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Abstract

We introduce a new geometric technique enabling one to present links in
oriented 3-manifolds, which are S'-fibrations over oriented surfaces, by
configurations of loops on the surfaces equipped with some additional
data. This technique naturally leads to a purely 2-dimensional notion of
shadow links on surfaces. We use IRF-models, based on the quantum 6-
symbols associated with the Lie algebra Sl,(C), to construct invariants
ofs’ shadow links generalizing the Jones polynomial of links in the 3-sphere
S

Introduction

Since the appearance of the Jones polynomial for links in the 3-sphere
S*, considerable efforts have been spent to construct analogous invariants
for links in other 3-manifolds. An important breakthrough was made by
E. Witten [16] who defined (on the physical level of rigour) Jones-type
invariants of links in arbitrary closed 3-manifolds. Witten’s approach is
based on quantum field theory with a nonabelian Chern-Simons action.

A mathematical construction of “quantum” invariants of links general-
izing the Jones polynomial was given in [10]. This construction is based
on the representation theory of quantum groups and the surgery theory of
manifolds. The surgery theory, developed in dimension 3 by V. Rochlin,
W. Lickorish, R. Kirby, R. Fenn, and C. Rourke, enables one to reduce
the study of links in closed 3-manifolds to the case of links in S® where
the technique -of R-matrices and categories of tangles is applicable (see
[2], [9]-[14]). The invariants of links in 3-manifolds obtained in this way
satisfy the same formal properties as the Witten invariants and therefore
may be viewed as a mathematical realization of Witten’s program.

Another approach to quantum invariants of compact 3-manifolds and
links in these manifolds has been presented in [15]. The construction in
[15] is based on the theory of quantum 6j-symbols developed in [6] and
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the theory of special spines of 3-manifolds. This approach allows us to
derive “quantum” invariants of 3-manifolds directly from triangulations.

In this paper we present yet another approach which enables us to define
and study quantum invariants of framed links which lie in the total spaces
of oriented S'-bundles over oriented surfaces. With this view, we intro-
duce a new geometric technique of link shadows. Essentially, a shadow
on a surface F is a finite collection of loops on F lying in general po-
sition, each component of the complement of the loops being equipped
with a number. Links in oriented circle bundles over an oriented closed
surface F are shown to produce shadows on F. When F = S? one
may reconstruct each link (up to isotopy) from its shadow. The technique
of shadows is applicable, in particular, to classical links in S? since the
sphere S* fibers over S? via the Hopf mapping.

We develop an abstract theory of shadows on a surface, including the
notions of isotopy and regular isotopy of shadows. Isotopy classes of shad-
ows are called shadow links or, briefly, shlinks. Regular isotopy classes of
shadows are called framed shlinks. The whole approach runs parallel to
the well-known exposition of knot theory in terms of link diagrams and
Reidemeister moves (see [8]).

We use slightly modified IRF-models (interaction round a face models)
of statistical mechanics to construct C-valued invariants of framed shlinks.
The model in question is based on the so-called (g — 6j)-symbols, where ¢
is a complex root of 1 (see [6]). Combining this model with the technique
of link shadows, we get Jones-type invariants of framed links in oriented
S'-bundles over oriented surfaces. In the case of links in S°> we reconstruct
in this way the values of the Jones polynomial in the corresponding roots
of 1. We also develop a more general theory which produces C-valued
invariants of colored framed shlinks.

From the viewpoint of 3-dimensional topology, the constructions of
the present paper have a somewhat limited area of applications. Indeed,
the majority of closed 3-manifolds do not fiber over surfaces. On the
other hand the present approach suggests quite a new view of the quantum
invariants of links. The appearance of IRF-models is also remarkable.

Our constructions shed some additional light on the original Jones poly-
nomial of links in S°. Indeed, as it turns out, this polynomial (or at least
its values in the complex roots of 1) may be extended to the set of real
(and even complex) framed shlinks on s? , which is a kind of completion
of the set of isotopy types of framed links in S* . This extension might be
of use in the search of nontrivial knots in S° with Jones polynomial 1. It
would be of interest to find a non-trivial shadow knot with this property.
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At the moment of writing, the relationships between the approaches of
[10], [15], and the present approach are not clear, though in principle they
must be related.

The standard method of presenting links in 53 by plane link diagrams
appeals to the projection R® — R?. It was the idea to try the Hopf mapping
S* — S? instead of this projection which gave the initial impetus to this
work. The application of IRF-models to shadows was inspired by the re-
sults of [6]. (It should be noted that our notion of shadow link differs from
the notion of link in the shadow world used by Kirillov and Reshetikhin
[6]: their links are presented by ordinary diagrams with overcrossings and
undercrossings, without any hints to gleams of regions.)

For background information on the invariants of links in S? related to
statistical mechanical models, the reader is referred to [4] and [7].

