COMPLETENESS OF LORENTZ MANIFOLDS OF CONSTANT CURVATURE ADMITTING KILLING VECTOR FIELDS

YOSHINOBU KAMISHIMA

Dedicated to Professor Akio Hattori on his sixtieth birthday

Introduction

A Lorentz manifold M of dimension n is a smooth manifold together with a Lorentz metric g. A Lorentz metric g on M is a smooth field $\{g_x\}_{x \in M}$ of nondegenerate symmetric bilinear forms g_x of type (1, n-1)on the tangent space $T_x M$. Namely let $\mathbf{R}^{1,n-1}$ denote the real vector space of dimension n equipped with the bilinear form

$$Q(x, y) = -x_1y_1 + x_2y_2 + \dots + x_ny_n.$$

A nondegenerate symmetric bilinear form g_x is of type (1, n-1) if the pair (T_xM, g_x) is isometric to $(\mathbb{R}^{1, n-1}, Q)$ (cf. [31], [34]).

A pseudo-Riemannian manifold has a unique connection (Levi-Cività connection) on its frame bundle. Henceforth geodesics, curvature, completeness refer to the Levi-Cività connection. It is notorious that compactness does not necessarily imply completeness in *pseudo-Riemannian geometry*. In this paper we consider this problem for Lorentz manifolds of constant curvature which admit Killing vector fields of certain type. This leads to some precise classification results.

Theorem A. Let M be a compact Lorentz manifold of constant curvature k. Suppose that M admits a timelike Killing vector field. Then M is complete, $k \leq 0$ and the following hold:

(1) *M* is affinely diffeomorphic to a euclidean space form with nonzero first Betti number if k = 0;

(2) some finite covering of M is a circle bundle over a negatively curved manifold if k is a negative constant.

This will be proved in Corollary 3.2, Theorem 2.15, and Theorem 2.17. A compact Lorentz manifold of k = 0 is called a Lorentz flat manifold. It is known that a compact Lorentz flat manifold is complete by the result

Received September 13, 1990 and, in revised form, April 6, 1992.

of Carrière [3]. We notice that dim M is odd for a compact Lorentz manifold of nonzero constant curvature k. For this, it is known that a smooth manifold admits a Lorentz metric if and only if there exists a nonzero vector field (cf. [31]). Thus the Euler characteristic $\chi(M)$ is zero. On the other hand, the generalized Gauss-Bonnet formula can be applied to a compact pseudo-Riemannian manifold (cf. [1], [4], [24]). If dim Mis even and $k \neq 0$, then the Gauss-Bonnet formula certainly implies that $\chi(M) \neq 0$.

It is a famous result that if M is a Riemannian manifold, then the group of all isometries acts properly on M. In particular the stabilizer at any point of M is compact. If Iso(M) is the group of all isometries of a Lorentz manifold M, then it is emphasized that in *pseudo-Riemannian geometry* Iso(M) need not act properly and hence its stabilizer fails to be compact. This fact causes difficulties in understanding the topology of Lorentz manifolds (cf. [20], [22]).

Let $b(x, y) = -x_1y_1 - x_2y_2 + \dots + x_{2n+2}y_{2n+2}$ be the bilinear form on \mathbb{R}^{2n+2} . The quadric $\mathbb{H}^{1,2n} = \{x \in \mathbb{R}^{2n+2} | b(x, x) = -1\}$ supports a complete Lorentz metric of constant negative curvature, and moreover if O(2, 2n) is the orthogonal group of $GL(2n+2, \mathbb{R})$ preserving the form b, then $Iso(\mathbb{H}^{1,2n}) = O(2, 2n)$. There is the canonical exact sequence

$$1 \to \mathscr{Z} \to O(2, 2n)^{\sim} \xrightarrow{P} O(2, 2n) \to 1$$

associated with the covering projection $\widetilde{\mathbf{H}}^{1,2n} \to \mathbf{H}^{1,2n}$ (cf. §1). Thus we can find a Lie group $U(1,n)^{\sim}$ of $O(2,2n)^{\sim}$ for which $U(1,n)^{\sim}$ acts transitively and $U(n)\setminus U(1,n)^{\sim} \approx \widetilde{\mathbf{H}}^{1,2n}$. Since there exists a torsion free discrete cocompact subgroup Γ in $U(1,n)^{\sim}$, the compact complete Lorentz manifold of negative curvature $\widetilde{\mathbf{H}}^{1,2n}/\Gamma$ is called a (complete) standard space form $U(n)\setminus U(1,n)^{\sim}/\Gamma$. It is a Seifert fiber space, namely it admits a circle action which induces a timelike Killing vector field. (See Proposition 2.19, also cf. [24], [25].) We shall give a necessary and sufficient condition for a compact Lorentz manifold of constant negative curvature admitting a Killing vector field to become a standard space form.

Theorem B. Let M be a compact Lorentz manifold of constant negative curvature in dimension 2n + 1. Suppose that M admits a nontrivial Killing vector field. Let $\{\varphi_t\}_{|t|<\infty}$ be a one-parameter group of Lorentz transformations of M generated by the Killing vector field, and $\{\tilde{\varphi}_t\}_{|t|<\infty}$ its lift to the universal covering space \widetilde{M} . Denote by \widetilde{H} the holonomy image of $\{\tilde{\varphi}_t\}_{|t|<\infty}$ in $O(2, 2n)^{\sim}$. Then M is a standard space form $U(n)\setminus U(1, n)^{\sim}/\Gamma$ if and only if $P(\widetilde{H})$ is compact where $P: O(2, 2n)^{\sim} \rightarrow$

O(2, 2n) is the covering map. In particular the Killing vector field is timelike.

A related work for a complete Lorentz 3-manifold of constant negative curvature to be standard has been found in Proposition 7.5 [25]. We remark that a compact complete Lorentz manifold of constant negative curvature is not always a standard one. In fact there is a three-dimensional nonstandard Lorentz space form (i.e., there is a proper action of a subgroup of O(2, 2) not lying in the closed subgroup $PSL_2(\mathbb{R})$). Kulkarni, Raymond and Goldman ([24], [25], [12]) classified three-dimensional complete Lorentz manifolds of constant negative curvature. It has been shown that if a complete Lorentz manifold of constant negative curvature is compact, then it is finitely covered by a circle bundle over a closed surface of genus ≥ 2 with nonzero Euler class. One of the crucial results used to prove this fact is that complete Lorentz 3-manifolds of constant negative curvature with abelian fundamental groups are not compact. We generalize this result without completeness.

Theorem C. Let M be a Lorentz 3-manifold of constant negative curvature. If the holonomy group of M is virtually abelian, then M is not compact.

Using this theorem, we have

Theorem D. Let M be a Lorentz 3-manifold of constant negative curvature. Suppose that the universal covering space \widetilde{M} of M admits a non-trivial complete Killing vector field and the developing map is injective. If M is compact, then M is geodesically complete.

We relate Lorentz causal character of Killing vector fields to Lorentz 3-manifolds of constant curvature.

Theorem E. (a) There exists no compact Lorentz 3-manifold of constant positive curvature which admits a spacelike Killing vector field or a lightlike Killing vector field.

(b) If a compact Lorentz flat 3-manifold admits a lightlike Killing vector field, then it is an infranilmanifold.

(c) If a compact Lorentz flat 3-manifold admits a spacelike Killing vector field and is not a Euclidean space form, then it is an infrasolvmanifold but not an infranilmanifold.

(d) A compact Lorentz 3-manifold of constant negative curvature admitting a timelike Killing vector field is a standard space form.

(e) There exists no lightlike Killing vector field on a compact Lorentz 3-manifold of constant negative curvature.

(f) If a compact Lorentz 3-manifold M of constant negative curvature admits a spacelike Killing vector field and the developing map is injective,

then a finite covering of M is either a homogeneous standard space form or a nonstandard space form.

For the current development of compact Lorentz flat manifolds, the reader should refer to [9], [14], [17], [28], [33] and for the three-dimensional Lorentz manifolds of negative curvature and related topics to [7], [8], [10], [15], [29], [30].

This paper is organized as follows: In $\S1$ we define Lorentz causal character of vector fields and collect some elementary facts about Lorentz structure. $\S2$ is devoted to Lorentz manifolds of nonpositive curvature. The above classification theorems are proved in $\S\S3$ and 4. Lorentz 3-manifolds of constant curvature are discussed in $\S4$.

I. Preliminaries

1.1. Let M be a Lorentz manifold with metric g. A tangent vector $v \ (\neq 0)$ to M falls into the following types:

timelike if
$$g(v, v) < 0$$
,
lightlike if $g(v, v) = 0$,
spacelike if $g(v, v) > 0$.

A vector field V on M is timelike if all of the vectors $V_p \in T_pM$ are timelike; similarly for lightlike and spacelike vector fields.

1.2. Consider the following quadrics:

$$\mathbf{S}^{1,n} = \{ p = (x_1, y_1, \cdots, y_{n+1}) \in \mathbf{R}^{1,n+1} | -x_1^2 + y_1^2 + \cdots + y_{n+1}^2 = 1 \},\$$

$$\mathbf{H}^{1,n} = \{ p = (x_1, x_2, y_1, \cdots, y_n) \in \mathbf{R}^{2,n} | -x_1^2 - x_2^2 + y_1^2 + \cdots + y_n^2 = -1 \}.$$

Note that $\mathbf{S}^{1,n} \approx \mathbf{R}^1 \times \mathbf{S}^n$, $\mathbf{H}^{1,n} \approx \mathbf{S}^1 \times \mathbf{R}^n$. Then $\mathbf{S}^{1,n}$ and $\mathbf{H}^{1,n}$ are complete Lorentz (n + 1)-dimensional manifolds of constant curvature 1 and -1 respectively. The groups O(1, n + 1) and O(2, n) are the orthogonal subgroups of $GL(n+2, \mathbf{R})$ that preserve the quadratic forms

$$Q^{+}(x_{1}, y_{1}, \cdots, y_{n+1}) = -x_{1}^{2} + y_{1}^{2} + \cdots + y_{n+1}^{2},$$

$$Q^{-}(x_{1}, x_{2}, y_{1}, \cdots, y_{n}) = -x_{1}^{2} - x_{2}^{2} + y_{1}^{2} + \cdots + y_{n}^{2}.$$

Thus it follows that $O(1, n+1) = \text{Iso}(\mathbf{S}^{1,n})$ and $O(2, n) = \text{Iso}(\mathbf{H}^{1,n})$ (cf. [24], [34]). Let $\tilde{\mathbf{S}}^{1,n}$ be the universal covering space of $\mathbf{S}^{1,n}$. Denote by $O(1, n+1)^{\sim}$ the corresponding lift of O(1, n+1) to a group acting on $\tilde{\mathbf{S}}^{1,n}$. Similarly let $O(2, n)^{\sim}$ be the corresponding lift of O(2, n) to the universal covering space $\tilde{\mathbf{H}}^{1,n}$. In this case there is the canonical exact

sequence $1 \to \mathscr{Z} \to O(2, n)^{\sim} \xrightarrow{P} O(2, n) \to 1$, where \mathscr{Z} is an infinite cyclic central subgroup. We note the following. (Compare [24, §7].)

Lemma 1.3. The groups $O(1, n+1)^{\sim}$ and $O(2, n)^{\sim}$ are the full groups of isometries of $\tilde{\mathbf{S}}^{1,n}$ and $\tilde{\mathbf{H}}^{1,n}$ respectively $(n \ge 2)$.

Proof. Since $\mathbf{S}^{1,n}$ is simply connected for $n \ge 2$, it follows that $\widetilde{\mathbf{S}}^{1,n} = \mathbf{S}^{1,n}$ and $O(1, n+1)^{\sim} = O(1, n+1)$. Recall that $O(1, n) \setminus O(2, n) = \mathbf{H}^{1,n}$ where O(1, n) is isomorphic to the stabilizer of O(2, n) at the point $p = (1, 0, \dots, 0)$. If \tilde{p} is a lift of the point p to $\widetilde{\mathbf{H}}^{1,n}$, then from the covering theory it follows that $O(1, n)^{\sim}$, the stabilizer of $O(2, n)^{\sim}$ at \tilde{p} , maps isomorphically onto O(1, n) and $O(1, n)^{\sim} \setminus O(2, n)^{\sim} = \widetilde{\mathbf{H}}^{1,n}$. Let $\operatorname{Iso}(\widetilde{\mathbf{H}}^{1,n})$ be the group of all isometries of $\widetilde{\mathbf{H}}^{1,n}$. As $\operatorname{Iso}(\widetilde{\mathbf{H}}^{1,n})$ acts transitively on $\widetilde{\mathbf{H}}^{1,n}$, it is sufficient to prove that $\operatorname{Iso}(\widetilde{\mathbf{H}}^{1,n})_{\tilde{p}} = O(1, n)^{\sim}$. For this, note that $T_{\tilde{p}}\widetilde{\mathbf{H}}^{1,n}$ is isometric to $\mathbf{R}^{1,n}$. Taking the differentials, we have a homomorphism: $\operatorname{Iso}(\widetilde{\mathbf{H}}^{1,n})_{\tilde{p}} \to O(1, n)$. Obviously it is a monomorphism and so $\operatorname{Iso}(\widetilde{\mathbf{H}}^{1,n})_{\tilde{p}} = O(1, n)^{\sim}$ because $O(1, n)^{\sim} \approx O(1, n)$.

1.4. Models for complete Lorentz manifold. The vector space $\mathbb{R}^{1,n}$ (cf. Introduction) is a complete connected simply connected Lorentz manifold of zero curvature. The Lorentz metric is obtained by Euclidean parallel translation of the above form Q (cf. [34], [31]). We simply denote it by \mathbb{R}^{n+1} . The group of isometries of \mathbb{R}^{n+1} is isomorphic to the semidirect product $\mathbb{R}^{n+1} \rtimes O(1, n)$.

