ON SMOOTH RANK-1 MAPPINGS OF BANACH SPACES ONTO THE PLANE

S. M. BATES

Abstract

For any separable infinite-dimensional Banach space E we construct a surjective C^{∞} mapping $f: E \rightarrow \mathbb{R}^{2}$ satisfying $\operatorname{rank} D f(v) \leq 1$ for all $v \in E$.

A Fréchet differentiable map $f: E \rightarrow F$ is called rank- r provided $\operatorname{rank} D f(v) \leq r$ for al $v \in E$. Surjective rank-1 mappings $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are known to exist whenever $n>m>1$ (see [1], [2], [6], [15]); by the classical Morse-Sard theorem, however, such mappings ${ }^{1}$ cannot belong to the smoothness class C^{n-m+1}.

Let E denote a separable infinite-dimensional Banach space. The aim of this note is to construct a C^{∞} rank-1 mapping of E onto \mathbb{R}^{2}. Because our technique generalizes easily to produce smooth rank-1 mappings of E onto any higher-dimensional Euclidean space, this settles a recent question of H. Sussmann [14] and Y. Yomdin [15] (see also [4, p. 59]).

To begin our construction, we recall that by a result of Johnson and Rosenthal [5] every separable infinite-dimensional Banach space has a quotient with a Schauder basis. ${ }^{2}$ For our purposes, we may therefore assume that E has a bounded basis with corresponding unit coordinate functions $\left\{\lambda_{j}\right\}$ (cf. [11, p. 20f]). The symbol m_{k} denotes a $k \times k$ matrix with $i j$-entry $m_{k}(i, j) \in\{1,3,5,7\}$, and the notation $m_{k} \prec m_{l}$ implies $m_{k}(i, j)=m_{l}(i, j)$ for $i, j=1, \cdots, k$.

Cylinder Sets in E

Let $I\left(a_{1}, \cdots, a_{k}\right)$ denote the set of those $x \in[0,1]$ such that a_{i} is the i th digit in the base-9 expansion of x. We define the family \mathscr{B} of

[^0]cylinder sets in E as the collection of all sets of the form
$$
B\left(m_{k}\right)=\left\{v \in E: 9^{i} \lambda_{i}(v) \in I\left(m_{k}(1, i), \cdots, m_{k}(k, i)\right), \quad i=1, \cdots, k\right\}
$$
for some m_{k}. The cylinder set $B\left(m_{k}\right)$ consists of those $v \in E$ whose first k coordinates lie in certain subintervals of $[0,1]$ determined by the matrix m_{k} : For each $i=1, \cdots, k$, the i th column of m_{k} comprises the first k digits in the base- 9 expansion of $9^{i} \lambda_{i}(v)$. For fixed k, there are thus $4^{k^{2}}$ distinct $B\left(m_{k}\right)$, and by construction each $B\left(m_{k}\right)$ contains the $4^{2 k+1}$ cylinder subsets $B\left(m_{k+1}\right)$ for which $m_{k} \prec m_{k+1}$. If $l \geq k$ and m_{k}, m_{l}^{\prime} are distinct, then for any $v \in \partial B\left(m_{k}\right)$ there exists $j \leq k$ such that $\left|\lambda_{j}\left(v-v^{\prime}\right)\right| \geq 9^{-(k+j+1)}$ for all $v^{\prime} \in B\left(m_{l}^{\prime}\right)$.

Since the chosen basis of E is bounded, the preceding definition implies that the set $\bigcap_{k} B\left(m_{k}\right)$ consists of a unique vector for any chain of matrices $\left\{m_{k}\right\}$. We define Λ to be the Cantor set defined by \mathscr{B}, i.e., the set of those $v \in E$ contained in infinitely many members of \mathscr{B}.

Mapping of Λ

Let R_{0} be any closed square in \mathbb{R}^{2}. For each $k \in \mathbb{Z}^{+}$, we divide R_{0} with lines parallel to its edges into $4^{k^{2}}$ congruent, closed subsquares $R\left(m_{k}\right) \subset R_{0}$ of diameter $M \cdot 2^{-k^{2}}$, and we require that our labelling is such that each $R\left(m_{k}\right)$ contains the $4^{2 k+1}$ squares $R\left(m_{k+1}\right)$ for which $m_{k} \prec m_{k+1}$. For each m_{k}, choose a point $p\left(m_{k}\right) \in R\left(m_{k}\right)$.