The paper is organized as follows. In §1 we define shadows and shadow
links, and discuss their simple properties. In §2 we apply the classical tech-
nique of link diagrams to show that each link in the cylinder F x R over
any oriented surface F canonically gives rise to a shlink on F. We also
formulate Theorem 2.1 which establishes a correspondence between links
in S° an shlinks on S*. In §3 we establish a more general correspon-
dence between links in S' bundles over surfaces and integral shlinks. In
§4 we present a version of the results of §§1-3 for framed links and framed
shlinks. In §5 we introduce the relevant IRF-models and the state model
invariants of colored (framed) shlinks. In §6 we consider the IRF-model
based on (g — 6j)-symbols and the corresponding invariants of colored
shlinks. In §7 a brief description of the so-called shadow 3-manifolds is
presented.

Notation. Throughout the paper the symbol F denotes an oriented
surface (possibly with boundary, noncompact, etc.).

This paper has been completed while the author was visiting Ruhr Uni-
versity in Bochum and the University of Strasbourg. The author expresses
his sincere gratitude to the staff of the Mathematical Departments of these
universities and especially to Professor A. Papadopoulos for kind hospi-
tality.

1. Shadows and shlinks

Throughout this section the symbol A4 denotes a fixed abelian group
containing the group of integers: 4 D Z. (Important example: A=17Z.)
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a. Shadows. A shadow over A4 (or, briefly, an 4-shadow) on the sur-
face F is a finite family of immersed closed curves in F with only double
transversal crossings (and self-crossings) such that each connected compo-
nent of the complement of these curves in F is equipped with an element
of 4. These connected components are called regions of the shadow. The
associated elements of 4 are called gleams of the regions. Examples of
shadows on the plane R? are given in Figure 1.

Sometimes it is convenient to assume that the gleam of a region may
be concentrated in certain parts of the region. We will use the following
convention: when several elements of 4 are attached to (certain parts of)
a region, then the gleam of this region equals the sum of these elements.

The total gleam of a shadow is defined to be the sum of the gleams of
all its regions minus twice the number of crossing points. (To justify this
definition one may think that each crossing point has the negative gleam
—2). For example, the gleams of shadows presented in Figure 1 are equal
respectively to 0, 1, =3, -3.

The crossing points of a shadow s dissect the underlying loops of s
into imbedded segments. These segments will be called edges of s.

b. Isotopies of shadows. Shlinks. We define three local moves on
shadows S1, 82, S3 (see Figure 2). The symbols x, y, z, --- in Figure
2 represent the gleams of the corresponding regions (under the convention
exhibited in subsection a). These x, y, z, --- may take arbitrary values
in the group 4. The integers 0, 1, 2 € Z C A clearly play a distinguished
role in the moves S1, S2, S3. A knot-theoretic explanation of these
moves will be given in §2.
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The moves S1 and S3 have the obvious inverses, denoted by (S 1)‘l
and (S3)“l . The move S2 has many inverses since there are many pairs
X, y with the given sum. Note that this nonuniqueness is not essential
whenever x, y are attached to the same region of the shadow. By the
move (SZ)_l we will mean an arbitrary inverse to S2.

Two shadows on the surface F are called isotopic if they can be trans-
formed into each other by a sequence of moves S1, S2, S3 and their
inverses. An example of isotopy is given in Figure 3 (next page).

Isotopy classes of shadows on F will be called shadow links or, briefly,
shlinks on F (over the group A4).

Remark that the moves S1, S$2, S3 preserve the total gleam. Thus
the total gleam is an isotopy invariant of shadows, and we may speak of
the (total) gleam of a shlink.

The shadows and shlinks over the additive group of integers 4 = Z are
called integral ones. The shadows and shlinks over the additive group of
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rational numbers (resp. real numbers, complex numbers, quaternions) are
called rational (resp. real, complex, quaternionic) ones.

_ c. Transition of shlinks. Let f: F' — F be an orientation-preserving
imbedding of a surface F’ into the surface F such that the set F\f(F’)
is nonempty and connected. Fix an element a of the group 4. We may
transfer each shadow on F’ into a shadow on F via f assuming that
the set F\ f(F’) contributes a to the gleam of the region which contains
it. Clearly, isotopic shadows on F’ are transferred to isotopic shadows
on F. Thus, each shlink K on F’ extends to a shlink on F, denoted by
f(K). ,

In particular, take f to an imbedding R? < IntF . Then each shlink
K on R? with a gleam k extends to a shlink- K, = f,(K) on F with
the gleam k +a. If F is connected, then all imbeddings R’ < IntF are
isotopic and the shlink K, depends only on K and a.

d. Subshadows and subshlinks. If a shadow s on F is formed by n
loops 7,,---,7,, then for each subset E C {1,2,---, n} we define a
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subshadow s; of s. It is formed by the curves {7,},.r. The gleam of
aregion X of s; is defined to be a(X) — b(X) — 2¢(X), where a(X) is
the sum of gleams of regions of s contained in X, #(X) is the number
of crossing points of s lying on the boundary 8X of the closure X of X
and distinct from the vertices of X , and ¢(X) is the number of crossing
points of s lying in the interior of X . Note that the total gleam of Sg is
equal to that of s.