The complete connected simply connected Lorentz n + 1 dimensional manifolds of constant curvature k, with their groups of isometries are:

$$(O(1, n+1)^{\sim}, \widetilde{\mathbf{S}}^{1,n}) \quad \text{if } k = 1, (\mathbf{R}^{n+1} \rtimes O(1, n), \mathbf{R}^{n+1}) \quad \text{if } k = 0, (O(2, n)^{\sim}, \widetilde{\mathbf{H}}^{1,n}) \quad \text{if } k = -1.$$

Notice that we may reduce the case of general k to those three cases by scaling the metric. By (G, X) we shall mean one of the above geometries. We say that a Lorentz spherical structure (resp. Lorentz flat structure, and Lorentz hyperbolic structure) on an (n + 1)-dimensional manifold M is a geometric structure modelled on X whose coordinate changes lie in G where (G, X) represents one of the above geometries for k = 1, 0, and -1. A Lorentz spherical (resp. flat and hyperbolic) manifold M is a smooth manifold equipped with a Lorentz spherical (resp. flat and hyperbolic) flat and hyperbolic) structure. By the usual monodromy argument (cf. [23], [11],

[34, Theorem 2.3.12], for example), given a Lorentz manifold M there exist an immersion dev: $\widetilde{M} \to X$ preserving the Lorentz structure and a homomorphism $\rho: \pi_1(M) \to G$, where \widetilde{M} is the universal covering space. Moreover the holonomy map ρ extends to a homomorphism of $\operatorname{Iso}(\widetilde{M})$ into G. Therefore we have the developing pair $(\rho, \operatorname{dev})$: $(\operatorname{Iso}(\widetilde{M}), \widetilde{M}) \to (G, X)$ such that $\pi_1(M) \subset \operatorname{Iso}(\widetilde{M})$.

By a Lorentz space form we shall mean a (geodesically) complete Lorentz manifold of constant curvature. It is noted that a Lorentz manifold is (geodesically) complete if the developing map is a covering map onto X. Then the Lorentz space form problem states that a Lorentz space form is isometric (up to rescaling the metric by a constant) to a quotient X/Γ where Γ is a subgroup of G, that acts properly discontinuously and freely. (Compare [34].)

2. Lorentz manifolds of nonpositive curvature

In this section we examine the structure of Lorentz manifolds of constant curvature k where k = 0 or k = -1.

2.1. Definition. Let $\{\varphi_t\}_{|t|<\infty}$ be a one-parameter group of Lorentz isometries on a Lorentz manifold M. The group $\{\varphi_t\}_{|t|<\infty}$ induces the vector field X on M. The vector X_p is tangent to the orbit $\{\varphi_t(p)\}_{|t|<\infty}$ at p for each point $p \in M$. Then the group $\{\varphi_t\}_{|t|<\infty}$ is said to be timelike if X is timelike; similarly for lightlike and spacelike (cf. 1.1).

Proposition 2.2. Suppose that H is a one-parameter group of $\mathbb{R}^{n+1} \rtimes O(1, n)$. If H is either timelike or lightlike, then the closure \overline{H} is non-compact.

Proof. If \overline{H} is compact, then it is conjugate to a subgroup of SO(n). Choose the point $p = (0, 1, 0, \dots, 0) \in \{0\} \times \mathbb{R}^n \subset \mathbb{R}^{n+1}$. Thus the orbit $\overline{H}p$ sits in $\{0\} \times \mathbb{R}^n$, and any vector field V tangent to the orbit satisfies g(V, V) > 0, which is impossible. Hence \overline{H} is noncompact. q.e.d.

Let $1 \to \mathscr{Z} \to O(2, n)^{\sim} \xrightarrow{P} O(2, n) \to 1$ be the exact sequence associated with the projection $P: \widetilde{\mathbf{H}}^{1,n} \to \mathbf{H}^{1,n}$ where \mathscr{Z} is an infinite central cyclic subgroup.

Proposition 2.3. Let H be a one-parameter group of $O(2, n)^{\sim}$.

(1) If H is either timelike or lightlike, then the closure \overline{H} is noncompact.

(2) If H is noncompact and P(H) is compact, then H is timelike.

Proof. (1) The above exact sequence induces the exact sequence $1 \rightarrow \mathcal{Z} \rightarrow \mathbf{R} \times O(n)^{\sim} \rightarrow SO(2) \times SO(n) \rightarrow 1$. Suppose that *H* is either timelike or lightlike. If \overline{H} is compact, then it is conjugate to a subgroup

of the maximal compact subgroup $O(n)^{\sim}$. (Compare [18].) It follows that $P(\overline{H}) \subset \{1\} \times SO(n)$ up to conjugation. We can assume that P(H) belongs to the maximal torus such that

$$P(H) = \begin{pmatrix} 1 & & & \\ & \cos t & -\sin t & & \\ & \sin t & \cos t & & \\ & & & & * & \\ & & & & & \ddots & \\ & & & & & & * \end{pmatrix}.$$

Taking $y = (\sqrt{2}, 0, 1, 0, \dots, 0) \in \mathbf{H}^{1, n}$, we have

$$P(H)y = \{(\sqrt{2}, 0, \cos t, \sin t, 0, \cdots, 0)\} \approx \{\sqrt{2}\} \times \mathbf{S}^{1}.$$

Under the correspondence $\mathbf{H}^{1,n} \approx \mathbf{S}^1 \times \mathbf{R}^n$, the orbit P(H)y is mapped onto the set $\{(1, 0; \cos t, \sin t, 0, \cdots, 0)\} = \mathbf{S}^1$. Thus any vector field V tangent to the orbit satisfies g(V, V) > 0. This contradicts the hypothesis on H. Therefore \overline{H} is noncompact in $O(2, n)^{\sim}$.

(2) Suppose that P(H) is compact. Then H is conjugate to a subgroup of $\mathbf{R} \times O(n)^{\sim}$. Since H is noncompact by the hypothesis, P(H) has the following form in $SO(2) \times SO(n)$:

So the orbit $P(H)(x_1, x_2, y_1, \dots, y_n)$ consists of the set

$$\{(x_1\cos\theta - x_2\sin\theta, x_1\sin\theta + x_2\cos\theta, \cdots)|_{\theta \in \mathbf{R}}\}.$$

Any vector field V tangent to the orbit $P(H)(x_1, x_2, y_1, \dots, y_n)$ satisfies $g(V, V) = -x_1^2 - x_2^2 + y_1^2 + \dots + y_n^2 = -1$. Therefore P(H) (and so H) is timelike.

2.4. Timelike Killing vector fields and geodesically completeness. Let (G, X) be one of the following geometries:

$$(\mathbf{R}^{n+1} \rtimes O(1, n), \mathbf{R}^{n+1})$$
 if $k = 0,$
 $(O(2, n)^{\sim}, \widetilde{\mathbf{H}}^{1, n})$ if $k = -1.$

Let M be a Lorentz flat (or hyperbolic) manifold of dimension n + 1. Then for any developing pair (ρ, dev) : $(\text{Iso}(\widetilde{M}), \widetilde{M}) \to (G, X)$, we have $\pi_1(M) \subset \text{Iso}(\widetilde{M})$. Put $\pi = \pi_1(M)$ and $\Gamma = \rho(\pi)$.

Proposition 2.5. If a compact Lorentz flat (or hyperbolic) manifold M admits a timelike Killing vector field, then M is geodesically complete. In particular, M is a Lorentz space form X/Γ .

Proof. Since M is compact, the timelike Killing vector field generates a one-parameter group of Lorentz transformations $\{\varphi_t\}_{|t|<\infty}$ on M. Let $\{\tilde{\varphi}_t\}_{|t|<\infty}$ be its lift to the universal covering space \widetilde{M} . Put $\rho(\{\tilde{\varphi}_t\}_{|t|<\infty}) = H$.

Let g be the Lorentz metric of X such that $\operatorname{Iso}(X, g) = G$. Since $\{\tilde{\varphi}_l\}_{|l| < \infty} \subset \operatorname{Iso}(\widetilde{M})$, note that $H \subset G$ and H is a timelike one-parameter group. Let ξ be the unit vector field associated with the H-action. Note that $g(\xi, \xi) = -1$. Let ξ_x^{\perp} be the orthogonal complement of ξ_x in $T_x X$ for each $x \in X$. Since g is nondegenerate on the vector space spanned by ξ , the tangent bundle TX decomposes into the orthogonal sum $\xi \oplus \xi^{\perp}$. Then we define a Riemannian metric h on X by setting

$$h(X, Y) = g(X, Y) + 2g(\xi, X) \cdot g(\xi, Y).$$

Since g is nondegenerate and positive definite on ξ^{\perp} , h is precisely a Riemannian metric on X. Let $\mathscr{C}_{G}(H)$ be the centralizer of H in G. If we note that $\alpha_{*}\xi = \xi$ for each $\alpha \in \mathscr{C}_{G}(H)$, then the Riemannian metric h is invariant under the group $\mathscr{C}_{G}(H)$. In particular $\mathscr{C}_{G}(H) \subset \operatorname{Iso}(X, h)$. Since $\Gamma \subset \mathscr{C}_{G}(H)$, the pullback of h by the map dev defines a π -invariant Riemannian metric on \widetilde{M} . As M is compact, it follows that dev: $\widetilde{M} \to X$ is a covering map. In particular, since X is simply connected, dev is a homeomorphism and so $M \approx X/\Gamma$. q.e.d.

2.6. Consider the exact sequence (compare [2] for example):

$$1 \to \mathscr{C}(\Gamma) \to \mathscr{C}_{\operatorname{Diff}(X)}(\Gamma) \xrightarrow{\eta} \operatorname{Diff}(X/\Gamma)^0 \to 1$$
,

where $\mathscr{C}(\Gamma)$ is the center of Γ , and $\mathscr{C}_{\text{Diff}(X)}(\Gamma)$ is the centralizer of Γ in Diff(X). Let g^* be the induced Lorentz metric on X/Γ from g. Then the Riemannian metric h is invariant under Γ , and induces a Riemannian metric h^* on X/Γ . We consider the subgroups $\text{Iso}(X/\Gamma, g^*)^0$ and $\text{Iso}(X/\Gamma, h^*)^0$ of $\text{Diff}(X/\Gamma)^0$. The above exact sequence restricted to these groups induces the following exact sequences:

$$1 \to \mathscr{C}(\Gamma) \to \mathscr{C}_{G}(\Gamma) \xrightarrow{\nu} \operatorname{Iso}(X/\Gamma, g^{*})^{0} \to 1,$$

$$1 \to \mathscr{C}(\Gamma) \to \mathscr{C}_{\operatorname{Iso}(X,h)}(\Gamma) \xrightarrow{\nu'} \operatorname{Iso}(X/\Gamma, h^*)^0 \to 1.$$

Let *H* be a timelike one-parameter group as in Proposition 2.5. Note that *H* is closed in *G* and $H \subset \mathscr{C}_G(\Gamma)$. It is not necessarily true that $\nu(H)$ is compact (i.e., isomorphic to S^1) in $\operatorname{Iso}(X/\Gamma, g^*)^0$. However we prove the following.

Lemma 2.7. Under the assumption of Proposition 2.5, there is a timelike one-parameter group H' in $\mathscr{C}_{G}(\Gamma)$ (also in $\mathscr{C}_{Iso(X,h)}(\Gamma)$) such that $\nu(H')$ is compact.

Proof. Since $\mathscr{C}_{G}(H) \subset \operatorname{Iso}(X, h)$, we obtain that $H \subset \mathscr{C}_{\operatorname{Iso}(X, h)}(\Gamma)$. Put $\eta(H) = H^*$, and note that $\nu(H) = \nu'(H) = H^*$. Let $\overline{H^*}$ be its closure in $\operatorname{Diff}(X/\Gamma)^0$. Then $\overline{H^*}$ sits in both $\operatorname{Iso}(X/\Gamma, g^*)^0$ and $\operatorname{Iso}(X/\Gamma, h^*)^0$. Since $\operatorname{Iso}(X/\Gamma, h^*)^0$ is compact relative to the Riemannian metric h^* , it follows that $\overline{H^*}$ is compact.

Let S be the identity component of the inverse image $\nu^{-1}(\overline{H^*})$. It is easy to see that $\nu^{-1}(\overline{H^*}) = \nu'^{-1}(\overline{H^*})$ so that $S \subset \mathscr{C}_{\mathrm{Iso}(X,h)}(\Gamma)$. The above exact sequence induces the exact sequence of covering groups $1 \to \mathscr{C}(\Gamma) \cap S \to S \xrightarrow{\nu} \overline{H^*} \to 1$. By Propositions 2.2 and 2.3, \overline{H} (= H) is noncompact. Thus S is noncompact, and $\mathscr{C}(\Gamma) \cap S$ is nontrivial. Passing to the universal covering group if necessary, we assume that S is simply connected. Then S is isomorphic to a vector space, and H is isomorphic to a straight line through the origin in the vector space. We can choose a sequence of one-parameter groups $\{H'_i\}$ in S such that

(i) the sequence H'_i converges to H.

(ii) $\nu(H'_i)$ is compact, i.e., $1 \to \mathscr{C}(\Gamma) \cap H'_i \to H'_i \to \mathbf{S}^1 \to 1$ is an exact sequence.

It suffices to show that some H'_i is timelike. Let V^i be a unit vector field induced by H'_i for each *i*. If $P: X \to X/\Gamma$ is the canonical projection, then $W^i = P_*(V^i)$ is a unit vector field induced by $\nu(H'_i)$. Since $\{\nu(H'_i)\}$ converges to $\nu(H)$ by (*i*), $\{W^i\}$ converges to a timelike vector field W. Suppose that all H'_i are not timelike. Then there exists a sequence $\{x_i\}$ in X such that $g(V^i_{x_i}, V^i_{x_i}) \ge 0$. Note $g(V^i_{x_i}, V^i_{x_i}) = g^*(W^i_{P(x_i)}, W^i_{P(x_i)})$. Since $\{P(x_i)\}$ has an accumulation point x in X/Γ , $\{W^i_{P(x_i)}\}$ converges to W_x and therefore $g^*(W_x, W_x) \ge 0$. This contradicts that W is timelike.

2.8. A Seifert fiber space is a (locally trivial) fiber space over a (smooth) orbifold whose typical fiber is S^1 , and exceptional fiber is homeomorphic to a circle (i.e., an orbit space S^1/F by a cyclic group F). See [6], [27] for higher-dimensional Seifert fiber spaces.

Theorem 2.9. Let M be a compact Lorentz flat (or hyperbolic) manifold. Suppose that M admits a timelike Killing vector field. Then Madmits an isometric action of a timelike one-parameter group of a circle S^1 , and further is a Seifert fiber space over a nonpositively curved orbifold.