We define the map f on Λ by requiring that $f\left(\Lambda \cap B\left(m_{k}\right)\right) \subset R\left(m_{k}\right)$. Since for any $x \in R_{0}$ there exists a (possibly nonunique) chain of matrices m_{k} satisfying $\bigcap_{k} R\left(m_{k}\right)=\{x\}$, it follows that $R_{0} \subset f(\Lambda)$. Moreover, if $v, v^{\prime} \in \Lambda$ and $k \geq 2$ is the largest integer such that $v, v^{\prime} \in B\left(m_{k-1}\right)$, then $\left|v-v^{\prime}\right| \geq 9^{-3 k}$, and

$$
\left|f(v)-f\left(v^{\prime}\right)\right| \leq M \cdot 2^{-k^{2}} \leq M \cdot\left|v-v^{\prime}\right|^{k / 12}
$$

Extension of f

Choose a smooth function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ such that $\varphi=1$ on a neighborhood of $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $\varphi(x)=0$ when $|x| \geq \frac{1}{2}+9^{-2}$. Define $h_{k}: E \rightarrow \mathbb{R}$ by

$$
h_{k}(v)=\prod_{j=1}^{k} \varphi\left(9^{k+j} \lambda_{j}(v)\right)
$$

Clearly the function h_{k} is smooth; since the linear map $E \rightarrow \mathbb{R}^{k}$ given by $v \mapsto\left(\lambda_{1}(v), \cdots, \lambda_{k}(v)\right)$ has norm $\leq \sqrt{k}$, a simple computation shows furthermore that $\left\|D^{n} h_{k}\right\| \leq M_{n}^{k}$ for each $n, k \in \mathbb{Z}^{+}$and constants M_{n} independent of k.

We now fix m_{k} and let $m_{k+1, i}$ denote the $4^{2 k+1}$ immediate successors of m_{k}. Consider $B=B\left(m_{k}\right)$ and its cylinder subsets $B_{i}=B\left(m_{k+1, i}\right)$. For each i, there exists a translation $T_{i}: E \rightarrow E$ which maps B_{i} onto $\left\{v \in E: 2\left|\lambda_{j}(v)\right| \leq 9^{-(k+j+1)}, j=1, \cdots, k+1\right\}$. Defining $g_{i}: E \rightarrow \mathbb{R}$ as the composition $h_{k+1} \circ T_{i}$, we observe the following:
(1) $g_{i}=1$ on a neighborhood of B_{i}.
(2) $\operatorname{Supp}\left(g_{i}\right) \subset \operatorname{Int} B$, and $\operatorname{Supp}\left(g_{i}\right) \cap \operatorname{Supp}\left(g_{i}\right)=\varnothing$ whenever $i \neq j$.
(3) $\left\|D^{n} g_{i}\right\| \leq M_{n}^{k+1}$ for all $n \in \mathbb{Z}^{+}, i=1, \cdots, 4^{2 k+1}$.

We now define the partial extension of f to the region $B \backslash \bigcup B_{i}$ by

$$
f=p+\sum_{i=1}^{4^{2 k+1}}\left(p_{i}-p\right) g_{i}
$$

where $p=p\left(m_{k}\right), p_{i}=p\left(m_{k+1, i}\right)$. Analogously f is extended to $E \backslash \bigcup B\left(m_{1}\right)$.

Smoothness of f

By condition (1) and the preceding definition, it follows that f is a continuous extension of our mapping of Λ. Since $D^{n} f=0$ on the boundary of each cylinder set, the map f is C^{∞} on $E \backslash \Lambda$.

To determine the smoothness of f at points of Λ, we first note that by conditions (2) and (3) above,

$$
\left\|D^{n} f\right\| \leq M_{n}^{k+1} \cdot \operatorname{diam}\left(R\left(m_{k}\right)\right)=M \cdot M_{n}^{k+1} \cdot 2^{-k^{2}}
$$

on $B\left(m_{k}\right) \backslash \bigcup_{i} B\left(m_{k+1, i}\right)$; thus $\left\|D^{n} f\right\|$ tends to zero on approach to Λ for all $n \in \mathbb{Z}^{+}$. Recalling our previous estimate for the modulus of continuity of $\left.f\right|_{\Lambda}$, we conclude that f is C^{∞} on E by inductively applying the following fact whose proof is left to the interested reader.

Lemma. Let X, Y be Banach spaces, $A \subset X$ a closed subset, and $g: X \rightarrow Y$ a continuous map, differentiable on $X \backslash A$. If $x \in A$ and
(a) $|g(x)-g(z)|=o(|x-z|)$ as $z \rightarrow x, z \in A$,
(b) $\left\|D g\left(z^{\prime}\right)\right\|=o(1)$ as $z^{\prime} \rightarrow x, z^{\prime} \in E \backslash A$,
then g is differentiable at x and $D g(x)=0$.
From the above remarks it follows in particular that our mapping $f: E \rightarrow$ \mathbb{R}^{2} satisfies $D f=0$ on the Cantor set Λ, and thus $\operatorname{rank} D f(v)=0$ for all $v \in \Lambda$. On the complement of Λ, condition (2) implies that f is locally of the form $f=w g+w^{\prime}$ for some smooth function g and vectors $w, w^{\prime} \in \mathbb{R}^{2}$; consequently, $\operatorname{rank} D f(v) \leq 1$ for all $v \in E \backslash \Lambda$, and so f is rank-1.