In particular, when E is a 1-element set {e} we get a shadow s, formed
by the loop y, and called a component of s.

It is easy to check that each isotopy relating two shadows induces an
isotopy of their corresponding subshadows. Therefore we may speak of
subshlinks of a given shlink. The one-component subshlinks of a shlink
are called its components. For example the shlink on S? shown in F igure
1{c) has two isotopic components, shown in Figure 1(d).

e. Remarks. 1. The notion of shlink is purely 2-dimensional. Gener-
ally speaking, there is no natural 3-manifold in which a given shlink may
sit. The only global datum related to a shlink, which is preserved under
passage to subshlinks, is the pair (the surface F, the total gleam). When
the total gleam is not an integer there seems to be no reasonable way to
associate a 3-manifold with such a pair. On the other hand the integral
shlinks are intricately related to links in certain 3-manifolds (see §§2, 3).

2. If the group A4 contains the group %Z of integers and half-integers,
then we may distribute the gleam —2 of each crossing point to the four
incident regions (see Figure 4) and forget about the gleams of crossing
points. This gives an equivalent but slightly different language to describe
shadows and shlinks. This language is often more convenient. For exam-
ple, the total gleam of a shadow is just the sum of the modified gleams
of regions. Also the modified gleam of a region X of a subshadow of a
shadow s is just the sum of the modified gleams of regions of s contained
in X . However, this approach does not cover the case of integral shlinks.

FIGURE 4
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3. If the ground abelian group A is imbedded into another abelian
group A’ then each shlink over 4 determines in the obvious way a shlink
over A'. It is of interest to study injectivity and surjectivity properties of
this mapping from the set of A4-shlinks into the set of 4’-shlinks. Denote
this mapping by ¢(4, A'). There is a simple criterion for injectivity of
this mapping: If there exists an additive homomorphism r: 4’ — 4 with
rlA =id, then ¢(4, A') is injective. Indeed, if two shadows over A are
isotopic in the class of 4'-shadows then we may apply r to the gleams of
regions of all intermediate shadows and get in this way an isotopy over
A . Since each isotopy involves only a finite number of shadows and their
regions, it suffices to meet the following weaker condition: for any finite
subset G C A’ there exist a subgroup 4" of A and a homomorphism
r: A" — A such that 4" > AUG and r|4 = id,. These observations
imply that in the case when A is the additive group of a certain field and
A’ is a module over this field then p(A, A') is injective. For instance,
the sets of rational, real, complex, and quaternionic shlinks are injectively
imbedded each in the next one.

It is not known to the author whether the mapping ¢(Z, Q) is injective.

4. Each complex shadow s has the real and imaginary parts Res
and Ims obtained by taking real and imaginary parts, respectively, of
the gleams of regions. Both Res and Ims are real shadows. The real
parts of isotopic complex shadows are clearly isotopic over R. In other
words, each complex shlink has a real part which is a real shlink. Similarly,
each quaternionic shlink has a complex part which is a complex shlink.

2. Links in cylinders and their shadows

a. Shadows of links in F xR. We show in this subsection that each link
K lyingin the cylinder F xR canonically produces an integral shlink S(K)
on F . The construction of S(K) goes via link diagrams and explains the
origins of the moves S1, §2, S3.

By a link in a 3-manifold N we mean a finite collection of mutually
disjoint circles smoothly imbedded in N\@N . Two links are called iso-
topic if they may be smoothly deformed into each other in the class of
links in N .

Links in F x R may be presented by link diagrams on F in the same
fashion in which links in R® may be presented by plane link diagrams. A
link diagram on F is a finite family of immersed closed curves in F with
only double transversal crossings equipped with an additional structure: at
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each crossing one branch is cut out and considered as the lower one (the
undercrossing), the second branch being considered as the upper one (the
overcrossing). An example of a link diagram on R? is given in Figure 5.
This diagram presents a knot in R® (the trefoil).

An immediate generalization of a Reidemeister theorem [8] states that
two link diagrams on F present isotopic links if and only if they can be
obtained from each other by a finite sequence of Reidemeister moves Q1 ,
Q2, Q3 (see Figure 6) and their inverses.
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FIGURE 7

Each link diagram & on F canonically produces a shadow s(Z) on
F . It has the same underlying family of closed curves as & . To define
gleams of regions we put +1 in two opposite regions incident to each
crossing point as in Figure 7. The choice of these two regions is determined
both by the diagram & and the fixed orientation in F, also shown in
Figure 7. The gleam of a region is defined to be the number (or the sum)
of +1’s located inside this region. The total gleam of s(Z) clearly equals
Zero.