Proof. Since H' is a closed subgroup of $\operatorname{Iso}(X, h)$ by Lemma 2.7, H' acts properly and freely on X. It induces a principal bundle $H' \to X \xrightarrow{\eta} W$ where W = X/H'. Suppose that H' induces a vector field ξ' . Then the Lorentz metric g satisfies $g(\xi', \xi') < 0$. Since $\eta_* \colon \xi'^{\perp} \to TW$ is an isomorphism, the restriction of g to ξ'^{\perp} defines a Riemannian metric \hat{g} on W. It is easy to see that η maps the group $\mathscr{C}_G(H')$ into $\operatorname{Iso}(W, \hat{g})$. We obtain the equivariant principal bundle

$$H' \to (\mathscr{C}_{G}(H'), X) \xrightarrow{\eta} (\mathrm{Iso}(W, \hat{g}), W).$$

The intersection $\Gamma \cap H'$ is an infinite cyclic group by (ii) of Lemma 2.7. Corresponding to the above bundle, there is an exact sequence $1 \to \Gamma \cap H' \to \Gamma \to Q \to 1$.

Since Γ acts properly discontinuously and H' acts freely, Q acts properly discontinuously on W. In particular Q is discrete in $Iso(W, \hat{g})$. Therefore we have a Seifert fiber space

$$\mathbf{S}^{1} \to X/\Gamma \to W/Q$$
,

where $\mathbf{S}^1 = H'/\Gamma \cap H'$. Since H' is timelike, \mathbf{S}^1 acts as Lorentz isometries of a timelike one-parameter group on X/Γ with respect to g^* . Finally we prove that W/Q is a nonpositively curved orbifold. Let \overline{Y} , \overline{Z} be orthonormal vectors of a plane in ξ'^{\perp}_x such that $\eta_*(\overline{Y}) = Y$, and $\eta_*(\overline{Z}) = Z$, which span a plane section of $T_{\eta(x)}W$. Applying O'Neill's formula [31] to the above principal fibration yields that $4k(Y, Z) = c + \frac{3}{4}g([\overline{Y}, \overline{Z}]^{\mathscr{V}}, [\overline{Y}, \overline{Z}]^{\mathscr{V}})$ where k is the sectional curvature of W with respect to \hat{g} , c is the constant sectional curvature of X, and \mathscr{V} stands for the vertical component. Since $g([\overline{Y}, \overline{Z}]^{\mathscr{V}}, [\overline{Y}, \overline{Z}]^{\mathscr{V}}) \leq 0$ and $c \leq 0$, we have $k \leq 0$.

2.10. Structure of (Q, W). Let k be the sectional curvature of W as above. It satisfies that $k \leq 0$ or $k \leq -\frac{1}{4}$ according as c = 0 or c = -1.

Proposition 2.11. (i) Let $k \le 0$. Suppose that Q is virtually polycyclic. Then W is necessarily isometric to the Euclidean space (i.e., k = 0), and Q is a virtually free abelian group.

(ii) Let $k \leq -\frac{1}{4}$. Then Q has no normal solvable subgroup.

Proof. W/Q is a compact nonpositively curved orbifold. (i) is the special case of Corollary 3 of Gromoll and Wolf [16] (cf. also [26]). In

fact suppose that a normal solvable subgroup of Q contains an element of infinite order. Then W is isometric to the product $E \times D$ where E is a Euclidean space such that $0 < \dim E = \operatorname{rank}$ of a normal free abelian subgroup of Q.

For (ii) we need some lemmas. Let ρ be the distance function on W induced from \hat{g} . For each $\alpha \in \text{Iso}(W, \hat{g})$ we have the displacement function $\delta_{\alpha}(w) = \rho(w, \alpha w)$. Put $C_{\alpha} = \{w \in W | \delta_{\alpha}(w) = 0\}$ (i.e., the fixed point set of α). It is known that C_{α} is convex.

Lemma 2.12 [16]. If $C \neq \emptyset$ is closed, convex and invariant under an element $\alpha \in Q$ then $C \cap C_{\alpha} \neq \emptyset$.

Using this lemma we can prove the following (cf. [16, Theorem 1]).

Lemma 2.13. Let T be a torsion solvable subgroup of Q. Then T has a fixed point in W. In particular T is a finite group.

Proof of (ii). If we note $k \leq -1$, then a normal solvable subgroup of Q has no element of infinite order by the proof of (i). Let T be a normal solvable subgroup of Q. Then T is a finite group by Lemma 2.13, and so $C_T = \bigcap_{\alpha \in T} C_{\alpha}$ is nonempty, convex by Lemma 2.12.

Since T is normal in Q, C_T is invariant under Q. Let $H' \to \widetilde{H}^{1,n} \xrightarrow{\eta} W$ be the principal bundle as before. Then $Y = \eta^{-1}(C_T)$ is a Γ -invariant contractible submanifold of $\widetilde{H}^{1,n}$, and thus $\operatorname{cd} \Gamma \leq \dim Y$. Since $\operatorname{cd} \Gamma = \dim \widetilde{H}^{1,n}$, it follows that $Y = \widetilde{H}^{1,n}$ or $W = C_T$. As T acts as isometries on W, we obtain that $T = \{1\}$.

2.14. Lorentz flat structure. A Lorentz flat manifold is an affinely flat manifold (cf. [10], [11]). We can classify compact Lorentz flat manifolds more clearly (cf. [17], [33]).

Theorem 2.15. Let M be a compact Lorentz flat (n + 1)-manifold $(n \ge 0)$. If M supports a timelike Killing vector field, then M is affinely diffeomorphic to a Euclidean space form with nonvanishing first Betti number.

Proof. We have shown $M \approx \mathbf{R}^{n+1}/\Gamma$ which admits a Seifert fibration: $\mathbf{S}^1 \to \mathbf{R}^{n+1}/\Gamma \xrightarrow{P} W/Q$. Here W/Q is a compact Riemannian orbifold for which the sectional curvature k of W is nonpositive by Theorem 2.9. Since the fundamental group Γ is virtually polycyclic by the result of [13], Q is also virtually polycyclic. Proposition 2.11 implies that $W = \mathbf{R}^n$ (i.e., k = 0) and Q is virtually free abelian. We prove that Γ is also virtually free abelian. Passing to a subgroup of finite index if necessary, Q is a free abelian group in which W/Q is an n-torus T^n . Now the above fibration is a principal circle bundle over T^n . It is sufficient to show that the Euler class of this bundle vanishes. Let c^* and k^* be the induced

sectional curvatures on \mathbf{R}^{n+1}/Γ and T^n respectively. In our case we have $c^* = k^* = 0$. Let ξ be a unit vector field induced by the circle S^1 . If we apply O'Neill's formula to the principal bundle, then $[\overline{X}, \overline{Y}]^{\mathscr{V}} = 0$ for $\overline{X}, \overline{Y} \in \xi^{\perp}$. (Compare the proof of Theorem 2.9.) Let ω be a real-valued 1-form on \mathbf{R}^{n+1}/Γ defined by $\omega(\xi) = 1$ and $\omega(\xi^{\perp}) = 0$. Since the Lorentz metric g^* (cf. 2.6) and ξ^{\perp} are invariant under \mathbf{S}^1 , ω is a connection form in \mathbf{R}^{n+1}/Γ . There is a unique 2-form Ω on T^n such that $d\omega = P^*\Omega$ and the characteristic class $[\Omega]$ defines the Euler class of the above bundle (cf. [22]). Since ξ^{\perp} consists of horizontal vectors for ω , the above fact implies $d\omega(\overline{X}, \overline{Y}) = 0$. Thus $\Omega \equiv 0$ on T^n , and the Euler class of the above bundle is zero.

If a compact complete affinely flat manifold has a virtually free abelian group as the fundamental group, then it is affinely diffeomorphic to a Euclidean space form. (Compare [14], [10], [19] for example.) Moreover, a compact Euclidean space form M admits a maximal T^k action if and only if rank $H_1(M, \mathbb{Z}) = k$ (cf. [5], [34]). And so our Euclidean space form has the nonzero first Betti number.

2.16. Lorentz hyperbolic structure. When M is a compact Lorentz hyperbolic manifold, we can prove

Theorem 2.17. If a compact Lorentz hyperbolic manifold admits a timelike Killing vector field, then some finite covering is diffeomorphic to a circle bundle over a negatively curved manifold.

Proof. We have $M \approx \widetilde{H}^{1,n}/\Gamma$. By Theorem 2.9 and its proof there exist the principal fibration $H' \to \widetilde{H}^{n+1} \to W$ and the exact sequences:

Note $k \leq -\frac{1}{4}$ for the sectional curvature k of W. If we can find a torsion free normal subgroup Q' of finite index in Q, then a finite covering of $\tilde{\mathbf{H}}^{1,n}/\Gamma$ is a circle bundle over a Riemannian manifold W/Q' of the sectional curvature $k^* \leq -\frac{1}{4}$. The rest of proof is devoted to find such a group Q'.

Let $1 \to \mathscr{Z} \to G \xrightarrow{P} O(2, n) \to 1$ be the exact sequence where $G = O(2, n)^{\sim}$. This induces the exact sequence

$$1 \to \mathscr{Z} \to \mathscr{C}_{G}(H') \xrightarrow{P} \mathscr{C}_{O(2,n)}(P(H')) \to 1$$

Put $\Gamma' = P(\Gamma)$. As $O(2, n) \subset GL(n + 2, \mathbb{R})$, we consider the real algebraic closure of $\mathscr{C}_{O(2, n)}(P(H'))$. If \mathscr{A} is its identity component, then

 \mathscr{A} centralizes P(H') because $\mathscr{C}_{O(2,n)}(P(H'))$ is the centralizer of P(H'). Let $\nu' : \mathscr{A} \to \mathscr{A}/P(H')$ be the quotient map. Passing to a subgroup of finite index if necessary, we assume $\Gamma' \subset \mathscr{A}$. Put $Q' = \nu'(\Gamma')$. Combining these with (1) yields the following commutative diagram:

Then we note $Q \approx Q'$ by Proposition 2.11.

On the other hand, if \mathscr{R} is the radical of \mathscr{A} , i.e., a unique maximal connected solvable algebraic group, then there exists a complementary semisimple algebraic subgroup $\mathscr{S} \subset \mathscr{A}$. \mathscr{S} maps onto \mathscr{A}/\mathscr{R} . The canonical projection of $\mathscr{A}/P(H')$ onto \mathscr{A}/\mathscr{R} maps Q' onto a subgroup Q'' of \mathscr{A}/\mathscr{R} . Since the kernel of this projection is a solvable Lie group $\mathscr{R}/P(H')$, Q is isomorphic to Q''.

Consider the following exact sequences:

where Ψ is the inverse image of Q''. Since both \mathscr{S} and \mathscr{R} are algebraic, $\mathscr{S} \cap \mathscr{R}$ is a finite central subgroup and so Ψ is a finitely generated subgroup lying in $\operatorname{GL}(n+2, \mathbb{R})$. Applying Selberg's lemma shows that Ψ contains a torsion free normal subgroup of finite index. Such a group maps isomorphically onto a torsion free normal subgroup of Q''. Therefore there exists a torsion free normal subgroup of finite index in Q. Thus the theorem is proved.

2.18. Examples of standard space forms of dimension 2n + 1 $(n \ge 1)$. It is difficult to determine the topology of the orbit space W/Q. We shall give examples of compact Lorentz hyperbolic space forms with timelike circle actions in higher dimensions (cf. 4.6). In the next theorem we consider the case where a compact Lorentz hyperbolic manifold with timelike Killing vector field becomes a standard space form.

Let $Q(z, w) = -\overline{z}_1 w_1 + \overline{z}_2 w_2 + \dots + \overline{z}_{n+1} w_{n+1}$ be the Hermitian form on \mathbb{C}^{n+1} . The group U(1, n) is the subgroup of $\operatorname{GL}(n+1, \mathbb{C})$ preserving the form Q. There is the natural embedding of U(1, n) into O(2, 2n). Then U(1, n) acts transitively on $\mathbb{H}^{1,2n}$ whose stabilizer is isomorphic to the unitary group U(n). Here $\mathbb{H}^{1,2n}$ is identified with the set $\{z \in \mathbb{C}^{n+1} | Q(z, z) = -1\}$. Let $U(1, n)^{\sim}$ be the lift of U(1, n)corresponding to the universal covering space $\widetilde{\mathbb{H}}^{1,2n}$. If $\widetilde{\Gamma}$ is a discrete cocompact subgroup of $U(1, n)^{\sim}$, then we have a compact Lorentz hyperbolic space form $\widetilde{\mathbf{H}}^{1,2n}/\widetilde{\Gamma} \approx U(n)^{\sim} \setminus U(1, n)^{\sim}/\widetilde{\Gamma}$. (Note $U(n) \approx U(n)^{\sim}$.) Such a Lorentz manifold is called a standard space form following Kulkarni [24]. Let $\mathscr{Z}(1, n)$ be the kernel of the canonical projection of U(1, n) onto the group PU(1, n) consisting of biholomorphic transformations of complex hyperbolic space $\mathbf{H}_{\mathbf{C}}^{n}$. The center $\mathscr{Z}(1, n)$ is isomorphic to \mathbf{S}^{1} . If $\widetilde{\mathscr{Z}}(1, n)$ is the lift of $\mathscr{Z}(1, n)$ to $U(1, n)^{\sim}$, then $\widetilde{\mathscr{Z}}(1, n)$ is isomorphic to \mathbf{R}^{1} and is timelike by Proposition 2.3.

Proposition 2.19. $\widetilde{\mathbf{H}}^{1,2n}/\widetilde{\Gamma}$ is a Seifert fiber space over a complex (Kähler) hyperbolic orbifold $\mathbf{H}^{n}_{\mathbf{C}}/\Gamma$, where the circle acts as a timelike one-parameter group of Lorentz transformations.

Proof. Put $\Delta = \widetilde{\mathcal{Z}(1, n)} \cap \widetilde{\Gamma}$ and consider the exact sequences:

Then Δ is infinite cyclic if and only if Γ is discrete. If we prove that Γ is discrete, then the result follows from the following diagram:

$$\begin{array}{cccc} \widetilde{\mathcal{Z}(1,n)} & \longrightarrow & U(n)^{\sim} \setminus U(1,n)^{\sim} = \widetilde{\mathbf{H}}^{1,2n} & \longrightarrow & U(n) \setminus PU(1,n) = \mathbf{H}_{\mathbf{C}}^{n} \\ \downarrow /\Delta & & \downarrow /\widetilde{\Gamma} & & \downarrow /\Gamma \\ \mathbf{S}^{1} & \longrightarrow & \widetilde{\mathbf{H}}^{1,2n} / \widetilde{\Gamma} & \longrightarrow & \mathbf{H}_{\mathbf{C}}^{n} / \Gamma. \end{array}$$

Suppose that Γ is not discrete. Then we will show that it contradicts the cohomological dimension $ch \tilde{\Gamma} = 2n + 1$. Let $\overline{\Gamma}^0$ be the identity component of the closure of Γ in PU(1, n). Then it is known that $\overline{\Gamma}^0$ is solvable (cf. [32, Lemma 8.24]).

