and

V c H°{C, F) generates F, then μ{Mv F) < -μ(F)/(μ(F) - g) with

equality iff V = H°(C,F).
Proof of Lemma 1.7. Let τank(F) = n . Then

^ -deg(F)

HJ £ h\C,F)-n

Since hι(C, F) = 0, Riemann-Roch implies A°(C, F) = n{μ(F)-g+l).
We know deg(F) = nμ(F), so we get μ{MF) = -μ{F)/{μ{F) - g).

1.8 Corollary. Let C bean irrational curve, and let E and F be vector
bundles over C. Suppose further that E and F both have hι = 0, E is
generated by global sections, and F is generated by V c H°(C, F). If
μ(E) > μ(F), then μ(ME) > μ(Mv F). Moreover, if the first inequality is
strict, so is the second.

Proof of Corollary 1.8. We have μ{MVF) < -μ(F)/(μ(F) - g) and
μ(ME) = -μ(E)/(μ(E) - g). But f(x) ='-x/(x - g) strictly increases
for x > g.

1.9 Lemma. Let C be an irrational curve and let E be a vector bundle
over C. Suppose further that E has no trivial summands and is generated
by global sections. If N c ME is a stable subbundle of maximal slope,
there is a vector bundle F with no trivial summands and μ(F) < μ+(E),
and a subspace V c H (C, F) which generates F such that N = Mγ F .
Furthermore, μ(F) = μ+(E) implies FCE.

Proof of Lemma 1.9. Assume iV C ME is a stable subbundle of maxi-
mal slope. Dualizing 1.1 gives

So the image of H°(C, E)* in H°(C, N*), say K*, generates N*, and
the kernel of the map V*§&(9Q —> N* is a vector bundle F* with no trivial
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summands. Dualizing, we

0

4
0 -» N -

4
0 -> ME -
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V
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The map α is nonzero because V
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0

1

1
, E)®#c —•

O xi

4«

Denote

0

0

the image of

F in E by 5 , and note that F <-> H°(C, S) because F has no trivial
summands.

We claim deg(F) < degίS") with equality iff F = S. To see this, first
note N <-> Ms, because of the diagram:

0 0
4 4
N Ms

4
0 -» V®(

4 4
F -» 5 ^ 0

4 4
0 0.

Since N is a subbundle of ME of maximal slope and is contained in Ms,
which is itself a subbundle of ME, μ(N) > μ(Ms). We know that

-deg(F) a n d . . / I # , _ - d « g ( 5 )
rank(Λ^) v ά / rank(Λf5)

therefore, //(TV) > /έ(Afs) implies deg(F) < deg(5) with equality iff N =
Ms because rank(A^) < rank(Afy). So μ(F) < μ(S) with equality iff
N = Ms and F = S, because rank(F) > rank(5). Since S C E, this
implies μ(F) < μ+(E), with equality iff F C £ . q.e.d.

If A !(C, F) = 0, the bound on μ(F) bounds μ(MVF) by Lemma 1.7

and Corollary 1.8. So we need to bound μ{Mv F) if hι(C,F)φ0.
1.10 Lemma. Let C be a curve. Let F be a vector bundle over C

which has no trivial summands, and assume hι(C, F) Φ 0. Suppose
V c H°(C, F) generates F. If N = MV^F is stable, then μ(N) < - 2 .
Furthermore, μ(N) = -2 implies that either C is hyperelliptic, or F = Ω c

and N = Mn

1.11 Remark. From the classification of vector bundles over rational
and elliptic curves ([18], [3]), we see that when C is rational or elliptic
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and E is a vector bundle over C generated by global sections with no
trivial summands, hι(C, E) = 0, so Lemma 1.10 is vacuously true for

Proof of Lemma 1.10. Since hι(C,F) > 0 and F is generated by
global sections, Serre duality guarantees there is a nonzero map F —• Ω c

such that the image of V generically generates Ω c . So we get:

0
I
N

{β

1
F

I
0

0
1

ιc

Λ H°(C,ΩC)
I

Ω c

i
0

A simple diagram chase shows the map α exists. We claim a Φ 0. To
see this, simply observe γ o β φ 0 because y ^ 0 and /? does not factor
through W 0 ^ c for W ζ V. Set 5 = im(α). We see S is a quotient
of TV which sits as a subbundle of Mo . If C is nonhyperelliptic, Mn

is stable by a theorem of Paranjape and Ramanan [33], while if C is
hyperelliptic MQ is a direct sum of duals of the hyperelliptic bundle,
and hence semistable. Therefore, μ(S) < - 2 with equality iff S = MΩ

or C is hyperelliptic. Since S is a quotient of N and N is stable,
μ(N) < μ(S) < -2. Hence, μ(N) < -2 with equality implying μ(N) =
/ι(5) = - 2 , and, by stability of TV, that N = S. Because TV must be
a stable subbundle of MQ with μ = - 2 , either TV = MΩ or C is
hyperelliptic. In the former case, it is easily seen that F = Ω c .

Proof of Proposition 1.4. Suppose TV «-> Λ/g, is a stable bundle of max-
imal slope. By Lemma 1.9, TV = Mv F. If μ(TV) < - 2 we are done, so

we may assume μ(TV) > - 2 , and hence hι(C, F) = 0 by Lemma 1.10.
Lemma 1.7 now implies μ(TV) < -μ(F)/(μ(F) - g). By Lemma 1.9,
μ(F) < μ + ( £ ) , and so by Corollary 1.8, μ(N) < -μ+(E)/(μ+(E) - g).

The remaining statements follow similarly, q.e.d.
To prove Theorem 1.2, and many other results of this paper, we need

to be able to show some vector bundle is generated by global sections
and/or has no higher cohomology. Using μ~~ this is simple. We have a
simple but useful lemma. It belongs to folklore, but is presented here for
nonspecialists.



10 DAVID C. BUTLER

1.12 Lemma. Let E be a vector bundle over C.

(1) If μ+{E)<0, then h°(C9E) = 0.

(2) If μ~(E)> 2g - 2 , then hl(C,E) = 0.
(3) If μ~(E) > 2g - 1, then E is generated by global sections.
(4) If μ~(E) > 2g, then ^ P ( E ) (1) is very ample.

Proof of Lemma 1.12. To prove (1), note that if h°(C, E) > 0 then
we have a map @c «-> E, and hence μ+(E) > 0. To prove (2), use (1)
and Serre duality. Finally, (3) and (4) follow from (2) and the fact that

Proof of Theorem 1.2. If C is rational, ME is a direct sum of
<^ c(-l)'s, so we may assume C is irrational. Suppose E is semistable
and μ(E) > 2g. From Lemma 1.12(3), E is generated by global sections,
and by Lemma 1.12(2), we have hι(C, E) = 0, and hence Lemma 1.7
applies and shows μ(ME) = -μ(E)/(μ(E) - g) > -2. So by Proposition

The remaining statements follow similarly.

