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ON SMOOTH RANK-1 MAPPINGS
OF BANACH SPACES ONTO THE PLANE

S. M. BATES

Abstract

For any separable infinite-dimensional Banach space E we construct a
surjective C°° mapping f:E —> E2 satisfying rankDf(υ) < 1 for all
v eE.

A Frechet difFerentiable map f:E -+ F is called rαnk-r provided
rankDf(υ) < r for al υ e E. Surjective rank-1 mappings f:Rn -• Rm

are known to exist whenever n > m > 1 (see [1], [2], [6], [15]); by the
classical Morse-Sard theorem, however, such mappings1 cannot belong to
the smoothness class cn~m+ι.

Let E denote a separable infinite-dimensional Banach space. The aim
of this note is to construct a C°° rank-1 mapping of E onto R2 . Because
our technique generalizes easily to produce smooth rank-1 mappings of E
onto any higher-dimensional Euclidean space, this settles a recent question
of H. Sussmann [14] and Y. Yomdin [15] (see also [4, p. 59]).

To begin our construction, we recall that by a result of Johnson and
Rosenthal [5] every separable infinite-dimensional Banach space has a quo-
tient with a Schauder basis.2 For our purposes, we may therefore assume
that E has a bounded basis with corresponding unit coordinate functions
{λj} (cf. [11, p. 20f)). The symbol mk denotes a k x k matrix with
O'-entry mk(i, j) e { 1 , 3 , 5 , 7 } , and the notation mk -< mι implies
m k { i , j ) = m ^ i , j ) f o r /, j = 1 , , k .

Cylinder Sets in E

Let I(αx, " , αk) denote the set of those x e [0, 1] such that α{ is
the /th digit in the base-9 expansion of x. We define the family 38 of
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^ sharper smoothness bound in the context of singular mappings, see [1], [2].
21 am indebted to Y. Benyamini for calling the article [5] to my attention. An analogous

construction can be carried out using the biorthogonal sequences constructed in [8], [9].
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cylinder sets in E as the collection of all sets of the form

B ( m k ) = { v e E : 9 i λ i ( v ) e I ( r n k ( l , i ) , , m k ( k , i ) ) 9 i = l , . , f c }

for some mk. The cylinder set B{mk) consists of those v e E whose

first k coordinates lie in certain subintervals of [0, 1] determined by the

matrix mk : For each i = 1, , k, the ixh column of mk comprises

the first k digits in the base-9 expansion of 9ιλ.(υ). For fixed k, there

are thus 4k distinct B{mk), and by construction each B(mk) contains

the 42/c+1 cylinder subsets B(mk+ι) for which mk -< mk+ι. If / > k and

mk, rnι are distinct, then for any v e dB(mk) there exists j < k such

that \λj(υ - v')\ > 9~{k+j+x) for all υ e B{m\).
Since the chosen basis of E is bounded, the preceding definition implies

that the set f]k B{mk) consists of a unique vector for any chain of matrices
{mk} . We define Λ to be the Cantor set defined by 38, i.e., the set of
those v € E contained in infinitely many members of 3§ .

Mapping of Λ

Let Ro be any closed square in R . For each k e Z + , we divide

Ro with lines parallel to its edges into 4k congruent, closed subsquares
-k2

R(rnk) c Ro of diameter M 2 , and we require that our labelling is
"Jlc 4-1

such that each R{mk) contains the 4 squares R{mk+χ) for which
mk •< mk+x. For each mk , choose a point p(mk) e R{mk).

We define the map / on Λ by requiring that f(AΓ\B(mk)) c R{mk).

Since for any x e RQ there exists a (possibly nonunique) chain of matrices

mk satisfying f]kR(mk) = {x} , it follows that Ro c /(Λ). Moreover, if

υ, v e Λ and k > 2 is the largest integer such that υ, v e B(mk_χ),

then \v - v'\ > 9~3k , and
\f(v) - f(v')\ < M 2~kl <M-\v- υ'\k/n.

Extension of /

Choose a smooth function φ:R -> R such that φ = 1 on a neighbor-
hood of [-\, \] and φ(x) = 0 when |x| > \ + 9~2. Define hk:E -> R

by A
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Clearly the function hk is smooth; since the linear map E —• Rk given by

v ι-> (Aj(t ), — , λk(υ)) has norm < \/fc, a simple computation shows

furthermore that HZ^AJI < Mk for each n, k e Z+ and constants Mw

independent of k.