Case A. If $\overline{\Gamma}^0$ is compact, then the fixed point set of $\overline{\Gamma}^0$ is the totally geodesic subspace $\mathbf{H}^k_{\mathbf{C}}$ of $\mathbf{H}^n_{\mathbf{C}}$ (n > k), and Γ leaves $\mathbf{H}^k_{\mathbf{C}}$ invariant. Moreover, Γ lies in the subgroup $P(U(1, k) \times U(n - k))$, and thus we obtain $\widetilde{\Gamma} \subset U(1, k) \times \widetilde{U}(n - k)$. On the other hand, since $U(1, k) \times \widetilde{U}(n-k)$ acts transitively on $\widetilde{\mathbf{H}}^{1,2k}$, $\widetilde{\Gamma}$ acts properly discontinuously on $\widetilde{\mathbf{H}}^{1,2k}$ so that ch $\widetilde{\Gamma} \leq 2k+1$. This contradicts the cohomological dimension of $\widetilde{\Gamma}$.

Case B. Suppose that $\overline{\Gamma}^0$ is noncompact. Then its normalizer $N(\overline{\Gamma}^0)$ is conjugate to a subgroup of the maximal amenable Lie subgroup $\mathcal{N} \rtimes (U(n-1) \times \mathbf{R}^+)$ of PU(1, n). Here \mathcal{N} is the (2n-1)-dimensional Heisenberg Lie group. (See for example [21], [30].) Since $\overline{\Gamma}^0$ is solvable, we may assume that $\overline{\Gamma}^0 = \mathcal{N} \rtimes (T^{n-1} \times \mathbf{R}^+)$. Then it is easy to see that $N(\overline{\Gamma}^0) = \mathcal{N} \rtimes (N(T^{n-1}) \times \mathbf{R}^+)$ where $N(T^{n-1})$ is the normalizer

of the maximal torus in U(n-1). Note that $N(T^{n-1})/T^{n-1}$ is finite. Now $\Gamma \subset N(\overline{\Gamma}^0)$, passing to a subgroup of finite index, we can assume $\Gamma \subset \mathcal{N} \rtimes (T^{n-1} \times \mathbb{R}^+)$. It follows from the above exact sequence that $\widetilde{\Gamma} \subset \mathcal{N} \rtimes H$ where $H = T^{n-1} \times \widetilde{\mathcal{Z}(1, n)} \times \mathbb{R}^+$.

Let $\psi: \mathcal{N} \rtimes H \to H$ be the natural projection. If $\psi(\tilde{\Gamma}) \subset T^{n-1} \times \widetilde{\mathcal{Z}(1, n)}$, then ch $\tilde{\Gamma} = \dim \mathcal{N} + \dim \widetilde{\mathcal{Z}(1, n)} = 2n$, which is impossible. On the other hand if $\psi(\tilde{\Gamma})$ has nontrivial \mathbb{R}^+ -summand, then the intersection $\mathcal{N} \cap \tilde{\Gamma}$ is trivial. For this, \mathbb{R}^+ acts as left multiplication on \mathcal{N} , but $\mathcal{N} \cap \tilde{\Gamma}$ is a lattice of \mathcal{N} . Now $\tilde{\Gamma}$ must be a free abelian group, i.e., isomorphic to a subgroup of H. If we note that $P = \mathcal{N} \times \widetilde{\mathcal{Z}(1, n)}$ is the nilradical of $\mathcal{N} \rtimes H$, then the intersection $\tilde{\Gamma} \cap P$ is uniform in P (cf. [32, Theorem 3.3]). But this is impossible because $\tilde{\Gamma} \cap P$ is abelian. Hence the proof is complete.

Theorem 2.20. Let M be a (2n + 1)-dimensional compact Lorentz hyperbolic manifold which admits a one-parameter group of Lorentz transformations $\{\phi_t\}_{|t|<\infty}$. Let $(\rho, \text{dev}): (\pi, \{\tilde{\phi}_t\}_{|t|<\infty}, \widetilde{M}) \to (\Gamma, \widetilde{H}, \widetilde{H}^{1,2n})$ be the developing pair and $1 \to \mathcal{Z} \to O(2, 2n)^{\sim} \xrightarrow{P} O(2, 2n) \to 1$ be the exact sequence associated with the projection $P: \widetilde{H}^{1,2n} \to H^{1,2n}$. Then $P(\widetilde{H})$ is compact in O(2, 2n) if and only if M is a standard space form $U(n)^{\sim} \setminus U(1, n)^{\sim} / \Gamma$. In particular $\{\phi_t\}_{|t|<\infty}$ is a timelike one-parameter group.

Proof. The sufficient condition follows from the fact that $\tilde{H} = \widetilde{\mathcal{Z}(1, n)}$ and $P(\tilde{H}) = \mathcal{Z}(1, n)$ is a circle (cf. 2.18).

Put $H = P(\tilde{H})$. Suppose that H is compact in O(2, 2n). Then H is a circle embedded into the maximal connected compact subgroup $SO(2) \times SO(2n)$ of $O(2, 2n)^0$. Consider the extreme case where

$$H = \left(\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \times \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \times \cdots \times \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \right).$$

By direct calculation from the Lie algebra theory it follows that the centralizer $\mathscr{C}_{O(2,2n)}(H) = U(1, n)$.

The above projection P induces the exact sequence:

$$1 \to \mathscr{Z} \to \mathscr{C}_{O(2,2n)^{\sim}}(\widetilde{H}) \to \mathscr{C}_{O(2,2n)}(H) \to 1.$$

Then it follows $\mathscr{C}_{O(2,2n)^{\sim}}(\widetilde{H}) = U(1,n)^{\sim}$. Furthermore since \widetilde{H} centralizes the holonomy group Γ , we obtain $\Gamma \subset U(1,n)^{\sim}$. As $U(1,n)^{\sim}$ acts properly on $\widetilde{H}^{1,2n}$, there is a $U(1,n)^{\sim}$ -invariant Riemannian metric on $\widetilde{\mathbf{H}}^{1,2n}$. M is compact and so we obtain a π -invariant complete Riemannian metric on \widetilde{M} by the pullback of dev. Therefore dev is a homeomorphism of \widetilde{M} onto $\widetilde{\mathbf{H}}^{1,2n}$ and hence $M \approx \widetilde{\mathbf{H}}^{1,2n} / \Gamma \approx U(n)^{\sim} \setminus U(1, n)^{\sim} / \Gamma$. This proves the extreme case.

In general H has the following form:

$$\begin{pmatrix} \cos a_1 \theta & -\sin a_1 \theta \\ \sin a_1 \theta & \cos a_1 \theta \end{pmatrix} \times \begin{pmatrix} \cos a_2 \theta & -\sin a_2 \theta \\ \sin a_2 \theta & \cos a_2 \theta \end{pmatrix} \times \cdots \\ \times \begin{pmatrix} \cos a_k \theta & -\sin a_k \theta \\ \sin a_k \theta & \cos a_k \theta \end{pmatrix} \times (1),$$

for nonzero numbers a_1, a_2, \dots, a_k . Then it turns out that $\mathscr{C}_{O(2,2n)}(H)$ becomes a smaller subgroup than that of the extreme case. In fact $\mathscr{C}_{O(2,2n)}(H)$ belongs to the group G with the following possibilities:

$$G = \{1\} \times SO(2n),$$

$$G = U(1, k) \times SO(2n - 2k) \qquad (1 \le k < n),$$

$$G = SO(2) \times SO(2n).$$

Let \widetilde{G} be its lift to $O(2, 2n)^{\sim}$. Then we notice that \widetilde{G} acts properly on $\widetilde{H}^{1,2n}$. Since $\Gamma \subset \widetilde{G}$, we can apply the same argument as above. If $\widetilde{G} = SO(2n)$, then Γ must be finite. If $\widetilde{G} = U(1, k)^{\sim} \times SO(2n - 2k)$, then $\operatorname{cd} \Gamma \leq 2k + 1 < 2n + 1$. If $\widetilde{G} = \mathbb{R}^1 \times SO(2n)$, then $\operatorname{cd} \Gamma = 1$. Since $\operatorname{cd} \Gamma = 2n + 1$, these are impossible. Hence the theorem is proved.

3. Lorentz spherical structure

Lemma 3.1. Let H be a timelike, lightlike, or spacelike one-parameter group of O(1, n + 1). Then the closure \overline{H} is compact, and every one-parameter group of \overline{H} is spacelike.

Proof. Put $\mathscr{R} = \overline{H}$. Suppose that \mathscr{R} is noncompact in O(1, n+1). Since \mathscr{R} is an abelian subgroup of O(1, n+1), the group \mathscr{R} is conjugate to a subgroup of the maximal amenable group $Sim(\mathbb{R}^n) = \mathbb{R}^n \rtimes (O(n) \times \mathbb{R}^+)$ (cf. [14]). Consider the following cases.

Case 1. $\mathscr{R} \subset \mathbf{R}^n \rtimes (O(n) \times \mathbf{R}^+)$ for which the projection onto \mathbf{R}^n is nontrivial. The orbit $\mathscr{R}p$ at the point $p = (0, 0, 1, 0, \dots, 0) \in \mathbf{S}^n$ of $\mathbf{S}^{1,n}$ is homeomorphic to a horosphere, and in fact the orbit is asymptotic to a straight line lying on the light cone in $\mathbf{R}^{1,n+1}$. The orbit Hp will be a horocycle. So there are vector fields V, W such that g(V, V) < 0 and g(W, W) > 0. This contradicts the hypothesis on H.

Case 2. $\mathscr{R} \subset O(n) \times \mathbf{R}^+$. Suppose that the projection onto the first summand, $P_1(\mathscr{R})$, is nontrivial. Then $P_1(\mathscr{R})$ lies in the maximal torus in O(n). Choosing the point $p = (0, 0, 1, 0, \dots, 0) \in \mathbf{S}^{1, n}$ shows that the orbit of \mathscr{R} at p is contained in the sphere $\mathbf{S}^n \subset \mathbf{S}^{1, n}$. Any vector field V tangent to the orbit satisfies g(V, V) > 0, while choosing the point $p' = (1, \sqrt{2}, 0, \dots, 0)$, we see that any vector field W tangent to the orbit at p' satisfies g(W, W) < 0. Hence H cannot be timelike, lightlike, or spacelike. On the other hand if $\mathscr{R} \subset \mathbf{R}^+$, i.e., $\mathscr{R} = \mathbf{R}^+$, then the orbit $\mathscr{R}p$ at the point $p = (1, 0, \sqrt{2}, 0, \dots, 0)$ is the subset $\{(\cosh \theta, \sinh \theta, \sqrt{2}, 0, \dots, 0)|, \theta \in \mathbf{R}^1\}$. Therefore it is easy to find vector fields V, W tangent to the orbit $\mathscr{R}p$ which satisfy g(V, V) > 0and g(W, W) < 0. This yields a contradiction.

Now, \overline{H} is conjugate to a subgroup of O(n + 1). If a one-parameter group of \overline{H} induces a vector field V, then we can readily see that g(V, V) > 0.

Corollary 3.2. There exists neither timelike nor lightlike Killing vector field on a Lorentz spherical manifold.

There is a Lorentz spherical (n + 1)-manifold which admits a spacelike one-parameter group of Lorentz transformations; however we have the following.

Theorem 3.3. There exists no compact Lorentz spherical 3-manifold admitting a spacelike Killing vector field.

Proof. Since M is compact, a spacelike Killing vector field generates a spacelike one-parameter group $\{\phi_t\}_{|t|<\infty}$ of Lorentz transformations on M. We will show that the existence of such a one-parameter group contradicts the cohomological dimension of $\pi = \pi_1(M)$. Let $(\pi, \{\tilde{\phi}_t\}_{|t|<\infty}, \tilde{M})$ $\stackrel{(\rho, \text{dev})}{\to}$ $(\Gamma, H, \mathbf{S}^{1,2})$ be the developing pair where $H \subset O(1, 3)$. By Lemma 3.1 the closure \overline{H} is compact in O(1, 3). It implies $\overline{H} = SO(2)$ up to conjugation and so H is closed. If we recall $\mathbf{S}^{1,2} = \{(x_1, y_1, y_2, y_3) \in \mathbf{R}^{1,3} | -x_1^2 + y_1^2 + y_2^2 + y_3^2 = 1\}$, then the fixed point set of H is $\mathbf{S}^{1,0} = \{(x_1, y_1, 0, 0) | -x_1^2 + y_1^2 = 1\}$. Since the holonomy group Γ leaves $\mathbf{S}^{1,0}$ invariant, it follows $\Gamma \subset O(1, 1) \times SO(2)$ in which $H = \{1\} \times SO(2)$. Passing to a subgroup of finite index we may assume that $\Gamma \subset O(1, 1)^0 \times SO(2)$. We note the following lemma.

Lemma 3.4. The identity component of O(1, 1), $O(1, 1)^0$, does not act properly on any $O(1, 1)^0 \times SO(2)$ -invariant domain Ω of $\mathbf{S}^{1,2}$, that contains the set $\{-x_1^2+y_1^2=0, x_1\neq 0, y_1\neq 0\}$. In particular any discrete infinite subgroup of $O(1, 1)^0 \times SO(2)$ does not act properly discontinuously on Ω .

Proof. Consider the following sets in $S^{1,2}$:

$$l_{+} = \{ (x_{1}, y_{1}, 1, 0) | x_{1} = y_{1}, x_{1} < 0, y_{1} \neq 0 \}, l_{-} = \{ (x_{1}, y_{1}, 1, 0) | x_{1} = -y_{1}, x_{1} < 0, y_{1} \neq 0 \}.$$

Each half-line is invariant under $O(1, 1)^0$. Choose points $p \in l_+$, $q \in l_-$. Let $\{p_i\}$ be the sequence of points lying in the component with $x_1 < 0$, and suppose $\lim p_i = p$. We note that each orbit $O(1, 1)^0 \cdot p_i$ is asymptotic to the half-line l_- (also l_+). So there exists a sequence $\{g_i\} \in O(1, 1)^0$ such that $\lim g_i \cdot p_i = q$. On the other hand, since l_- is invariant under $O(1, 1)^0$ and $l_- \cap l_+ = \emptyset$, the sequence $\{g_i\}$ does not converge in $O(1, 1)^0$. Therefore $O(1, 1)^0$ does not act properly. If Γ is an infinite discrete subgroup of $O(1, 1)^0 \times SO(2)$, then $O(1, 1)^0 \times SO(2)/\Gamma$ is compact. Thus there exists a compact set $K \subset O(1, 1)^0 \times SO(2)$ such that $O(1, 1)^0 \subset \Gamma \cdot K$, so that Γ cannot act properly discontinuously on Ω .