For example, the diagram shown in Figure 5 gives rise to the shadow
pictured in Figure 1(a).

It is straightforward to see that the passage to shadows transforms the
Reidemeister moves Q1, Q2, Q3 respectively into S1, §2, $3. There-
fore if two link diagrams on F present isotopic links, then the correspond-
ing shadows are isotopic. This shows that each link K in F xR gives rise
to an integral shlink on F with total gleam 0. This shlink will be denoted
by S(K). '

Generally speaking one cannot reconstruct a link in F x R from the
corresponding shlink on F . For example, for any two link diagrams & ,
Z' on F one may define their “product” 22’ by positioning & over
2'. 1t is easy to see directly (or to deduce from the results of §3) that the
diagrams 22' and 2’9 produce the same shadow on F. However,
the links in F x R represented by 22’ and 2’2 may be nonisotopic.

In the case F = R® the diagrams 292’ and 29’ represent isotopic
links and, indeed, it follows from Corollary 2.3, formulated below, that
link diagrams on R? with the same shadow always present isotopic links.

The product construction is, possibly, the only source of nonisotopic
links in F x R which induce the same shlink on F. In particular, I do
not know if there exist nonisotopic knots K,, K, C F xR with S(K|) =
S(K,). ,

b. Shadows of links in R>. Recall first that the inclusion R*® — S°
induces a bijective correspondence between isotopy types of links in R?



SHADOW LINKS AND FACE MODELS OF STATISTICAL MECHANICS 45

and isotopy types of links in S*. Thus the topological theories of links in
R® andin S° are equivalent.

According to the results of subsection a, each link XK c R® = R* x R
gives rise to an integral shlink S(K) on R’ with total gleam 0.

For any integer n the shlink S(K) extends to an integral shlink S(K),
on §% =R’ U{cc} . Recall that S(K), is the isotopy type of the shadow on
S? obtained from the shadow s(Z) of any diagram & of K by adding
n to the gleam of the region which contains the point {oc}.

Theorem 2.1. For any integer n the formula K — S(K), defines an
injective mapping of the set of isotopy types of links in R® in the set of
integral shlinks on S% with total gleam n. This mapping is surjective if
and only if n = £1.

This theorem will be proven in §3.d.

Corollary 2.2. The formula K — S(K), establishes a bijective corre-

spondence between the set of isotopy types of links in R® and the set of
integral shlinks on S? with total gleam 1.

This corollary may be viewed as an alternative descnptlon of the set of
links in R®> or S* in terms of integral shadows on S? and their moves
S1, S2, S3. For example, the shadow on s? depicted in Figure 1(b)
represents via the correspondence of Corollary 2.2 the same trefoil as the
diagram in Figure 5.

This approach has both advantages and disadvantages. The main dis-
advantage is that when looking at a shadow on S? it is rather hard to
visualize the corresponding link in R®. The important merit of the ap-
proach is that having a finite collection of generic loops on S? one may
construct an infinite number of links in R’ just by varying the gleams
of the regions in Z (keeping the total gleam 1). Moreover, varying the
gleams of regions in R one gets contmuous famlhes of real shlinks which

“connect” the genuine links in R®.

Corollary 2.3. The formula K — S(K) defines an injective mapping of
the set of isotopy types of links in R® into the set of integral shlinks on R’
with total gleam 0.

c. Remarks. 1. Putting orientations on the underlying loops of shad-
ows, one gets the notion of oriented shadows and oriented shlinks. The
results of §§1, 2 as well as the results of §§3, 4 may be straightforwardly
transferred to this oriented setting.

2. Corollary 2.2 implies that all standard invariants of links (the Alexan-
der polynomial, signatures, etc.) should be computable from the cor-
responding integral shlinks on S?. It would be most interesting to get
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explicit formulas for these invariants since such formulas may suggest ex-
tension of the invariants to real or even complex shlinks.

3. Links in S'-bundles and their shadows

a. Shadows of links. Let F be an oriented closed connected sur-
face and let p: N — F be an oriented circle bundle over F. A link
K c N with components K,,---, K, is called generic (with respect
to p) if K is transversal to the fibers of p, and the immersed curves
p(K,), -+ ,p(K,) C F have only double transversal crossings. We will
associate with such a generic link K a certain integral shadow on F
whose underlying family of curves is the family {p(X,),---, p(K,,)}.
This shadow will be denoted by s(K) and called the shadow of K.