Proof of Corollary 1.3. Since μ~{E) > 2g, for 0 < i < s we have

μ(EM/Ei) > 2g. Therefore by Lemma 1.12(2), hι(C, EMIEt) = 0

and consequently hι(C9Ei+ι) = 0 for all /, and by changing index

A !(C, £,.) = 0 for all /. Likewise Ei+ι (and hence E^JE^ is gen-

erated by global sections by Lemma 1.12(3), and by changing index Ei is

generated by global sections. This gives us the following diagram:
0 0 0
1 I I

0 -• ME -> MF -• M(
Ei Ei+l (

I I
0 - /f°(C,^)®^c -̂  rf*(C,Ei+l)®0c - f ^ i C E ^ i ^

1 1 I
0 - *, - ^ / + 1 - EMIEt - 0

1 I i

0 0 0

The upper sequence shows us Mπ IMF = M(F IFΛ. So Theorem 1.2

implies Λf£ /M £ is semistable by the semistability of (Ei+ι/Ei) and

the fact OΆX μ(Eι

i^JEi) > 2g. Since μ(Ei+ι/Ei) decreases with /, so

does μ(ME /ME) by Corollary 1.8. It follows that ME has the stated

Harder-Narasimhan filtration by uniqueness. Consequently, μ~(ME) =

μ(ME IME ) = -μ~ (£)/(/Γ (E) - g).
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Sketch of proof of Proposition 1.5. First we consider the special case
where μ+(E) < 2g. By Proposition lAr μ+(ME) < - 2 . Let Q be a
quotient bundle of ME with minimal slope, and define N by

The idea is that since μ"(ME) < - 2 by Proposition 1.4, μ(N) < -2 and

deg(iV) < -2rank(7V). Now this implies deg(β) > - deg(£) + 2rank(iV).

Of course rank(TV) = mnk(ME) - rank(Q), and likewise τznk(ME) =

rank(E)(μ(E) - g) + hι{C, E). So for any possible value of rank(Q),

we can bound deg(Q), and hence μ(Q), from below. Direct calculation

shows

μ'(ME) > mnk(E)(μ(E) - 2g) - 2 + 2hl(C, E).

Equality holds iff rank(Q) = 1 and μ{N) = -2. So we need only observe
μ(E) > μ~{E) to see the proposition holds if μ+(E) < 2g.

If μ*(E) > 2g, consider the Harder-Narasimhan filtration

Let n be the largest integer such that μ~{En) > 2g. We can obtain the
Harder-Narasimhan filtration of ME from that of En by Corollary 1.3,

and show that μ~(ME ) > - 2 . Furthermore, since hι(C, En) = 0 by

Lemma 1.12(2), we get an exact sequence

0 -* Mπ -• Mv -* Mπlπ -> 0.

But the definition of n implies E/En has no subbundle N with μ(N) >
2g, and so

> rank(E/En)(μ-(E/En) - 2g) + 2*1(C, E/En) - 2.

Since rank(£ ) > τaήk(E/En)9 μ~(E) = μ~(E/En), and hι(C,E) =
hι(C', E/En), the weaker inequality in the conclusion of Proposition 1.5

follows.

2. Surjectίvity of the multiplication map on curves

In this section we prove Theorem 2.1, a generalization of Theorem 1,
and a related result, Proposition 2.2. We use Corollary 1.3 and Lemma
2.5 which relates stability properties of a vector bundle E <g> F to those of
E and F. Then we give examples which show Theorem 2.1 is optimal.
This implies Theorem 1.2 is also optimal.
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2.1 Theorem (char(fc) = 0, or g < 1). If E and F are vector bundles
over C with

(1) μ~{E)>2g and

(2) μ-(F)>2g,

then τ: H°(C, E) ® H°(C, F) -> H°(C, E ® F) surjects.
This generalizes Mumford's Theorem [30], and Examples 2.6 show it is

optimal. Of course if E is generated by sections but μ~(E) < 2g, the map
τ should still surject provided μ~(F) > 2g. For example, it has been
shown by Green [13] and Eisenbud, Koh, and Stillman [7] that if Lχ and
L2 are line bundles generated by global sections and deg(Lj) + deg(L2) >
Ag + 1, then τ surjects. For bundles of arbitrary rank, we generalize the
" Ag + 1 " theorem. Examples 2.6 show our result is optimal.

2.2 Proposition (char(fc) = 0, or g < 1). Let E and F be vector
bundles over C with E generated by global sections. If

(1) μ-(F)>2gfand

(2) μ'(F) >2g + mnk(E)(2g - μ'{E)) - 2h\C, E),

then τ:H°(C, E) ® H°(C, F) -> H°(C,E®F) surjects.
2.3 Remark. When char(A ) Φ 0 and g > 2, Theorem 2.1 still holds

when either E or F is a line bundle, and Proposition 2.2 still holds when
F is a line bundle. The reason is that semistability is always preserved
under tensoring by a line bundle. In other words, Lemma 2.5(2) still holds
when the bundle E or F of Lemma 2.5(2) is of rank 1, and it is only
when we apply Lemma 2.5(2) that we use the condition char(fc) = 0 or

2.4 Lemma. For E and F vector bundles over C, and V an extension,
we have

μ+(E) <μ*(V)< max{μ+(£), μ

and
μ~(F) >μ~(V)> min{μ~{E), y

Proof of Lemma 2.4. Since S C E implies S C V, we have
μ+(E). So suppose S CV is a subbundle with μ(S) = μ+(V). Consider
the following diagram:

0
1

sE -
E -»

0
1
s
I
V

0
I

- sFI
-> F



NORMAL GENERATION OF VECTOR BUNDLES OVER A CURVE 13

We have μ(SE) < μ+{E) and μ(SF) < μ+{F) by definition of μ+ hence,

μ+(V) = μ(S) < m*x{μ(SE),μ(SF)} < max{μ+(2<), μ+(F)}.

The result for μ~ follows similarly, q.e.d.
Lemma 1.12 allows us to use a lower bound on μ~ to kill off cohomol-

ogy. However, many of the bundles we are concerned with are of the form
E®F, Sn(E), and so on. It is known that if char(#) = 0 or g < 1 the ten-
sor product of semistable bundles is semistable ([18], [3], [32], [31], [20],
[12]) (see also [26] for higher dimensions, [29] for an elementary proof,
and [11] for examples where this fails in char(/c) Φ 0 when g > 2). This
theorem enables us to calculate μ~ and μ+ of vector bundles of the form
E <g) F, Sn(E), and so on, if we know μ+ and μ~ of E and F.

2.5 Lemma [characteristic 0 or g < 1). If E and F are vector bundles
over C, then the following hold:

(1) + + +

(2)
(3)
(4)
(5)
(6)
(7)
(8) μ°(Ak(E))>kμ-(E).