We now fix mk and let mk+ι , denote the 42/c+1 immediate successors

of m^.. Consider B = B(mk) and its cylinder subsets Bt = B(mk+ι .).

For each /, there exists a translation Tf.E —• £ which maps 5. onto

{v G £ : 2\λj{v)\ < 9'{k+j+ι), 7 = 1, , k + 1} . Defining g.: £ - . R a s

the composition hk+ι o Tt, we observe the following:
(1) gι. = l on a neighborhood of B(.
(2) Supp(gz) c IntB , and Supp(^) Π Supp(^) = 0 whenever / ̂  J •

(3) ||Z>Λβ/|| < Mk+ι for all « G Z+ , / = 1, , 4 2 / c + 1 .
We now define the partial extension of / to the region B\ \J Bt by

where /? = ^(m^), /?• = p(mk+ι .). Analogously / is extended to

Smoothness of /

By condition (1) and the preceding definition, it follows that / is a con-
tinuous extension of our mapping of Λ. Since Dnf=0 on the boundary
of each cylinder set, the map / is C°° on E\A.

To determine the smoothness of / at points of Λ, we first note that
by conditions (2) and (3) above,

\\Dnf\\ < Mk+l . diam(i?(m,)) = M. Mk+l . 2'^

on B(mk)\ Uz

 B{mk+\ /) ί t h u s II^VH t e n d s t 0 z e Γ 0 o n approach to Λ for
all n G Z + . Recalling our previous estimate for the modulus of continuity
of f\A, we conclude that / is C°° on E by inductively applying the
following fact whose proof is left to the interested reader.

Lemma. Let X, Y be Banach spaces, A c X a closed subset, and
g:X -• y a continuous map, differentiate on X\A. If x e A and
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(a) \g(x) - g(z)\ = o(\x - z\) as z^x, zeA,
(b) \\Dg(z)\\ = o(ί) as z'-^x, z'eE\A,

then g is dijferentiable at x and Dg(x) = 0.
From the above remarks it follows in particular that our mapping / : E ->

R2 satisfies Df = 0 on the Cantor set Λ, and thus rankDf(υ) = 0 for
all v e A. On the complement of Λ, condition (2) implies that / is lo-
cally of the form f = wg + wf for some smooth function g and vectors
w, w e R2 consequently, rankDf(v) < 1 for all v e E\A, and so / is
rank-1.

In order to map E onto R 2, we choose a sequence {SB.} of distinct

cylinder set families in E, requiring that any two members of different

families be separated by a distance > 1. By the above construction, there

exists for each / e Z + a smooth rank-1 mapping of E onto the square

[-/, if which equals (0, 0) outside \J&B. Piecing these mappings to-

gether then produces the desired smooth rank-1 surjection E —>R .

Remarks

An important observation regarding the Cantor set Λ is that it cannot
be the countable union of sets having finite Hausdorff dimension. To prove
this statement, we recall the following weak infinite-dimensional version
of the Morse-Sard theorem from [2] (compare [3, Theorem 3.4.3], [10],
[12]):

Theorem. Let X, Y be separable Banach spaces, A c X a set of Haus-
dorff dimension s0 < oo, and f:X —• Y a Cp map satisfying Dkf(x) = 0
for each x e A, k = 1,2, •- , p. Then the Hausdorff dimension of f(A)
is at most so/p.

As noted previously, the map /:£"—> R2 constructed above satisfies
Dnf{x) = 0 for all x e A, n e Z+ . Thus, if A c Λ has finite Hausdorff
dimension, its image f(A) has Hausdorff dimension zero. Since /(Λ)
has nonempty interior, our assertion follows.

Some questions

In view of the preceding remarks, it would be interesting to determine
precisely how large a set A c E must be in order that its image under
some smooth rank-1 mapping into the plane has nonempty interior. We
conclude our discussion with two specific questions illustrating this point:

1. Does there exist a C°° rank-1 map f:E -> R2 such that f(A) has
nonempty interior for some subset Ac E of finite Hausdorff dimension?
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Note that by the preceding theorem, any such set on which Df = 0 must
have dimension > 2. A dual question suggested by our construction con-
cerns necessary restrictions on the size and geometry of the target space.

2. Does every separable, infinite-dimensional Banach space E admit a
C°° rank-1 mapping onto every separable Banach space FΊ

We hope to return to these points in a sequel to this paper.
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