Notice that $O(1, 1)^0$ has the fixed point set $S^1 = \{(0, 0, y_2, y_3) | y_2^2 + y_3^2 = 1\}$ in $S^{1,2}$.

We continue the proof of the theorem. By the above observation, $O(1, 1)^0$ acts properly on the domain X of $S^{1,2}$ which satisfies $-x_1^2 + y_1^2 \neq 0$. If we put $Y = \{(x_1, y_1, y_2, y_3) \in S^{1,2} | -x_1^2 + y_1^2 = 0 \text{ and } y_2^2 + y_3^2 = 1\}$, then $S^{1,2} - Y = X$. Since Y is invariant under SO(2), $O(1, 1)^0 \times SO(2)$ acts properly on X. X consists of 4 components; 2 copies A, A' of a 3-ball and 2 copies B, B' of a circle \times 2-ball. Furthermore $O(1, 1)^0$ acts freely on X, and $O(1, 1)^0 \times SO(2)$ acts freely on $X - S^{1,0}$. Thus we can construct an $O(1, 1)^0 \times SO(2)$ -invariant complete Riemannian metric on X. Since M is compact, from the result of [13] it follows that dev: $\widetilde{M} - dev^{-1}(Y) \to X$ is a covering map on each component. Let L be a component of $\widetilde{M} - dev^{-1}(Y)$. We dissect the argument into two cases.

Case A. dev: $L \to A$ is a covering map. Since A is simply connected, dev: $L \to A$ is a homeomorphism. In particular $\rho: \{\tilde{\phi}_t\}_{|t|<\infty} \to SO(2)$ is an isomorphism. L has the boundary component in \widetilde{M} . For this, if $\partial L = \emptyset$, then $\widetilde{M} = L$ which implies that $\pi \approx \Gamma$ is discrete in $O(1, 1)^0 \times SO(2)$ and $cd\Gamma \leq 1$. This is impossible because M is aspherical in this case so that $cd\pi = 3$. Since $\partial L \neq \emptyset$, there is another component N adjacent to L such that dev: $N \to B$ (or B') is a covering map. The group $\{\tilde{\phi}_t\}_{|t|<\infty}$ acts freely on N because so does SO(2) on B. Then the map dev induces a map $\widehat{dev}: N/\{\tilde{\phi}_t\} \to B/SO(2)$ which is also a covering

map. Since B/SO(2) is simply connected, dev is a homeomorphism. Thus dev: $N \rightarrow B$ is a homeomorphism. We can continue in this way whenever the boundary component is nonempty.

Let $A \cup B$ be the manifold obtained from A and B glued along the common boundary part; we can define similarly for the manifold $A \cup B \cup B'$, etc. The following possibilities occur from the construction of X:

(1) dev: $M \to A \cup B$ is a homeomorphism.

(2) dev: $\widetilde{M} \to A \cup B \cup B'$ is a homeomorphism.

(3) dev: $\widetilde{M} \to A \cup B \cup A'$ is a homeomorphism.

(4) dev: $\widetilde{M} \to A \cup B \cup A' \cup B'$ (= $\mathbf{S}^{1,2} - \mathbf{S}^{1}$) is a homeomorphism.

For (1), (2), they are homeomorphic to 3-balls. Since they are aspherical, (1), (2) do not occur by the same argument as above. For (3), (4), $\pi \approx \Gamma \subset O(1, 1)^0 \times SO(2)$ as above, and Γ acts properly discontinuously and freely on $A \cup B \cup A'$ (resp. $A \cup B \cup A' \cup B'$). But these noncompact domains clearly contain the lines $\{-x_1^2 + y_1^2 = 0\}$ with the origin removed. By the above lemma, the holonomy group Γ must be finite. Since \widetilde{M} is noncompact, it is impossible.

Case B. dev: $L \to B$ is a covering map. If $\partial L = \emptyset$, then dev: $\widetilde{M} \to B$ is a covering map, and so there is a covering homeomorphism $\widehat{dev}: \widetilde{M} \approx \widetilde{B}$, where $\mathbf{Z} \to (O(1, 1)^0 \times \mathbf{R}, \widetilde{B}) \to (O(1, 1)^0 \times SO(2), B)$ is the covering projection. Therefore the image π' of π under \widehat{dev} is discrete in $O(1, 1)^0 \times \mathbf{R}$. In particular we have $\operatorname{cd} \pi' \leq 2$. Since M is aspherical and $\pi \approx \pi'$, this is impossible. If $\partial L \neq \emptyset$, then there is another component L' such that dev: $L' \to A$ is covering and hence a homeomorphism. This goes back to Case A, and so it does not occur. Therefore there exists no spacelike one-parameter group of Lorentz transformations on M. This completes the proof of the theorem.

4. Lorentz 3-manifolds with killing vector fields and their examples

In this section we give examples of Lorentz manifolds admitting timelike Killing vector fields, and examine the structure of Lorentz 3-manifolds which support lightlike Killing vector fields; similarly for spacelike Killing vector fields.

4.1. Compact Lorentz flat 3-manifolds. We shall give examples of compact Lorentz flat space forms. First of all, a 3-torus is an example of compact Lorentz flat manifolds. (See [34].) As the nontrivial ones we prove that there exists a complete Lorentz flat structure on 3-dimensional nilmanifolds and solvmanifolds. (See [10], [14] for the related work.)

Recently Margulis and Grunewald [17] gave a list of classification of compact complete Lorentz flat manifolds.

4.2. Examples.

Example (1). Let N denote the semidirect product $\mathbf{R}^2 \rtimes \mathbf{R}$ with the group law:

$$\left(\begin{pmatrix}x\\y\end{pmatrix},\,\theta\right)\left(\begin{pmatrix}x'\\y'\end{pmatrix},\,\theta'\right) = \left(\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}1&\theta\\0&1\end{pmatrix}\begin{pmatrix}x'\\y'\end{pmatrix},\,\theta + \theta'\right).$$

Then N is isomorphic to the 3-dimensional 1-connected nilpotent nonabelian Lie group. We construct a continuous homomorphism $\rho: N \to \mathbb{R}^3 \rtimes O(1, 2)$. Let $\{e_1, e_2, e_3\}$ be the orthogonal basis such that $\langle e_1, e_1 \rangle = -1$, $\langle e_2, e_2 \rangle = \langle e_3, e_3 \rangle = 1$. Define a map ρ , with respect to the basis $\{(e_1 + e_3)/\sqrt{2}, e_2, (e_1 - e_3)/\sqrt{2}\}$, to be

$$\rho\left(\begin{pmatrix}x\\y\\\end{pmatrix}\right) = \left(\begin{pmatrix}x\\y\\0\end{pmatrix}, \begin{pmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{pmatrix}\right)$$

and

$$\rho(\theta) = \left(\begin{pmatrix} \theta^3/6\\ \theta^2/2\\ \theta \end{pmatrix}, \begin{pmatrix} 1 & \theta & \theta^2/2\\ 0 & 1 & \theta\\ 0 & 0 & 1 \end{pmatrix} \right).$$

It is easy to see that ρ is a continuous homomorphism. Moreover ρ acts simply transitively on \mathbb{R}^3 . Choose a discrete cocompact subgroup Δ in N, we obtain a compact Lorentz flat nilmanifold N/Δ .

Example (2). Let S denote the semidirect product $\mathbf{R}^2 \rtimes \mathbf{R}$ with the group law:

$$\left(\begin{pmatrix}x\\y\end{pmatrix},\,\theta\right)\left(\begin{pmatrix}x'\\y'\end{pmatrix},\,\theta'\right) = \left(\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}\cosh\theta & \sinh\theta\\\sinh\theta & \cosh\theta\end{pmatrix}\begin{pmatrix}x'\\y'\end{pmatrix},\,\theta + \theta'\right).$$

Then S is a 3-dimensional solvable Lie group. For a nonzero real number a we define a homomorphism $\rho_a: S \to \mathbb{R}^3 \rtimes O(1, 2)$ to be

$$\rho\left(\begin{pmatrix}x\\y\end{pmatrix},\theta\right) = \left(\begin{pmatrix}a\theta\\x\\y\end{pmatrix},\begin{pmatrix}1&0&0\\0&\cosh\theta&\sinh\theta\\0&\sinh\theta&\cosh\theta\end{pmatrix}\right).$$

Then ρ acts simply transitively on \mathbb{R}^3 . We can find a discrete cocompact subgroup Δ of S, so that $S/\Delta \approx \mathbb{R}^3/\rho(\Delta)$ is a compact Lorentz flat solvmanifold.

We know that T^3 (more generally, a compact Euclidean space form whose linear holonomy lies in $\mathbb{Z}/2 \times O(2)$) is a Lorentz flat manifold

admitting a Killing vector field from Theorem 2.11. It is easy to see that T^3 also admits a spacelike Killing vector field and a lightlike Killing vector field. We shall examine how the above examples will be characterized by those Killing vector fields.

Lemma 4.3. Let \mathscr{R} be a closed one-parameter subgroup of $\mathbb{R}^3 \rtimes O(1, 2)$ isomorphic to \mathbb{R}^1 . Let $\varphi: \mathbb{R}^3 \rtimes O(1, 2) \to O(1, 2)$ be the lienar holonomy map. If \mathscr{R} is timelike, lightlike, or spacelike, then $\varphi(\mathscr{R})$ is trivial.

Proof. Suppose not. First if $\varphi(\mathscr{R})$ is compact, then we have $\varphi(\mathscr{R}) = SO(2)$ up to a conjugation. In this case it follows that

$$\mathscr{R} = \left(\begin{pmatrix} t \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t & -\sin t \\ 0 & \sin t & \cos t \end{pmatrix} \right).$$

Thus the orbit $\Re p$ at the point p = (0, a, 0) is the set $\{(t, a \cos t, a \sin t)\}$, and the vector field V tangent to the orbit satisfies $g(V, V) = -1 + a^2$. The sign of g varies as a varies. This contradicts the hypothesis of \Re . Now if $\varphi(\Re)$ is noncompact, then it is conjugate to either the parabolic subgroup \mathbb{R}^1 or the loxodromic subgroup \mathbb{R}^+ of the similarity group $Sim(\mathbb{R}^1)$.

(1) $\varphi(\mathscr{R}) = \mathbf{R}^1$. Then it is isomorphic to

$$\left\{ \begin{pmatrix} 1 & t & t^2/2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}, t \in \mathbf{R}^1 \right\}$$

with respect to the basis $\{(e_1+e_3)/\sqrt{2}, e_2, (e_1-e_3)/\sqrt{2}\}$, where $\{e_1, e_2, e_3\}$ is the orthogonal basis such that $g(e_1, e_1) = -1$, $g(e_2, e_2) = g(e_3, e_3) = 1$. Then it is easy to see that

$$\mathscr{R} = \left(\begin{pmatrix} ct^3/6\\ ct^2/2\\ ct \end{pmatrix}, \begin{pmatrix} 1 & t & t^2/2\\ 0 & 1 & t\\ 0 & 0 & 1 \end{pmatrix} \right),$$

where c is a constant multiple. Thus the orbit at (0, 0, 1) is

$$\mathscr{R} \cdot \begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} ct^3/6 + t^2/2\\ct^2/2 + t\\ct+1 \end{pmatrix}.$$

The vector field W tangent to the orbit satisfies g(W, W) = 1 > 0. On the other hand if c = 0, then the orbit at (0, 1, 0) is $\mathscr{R} \cdot (0, 1, 0) =$ $\{(t, 1, 0)\}$. Since the vector field W_1 tangent to this orbit is generated by $\{e_1 + e_3\}$, it follows that $g(W_1, W_1) = 0$. When $c \neq 0$, the orbit at the origin is the set $\{(ct^3/6, ct^2/2, ct)\}$. The vector field W_2 tangent to the orbit satisfies $g(W_2, W_2) = 0$. These contradict the hypothesis that \mathscr{R} is timelike, lightlike, or spacelike.

(2) $\varphi(\mathscr{R}) = \mathbf{R}^+$. In this case it is isomorphic to

$$\varphi(\mathscr{R}) = \left\{ \begin{pmatrix} \lambda & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda^{-1} \end{pmatrix}, \lambda \in \mathbf{R}^+ \right\}$$

with respect to the basis $\{(e_1 + e_3)/\sqrt{2}, e_2, (e_1 - e_3)/\sqrt{2}\}$. Then it follows that

$$\mathscr{R} = \left(\begin{pmatrix} 0 \\ b \log \lambda \\ 0 \end{pmatrix}, \begin{pmatrix} \lambda & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda^{-1} \end{pmatrix} \right).$$

When b = 0, consider the orbits at the points (1, 0, -1), (1, 0, +1). Then the vector fields V_1 , V_2 tangent to these orbits satisfy $g(V_1, V_1) = -2\lambda^{-2} < 0$ and $g(V_2, V_2) = +2\lambda^{-2} > 0$ respectively. This is impossible by the hypothesis of \mathcal{R} . When $b \neq 0$, consider the orbits at (b, 0, -b), (b, 0, +b). The vector fields W_1 , W_2 tangent to the orbits satisfy $g(W_1, W_1) = -b^2\lambda^{-2} < 0$ and $g(W_2, W_2) = +3b^2\lambda^{-2} > 0$ respectively. This yields also a contradiction. Therefore $\varphi(\mathcal{R})$ is trivial.

Proposition 4.4. If a compact Lorentz flat 3-manifold admits a spacelike Killing vector field, then it is either a Euclidean space form or an infrasolvmanifold.