Proof of Lemma 2.5. If E and F are semistable, then (1) is well
known, as we remarked above. So if one bundle, say E, is semistable,
tensoring the Harder-Narasimhan filtration of F by E gives the Harder-
Narasimhan filtration of F ® E, which implies (1) holds in this special
case. If E is not semistable we can consider the Narder-Narasimhan
filtration of E,

Σ:0 = E0cE{ c cEs = E,

and tensor by F to get a filtration of F <8>E,

Σ:0 = F ® Eo c F ® Eχ c - - C Es = F ® E.

Eχ is semistable, so μ+(Eλ 0 F) = μ+{Eι) + μ+{F) = μ+(E) + μ+(F)
since (1) holds in the special case where one bundle is semistable. To see
μ+(E2 ®F) = μ+(E) + μ+{F), consider the exact sequence

O - ^ Θ F - ^ Θ F - * (E2/Eι) Θ F -> 0.

Since (E2/Ex) is semistable, we have μ+((E2/Eι)®F) = μ(E2/E{)+μ+(F)
by the special case. Of course, by the definition of the Harder-Narasimhan
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filtration μ(E2/Eι) < μ(Eχ). By Lemma 2.4,

μ+(E1 ® F) < μ+(E2 ® F) < max{μ+(Eι ® F), μ+((E2/Eι) ® F)},

μ(Eι)+μ+{F)<μ+{E2®F)

< max{n(£,) + μ+{F),

μ(Eι) + μ+(F)<μ+(E2®F)<μ(Eι)

μ+(E) + μ+(F) < μ+(E2 ®F)< μ+(E)

Induction shows μ+(E ®F) = μ+(E) + μ+(F).
Part (2) can be proved similarly, while (3) and (4) from (1) and (2). As

for (5), since Sk(E) is a subbundle of Tk(E), it follows that μ+(Sk(E)) <
kμ+(E) from (3). But we have some N C E with μ(N) - μ+(E). Hence
Sk{N) C Sk(E), so μ+(Sk(E)) > μ(Sk(N)) = kμ(N) = kμ+(E), and
the result is obtained. Part (6) follows similarly, so do parts (7) and
(8). q.e.d.

We can now prove the main result of this section.
Proof of Theorem 2.1. By Corollary 1.3, μ~{ME) > - 2 . So by Lemma

2.5(2), μ~(ME O F) > 2g - 2 hence, h\C, ME <g> F) = 0 by Lemma
1.12(2). Tensoring sequence (1.1) by F and taking cohomology proves
the theorem.

Sketch of proof of Proposition 2.2. Use Proposition 1.5 and mimic the
proof of Theorem 2.1.

2.6 Examples. We now show Theorem 1 (and hence Theorem 1.2) is
optimal by constructing semistable vector bundles E and F with μ(E) =
μ(F) = 2g such that the multiplication map τ fails to surject. In fact
given any semistable vector bundle E with μ(E) = 2g, we construct a
corresponding F with the stated properties. Under further hypothesis, we
construct a vector bundle G which is semistable and indecomposable, with
μ(G) = 2g and ^P(G)(1) very ample, but such that the tensor, symmetric,
and antisymmetric multiplication maps all fail to surject.

Let E be a semistable vector bundle with μ(E) = 2g. Now let F =
(Af£)*(g)Ωc . By Theorem 1.2, F is semistable with μ{F) = 2g. However,
surjectivity fails for the multiplication map

(2.7) τ: H°(C, E) 0 H°(C, F) -> H°(C, E 0 F),

because there is a surjective map

ME®F = ME® (ME)* (8) Ω c -> Ω c

and hence /^(C, ΛfE <g> F) ^ 0. Furthermore, if we assume # > 3, C
nonhyperelliptic, Ω c does not embed in E, and £ stable, then F is in
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fact stable by Theorem 1.2. Consider a line bundle L with deg = 2g and
an indecomposable extension

G is semistable and indecomposable, and μ(G) = 2g. Furthermore,
^p(G)(l) *s v e r y a mPl e» because E and Z7 are stable with μ = 2g and
the sequence is nonsplit, hence G has no line bundle quotients A with
deg(^4) < 2g (except E if E is a very ample line bundle). However, since
surjectivity fails for (2.7) it also fails for the multiplication maps

2 2

S2(H°(C, G)) - H°(C, S2(G)) and

To see Proposition 2.2 (and hence Proposition 1.5) is optimal, let L be
a line bundle with deg(L) > 2g, and E = {ML)* <g> Ω c . Repeating the
argument above we see that H°(C, L) ® H°(C, E) -• lf(C, E <g> L) fails
to surject. A simple calculation shows deg(L) = 2g + rank(2?)(2g -μ{E)).
Furthermore, if g > 3 and C is not hyperelliptic, we can show every line
subbundle A c ML has deg(^) < - 3 , so every line bundle quotient
E -• B has deg(ΰ) > 2g + 1, and hence ^ P ( £ : ) ( l) is very ample.

3. Regularity of vector bundles over ruled varieties

In order to extend Theorem 2.1 to ruled varieties with a curve as base,
we present some basic facts about the regularity of a vector bundle V over
X = P(E). Most of these results are familiar, and all are elementary, but
are presented here for the reader's convenience.

Definition. Let E be a vector bundle over a scheme Y, and X =
T*(E) A Y. If SF is a coherent sheaf over X, we say & is / π-regular
when

i i ) ) = 0 f o r / > 0 .

3.1 Lemma. L ^ Y be a projective variety and E a rank n vector
bundle over Y. If X = P(E) A Y and V is a vector bundle over X, then
the following are equivalent

(1) V is v π-regular.

(2) For all yeY, h\Xy9 Vy(v - i)) = 0 for i > 0.

(3) For i > 0, there exist vector bundles &^(V) on Y and a canonical
resolution of V:

-t; - 2) -> π*&{{V){-υ - 1) -> π * ^ ( F ) -> F -> 0.
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Proof of Lemma 3.1. To see (1) implies (2) simply use the fact that V

is υ 7r-regular and the Base Change Theorem. Since Rnπ^ (V(v - n +1)) =

0 (because the fiber has dimension n - 1), the Base Change Theorem

i m p l i e s t h a t i f Rn~ιπ^V(υ - n + 1)) = 0 t h e n hn'\Xy, Vy(v -n + l)) =

0 for all y € Y. Assuming V is v π-regular and hence (v + 1) π-

regular, R^π^Viv - n + 2)) = 0. So by the Base Change Theorem, if

Λ Λ - 2 π + (F(ϋ-r t + 2)) = 0,then hn~2(Xy, V(υ-n + 2)) = 0 forall j / € Γ .