We need some preliminary constructions. We assume that the circle

S'={zeC||z|]=1}

freely acts on N so that the orbits of the action coincide with the fibers
of p, and the orientation of each fiber is induced by the counterclockwise
orientation of .S ' In particular, —1 € S! acts as a free involution on N
transforming each point x € N into the “opposite”point (—1)x. Let N’
be the quotient 3-manifold N/(—1). We have the commutative diagram

N &4 N

PN\ S0
F

where g is the projection N — N/(—1), and p’ is the oriented circle fiber
bundle over F induced by p. The projection ¢ maps each fiber of p
onto a fiber of p’ as a two-sheeted covering of degree +2.

Let us call an isotopy of a link in N vertical if during this isotopy each
point of the link moves along its S'-orbit. In particular, vertically isotopic
links have the same projection in F .

It is clear that each generic link X ¢ N may be vertically isotoped to a
generic link L such that the following condition (x) holds:

(*) any two distinct points of L which lie over the same crossing point
of p(L) = p(K) are opposite to each other.

The set g(L) is obtained from L by identification of the opposite
points which are exactly the points projecting to the same point in F.
Therefore the mapping p’ projects the graph g(L) bijectively onto p(L) =
Dp(K) . Denote the inverse bijection
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p(K) = q(L)c N’

by r. Clearly r is a section of p’ over p(K).

Cut out F along p(K). Let X be one of the resulting pieces. Clearly,
X is a connected 2-manifold with X # <&, and IntX is a connected
component of F\p(K). The orientation of F induces an orientation in
X . The bundle p reduces to an oriented circle bundle over X denoted by
Py - The section r of p’ induces a section of p}, over X . Denote this
latter section by 7. There is an obvious obstruction to extending # over
X . Namely, the bundle p;, is actually trivial so that we may identify it
with the projection S'xX - X. Composing the section 7: X — S'x8Xx
with the projection S "'« X - S' we get a mapping 80X — S', whose
degree, computed with respect to the orientation of dX induced by that
of X, is the obstruction mentioned above. Denote this degree by o, .
The integer o, does not depend on the choice of trivialization of pf‘,:
two such choices differ by an element of H ](X ), and all these elements
annihilate the fundamental class [0X] = 6[X, 0 X]. The number o also
does not depend on the choice of the link L, since any two such links may
be related by a vertical isotopy in the class of generic links satisfying ().

Let 8, be the number of corners of the region X . (A corner of a region
is shaded in Figure 8.) In other words, f, isthe number of crossing points
of p(K) incident to X (possibly with multiplicity). It is easy to see that
the integer B, — a, is always even. We define the gleam of X to be
(By —ay)/2. This gives us the integral shadow s(K). The sum of the
numbers f,/2 over all regions X equals twice the number of crossing
points of p(K), and therefore the total gleam of S(K) equals the sum of
the numbers —a,/2 over all regions X . The latter sum may be easily
identified with —x(p')/2 = —x(p), where x(¢) is the Euler number of
the 2-dimensional real vector bundle over F associated with the oriented
circle bundle &.

FIGURE 8
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Lemma 3.1. If two generic links in N are isotopic, then their shadows
are also isotopic.

This lemma enables us to associate with every link K C N a certain
shlink S(K) on F. Namely, take an arbitrary generic link K’ in F
isotopic to K, and define S(K) to be the shlink presented by the shadow
s(K'). Lemma 3.1 ensures that S(K) does not depend on the choice of
K'. The total gleam of S(K) is equal to —x(p).

The constructions of the present section appliedto N = F xS ! general-
ize the constructions of §2.a. Indeed, let us imbed F x [0, 1] into F xS !
by the mapping

f, ) (f,e™ : Fx[0, 1] - F x S".

Each link diagram & on F represents a link, say, K, C F x [0, 1]
which is obviously a generic link in F x S'. It is easy to see that the
shadows s(Z) and s(Kg ) coincide. Therefore, for any link K C F x
[0,1] C F x S' the definitions of the shlink S(K) given in §2.a and in
the present section are equivalent. Note that the Euler number of the
projection F x S' S F is equal to zero.

b. Proof of Lemma 3.1. Let B bea 2-discandlet Bx[0, I[]C N bea
cylinder lying in N . We will say that this cylinder is normal if the fibers of
p either do not intersect this cylinder or intersect it in vertical segments
b x [0, 1] with b € B. For any normal cylinder B x [0, 1] C N the
projection p maps B = B x 0 homeomorphically onto a disc in F whose
preimage p_l(p(B)) is a solid torus containing B x0 as a meridianal disc.

An arbitrary isotopy of a link in N may be presented as a composition
of small isotopies which proceed entirely inside normal cylinders in N .
This fact easily implies that any two isotopic generic links in N may be
related by a sequence of (i) vertical isotopies, (ii) local isotopies, each of
which proceeds inside a normal cylinder B x[0, 1] C N such that the link
under isotopy never meets the cylinder

P~ (p(B x 0)\(B x [0, 1]).