Proof. A spacelike Killing vector field generates a spacelike one-parameter group H of Lorentz transformations on M. Let $(\pi, \widetilde{H}, \widetilde{M}^3) \xrightarrow{(\rho, \text{dev})} (\Gamma, G, \mathbb{R}^3)$ be the developing pair where $G \subset \mathbb{R}^3 \rtimes O(1, 2)$. We prove first that G is closed. If the closure \overline{G} of G contains a compact subgroup K, then $K = SO(2) \subset \{0\} \times O(1, 2)$ up to a conjugation. The subgroup of O(1, 2) whose elements commute with SO(2) is $\mathbb{Z}/2 \times SO(2)$. Since K centralizes the holonomy group Γ , each element γ of Γ has the form

$$\gamma = \left(\begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \pm 1 \\ B \end{pmatrix} \right),$$

where $a \in \mathbf{R}^1$, and $B \in SO(2)$. It follows that $\Gamma \subset \mathbf{R}^3 \rtimes O(3) = E(3)$. Hence M^3 is a Euclidean space form \mathbf{R}^3/Γ . In particular Γ is discrete. If we note that a subgroup of finite index in Γ consists of translations, then Γ has an infinite cyclic subgroup of finite index from the above form. This is impossible because M is compact. Therefore $\overline{G} = G$, which is a closed subgroup isomorphic to \mathbf{R}^1 . Thus $G \subset \mathbf{R}^3$ by Lemma 4.3. Since

G is spacelike and centralizes Γ , we may obtain $\Gamma \subset G \oplus (\mathbb{R}^2 \rtimes O(1, 1))$ where $G = \mathbb{R}^1$.

On the other hand, $\mathbf{R}^2 \rtimes O(1, 1)^0$ is the solvable Lie group S of Example (2). Note from the result of Carrière [3] that $M \approx \mathbf{R}^3/\Gamma$, and so Γ is discrete. Thus M is finitely covered by \mathbf{R}^3/Γ' where $\Gamma \subset G \oplus \mathbf{S}$. Put $\Delta = \mathbf{S} \cap \Gamma'$. Since Δ leaves \mathbf{R}^2 invariant, \mathbf{R}^2/Δ is compact in \mathbf{R}^3/Γ' and therefore rank $\Delta = 2$. Then it is easy to see that either $\Gamma' \subset \mathbf{R}^3$ or $\Gamma' \subset \mathbf{R}^2 \rtimes \rho_a(\mathbf{R}^1)$ (= $\rho_a(\mathbf{S})$). Here ρ_a is a representation of Example (2). In this case \mathbf{R}^3/Γ' is a 3-torus or a solvmanifold \mathbf{S}/Γ'' .

When M is an infrasolvmanifold, notice that the spacelike one-parameter group G on \mathbb{R}^3 induces an action of a group G' on M for which G' is a closed spacelike one-parameter group of Lorentz transformations isomorphic to \mathbb{R}^1 .

Proposition 4.5. If a compact Lorentz flat 3-manifold admits a lightlike Killing vector field, then it is an infranilmanifold.

Proof. Let $(\rho, \text{dev}): (\pi, \widetilde{H}, \widetilde{M}^3) \to (\Gamma, G, \mathbb{R}^3)$ be the developing pair as before. First suppose that G is closed. Then by Lemma 4.3 we can assume that G is spanned by the vector $\{e_1 + e_3\}$ of \mathbb{R}^3 . Let $\gamma = (a, A)$ be an element of Γ in $\mathbb{R}^3 \rtimes O(1, 2)$ with respect to the basis $\{(e_1 + e_3)/\sqrt{2}, e_2, (e_1 - e_3)/\sqrt{2}\}$ of \mathbb{R}^3 , and $\varphi: \mathbb{R}^3 \rtimes O(1, 2) \to O(1, 2)$ be the linear holonomy map as in Lemma 4.3. Since G centralizes Γ and the linear holonomy group $\varphi(\Gamma)$ preserves the bilinear form $Q(x, y) = -x_1y_1 + x_2y_2 + x_3y_3$, we obtain

$$A = \begin{pmatrix} 1 & \theta & \theta^2/2 \\ 0 & 1 & \theta \\ 0 & 0 & 1 \end{pmatrix}$$

for some $\theta \in \mathbf{R}^1$. It follows that $\Gamma \subset \mathbf{R}^3 \rtimes \mathbf{R}^1$ (cf. Example (1)). The real algebraic closure $A(\Gamma)$ is a simply connected nilpotent Lie group because $\mathbf{R}^3 \rtimes \mathbf{R}^1$ is nilpotent. As Γ is discrete and rank Γ is 3, $A(\Gamma)$ is a 3-dimensional Lie group. Therefore $A(\Gamma)$ is isomorphic to either \mathbf{R}^3 or $\mathbf{R}^2 \rtimes \mathbf{R}^1$, and so M^3 is either a Euclidean space form or an infranilmanifold.

For the rest of proof (the case where G is not closed), \overline{G} contains a connected compact subgroup K in $\mathbb{R}^3 \rtimes O(1, 2)$. Thus K is conjugate to $\{0\} \times SO(2)$. If we note that \overline{G} centralizes Γ , then K commutes with the elements of the linear holonomy group $\varphi(\Gamma)$. It is easily seen that $\varphi(\Gamma) \subset O(1) \times O(2)$ and so $\Gamma \subset \mathbb{R}^3 \rtimes O(3)$. Therefore M^3 is a Euclidean space form.

4.6. Lorentz hyperbolic 3-manifolds. Let $O(2, 2)^0$ be the identity component of O(2, 2). If we identify $\mathbf{H}^{1,2}$ with $SL_2 \mathbf{R}$, then it follows $O(2, 2)^0 \approx SL_2 \mathbf{R} \times_{\mathbf{Z}_2} SL_2 \mathbf{R}$ in which the action of $SL_2 \mathbf{R} \times_{\mathbf{Z}_2} SL_2 \mathbf{R}$ on $SL_2 \mathbf{R}$ is given by $([A, B], X) = AXB^{-1}$. (Compare [25].) By recalling the exact sequence: $1 \to \mathcal{Z} \to O(2, 2)^{0} \to O(2, 2)^0 \to 1$, we have $O(2, 2)^{0} = \widetilde{SLR} \times_{\mathbf{Z}_2} \widetilde{SL_2 \mathbf{R}}$ where $\widetilde{SL_2 \mathbf{R}}$ is the universal covering group of $PSL_2 \mathbf{R}$.

Examples. (1). Standard space forms of dimensions 3 (cf. 2.18, [25]). Consider the subgroup $\mathbf{J} = \mathbf{R} \times_{\mathbf{Z}} \widetilde{\mathbf{SL}_2 \mathbf{R}} \subset \widetilde{\mathbf{SL}_2 \mathbf{R}} \times_{\mathbf{Z}} \widetilde{\mathbf{SL}_2 \mathbf{R}}$. Then it is easy to see that any discrete subgroup of \mathbf{J} acts properly discontinuously on $\widetilde{\mathbf{H}}^{1,2}$ where $\widetilde{\mathbf{H}}^{1,2} \approx \widetilde{\mathbf{SL}_2 \mathbf{R}}$. Let Γ be a torsion free discrete cocompact subgroup of \mathbf{J} . Then $\widetilde{\mathbf{H}}^{1,2}/\Gamma$ is called a 3-dimensional standard space form.

(2). Homogeneous standard space forms of dimension 3. Let U, A be a parabolic one-parameter group and a hyperbolic one-parameter group of $PSL_2 \mathbf{R}$ respectively. Note $U \times \widetilde{SL_2 \mathbf{R}}$ (= $\mathbf{Z} \times U \times_{\mathbf{Z}} \widetilde{SL_2 \mathbf{R}}$) $\subset O(2, 2)^{0\sim}$. Similarly for A. If Γ is a discrete torsion free cocompact subgroup of $\widetilde{SL_2 \mathbf{R}}$, we have a compact homogeneous standard space form $\widetilde{SL_2 \mathbf{R}}/\Gamma$ for which U (also A) acts as Lorentz isometries of a spacelike one-parameter group.

(3). Nonstandard space forms of dimension 3. There is a properly discontinuous action of a group $\Gamma \subset O(2,2)^0$ on $\mathbf{H}^{1,2}$ which is not conjugate to a subgroup of $S^1 \times_{\mathbb{Z}/2} SL_2 \mathbb{R}$ in O(2,2), and so the orbit space $\mathbf{H}^{1,2}/\Gamma$ is not a standard space form. In fact the manifold $\mathbf{H}^{1,2}/\Gamma$ is obtained from a homogeneous standard space form by a small deformation of a holonomy representation. (See [12] for details.)

It is easy to check the following.

Lemma 4.7. Let $O(2, 2)^0 \approx SL_2 \mathbb{R} \times_{\mathbb{Z}_2} SL_2 \mathbb{R}$ be as above. Then closed connected noncompact abelian subgroups of $O(2, 2)^0$ are of the following types up to a conjugacy and switching of factors:

(1)
$$\left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \times 1 | t \in \mathbf{R} \right\}, \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \times 1 | t \in \mathbf{R} \right\}.$$

(2)
$$\left\{ \begin{pmatrix} 1 & at \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & b\theta \\ 0 & 1 \end{pmatrix} | t, \theta \in \mathbf{R} \right\}, \quad a, b \neq 0.$$

(3)
$$\left\{ \begin{pmatrix} e^{at} & 0\\ 0 & e^{-at} \end{pmatrix} \times \begin{pmatrix} e^{b\theta} & 0\\ 0 & e^{-b\theta} \end{pmatrix} | t, \theta \in \mathbf{R} \right\}, \quad a, b \neq 0.$$

COMPLETENESS OF LORENTZ MANIFOLDS

(4)
$$\begin{cases} \begin{pmatrix} 1 & at \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} e^{b\theta} & 0 \\ 0 & e^{-b\theta} \end{pmatrix} | t, \theta \in \mathbf{R} \end{cases}, \quad a, b \neq 0.$$

(5)
$$\begin{cases} \begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} \cos a\theta & -\sin a\theta \\ \sin a\theta & \cos a\theta \end{pmatrix} | \theta \in \mathbf{R} \rbrace, \\ \begin{cases} \begin{pmatrix} e^{\theta} & 0 \\ 0 & e^{-\theta} \end{pmatrix} \times \begin{pmatrix} \cos a\theta & -\sin a\theta \\ \sin a\theta & \cos a\theta \end{pmatrix} | \theta \in \mathbf{R} \rbrace, \quad a \neq 0.$$

Put

$$N = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} | t \in \mathbf{R} \right\}, \quad A = \left\{ \begin{pmatrix} e^{\theta} & 0 \\ 0 & e^{-\theta} \end{pmatrix} | \theta \in \mathbf{R} \right\},$$
$$K = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} | \theta \in \mathbf{R} \right\}.$$

Set

$$S_0 = NA = \left\{ \begin{pmatrix} \lambda & t \\ 0 & \lambda^{-1} \end{pmatrix} | \lambda \in \mathbf{R}^+, t \in \mathbf{R} \right\}.$$

Let $S = S_0 \cup \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} S_0$, $S_{\pi/2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} S$. Lemma 4.8. (i) The group $N \times N$ acts properly on $SL_2 \mathbf{R} - S$.

(ii) The group $A \times A$ acts properly on $SL_2 \mathbf{R} - \{S \cup S_{\pi/2}\}$.

(iii) The group $N \times A$ acts properly on $SL_2 \mathbf{R} - S$.

(iv) The groups N, A, $N \times K$, $A \times K$, and $K \times_{\mathbb{Z}/2} K$ act properly on $SL_2 \mathbf{R}$.

Proof. Let $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2 \mathbb{R} \approx \mathbb{H}^{1,2}$. Then,

$$\begin{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix} \end{pmatrix} \cdot x = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & -\theta \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} a + ct & -ct\theta - a\theta + dt + b \\ c & -c\theta + d \end{pmatrix}.$$

Thus it is easy to see that $N \times N$ acts properly on the subset of SL₂ R with $c \neq 0$. We can prove similarly for (ii), (iii) and (iv).

Remark 4.9. The groups of types (i), (ii), and (iii) leave S or $S \cup S_{\pi/2}$ invariant, but do not act properly. This follows from a direct calculation. In particular a discrete cocompact subgroup does not act properly discontinuously on S or $S \cup S_{\pi/2}$.

Theorem 4.10. Let M be a Lorentz hyperbolic 3-manifold. If the holonomy group is virtually abelian, then M is not compact.

Proof. Let $(\rho, \text{dev}): (\pi, \widetilde{M}) \to (\Gamma, \widetilde{H}^{1,2})$ be the developing pair, and $P: O(2, 2)^{0} \to O(2, 2)^{0}$ the covering map. Passing to a subgroup of finite index, we assume that Γ is abelian and $\Gamma \subset O(2, 2)^{0}$. Then

 $P(\Gamma)$ is an abelian subgroup of $O(2, 2)^0$. If $A(P(\Gamma))$ is the real algebraic closure of $P(\Gamma)$ in $O(2, 2)^0$, then it is an abelian Lie subgroup such that $P(\Gamma) \subset A(P(\Gamma))^0$. Thus the identity component is either one of the groups in Lemma 4.8. Suppose that $A(P(\Gamma))^0$ is one of the groups of (iv). Then $A(P(\Gamma))^0$ acts properly on $H^{1,2} = SL_2 \mathbb{R}$. Since $\mathcal{Z} \to (O(2, 2)^{0^{\sim}}, \tilde{H}^{1,2}) \xrightarrow{P} (O(2, 2)^0, H^{1,2})$ is the covering map, the group $P^{-1}(A(P(\Gamma))^0)$ acts properly on $\tilde{H}^{1,2}$. There is a $P^{-1}(A(P(\Gamma))^0)$ -invariant Riemannian metric on $\tilde{H}^{1,2}$ such that $\Gamma \subset P^{-1}(A(P(\Gamma))^0)$. The developing map dev induces a π -invariant Riemannian metric on \tilde{M} . So if M is compact, then dev is a covering map, and thus M is geodesically complete. Thus the result follows from Theorem 6.1 of [25]. Indeed, since the abelian group $P^{-1}(A(P(\Gamma))^0)$ has dimension at most two, Γ is a free abelian group of rank ≤ 2 . Hence $\tilde{H}^{1,2}/\Gamma$ cannot be compact.