And so on.
That (2) implies (1) is obvious.
To show (1) implies (3) see [34, §8] or [10, V, §2].
To see (3) implies (1), break the long exact sequence of (3) into short

exact sequences, and use the fact that Rιπ^(π*F(-v)) is v π-regular for
any vector bundle F over Y by the projection formula. Then simply
calculate Rιπ^(V(v - /)) for / > 0 .

3.2 Lemma. Let E be a vector bundle over a projective variety Y and

X = P(E) Λ Y. Suppose further that V and W are v and w π-regular

vector bundles over X respectively.

(1) V 0 W is (v + w) π-regular.

(2) Ifυ< 1 then h\X, V) = h\Y, πj).

(3) If υ < 0 and V = π*(π^V), there is an exact sequence of vector

bundles on X

0->Kv^V^V-+0,

where Kv is 1 π-regular.
(4) If v and w < 0, there is a surjective map

(5) If v < 0 andπ^V is generated by global sections, then V is also
generated by global sections.

(6) If v < 0, and π^ V is generated by global sections, then Mv is 1
π-regular.

(7) (char(fc) = 0, or g < 1) If Y = C is a smooth curve, and v and

w < 0, then

μ-(πiy®W)>μ-{πiV) + μ-{πJV).

Proof of 3.2. (1) Use characterization (3) of Lemma 3.1. As in [14,
proof of Lemma 1] from the resolutions of V and W we construct the
necessary resolution of V ® W.

(2) This follows trivially form the definition of π-regular.

(3) Again we use characterization (3) of Lemma 3.1. Since ^ = V
(see [34, §8] or [10, V, §2]), from the resolution of V we get the necessary
resolution of Kv.
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(4) Consider the exact sequence

Since Kv is 1 π-regular by (3), Kv ® W is 1 π-regular by (1), and hence
the pushdown sequence is exact. The result follows.

(5) Assume υ < 0 and π^V is generated by global sections, and hence

V is generated by global sections. We have the following diagram:

H°(X,V)®0X = H°(X,V)®(?χ

V A V

Since a and β are surjective, so is γ.
(6) Consider the sequence

0 -> (Mv)y -> H°(X, V)®0Xy ^Vy^0.

Weclaimthat H°(X, V) = H°{Xy, Vy)®Uy for all y e Y, where the map

H°(X, V)®ffx —• ί̂  is the usual evaluation map, and the map t / y Θ ^ -•

Vv is the zero map. The claim implies {Mv)v = Mv θ (t/v Θ ̂ y ) , and

hence (Mv) is 1-regular over X y , implying Mv is 1 π-regular. The

claim follows if the restriction map H°(X, V) —• H°(X , V) suqects.

However, since H°(X, F) = /f°(C, π^F), this is equivalent to saying
π^ V is generated by global sections, which we assumed.

(7) From part (4) we have

(by Lemma 2.5(2)).

4. Surjectivity of the multiplication map on ruled varieties

In this section we study vector bundle multiplication on ruled varieties
with a curve as base. Our main result is the following generalization of
Theorem 2.1:

4.1 Theorem (char(fc) = 0, or g < 1). Let E be a rank-n vector
bundle over C, and let X = P(is). If V and W are 0 π-regular vector
bundles over X, and Bχ and B2 are (-1) π-regular line bundles over X
such that

(1) μ-{π.V) + μ-{π.Bx)>2g and

(2) μ-{πjr
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then τ:H°(X, V ® Bχ) ® H°(X9 W ® B2) -> H°(X, V ®Bχ®W®B2)
surjects.

Our approach to vector bundle multiplication on P{E) is to consider
n^My ® W. It is not generally the same as nmMv ® π^ W. It is, however,
related. Our main goal is to calculate μ~(π^Mv ® W), and for this we
need a definition.

Definition. Let E be a rank n vector bundle over C, and let X =
P(E). For V and W vector bundles over X, set

i/(K,^) = m m L - ^

where μ~(0) = +oo and the minimum is taken over 0 < / < n — 2.
4.2 Proposition (char(fc) = 0, or g < 1). Lei E be a rank-n vector

bundle over C, and let X = J*(E). Suppose V is a 0 π-regular vector
bundle over X, and W is a (-1) π-regular vector bundle over X. If
π^ V is generated by global sections, then

We shall see in the proof that the above holds with v(V, W) replaced
by μ~(π^Kv <s> W). However, we find it easier to calculate u(V, W), and
have the following relationship between the two.

4.3 Lemma (char(fc) = 0, or g < 1). Under the hypothesis of Propo-
sition 4.2,

Proof of Lemma 4.3. Since Kv <g> W = Kv(\) <8> W(-\), the (-1)
π-regularity of W and Lemma 3.2(7) imply

Since π^(Kv(\)) is the kernel of the map

and π^K^ ( ι ) 0 F) is the kernel of the same map, we have
^ ( ι )

(1)

)

V). So we need only show
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OΓ

(4.4) μ-(π.(K,χ(ι) ® V)) > μ~ β β ί ^ ( K ( - i - 1)) ® /\ A)

So consider the relative Koszul complex:

n 2

0 -> f\π*E{-n + 1) -> • / \ π * £ ( - l ) -• π*£ -• ̂ ( 1 ) - 0.

Tensoring the long exact sequence by V, we get a short exact sequence:

Now take the pushdown:

I\E ® π , ( F ( - l ) ) - π , ^ ( 1 ) ® F - Λ 1 * , ^ , ) ® K) - 0.

By Lemma 2.5,

Now we need to calculate ^ " ( Λ ' π ^ ί ^ ( 1 ) <g> V)), so notice we have an
exact sequence

0 - *£x(i) ® ̂  "> Λ π * £ ® r ( - 2 ) " " 4T(i) ® F ^ °

Taking the pushdown, and arguing as before, we see

E®Rlπt(V(-2)ή ,>minL- (f\

Clearly (4.4) follows by repeating the argument.
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Proof of Proposition 4.2.

0

1
0 - π*(Mπ V)®W

Ί
0 -» My®W

4
A: K ® W

4
0

DAVID C. BUTLER

On X we

ΓjO/ γ-
— - " v ^ J

have the

F ) ® ^

II
V)®W

following diagram

0

1
Ky® W

_> v ®W -)•

4
_„ v® W ->

I
0

0

0

The horizontal exact sequences are the usual multiplication maps, and
the right-hand vertical sequence is that of Lemma 3.2(4) tensored by W.
Pushing down the left-hand vertical sequence give us the following:

0 -> Mπ v 0 π^W -> π^Mv 0 W -> π ^ F 0 ίF -^ 0.

By Lemma 2.4 we get

μ~(π^Mv ®W)> mm{μ~{MπV ®π^W), μ~(π^Kv

(by Lemma 2.5)

πmV) + μ-{πmW),v(V9 W)}

(by Lemma 4.3).