The vertical isotopies do not change the shadow of the generic link. The
part of the link lying inside a normal cylinder B x [0, 1] with (possibly)
some ends in B x[0, 1] may always be represented by a tangle diagram on
the disc B with the ends in 8 B . The local isotopies of type (ii) proceeding
inside Bx[0, 1] may be presented as compositions of Reidemeister moves
on such tangle diagrams with fixed ends in 8B. As in §2.a, when one
applies the moves Q1-Q3 to diagrams in B, the corresponding shadows
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on F are changed respectively by S1-S3. This implies the claim of the
lemma.

c. Action of H,(F) on the set of links. If the genus of F is positive,
then there is no chance to reconstruct a link in N from its shadow. For
example, let N=F x § ! and let K be a knotin N , which projects to a
simple closed curve y in F with the connected complement F\y. The
shadow of K is formed by the loop y with the zero gleam of the only
region F\y. Let the knot K in N be obtained from K by replacing a
small segment a on K by the arc o’ in p(a) x S' shown in Figure 9.
Clearly, the homology classes of K and K’ in H(N; Z/2Z) differ, and
therefore K " is not isotopic to K . On the other hand, K’ projects to the
same loop y an the gleam of the only region F\y of s(K') equals zero.
Indeed, the glued in arc o’ contributes twice to the gleam of F\y with
different signs.

To handle this phenomenon we introduce an action of the group H,(F)
= H|(F ; Z) on the set of isotopy classes of links in N . (This construction
works for an arbitrary oriented surface F, not necessarily closed.)

Let K be a generic link in N and let § be an oriented closed (possibly
self-intersecting) curve on F, which presents a class [8] € H,(F). De-
forming S, if necessary, we may assume that # intersects p(K) transver-
sally in a finite number of points distinct from the crossing points of p(K).
Let o = [a, b] be a small segment of K such that p(a) contains exactly
one intersection point ¢ of p(K) and #. Assume that p(a) lies to the
left of B and p(b) lies to the right of B . Replace a by the arc o' shown
in Figure 9. We will call this transformation of K a fiber-fusion over
the “blowing up” point ¢. (Note that to apply a fiber-fusion to K we
must choose a noncrossing point of p(K) to be blowed up and an orien-
tation of p(K) at this point.) Applying fiber-fusion to K over all points of

FIGURE 9
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p(K)N B we get a new generic link K’ with p(K’) = p(K). Note that
the shadows of K and K’ coincide. Indeed, each time when B enters a
region X of s(K) it must wander inside the region and finally leave it so
that the contributions of the newly inserted arcs to the gleam of X cancel
with each other. Thus, s(K') = s(K).

Let us show that the isotopy type of the link K’ depends only on the
isotopy type of K and the homology class of f. Note first that the isotopy
type of K’ is not changed when we deform g through a crossing of p(K) .
Also, if f is a product of a loop 8’ and a commutator of two other loops,
then B and ﬂ' act on K in the same way. This shows that the isotopy
type of K’ depends only on K and the homology class [8] € H\(F).
When we deform K inside a small ball in N, we may shift  out of the
projection of this ball in F so that the action of S does not interfere with
the deformation of K . This implies that the isotopy class of K’ depends
only on the isotopy class of K and the homology class of .

To sum up, we have constructed an action of H (F) on the set of
isotopy types of links in N so that links belonging to one H,(F)-orbit
always produce the same shlinks on F .

Theroem 3.2. Let F be an oriented closed surface and let p: N — F
be an oriented circle bundle over F. Then the mapping which associates
with each link K C N its shlink S(K) on F establishes a bijective corre-
spondence between the set of isotopy types of links in N modulo the action
of H\(F) and the set of integral shlinks on F with total gleam —x(p).

Theorem 3.2 will be proven in subsection e. Theorem 3.2 gives a 2-
dimensional reduction of the theory of links in N, considered up to iso-
topy and the action of H,(F).

Since the group H, (S2) is trivial we get the following corollary.

Corollary 3.3. Let p: N — S? be an oriented circle bundle over the
oriented 2-sphere. Then the mapping K — S(K) establishes a bijective
correspondence between the set of isotopy types of links in N and the set of
integral shlinks on S* with total gleam —x(p).

Recall that the total spaces of circle bundles over S? are $2x S! , S 3 ,
RP? , and the lens spaces L(n, 1), n = 3,4,---. The corresponding
Euler numbers are respectively 0, +1, +2, and +n, where the indeter-
minacy in sign is due to two possible orientations of the circle bundles.
Corollary 3.3 completely reduces knot theory for these manifolds to a study
of shlinks on S°.

d. Proof of Theorem 2.1 modulo Theorem 3.2. We will deduce Theorem
2.1 from Theorem 3.2. Let p: N — S? be the (locally trivial) oriented
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circle bundle over S* with the Euler number 7. Such a bundle is known
to exist for each n € Z and to be unique up to bundle isomorphism. Note
that #,(N) = Z/|n|Z and that the |n|-sheeted (universal) covering space
of N is S°.