Suppose that $A(P(\Gamma))^0$ is either one of the groups in (i), (ii) or (iii) of Lemma 4.8. Consider (i), i.e., $\Gamma \subset N \times N$. Note that each component Z of $SL_2 \mathbf{R} - S$ is invariant under $N \times N$, and $N \times N$ acts properly on Z by Lemma 4.8. Choose an $N \times N$ -invariant *complete* Riemannian metric on Z. Let $P \circ \text{dev}: \widetilde{M} \to \text{H}^{1,2} = \text{SL}_2 \mathbb{R}$ be the immersion of Lorentz hyperbolic structure. If M is compact, then from Lemma B of [13] it follows that $P \circ \text{dev}: Y \to Z$ is a covering map for each component Y of $(P \circ \text{dev})^{-1}(Z)$. As Z is simply connected (homeomorphic to \mathbb{R}^3), we have $Y \approx Z$. On the other hand, we shall prove $\widetilde{M} = Y$. Let \widetilde{S} be a lift of S to $\widetilde{H}^{1,2}$. Then it is sufficient to show dev $^{-1}(\widetilde{S}) = \emptyset$. For this, dev⁻¹(\widetilde{S}) is a π -invariant closed subset in \widetilde{M} , and so if $p: \widetilde{M} \to M$ is the covering map, then $p(\text{dev}^{-1}(\widetilde{S}))$ is a closed subset consisting of a disjoint union of closed submanifolds in M. Let Q be a component of $\operatorname{dev}^{-1}(\widetilde{S})$, and suppose Q to be a boundary component of Y. Then there exists a component \widetilde{S}_0 of \widetilde{S} such that dev: $Q \to \widetilde{S}_0$ is a homeomorphism. Since P maps \widetilde{S}_0 onto a component S_0 of S, $P \circ \text{dev}: Q \to S_0$ is a homeomorphism. If we note from the above remark that p(Q) is a closed submanifold Q/π' in M for a subgroup $\pi' \subset \pi$, the corresponding holonomy group Γ' acts properly discontinuously and freely on \widetilde{S}_0 with compact quotient. Therefore $P(\Gamma')$ is a discrete cocompact subgroup of $N \times N$ acting properly discontinuously on S_0 . This is impossible by Remark 4.9. Hence we obtain $\widetilde{M} = Y$ such that $P \circ \text{dev} \colon \widetilde{M} \to Z$ is a homeomorphism. But this implies that $P(\Gamma)$ is a discrete subgroup of $N \times N$ consisting of a free abelian subgroup of rank ≤ 2 . Hence $M \approx Z/P(\Gamma)$ cannot be compact. This proves (i). We can prove similarly for (ii), (iii).

Theorem 4.11. Let M be a Lorentz hyperbolic 3-manifold. Suppose that \widetilde{M} admits a nontrivial complete Killing vector field, and the developing map is injective. If M is compact, then M is geodesically complete.

Proof. Since \widetilde{M} admits a complete vector field, the identity component $\operatorname{Iso}(\widetilde{M})^0$ is a nontrivial closed connected subgroup normalized by the fundamental group π . As the developing map is injective, we assume that there is a smallest connected closed Lie subgroup G normalized by the holonomy group Γ in $O(2, 2)^{0}$ for which G acts on $\operatorname{dev}(\widetilde{M})$ and $\Gamma \subset O(2, 2)^{0}$. Let N(G) be the normalizer of G in $O(2, 2)^{0}$.

Case I. G has the radical. If N(G) is solvable, then from Lemma 4.7 it follows that N(G) is an abelian Lie subgroup of dimension 1 or 2, or isomorphic to the solvable Lie subgroup S_0 , $S_0 \times S_0$, or $S_0 \times \mathbf{R}$ of $O(2, 2)^{0\sim} \approx SL_2 \mathbf{R} \times_{\mathbf{Z}} SL_2 \mathbf{R}$. Since Γ is discrete, Γ is a free abelian group in this case. By the above theorem, M cannot be compact. If N(G) is not solvable, then N(G) is conjugate to the subgroup $G \times SL_2 \mathbf{R}$ (up to switching factors) where G = N, A, or to the subgroup $\mathbf{R} \times_{\mathbf{Z}} SL_2 \mathbf{R}$. In the latter case, $P(N(G)) = K \times_{\mathbf{Z}/2} SL_2 \mathbf{R}$ which acts properly on $\mathbf{H}^{1,2} = SL_2 \mathbf{R}$. Thus N(G) acts properly on $\widetilde{\mathbf{H}}^{1,2}$. This implies $dev(\widetilde{M}) = \widetilde{\mathbf{H}}^{1,2}$. Moreover M is a standard space form by the Example (1) of 4.6. Let $N(G) = N \times SL_2 \mathbf{R}$. First note that N (or A) is a spacelike one-parameter group, and so the action $(N \times SL_2 \mathbf{R}, \widetilde{\mathbf{H}}^{1,1})$ induces the two-dimensional Lorentz hyperbolic geometry $(SL_2 \mathbf{R}, \widetilde{\mathbf{H}}^{1,1})$. Here $N \setminus \mathbf{H}^{1,2} = \mathbf{H}^{1,1}$ on which $SL_2 \mathbf{R} = O(1, 2)^0$ acts as isometries. Consider the exact sequences:

Put $\operatorname{dev}(\widetilde{M})^* = N \setminus \operatorname{dev}(\widetilde{M})$. Then the action $(\Gamma_2, \operatorname{dev}(\widetilde{M})^*)$ is a Lorentz hyperbolic manifold of dimension two. As there exists no compact Lorentz hyperbolic manifold of dimension two (cf. Introduction), $\operatorname{dev}(\widetilde{M})^*$ is simply connected and noncompact. Thus $\operatorname{dev}(\widetilde{M})$ is contractible. In particular, $\operatorname{ch} \Gamma = 3$.

If Δ is nontrivial, then Γ_2 acts properly discontinuously on $\operatorname{dev}(\widetilde{M})^*$ with compact quotient, but it is impossible, and so $\Gamma \approx \Gamma_2$. Moreover Γ_2 is discrete in $\widetilde{\operatorname{SL}_2 \mathbf{R}}$; otherwise Γ would be abelian as before. On the other hand, Γ_2 acts as right translations of $\widetilde{\operatorname{SL}_2 \mathbf{R}}$ on the domain dev (\widetilde{M}) of $\widetilde{H}^{1,2} = \widetilde{SL_2 R}$. For this, let $\gamma_2 \in \Gamma_2$ and $\gamma = (u, \gamma_2) \in \Gamma$. Since N leaves dev (\widetilde{M}) invariant, it follows $x \cdot \gamma_2 = u^{-1} \cdot \gamma \cdot x \in dev(\widetilde{M})$ for $x \in dev(\widetilde{M})$. As Γ_2 is discrete, it acts properly discontinuously on dev (\widetilde{M}) . If we note ch $\Gamma_2 = 3$, dev $(\widetilde{M})/\Gamma_2$ is compact in $\widetilde{SL_2 R}/\Gamma_2$. Hence we have dev $(\widetilde{M}) = \widetilde{SL_2 R}$, and M is complete.

Case II. *G* is semisimple. Since P(G) is semisimple in $O(2, 2)^0 = SL_2 \mathbb{R} \times_{\mathbb{Z}/2} SL_2 \mathbb{R}$, it follows that $P(G) = SL_2 \mathbb{R} \times_{\mathbb{Z}/2} SL_2 \mathbb{R}$, $SL_2 \mathbb{R} \times \{1\}$, or $P(G) = \{[g, aga^{-1}] | g \in SL_2 \mathbb{R}\}$ for some $a \in SL_2 \mathbb{R}$. *G* is transitive on $\widetilde{H}^{1,2}$ for the first two cases. Hence $dev(\widetilde{M}) = \widetilde{H}^{1,2}$, and *M* is complete.

We shall prove that the last case does not occur when M is compact. As the developing map is unique up to a conjugation by elements of $O(2, 2)^{0\sim}$, we assume $P(G) = \{[g, g] | g \in SL_2 \mathbb{R}\}$ ($\approx SL_2 \mathbb{R}$). Since $P(\Gamma)$ normalizes P(G), we have $P(\Gamma) \subset P(G)$. If we note $G \approx P(G)$ in this case, it follows $\Gamma \subset P^{-1}(P(G)) = \mathcal{Z} \times G$. Consider the covering:

$$(\Delta, \mathscr{Z}) \to (\Gamma, \widetilde{\mathbf{H}}^{1,2}) \to (P(\Gamma), \mathbf{H}^{1,2}),$$

where $\Delta = \mathscr{Z} \cap \Gamma$. As before $P(\Gamma)$ is discrete and not abelian. Moreover we may assume that M is orientable.

Subcase A. Suppose that Δ is nontrivial. Then Γ contains an infinite normal cyclic subgroup. Thus $\operatorname{dev}(\widetilde{M})/\Gamma$ is prime and irreducible, and therefore is an aspherical manifold. Hence $\operatorname{ch} \Gamma = 3$. Let $S_0 \subset \operatorname{SL}_2 \mathbb{R} = \operatorname{H}^{1,2}$ be the solvable Lie subgroup as in Lemma 4.8.

Let $S_0
ightarrow \operatorname{SL}_2 \mathbf{R} = \mathbf{H}^{1,2}$ be the solvable Lie subgroup as in Lemma 4.8. Note that P maps each component of $\widetilde{\operatorname{SL}_2 \mathbf{R}} - \widetilde{S}_0$ homeomorphically onto $\operatorname{SL}_2 \mathbf{R} - S_0$. If $P \circ \operatorname{dev}(\widetilde{M}) \cap S_0 = \emptyset$, then $P: \operatorname{dev}(\widetilde{M}) \to P \circ \operatorname{dev}(\widetilde{M})$ is homeomorphic, while $P \circ \operatorname{dev}(\widetilde{M}) = \operatorname{dev}(\widetilde{M})/\Delta$ is not simply connected. Thus $P \circ \operatorname{dev}(\widetilde{M}) \cap S_0 \neq \emptyset$. Note that each element of $S_0 - N$ has the form nan^{-1} for $a \in A$, $n \in N$. Let $x = nan^{-1} \in P \circ \operatorname{dev}(\widetilde{M}) \cap S_0$. Now $P(\Gamma)$ acts properly discontinuously on $P \circ \operatorname{dev}(\widetilde{M})$ and leaves $P(G) \cdot x$ invariant. On the other hand, the correspondence $g \to gxg^{-1}$ defines a homeomorphism of $\operatorname{PSL}_2(\mathbf{R})/nAn^{-1}$ ($\approx S^1 \times \mathbf{R}^1$) onto $P(G) \cdot x$. So we obtain a two-dimensional manifold $S^1 \times \mathbf{R}^1/P(\Gamma)$. This implies that $\operatorname{ch} P(\Gamma) \leq 1$, so that $\operatorname{ch} \Gamma \leq 2$, which is a contradiction. Similarly for $x \in N$ because $\operatorname{PSL}_2(\mathbf{R})/N \approx S^1 \times \mathbf{R}^1$.

Subcase B. Suppose $\Delta = \{1\}$ so that $\Gamma \approx P(\Gamma)$. Choose $x = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in SL_2 \mathbb{R}$. As above the orbit $P(G) \cdot x$ is homeomorphic to $PSL_2 \mathbb{R}/P(K)$ ($\approx \mathbb{R}^2$). We note from 3.5 of [25] that $P(G) \cdot x$ is a closed subset in

SL₂**R**. So if $x \in P \circ \operatorname{dev}(\widetilde{M})$, then $P(G) \cdot x$ is a $P(\Gamma)$ -invariant closed subset of $P \circ \operatorname{dev}(\widetilde{M})$. Choose $\tilde{x} \in \operatorname{dev}(\widetilde{M})$ such that $P(\tilde{x}) = x$. Put $W = P^{-1}(P(G) \cdot x) \cap \operatorname{dev}(\widetilde{M})$. The set W is a Γ -invariant closed subset consisting of a disjoint union of copies of $G \cdot \tilde{x}$. Let π : $\operatorname{dev}(\widetilde{M}) \to$ $\operatorname{dev}(\widetilde{M})/\Gamma$ be the covering map. Then $\pi(W)$ is a finite number of closed surfaces. Thus there exists a subgroup Γ' in Γ for which $\pi(G \cdot \tilde{x}) =$ $G \cdot \tilde{x}/\Gamma'$ is a closed surface in $\operatorname{dev}(\widetilde{M})/\Gamma$. Since $G \cdot \tilde{x}/\Gamma' \approx P(G) \cdot x/P(\Gamma')$ and $P(G) \cdot x/P(\Gamma')$ covers $P(G) \cdot x/P(\Gamma)$, $P(G) \cdot x/P(\Gamma)$ is compact, which is homeomorphic to $P(\Gamma) \setminus \operatorname{PSL}_2 \mathbb{R}/P(K)$ ($\approx \mathbb{R}^2/P(\Gamma)$). Thus Γ is isomorphic to the fundamental group of a closed surface so that $\operatorname{ch}\Gamma = 2$, while it follows that $\operatorname{dev}(\widetilde{M})/\Gamma$ is a prime manifold. Hence $\operatorname{dev}(\widetilde{M})/\Gamma$ is aspherical or $\operatorname{ch}\Gamma = 3$, being a contradiction.

Now $x \notin P \circ \operatorname{dev}(\widetilde{M})$, i.e., $P \circ \operatorname{dev}(\widetilde{M}) \cap P(G) \cdot x = \emptyset$. Since $\operatorname{PSL}_2 \mathbb{R} - P(G) \cdot x$ is connected and simply connected (cf. [25]), $P: \operatorname{dev}(\widetilde{M}) \to P \circ \operatorname{dev}(\widetilde{M})$ is homeomorphic and so $P(\Gamma)$ acts properly discontinuously on $P \circ \operatorname{dev}(\widetilde{M})$. As $P \circ \operatorname{dev}(\widetilde{M})$ is a domain of $\operatorname{SL}_2 \mathbb{R}$, $P \circ \operatorname{dev}(\widetilde{M})$ contains a hyperbolic element hxh^{-1} ($x \in A$) or an elliptic element hxh^{-1} ($x \in K$) for some $h \in \operatorname{SL}_2 \mathbb{R}$. The orbit $P(G) \cdot hxh^{-1}$ is either homeomorphic to $\operatorname{PSL}_2 \mathbb{R}/hAh^{-1} \approx S^1 \times \mathbb{R}$ or $\operatorname{PSL}_2 \mathbb{R}/P(hKh^{-1}) \approx \mathbb{R}^2$. On the other hand, we note that $P(G) \cdot hxh^{-1}$ is closed in $P \circ \operatorname{dev}(\widetilde{M})$. For this, if $\overline{P(G)} \cdot hxh^{-1}$ is the closure of $P(G) \cdot hxh^{-1}$ in $\operatorname{SL}_2 \mathbb{R}$, then in each case we see that $\partial P(G) \cdot hxh^{-1}$ ($= \overline{P(G)} \cdot hxh^{-1} - P(G) \cdot hxh^{-1}$) is homeomorphic to a circle. (Compare [25].) So if $\partial P(G) \cdot hxh^{-1}$ is nonempty, then $P(\Gamma)$ leaves this set invariant. By properness, $P(\Gamma)$ will be finite. Then it would follow $M \approx \widetilde{H}^{1,2}/\Gamma$, which cannot be compact. Hence

$$\overline{P(G) \cdot hxh^{-1}} \cap P \circ \operatorname{dev}(\widetilde{M}) = P(G) \cdot hxh^{-1} \cap P \circ \operatorname{dev}(\widetilde{M}).$$

Now, let $z \in \operatorname{dev}(\widetilde{M})$ such that $P(z) = hxh^{-1}$. Since $P: G \cdot z \approx P(G) \cdot hxh^{-1}$, $G \cdot z$ is a Γ -invariant closed subset of $\operatorname{dev}(\widetilde{M})$. Thus $\pi(G \cdot z) = G \cdot z/\Gamma$ is a closed surface in $\operatorname{dev}(\widetilde{M})/\Gamma$. Γ is isomorphic to the fundamental group of a closed surface of genus ≥ 2 . It implies $\operatorname{ch}\Gamma = 2$, while $\operatorname{dev}(\widetilde{M})/\Gamma$ is prime and so aspherical. This yields a contradiction again. Hence the proof of Theorem 4.11 is complete.