4.5 Lemma (char(λ ) = 0, or g < 1). Let E be a rank-n vector bundle
over C, and let X = P(E). If B is a (-1) π-regular line bundle, then

Proof of Lemma 4.5. For some positive integer k and some line bundle
L over C, π^B = Sk(E)®L and n^B{-\) =Sk~x{E)®L. Now simply
apply Lemma 2.5, and calculate μ~ for π^B and π^B(-l) to see that
Lemma 4.5 holds.

4.6 Lemma (char(fc) = 0, or g < 1). Let E be a vector bundle over
C, and let X = P(E). If V and W are 0 π-regular vector bundles over
X, and Bχ and B2 are (-1) π-regular line bundles over X,
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Proof ofLemma 4.6. Since V®Bχ and W®B2 are (-1) π-regular,
the higher direct images vanish, and hence

v(V®Bχ, \ f \

Since Bχ(-l) and B2(-\) are 0 π-regular, Lemma 3.2(7) and Lemma
2.5(2) imply

2

+ μ~{π.B2{-\)) + 2μ~{E) (by Lemma 2.5(8))

> μ~(*„V) + μ~(πmW) + //"(π+^)

+ μ~(π^B2) (by Lemma 4.5).

o/ Theorem 4.1. By Lemma 3.2(7), μ~(n^V <8> 5j) >

//~(π+ F) -hμ~{π^Bχ) > 2^, so π^(V <s>Bχ) is generated by global sections

and μ~(Mπ ( F ( g ) B Λ > -2 by Corollary 1.3. Lemma 3.2(7) also implies

μ~(π*w ® 5

2 ) > 2g. By Proposition 4.2,

+ μ~{πJV® B2) ,v(V®Bl9W® B2)}.

From the above, μ~(^( F ®* l ) ) + β~(π*w ® B2) > -2 + 2g = 2g - 2,

and by Lemma 4.6 we have

i/(K ® Bχ, Ĥ  0 52) > μ'{n^V) + μ~{π^W

>4g>2g-2.

So we conclude

Lemma 1.12(2) implies A!(C, n^{Mv^B ® W ® B2)) = 0, and hence

A1 (A', Λ/K(W 0 H^0 JS2) = 0 by Lemma 3.2(2).

4.7 Examples. We can actually show surjectivity of the map

τ://°(A, V®Bx)®lf(X, W®B2)-+H°{X, V®Bχ®W®B2)

whenever V and W are 0 π-regular, μ~(π^V) > 2g, μ~(π^W) > 2g,

and μ~(π^Kv ® W) > 2g - 2. We will show all three conditions are
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necessary,, but we do not know if they are independent. To see if 0-
regularity is required, consider a bundle of the form &X{1) θ @x{-\),
and to see if the condition on μ~ of the pushdown of V and W is
required, let E = L θ L, where deg(L) = 2g and L is not very am-
ple. Then μ~{π^χ(\)) = 2g but <9χ{X) is not very ample and hence
not normally generated. (For a slightly more interesting example use the
bundle G defined in Examples 2.6.) Finally, suppose V and W satisfy
the conditions on regularity and on μ~ of the pushdown of V and W,
but μ~(π^Kv 0 W) < 2g - 2. Then for some semistable vector bundle Q
over C with μ(Q) = μ~(π^Kv <8>W)<2g-2 we have a map

njϋy 0 W -+ Q -> 0.

Now let W' = W 0 π*(Q* 0 Ω c ) . By the projection formula we see that

V and W' satisfy the conditions on regularity and μ~ of the pushdown

of V and W', but μ~(πmKv ®Wf) = 2g-2 and there is a map

πjίy 0 W' -+ Ω c -• 0.

Hence Λ1 (C, π^Kv ®W')φO, which implies that A1 (X, M F 0 W1) φ 0,
and so the multiplication map fails to surject. Unfortunately, we do not
know if any such V and W exist. This leaves the following problem.

4.8 Problem. Given 0 π-regular vector bundles V and W over X,
can we find a nice lower bound on μ~(π^Kv 0 W) in terms of μ'in^V)
and μ~(π^W)Ί In particular, is it true that μ~(π^V) > 2g and μ~(π^W)
> 2g imply μ~(πmKv ®W)>2g-2Ί

A positive answer to the last part of Problem 4.8 implies that if V
and W are 0 π-regular vector bundles over X, with μ~{π^V) > 2g and
μ'iπ^V) > 2g, we have surjectivity of the multiplication map

τ: H°{X, K) 0 ^ ( X , W) -> ̂ ( X ,V®W).

This theorem—if true—would be optimal.

5. Syzygies of ruled varieties

We now use Theorem 4.1 to study syzygies of ruled varieties with a
curve as base. In particular, we prove Theorems 2A and 2B, which follow
from the more general Theorems 5.1 A and 5.IB by Miyaoka's calculation
of the ample cone of a ruled variety with a curve as base. We do not
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establish optimality, but we do show by example that Kχ ® ̂ < 8 ) ( Λ + 1 + / 7 ) ( A
ample) does not imply property N for p = 0 or 1.

5.1 A Theorem (char(fc) = 0, or g < 1). Let E be a vector bundle
over a smooth projective curve C of genus g, and let X = T*(E). If B
is a (-1) π-regular line bundle over X with μ~(π^B) > 2g, then B is
normally generated.

5.1B Theorem (char(fc) = 0, or char(fc) = q > p + 1 and g < 1). Fix
an integer p > 0. Lei E be a vector bundle over a smooth projective curve
C of genus g, and let X = P(E). If B is a (-p - 1) π-regular line
bundle over X with μ~(π^B) >2g + 2p, then B has property Np.

5.2 Remark. Actually, we need only assume B is (-p) π-regular, but
to keep the proofs simple, we prove the result as stated. Since a line bundle
which determines a Koszul homogeneous coordinate ring satisfies property
Nχ, the forthcoming Theorem 6.1 implies Theorem 5.IB holds if p = 1
and B is (-1) π-regular. Our proof of Theorem 6.1 should indicate how
Theorem 5.IB can be proved under the weaker hypothesis that B is (-/?)
π-regular.

Before proving Theorem 5.1 A and B, we show these results imply The-
orems 2A and 2B. To do so, we need some lemmas, the first two of which
are essentially due to Miyaoka [29, Theorem 5.1].

5.3 Lemma (Miyaoka; char(fc) = 0, or g < 1). Let E be a vector
bundle over C, and let X = P(E). If A is a line bundle over X, then A
is ample iff

(1) rank(π^) > rank(£), and

(2) μ-{π.A)>0.

Alternatively, we have:

5.4 Lemma (Miyaoka; char(fc) = 0, or g < 1). Let E be a vector

bundle over C, and let X = P(E). If Do = 0?(E){\) and f is a fiber,

then A = aD0 + bf is ample iff

(1) a > 0 , and
(2) b>aμ-(E).