Let B x [0, 1] be a normal cylinder in N with respect to p (see sub-
section b). Clearly, the interior of this cylinder is homeomorphic to R>.
Denote by f the composition of an orientation preserving homeomor-
phism R’ — Int(B x [0, 1]) and the inclusion of Int(B x [0, 1]) into
N.

Each link K in R gives rise to the link f(K) in N. This produces
two integral shlinks on S?: the shlink S(K), (see §2.b) and the shlink
S(f(K)) defined in subsection a via the bundle mapping p: N — S?. Let
us show that

(3.1) S(K), = S(f(K)).

Let & be a diagram of K on R*. Its underlying family of loops divides
$* = R*uU {oc} into several “bounded” regions and one “unbounded”
region containing {occ}. The shlink S(K), is represented by the shadow

s(Z), on S? , where the symbol n means that the gleam of the unbounded
region has been increased by n so that the total gleam of s(Z), equals
n. Put the diagram & inside the disc B. This diagram specifies a link
L c B x[0, 1] c N which is clearly isotopic to f(K). The shadow s(L)
of L (in the sense of subsection a) has the same underlying family of loops
as 5(Z), the same gleams of bounded regions (cf. subsection a), and the
same total gleam as $(Z), . Therefore, s(L) = s(Z), . This yields (3.1).

Let us prove injectivity of the mapping K — S(K),. If S(K), =
S(K')n , then equality (3.1) and Corollary 3.3 imply that the links f(K)
and f(K') are isotopic in N . Lifting an isotopy between these links to
the universal covering of N we get an isotopy between K and K’ in s3.
If n=+1,then N =S and each link in N is isotopic to f(K) for a
certain link K in R’. Therefore the surjectivity in Corollary 3.3 gives the
surjectivity in Theorem 2.1.

e. Proof of Theorem 3.2. Let us first show that each integral shlink S
on F with total gleam —x(p) corresponds to a certain link in N . This
will imply surjectivity in the statement of the theorem. Let s be a shadow
on F representing 5. Applying the move (SZ)‘l to s we may guarantee
that all regions of S are discs. Thus, s gives rise to a CW-decomposition
of F whose O-cells are crossing points of s, 1-cells are edges of s (§1.a),
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and 2-cells are regions of s. Orient the 1-cells of this cell-decomposition
in an arbitrary way.

We shall construct a generic link in N whose shadow on F equals
s. Clearly there exists a generic link K C N which projects onto the
underlying family of loops of s so that the shadows s and s(K) have the
same underlying families of curves and the same regions. For any region
X of s we define J, to be the difference between the gleams of X with
respect to s and s(K). The sum of the integers J, over all regions X of
s is equal to x(p) — x(p) = 0. The formula X + J, defines an integral
2-cocycle of our cell-decomposition which presents zero cohomology class
in HZ(F ; Z) = Z. Therefore this cocycle is the coboundary of a certain
l-cochain d — v,; € Z, where d runs over the (oriented) 1-cells of our
cell-decomposition of F. Changing the orientations of 1-cells, if necessary,
we may assume that v, > 0 for each l-cell d. Let us change K over each
l-cell d by applying the fiber-fusion v, times to the segment of K which
lies over d. This gives a new generic link in N whose shadow is easily
seen to coincide with s.

Let us show now that if two generic links K, K’ in N produce the
same shadow on F, then the isotopy classes of K, K " are transformed
into each other by the action of H(F). Since p(K) = p(K'), we may
vertically deform K’ so that the parts of K, K’ which lie over a small
neighborhood of the set of crossing points of p(K) are the same. Let d
be an edge of p(K). Since K and K’ coincide over the ends of d, one
may obtain the arc of K’ lying over d from the arc of K lying over d
via several fiber-fusions corresponding to a certain orientation of 4 and
fulfilled over certain “blowing-up” points of d. If X is a region of the
shadow s(K) = s(K'), then the gleams of X with respect to s(K) and
s(K') are the same. Therefore, when we run along the edges of p(K)
which bound X, the total number of these fiber-fusions (with the signs
determined by the orientations) must be equal to zero. Thus we may
always connect the blowing-up points of these edges by oriented arcs inside
X . The union of these arcs over all regions X gives us a system of oriented
loops on F. The homology class of this system of loops transforms the
isotopy type of K into that of K'.

To finish the proof we have to show that any two generic links in N
with isotopic shadows on F are isotopic in N up to the action of H (F).
Observe first that if a shadow s is obtained from the shadow s(L) of a
link L C N by a single move Si or (Si)_' , I =1,2,3, then there
exists a link L' ¢ N isotopic to L such that s = s(L'). Indeed, over the
part of s(L) which is being changed by the move, L may be vertically
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deformed to lie in a normal cylinder so that the corresponding Reidemeis-
ter move Qi or (Qi)_l is applicable to L inside this cylinder. This latter
move produces the link L' with s(L') = s. (In the case of (S2)~' some
additional fiber-fusions may be necessary to get the right L'.)