In order to map E onto \mathbb{R}^{2}, we choose a sequence $\left\{\mathscr{B}_{i}\right\}$ of distinct cylinder set families in E, requiring that any two members of different families be separated by a distance ≥ 1. By the above construction, there exists for each $i \in \mathbb{Z}^{+}$a smooth rank-1 mapping of E onto the square $[-i, i]^{2}$ which equals $(0,0)$ outside $\bigcup_{\mathscr{R}_{i}} B$. Piecing these mappings together then produces the desired smooth rank-1 surjection $E \rightarrow \mathbb{R}^{2}$.

Remarks

An important observation regarding the Cantor set Λ is that it cannot be the countable union of sets having finite Hausdorff dimension. To prove this statement, we recall the following weak infinite-dimensional version of the Morse-Sard theorem from [2] (compare [3, Theorem 3.4.3], [10], [12]):

Theorem. Let X, Y be separable Banach spaces, $A \subset X$ a set of Hausdorff dimension $s_{0}<\infty$, and $f: X \rightarrow Y$ a C^{p} map satisfying $D^{k} f(x)=0$ for each $x \in A, k=1,2, \cdots, p$. Then the Hausdorff dimension of $f(A)$ is at most s_{0} / p.

As noted previously, the map $f: E \rightarrow \mathbb{R}^{2}$ constructed above satisfies $D^{n} f(x)=0$ for all $x \in \Lambda, n \in \mathbb{Z}^{+}$. Thus, if $A \subset \Lambda$ has finite Hausdorff dimension, its image $f(A)$ has Hausdorff dimension zero. Since $f(\Lambda)$ has nonempty interior, our assertion follows.

Some questions

In view of the preceding remarks, it would be interesting to determine precisely how large a set $A \subset E$ must be in order that its image under some smooth rank-1 mapping into the plane has nonempty interior. We conclude our discussion with two specific questions illustrating this point:

1. Does there exist a C^{∞} rank-1 map $f: E \rightarrow \mathbb{R}^{2}$ such that $f(A)$ has nonempty interior for some subset $A \subset E$ of finite Hausdorff dimension?

Note that by the preceding theorem, any such set on which $D f=0$ must have dimension ≥ 2. A dual question suggested by our construction concerns necessary restrictions on the size and geometry of the target space.
2. Does every separable, infinite-dimensional Banach space E admit a C^{∞} rank-1 mapping onto every separable Banach space F ?

We hope to return to these points in a sequel to this paper.

References

[1] S. M. Bates, On the image size of singular maps. I, Proc. Amer. Math. Soc. 114 (1991) 699-705.
[2] ___, On the image of size of singular maps. II, Duke Math. J. 68 (1992), 463-476.
[3] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., Vol. 153, Springer, New York, 1969.
[4] W. H. Fleming, Future directions in control theory: a mathematical perspective, Report of the Panel on Future Directions in Control Theory, SIAM Reports, Philadelphia, 1988.
[5] W. B. Johnson \& H. P. Rosenthal, On w^{*}-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972) 77-92.
[6] R. Kaufman, A singular map of a cube onto a square, J. Differential Geometry 14 (1979) 593-594.
[7] A. P. Morse, The behavior of a function on its critical set, Ann. of Math. (2) 40 (1939) 62-70.
[8] R. I. Ovsepian \& A. Pełczynski, The existence in every separable Banach space of a fundamental total and bounded biorthogonal system, Studia Math. 54 (1975) 149159.
[9] A. Pelczynski, any separable Banach space admits for every $\varepsilon>0$ fundamental and total biorthogonal sequences bounded by $1+\varepsilon$, Studia Math. 55 (1976) 295-304.
[10] A. Sard, Images of critical sets, Ann. of Math (2) 68 (1958) 247-259.
[11] I. Singer, Bases in Banach spaces. I, Grundlehren Math. Wiss., Vol. 154, Springer, New York, 1970.
[12] S. Smale, An infinite dimensional version of Sard's Theorem, Amer. J. Math. 87 (1965) 861-866.
[13] S. Sternberg, Lectures on differential geometry, Prentice -Hall, Englewoods Cliffs, NJ, 1964.
[14] H. Sussmann, private communication, May 1991.
[15] Y. Yomdin, Surjective mappings whose differential is nowhere surjective, Proc. Amer. Math. Soc. 111 (1991) 267-270.

University of California, Berkeley

[^0]: Received June 17, 1991 and, in revised form, April 27, 1992. The author was supported by an NSF graduate fellowship in Mathematics.
 ${ }^{1}$ For a sharper smoothness bound in the context of singular mappings, see [1], [2].
 ${ }^{2} \mathrm{I}$ am indebted to Y . Benyamini for calling the article [5] to my attention. An analogous construction can be carried out using the biorthogonal sequences constructed in [8], [9].