Proof of Lemma 5.3. Condition (1) is equivalent to saying that A\f
is ample. Hence it is necessary, since ample bundles remain ample when
restricted to a subvariety. So to prove the lemma, we assume condition
(1) holds, and show that A is ample iff (2) holds. If E is semistable, this
is a theorem of Miyaoka [29, Theorem 5.1]. We show this implies Lemma
5.3 for an arbitrary E.

Assume μ~(π^A) > 0. By Lemma 2.5, this implies μ~(π^A®k) >

2g for k > 0. We claim this implies A®k is very ample. If we let
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F = πφ(A*k) and Y = P ( F ) , then i C Γ b y a fiberwise fc-uple map.

Set Bγ = ^{F)(l). We have A*k = Bγ\X. The lower bound on μ'(F)

implies Bγ is very ample by Lemma 1.12(4), and this shows A®k is very
ample.

For the only if direction, we restrict to a sub-projective bundle cor-
responding to a quotient bundle of minimal slope. Since a bundle of
minimal slope is semistable we can apply Miyaoka's theorem. Assume
A is ample, and let E —• Q -> 0 be a quotient bundle of minimal
slope. We have W = P(β) C F(E) = X. If πφ(A) = Sk(E)®L,
then ^(41W) = Sk(Q) ® L. If A is ample, so is A\W. Since Q is

semistable, Miyaoka's Theorem implies μ(Sk(Q) ® L) > 0. So we have

μ~(π^A) = μ~{Sk(E) Θ L) = μ{Sk{Q) <g> L) > 0, and we are done.
Proof of Lemma 5.4. Simply note 5.3(1) is equivalent to 5.4(1), and

5.3(2) is equivalent to 5.4(2).
5.5 Lemma. L # E be a rank-n vector bundle over a curve C of genus

g, and let X = P(2s). Fix an integer t > n. If A. is ample for 1 < i < t
and B = Kχ <g> Ax Θ Θ At, then

(1) B is (n-t) π-regularf and

(2) μ-{π.B)>2g-2 + tln.

5.6 Remark. We actually prove that if E has Harder-Narisimhan fil-
tration Σ:0 = £ 0 c £ ! C .. C Es = E and EJEs_χ has rank r and
degrf, then

Ai"(π.Λ) > 2g - 2 + fc^ + n(μ(E) - μ"(£)).

One can show this result is optimal. So Lemma 5.5 is optimal iff E is
stable, and (d, ή) = 1.

Proof of Lemma 5.5. Assuming the notation of Lemma 5.4, Kχ =
-rcZ>0 + (2^ - 2 + deg(£))/. Thus if A. = <9X(Z^ and B = &X{D), then
for some a > 0 and b( > a

Clearly -n + ^ αJ. > (ί - n) , and since &X(DO) is (-1) π-regular, 5
is (π - ί) π-regular. Now observe that deg(-E) = nμ(E) > nμ~(E), and
bt - -aiμ~{E)Λ-(pi/qi) for some positive integers p. and qt with qt<n.
In fact, using the notation of Remark 5.6, we have 0 < qχ< r/(r, d) <n.
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Let a = -n + Σ\ ai, and β = 2g - 2 + deg(£) + Σί 6J.. Then for some
line bundle L over C of deg = β , we have π^B = Sa(E)®L. Now we
use Lemma 2.5 to calculate μ~(π^B):

> 2 £ - 2 + - . q.e.d.

Now we show first that Theorems 2A and 2B follow from Lemma 5.5
and Theorems 5.1A and 5.IB, and then we prove Theorems 5.1A and 5.IB.

Proof of Theorems 2 A and 2B. Assume B satisfies the hypothesis of
Theorem 2A. Plugging t = 2n + 1 into Lemma 5.5, we see that B is
(-n - 1) π-regular and μ~{n^B) > 2g. So by Theorem 5.1 A, B is nor-
mally generated.

Now assume B satisfies the hypothesis of Theorem 2B. Plugging t =
2n + 2np into Lemma 5.5, we see that B is {-n - 2p) π-regular and
μ~(π^B) >2g + 2p. So by Theorem 5.IB, B has property Np .

Proof of Theorem 5.1A. If we set F = n^B, then by Lemma 1.12(4),
^p(F)(l) *s v e r y a m P l e Hence B is very ample because X «-> P(F) by
a fiberwise rf-uple map and B = &ψ,FΛ\)\X. So we need only show
surjectivity for all n of the multiplication map

Sn(H°(X9B))->H°(X,B®n).

We only show surjectivity of

H®ί V Ώ\ /CN IT ( V Dλ >. U ί V D® \
il \Λ , Ώ) Qs) Jti \Λ , Jj) —• Ii yΛ , Π ) ,

since the remainder of the proof is similar. We use Theorem 4.1. Let
V = W = @χ and B{= B2 = B. One easily checks that V9W,Bl9 and
B2 satisfy the hypothesis of Theorem 4.1 and we are done.
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Proof of Theorem 5. IB. Fix a positive integer p . By induction we may
assume property Np_{ holds, and so we need only show

for n > 1 ([17], [25]). Since char(fc) = 0 or char(λ ) = q > p + 1, we
know /\P+1 MB is a direct summand of the tensor product T(J>^MB , so
we may instead show that for n > 1,

We do only the case n = 1, since the remaining cases are similar. Set
U = T{p+ι)(MB)®B. Since MB is 1 π-regular by Lemma 3.2(6), and B
is (-p - 1) π-regular by hypothesis, we add the regularities by Lemma
3.2(1) and see that U is a 0 π-regular vector bundle. So by Lemma
3.2(2) we need only show hι(C, π^U) = 0, and hence by Lemma 1.12(2)
it suffices to show

(5.7) μ~{πmU)>2g-2.

To establish (5.7), notice U = Γ(p+1)(A^(1)) <g> B{-p - 1). Therefore,
since MB{\) and B(-p - I) are 0 π-regular, repeated application of
Lemma 3.2(7) shows that

μ~{πJJ) > (P + l)μ~(πmMB(l)) + μ~(π^B(-p - 1)),

so we need only show (p + \)μ~{π^MB{\)) + μ~(π^B(-p - 1)) > 2g -
2. First we calculate ^"(π^Af^ίl)). Setting V = W = ffx, Bχ = B,
and B2 = (9χ{X), and applying Lemma 4.6, we see that v{B,
μ~(π^B) + μ~{E). So Proposition 4.2 implies

μ-(π.MB(l)) > mm{μ-(MπB) + μ~{E), u(B, (

μ-(πmMB(l)) > mm{μ-(MπB) + μ~(E), μ'(πm

The final inequality follows from Corollary 1.3, since μ~(π^B) > 2g. We
need only show

(p + l)(-2) + (p + l)//-(£) + μ-(πmB(-p - 1)) > 2^ - 2.