4.12. We consider Lorentz hyperbolic 3-manifolds which admit spacelike Killing vector fields. Let $\eta: O(2, 2)^0 \to PSL_2 \mathbb{R} \times PSL_2 \mathbb{R}$ be the two-fold covering map. **Corollary 4.13.** Let $(\pi, \widetilde{H}, \widetilde{M}^3) \xrightarrow{(\rho, \text{dev})} (\Gamma, G, \widetilde{H}^{1,2})$ be the developing pair of a compact Lorentz hyperbolic 3-manifold M which admits a spacelike one-parameter group H of Lorentz transformations. Then the group $\eta(P(G))$ is a closed noncompact subgroup.

Proof. Let $\overline{\eta(P(G))}$ be the closure of $\eta(P(G))$ in $PSL_2 \mathbb{R} \times PSL_2 \mathbb{R}$. We show that $\overline{\eta(P(G))}$ is noncompact. Then it follows from Lemma 4.7 that $\eta(P(G))$ is closed. Put $B = \overline{\eta(P(G))}$. If B is compact, then it is conjugate to a subgroup of $SO(2) \times SO(2)$. Suppose $B \subset SO(2) \times SO(2)$. If $B = SO(2) \times \{1\}$ or $\{1\} \times SO(2)$, then a vector field tangent to the orbit $B \cdot 1$ at $1 \in PSL_2 \mathbb{R}$ is timelike on the induced Lorentz hyperbolic manifold $PSL_2 \mathbb{R}$ (cf. 4.16), which contradicts the hypothesis. Thus the centralizer of B in $PSL_2 \mathbb{R} \times PSL_2 \mathbb{R}$ is $SO(2) \times SO(2)$. Put $\Gamma' = \Gamma \cap O(2, 2)^{0}$ which is of finite index in Γ . Since G centralizes Γ , it follows that $\eta(P(\Gamma')) \subset SO(2) \times SO(2)$. So we have $\Gamma' \subset \mathbb{R} \times SO(2)$ in $O(2, 2)^{0}$. Hence Γ' is abelian, but it does not occur by Theorem 4.10.

Corollary 4.14. If a compact Lorentz hyperbolic 3-manifold M admits a spacelike Killing vector field, and the developing map is injective, then some finite covering of M is either a homogeneous standard space form or a nonstandard space form.

Proof. Let $(\rho, \text{dev}): (\pi, \tilde{H}, \tilde{M}) \to (\Gamma, G, \tilde{H}^{1,2})$ be the developing pair. It follows $M \approx \tilde{H}^{1,2}/\Gamma$ by Theorem 4.11. Put $\Gamma' = \Gamma \cap O(2, 2)^{0^{\sim}}$. Then Γ' belongs to the centralizer $\mathscr{C}(G)$ in $O(2, 2)^{0^{\sim}}$. Thus as in the argument of Theorem 4.11, it follows $\mathscr{C}(G) = N \times SL_2 \mathbb{R}$ or $A \times SL_2 \mathbb{R}$. If $\Gamma' \subset SL_2 \mathbb{R}$, then a finite covering of M is a homogeneous standard space form $SL_2 \mathbb{R}/\Gamma'$. Otherwise, $\tilde{H}^{1,2}/\Gamma'$ is a nonstandard space form.

Problem 1. Let M be a compact Lorentz hyperbolic 3-manifold admitting a spacelike Killing vector field. Is M (geodesically) complete?

4.15. We examine Lorentz hyperbolic 3-manifolds which admit light-like or timelike Killing vector fields.

Lemma 4.16. If H is a closed connected noncompact abelian subgroup of O(2, 2), then no one-parameter subgroup of H is lightlike.

Proof. Put $\eta(H) = G$ where $\eta: O(2, 2)^0 \to PSL_2 \mathbb{R} \times PSL_2 \mathbb{R}$ is the two-fold covering map. It is sufficient to show that any one-parameter group of G is not lightlike. There is the principal circle bundle $S^1 \to PSL_2 \mathbb{R} \to \mathbb{H}^2$. If B is the subbundle of the tangent bundle of $PSL_2 \mathbb{R}$ which maps isomorphically onto the tangent bundle $T(\mathbb{H}^2)$, then each B_x has the positive scalar product with respect to the Killing form (Lorentz metric of constant curvature) of $PSL_2 \mathbb{R}$. On the other hand, H is either

one of the groups of Lemma 4.7. If H is of type 1, then G acts as left translations of $PSL_2 \mathbb{R}$. Thus G is spacelike. When H is of type 2, we choose the point x = 1, $\begin{pmatrix} e^1 & 0 \\ 0 & e^{-1} \end{pmatrix}$ in $PSL_2 \mathbb{R}$ according as $a \neq b$, a = b. If H is of type 3, then choose the point x = 1, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ according as $a \neq b$, a = b. If H is of type 4, we choose the point x = 1. In each case the vector field tangent to the orbit $G \cdot x$ belongs to the subbundle B. Thus G is neither timelike nor lightlike. If H is of type 5, then the orbit $G \cdot 1$ winds infinitely many times around the S^1 -direction in $PSL_2 \mathbb{R}$. Hence G is neither lightlike nor spacelike in this case.

Corollary 4.17. There exists no lightlike Killing vector field on a compact Lorentz hyperbolic 3-manifold.

Lemma 4.18. Let G be a timelike one-parameter group in $O(2, 2)^{0}$, and $1 \to \mathcal{Z} \to O(2, 2)^{\sim} \xrightarrow{P} O(2, 2) \to 1$ be the exact sequence. Then the group P(G) satisfies either one of the following:

(i) $P(G) \approx \mathbf{S}^1$.

(ii) $P(G) \approx \mathbf{R}^1$ which is dense in $SO(2) \times_{\mathbf{Z}/2} SO(2)$.

(iii) $P(G) \approx \mathbf{R}^1$ which is a closed subgroup of type (5) in $O(2, 2)^0$ of Lemma 4.7.

Proof. Let $\overline{P(G)}$ be the closure of P(G) in $O(2, 2)^0$. If $\overline{P(G)}$ is compact, then $\overline{P(G)}$ is conjugate to a subgroup of the maximal compact subgroup $SO(2) \times_{\mathbb{Z}/2} SO(2)$. Thus either (i) or (ii) follows. Suppose that $\overline{P(G)}$ is noncompact. Then $\overline{P(G)}$ is isomorphic to one of the groups of Lemma 4.7 in which two-dimensional Lie group is isomorphic to either \mathbb{R}^2 or $\mathbb{R} \times S^1$. Thus the group P(G) is itself closed and is isomorphic to \mathbb{R}^1 . Since P(G) is timelike, P(G) is of type 5.

Proposition 4.19. If a compact Lorentz hyperbolic 3-manifold admits a timelike Killing vector field, then it is a standard space form.

Proof. Let $(\rho, \text{dev}): (\pi, \widetilde{M}) \to (\Gamma, \widetilde{H}^{1,2})$ be the developing pair. Given a timelike one-parameter group \widetilde{H} of Lorentz transformations in $O(2, 2)^{\sim}$, we put $H = P(\widetilde{H})$. If H is compact in O(2, 2), then the result follows from Theorem 2.20. Otherwise, from (ii), (iii) of Lemma 4.18 it follows that $\overline{H} = SO(2) \times_{\mathbb{Z}/2} SO(2)$ or

$$H = \left\{ \begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} \cos a\theta & -\sin a\theta \\ \sin a\theta & \cos a\theta \end{pmatrix} | \theta \in \mathbf{R} \right\}$$
$$\left(\text{resp. } \left\{ \begin{pmatrix} e^{\theta} & 0 \\ 0 & e^{-\theta} \end{pmatrix} \times \begin{pmatrix} \cos a\theta & -\sin a\theta \\ \sin a\theta & \cos a\theta \end{pmatrix} | \theta \in \mathbf{R} \right\} \right).$$

Since *H* centralizes the group $P(\Gamma)$, the closure \overline{H} also centralizes $P(\Gamma)$. When $\overline{H} = SO(2) \times_{\mathbb{Z}/2} SO(2)$, the subgroup of O(2, 2), whose elements commute with \overline{H} , is \overline{H} itself. Thus $P(\Gamma) \subset \overline{H}$. By pulling back into $O(2, 2)^{\sim}$, we obtain $\Gamma \subset \mathbb{R} \times SO(2)$. Similarly the subgroup of $O(2, 2)^{0} \approx SL_{2}\mathbb{R} \times_{\mathbb{Z}/2} SL_{2}\mathbb{R}$ which commutes with *H* is $\{\begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix} | \theta \in \mathbb{R}\} \times SO(2)$. By passing to a subgroup of finite index in Γ , we have $P(\Gamma) \subset \{\begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix} | \theta \in \mathbb{R}\} \times SO(2)$, and therefore $\Gamma \subset \{\begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix} | \theta \in \mathbb{R}\} \times \mathbb{R}$ (cf. 4.6), which is impossible since $M \approx \widetilde{H}^{1,2}/\Gamma$ by Proposition 2.5.

Problem 2. Let M be a compact Lorentz hyperbolic (2n+1)-manifold $(n \ge 2)$ which admits a timelike Killing vector field. Is M always a standard space form?

References

- [1] A. Avez, Formule de Gauss-Bonnet-Chern, C.R. Acad. Sci. Paris 255 (1962) 2049-2051.
- [2] G. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
- [3] Y. Carrière, Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math. 95 (1989) 615-628.
- [4] S. S. Chern, Pseudo-Riemannian geometry and Gauss-Bonnet formula, An. Acad. Brasil. Ciênc. 35 (1963) 17-26.
- [5] P. E. Conner & F. Raymond, Injective operations of the toral groups, Topology 10 (1971) 283–296.
- [6] , Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc. 83 (1977) 36–85.
- [7] G. D'Ambra, Isometry groups of Lorentz manifolds, Invent. Math. 92 (1988) 555-565.
- [8] G. D'Ambra & M. Gromov, Lectures on transformation groups: geometry and dynamics, Inst. Hautes Études Sci. Publ. Math. 35 (1990), to appear.
- [9] T. Drumm & W. Goldman, Complete flat Lorentz 3-manifolds with free fundamental group, Internat. J. Math. (1989), to appear.
- [10] D. Fried & W. Goldman, Three dimensional affine crystallographic groups, Advances in Math. 47 (1983) 1-49.
- [11] D. Fried, W. Goldman & M. Hirsch, Affine manifolds with nilpotent holonomy, Comment. Math. Helv. 56 (1981) 487-523.
- [12] W. Goldman, Nonstandard Lorentz space forms, J. Differential Geometry 21 (1985) 301-308.
- [13] W. Goldman & Y. Kamishima, Conformal automorphisms and conformally flat manifolds, Trans. Amer. Math. Soc. 323 (1991) 797-810.
- [14] W. Goldman & Y. Kamishima, The fundamental group of a compact flat Lorentz space form is virtually polycyclic, J. Differential Geometry 19 (1984) 233-240.
- [15] T. Gotoh, Virtually polycyclic groups of rank three and affine flat manifolds, Master's thesis, University of Tokyo, 1984. (Japanese)
- [16] D. Gromoll & J. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 (1971) 545-552.
- [17] F. Grunewald & G. Margulis, Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz-structure, J. Geometry Phys. 5 (1988) 493-531.

- [18] K. Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949) 507-558.
- [19] Y. Kamishima, Properly discontinuous actions of subgroups in amenable algebraic groups and its application to affine motions, Topology Applications 19 (1985) 189–199.
- [20] ____, Lorentz space forms and virtually solvable groups, Indiana Univ. Math. J. 34 (1985) 249–258.
- [21] Y. Kamishima & T. Tsuboi, CR-structures on Seifert manifolds, Invent. Math. 104 (1991) 149-163.
- [22] S. Kobayashi, Principal fibre bundles with 1-dimensional toroidal group, Tôhoku Math. J. 8 (1956) 29-45.
- [23] R. Kulkarni, The principle of uniformization, J. Differential Geometry 13 (1978) 109– 138.
- [24] ____, Proper actions and pseudo-Riemannian space-forms, Advances in Math. 40 (1981) 10-51.
- [25] R. Kulkarni & F. Raymond, 3-dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geometry 21 (1985) 231-268.
- [26] H. B. Lawson & S. T. Yau, Compact manifolds of nonpositive curvature, J. Differential Geometry 7 (1972) 211-228.
- [27] K. B. Lee & F. Raymond, Geometric realization of group extensions by the Seifert construction, Contemp. Math. 33 (1984) 353-411.
- [28] G. Margulis, Complete affine locally flat manifolds with a free fundamental group, J. Soviet Math. 134 (1988) 129–134.
- [29] G. Mess, Lorentz spacetimes of constant curvature, Inst. Hautes Études Sci. Publ. Math. 35 (1990), to appear.
- [30] R. Miner, Spherical CR manifolds with amenable holonomy, Internat. J. Math. 4 (1990) 479-501.
- [31] B. O'Neill, Semi-Riemannian geometry, Academic Press, New York, 1983.
- [32] M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse Math. Grenzgeb., Vol. 68, Springer, Berlin, 1972.
- [33] G. Tomanov, The virtual solvability of the fundamental group of a generalized Lorentz space form, J. Differential Geometry (1990) 539-547.
- [34] J. Wolf, Space of constant curvature, McGraw-Hill, New York, 1967.

KUMAMOTO UNIVERSITY, JAPAN