By repeated use of Lemma 4.5, this is equivalent to showing

(p+l){-2)+μ~(πmB)>2g-2,

which is equivalent to our assumption μ~(π^B) >2g + 2p.
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5.8 Remark. Using Remark 5.6 to refine our proof of Theorem 2A
shows that if E is semistable of rank n and degree d, with {n,d)Φ 1,
the conclusion of 2A holds when the hypothesis holds with (2/1 + 1) re-
placed by (n + 1). Similarly, when E is unstable we can weaken the
hypothesis, and there are of course analogous refinements of Theorem 2B.
In 5.9A we show that the best possible result we can hope for is that
on a variety X of dimension n , Kχ ® A^n+1) {A ample) is normally
generated. On a ruled surface, this fails iff there exists a rank-2 deg 1
stable vector bundle E, a positive integer m, and a line bundle L with
μ(S2m(E)<8>L) = 2g such that surjectivity fails for the natural multiplica-
tion map

S2H°(C, S2m(E) ® L) - H\C, S4m(E) ® L Θ 2 ) .

5.9A Example. We show by example that a line bundle B = Kχ <8>

^β(Ή-i) ^ ample) need not be normally generated for any n, even if B

is very ample. Let E be a stable deg 1 vector bundle with a line bundle
quotient L with deg(L) = 1. Observe A = ^E)(l) is ample, and if

B = Kχ® A®{n+ι), then B = A® π*(Ω c ® det(£)). Hence π^B) has a
line bundle quotient Ω c ® L ® det(2s), so there is a section Γ c l with
deg(Γ) = 2g. If L and det(2s) are chosen so that L ® det(2?) is effective,
5 is not even very ample. In any case, if Γ is hyperelliptic, then B is not
normally generated because there are no projectively normal hyperelliptic
curves Γ with deg(Γ) = 2g, and it is easily seen this implies B is not
normally generated, as hι(C, J^/χ ® B®2) = 0.

5.9B Example. Now we show a line bundle B = Kχ ® A®{n+2) {A
ample) need not be normally presented for any n. Let X, E, and A
be as in 5.9A, and consider B = Kχ <g> A^n+1). By a variation of the
argument used in 5.9A, if we choose L and det(-E) properly, X has a
section Γ which B embeds with a trisecant line contained not in any
fiber, and therefore not in X. Hence X is not defined by quadrics even
set-theoretically!

6. Koszul rings

Now we use Theorem 4.1 to study Koszul homogeneous coordinate rings
on ruled varieties with a curve as base. In particular, we prove Theorem
3 and a more general result, Theorem 6.1. That Theorem 3 follows from
Theorem 6.1 is immediate from Lemma 5.5.

6.1 Theorem (char(λ ) = 0, or g < 1, or X = C). Let E be a vector
bundle over a curve C of genus g, and let X = P(E). If B is a (-1)
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π-regular line bundle over X, and μ'iπ^B) > 2g + 2, then the homoge-
neous coordinate ring determined by B is Koszul

Before proving Theorem 6.1, we show it implies Theorem 3.
Proof of Theorem 3. Lemma 5.5 shows the hypothesis of Theorem 6.1

implies that of Theorem 3. Plugging t = 4n into Lemma 5.5, we get B is
(-3«) π-regular, and since n > 1, B is (-1) π-regular. Furthermore,
μ~{π*B) >2g-2 + 4n/n = 2g + 2.

Proof of Theorem 6.1. We start with a reinterpretation due to Kempf

[22] of a ring being Koszul. Let S = φ Sn = φ H°(X, B®n). Torf (k, k)

is purely of degree 1 iff S is generated by Sχ = H°(X, B). Now suppose

S is indeed generated by S{, and define R\ by

r^fc, k) is purely of degree 2 iff Λ1 = 0 i?J is generated by R\.

Similarly, if we assume Rm~~ι is generated by R[m~ι) and define R™ by

0

then Tor^m)(A:, k) is purely of degree m iff i?m = φ i ? ^ is generated by

Following an idea of Lazarsfeld, we rephrase this in terms of global
sections of vector bundles. For Rι we have

—• JM nQy-tJ —• 11 (Λ , Ϊ5) 00 JJ —> IS —»U.

Taking global sections, we see Rι = φH°(X, MB ® B®n). Assuming Λ1

is generated by R\, we have

So we see R2 = φ i/°(X, M(Λ/ ^ ^ 5 ® n ) . Now the pattern is clear. Start

by setting M® = B®n . Given a vector bundle Afj"1"1* which is generated
by global sections, set

λ/Γm — λΛ <Q\ A?®7 1

n Mχ

We get a sequence
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Taking global sections, we see Rm = ®H°(X,M™), so showing R™
generates Rm is equivalent to showing surjectivity for n > 1 of the mul-
tiplication map

τ:H°(X, M™)®H°(X, B®n) -> H°(X, M™ ® B®n)
( 6 ' 2 ) n\χ

Hence, the homogeneous coordinate ring is Koszul iff (6.2) surjects for
m, n > 0.

Making the additional assumption that B is in fact (-2) π-regular,
we now show (6.2) surjects. To do so, we use Theorem 4.1, and do only
the case n = 1 as the remaining cases are similar. Set V = M™(\),
Bγ = B(-l), W = (9X, and B2 = B. We need to show these bundles
satisfy the hypothesis of Theorem 4.1. Toward this end we have:

6.3 Claim (char(A:) = 0, or g < 1, or X = C). Let E be a rank-«
vector bundle over C, and let X = P(E). If B is a (-2) π-regular line
bundle over X and μ~{n^B) >2g + 2, then for all m, M™{\) is in fact
defined, is 0 π-regular, and / T ^ M o

m ( l ) ) > - 2 + μ~(£).

Now we assume Claim 6.3, and show the hypothesis of Theorem 4.1
is satisfied given our additional assumption that B is (-2) π-regular.
By assumption B = B2 is (-2) π-regular, and hence (-1) π-regular.
Furthermore, μ'iπ^B) > 2g + 2 > 2g. Since Bχ = B{-\) and B is
(-2) π-regular, Bχ is (-1) π-regular. V is 0 π-regular by Claim 6.3,
and therefore

/ Γ ( π ^ 1 ) (by Claim 6.3),

/Γ(π+K) + μ~(π^Bχ) > - 2 + μ~{E) + 2g + 2 - μ~(£) (by Lemma 4.6).

So 6.3 implies the hypothesis of Theorem 4.1 holds, and hence 6.2 surjects.
(If X = C, g > 2, and char(fc) ^ 0, Theorem 2.1 and Remark 2.3 imply
(6.2) surjects.)

To finish the case where B is in fact (-2) π-regular, we need only
prove Claim 6.3.

Proof of Claim 6.3. We use induction on m. Since M% = 0χ and

hence M®(1) = (9xiX), the claim is obvious for m = 0. So we assume the

claim is known for (m - 1). First we need to show M™ is defined. To do

so we calculate the π-regularity and μ~ of the pushdown of M^m~^ . By

our inductive hypothesis, M^m"ι\l) is 0 π-regular, and hence by (-2)

π-regularity of B we see that λήm'ι) = M{

Q

m'ι)(l) 0 B(-l) is (-1)
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π-regular, and hence 0 π-regular.

o μ-(π,B(-l)) (by Lemma 3.2(7))

> -2 + μ~{E) + μ~(πΛB{-\)) (by inductive hypothesis)

> -2 + μ~(E) + μ~(πtB) - μ~{E) (by Lemma 4.6)

>-2 + μ~(π,B)>2g.

So by Lemma 1.12(3), π^Λff"1"1' is generated by global sections. By
Lemma 3.2(6), M™ = M^m-i) is 1 π-regular, and hence M™(1) is 0
π-regular. Furthermore, by Proposition 4.2,

Since μ~(M\m~ι)) >2g,v/e have μ~{Mn ̂ m-o) > - 2 by Corollary 1.3.

So it is enough to show that v(M\m~ι), <?x(l)) > -2 + μ'{E). Since

λήm~ι) is (-1) π-regular, /?'π,(Λf,(m~1)(-ί - 1)) = 0 for i > 0, so we

need only show μ-(πtM[m~i](-l)^^2{E)) > -2 + μ~(E):

= μ-(πt(M™-\l)®B(-2))) + μ- I fa) (by Lemma 2.5(2))

(by Lemma 3.2(7))

> -2 + μ~(E) + μΓ{π^B{-2)) + μ~ ( Λ £ 1

(by inductive hypothesis)

-μ~(π^B)-2μ~{E)^μ~ \/\E) (by Lemma 4.5)
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> -2 + μ'{E) + μ~(π^B) - 2μ'(E) + 2μ~(E) (by Lemma 2.5(8))

> -2 + μ~(E) + 2g + 2 > -2 + /

which proves the claim, q.e.d.
Returning to the proof of Theorem 6.1, we may now assume B is (— 1)

π-regular, but not (-2) π-regular. Since μ~(E) does not enter into the
hypothesis of Theorem 6.1, by replacing E by E Θ L for a well-chosen
line bundle L, we may assume B = (9χ{X) and μ~(E) > 2g + 2. We
claim it is enough to prove the following lemma.

6.4 Lemma (char(fc) = 0, or g < 1). Let E be a rank-n vector bundle
over C, and let X = P(E). Assume further that μ~(E) >2g + 2. Let V
be a vector bundle over X which satisfies the following conditions:

(1) V is 0 π-regular.
(2) μ-{π.V)>2g.
(3) v(V,0χ(l))>2g.

IfU = Mv{l), then (1), (2), and (3) hold with U substituted for V.
Before proving Lemma 6.4, we show it implies (6.2) surjects if B =

#x(l). So assume the lemma, and set V = B = 0X(\). Clearly V
satisfies (1) and (2). As for (3), we have ^πj^χ{\ - 1 - /)) = 0 for
i > 0, so

and hence K satisfies (3). This implies M\ = M# (1)(1) satisfies the
conclusion, and hence the hypothesis of Lemma 6.4. By induction M™
satisfies the hypothesis of Lemma 6.4 for m > 0. 0 π-regularity shows
hι(X, Mf1) = hι(C, π^M™) by Lemma 3.2(2). Since μ~{π^M™) > 2g.
Lemma 1.12(2) yields hι(C, π^M™) = 0, and (6.2) surjects for n = 1.
The case n > 2 being similar, from Lemma 6.4 implies Theorem 6.1. We
now prove the lemma.

Proof of Lemma 6.4. First we show that (1) holds for U. By (2),
μ~ (π+ V) < 2g - 1, so Lemma 1.12(3) implies π^ V is generated by global
sections. Since V is 0 π-regular by (1), from Lemma 3.2(6) it follows
that Mv is 1 7Γ-regular, so that U = Mv{\) is 0 π-regular. Hence (1)
holds for U.
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Now we show that (2) holds for U. By Proposition 4.2,

μ-(π.U) = μ-(πmMv(l)) > mm{μ~(MπV) + μ~(E), ι/(F,

By (3) we have v(V, @x{\)) >2g,so we need only check that μ~(Mπ v)

x μ~(E) > 2g. Since μ~(π^V) > 2g, Corollary 1.3 implies μ~{Mπ v) >

-2, so μ~(Mπ v) + μ'{E) > -2 + 2g + 2 = 2^, and (2) holds for U.
We finish by showing U satisfies (3). To do this, we use the sequence

0 -• U -> i/°(X, V) ®@x(\) ^ V{\) -+ 0.

We will bound v(U,0x(l)) by bounding μ-{R%(U(-i-l))®hME)

for 0 < i < AZ-2. We begin with / = 0. We need to show μ~(π^U(

/\2E) > 2g. Since π^U(-l) = π^Mv = M% v , it suffices to prove

μ~{Mπ v®/\2E)>2g. But we have

μ~ \MπV Θ Λ^J = ̂ ' ( ^ K ) + f [/\Ej

> μ~(Mr v) + 2μ"(£) (by Lemma 2.5(8))

>-2 + 2μ~{E) (by Corollary 1.3)

> - 2 + 4# -h 2 > 2g.

So we need only do the cases where i > 0. Since Rιπ^((?x{-i)) = 0, we
have a sequence

R'-\(V(-i)) - R\{MV(-Ϊ)) - 0.

So we see

( i+2 \ / i+2 \

i?\(MF(-/))0/\£j >//" i*'-1*^-/))®^)

>->-(*-\

(by Lemma 2.4)
/+i \
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ί+1(
(by Lemma 2.5(2))

The second inequality follows from the surjective map /\ι+ι E <8> E —>
f\ι+2 E and Lemma 2.4. This proves Lemma 6.4, and hence Theorem 6.1.

6.5 Problem. If X = C, can we use the geometry of the curve and its
embedding to lower the necessary bound which forces the homogeneous
coordinate ring to be Koszul? For example, it is known that on a nonhy-
perelliptic curve of genus g > 4, a line bundle of deg = 2# + 1 which
embeds C with no trisecant lines is normally presented. Is the homoge-
neous coordinate ring Koszul? Is it at least true that for a general curve
of large genus a general line bundle of deg = 2# + 1 determines a won-
derful homogeneous coordinate ring? More generally, is it true that the
geometry of a line bundle being normally presented is the same as that of
the homogeneous coordinate ring being Koszul. If so, by analogy with a
conjecture of Green and Lazarsfeld [16], we expect if L is a very ample
line bundle which embeds C without a trisecant line, the homogeneous
coordinate ring determined by L is Koszul provided

deg(L) >2g + 2-2h\C9L)~Cliff(C).

One important case is known. Finkelberg and Vishik have shown that if
Cliff(C) > 2, then the canonical ring is Koszul [8].
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