If the shadows of two generic links K, K’ C N are isotopic, then the
preceding observation shows that K is isotopic to a link, say, K" with
s(K") = s(K'). Thus, the isotopy classes of K’ and K" lie on the same
orbit of the H,(F)-action. This implies injectivity in the statement of
Theorem 3.2.

f. Remarks. 1. The proof of Theorem 3.2 shows that each integral
shadow on F with total gleam —y(p) is the shadow of a certain generic
link in N . ,

2. It would be of interest to generalize the technique of the paper to the
case of links in Seifert fibered 3-manifolds and shadows on 2-dimensional
orbifolds.

3. It is easy to transfer the results of subsection a and Theorem 3.2 to
the case of compact F with 9F # &. (Note that in this case the bundle
p: N — F is automatically isomorphic to the projection F x s' > F J)
One should assume from the very beginning that there is some fixed section
of p over AF . Similar ideas work for noncompact F though the role of
OF should be played by the union of ends of F.

4. Framed links and framed shlinks

a. Framed links. The notion of framed link is a well-known elaborated
version of the notion of link. A framed link in a 3-manifold N is a link
K c N equipped with a nonsingular normal vector field on K considered
up to homotopy in the class of nonsingular normal vector fields on K.
The notion of isotopy readily extends to framed links. Note that sublinks
of framed links are also framed.

It is easy to visualize framed links in the Euclidean 3-space R® or in
the 3-sphere s?=RuU {o0} . Indeed, each link diagram on R’ actually
presents a framed link: one provides the diagram with the unit vector
field which looks upwards. It is well known that each framed link in s3
is isotopic to a framed link presented by some diagram on R’. (Just
represent the link by any diagram, and then insert in the diagram a certain
number of local twists, shown in Figure 10 (next page), to gain the correct
framing.) It is also well known that two link diagrams on R’ present
isotopic framed links if and only if they may be obtained from each other
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by the moves Q2, Q3, Q4 (see Figures 6 and 11) and their inverses.
Similar assertions hold true for framed links in the cylinder F x [0, 1]
with the only difference that instead of diagrams on R’ one must speak
of diagrams on F .

b. Framed shlinks. We define two local moves on shadows (see Figure
12). Two shadows (over an abelian group 4 D Z) on the surface F
are called regularly isotopic if they may be transformed into each other
by a sequence of moves S2, S3, S4 and their inverses. We claim that
regularly isotopic shadows are isotopic. This follows from the fact that S4
is a composition of S1 and S1_, and S1_ is a composition of (S l)—1 R
(§2)”", S$3, and S2 (see Figure 3).

Regular isotopy classes of shadows on F (over the group A4) will be
called framed shlinks on F over 4. The claim above implies that there
is the framing forgetting operation which associates the underlying shlink
with each framed shlink. In particular, this enables us to speak of the total
gleam of the framed shlink.

The definitions and results of §1 are easily transferred to the case of
framed shlinks. In particular, one may speak of integral, rational, real,
complex, and quaternionic framed shlinks. Subshlinks of framed shlinks
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FIGURE 12

are also framed shlinks. Each framed shlink K on R’ with total gleam
k extends to a framed shlink K, on F with the gleam k +a (for any
ac ).

Note that if two link diagrams &', @’ on F are related by the move
Q4 , then their shadows s(2), s(2') are related by the move S4. This
implies that any link diagrams on F, presenting isotopic framed links in
f xR, have regularly isotopic shadows. In this way each framed link K
in FxR determines a framed shlink S(K) on F . Of course, the passage
from K to S(K) commutes with both the framing forgetting operation
and the passage to sublinks. The total gleam of S(K) equals zero.

Theorem 2.1 and Corollaries 2.2, 2.3 may be directly transferred to the
present setting with the only difference that instead of links and shlinks
one should speak of framed links and framed shlinks. The proof of The-
orem 2.1 also works in the framed setting with the obvious changes. For
completeness we state here the analogue of Corollary 2.2 for framed links.

Theorem 4.1. The formula K — S(K), establishes a bijective corre-
spondence between the set of isotopy types of framed links in R® and the
set of integral framed shlinks on S 2 with total gleam 1.

c. Framed links in S'-bundles and their shlinks. Let F be an oriented
closed surface and let p: N — F be an oriented circle bundle over F.
Each framed link K C N induces a framed shlink S(K) on F as follows.
It is easy to see that K is isotopic to a framed generic link X such that
the framing of X is presented by the unit vector field tangent to the fibers
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of p and cooriented with the fibers. (One first deforms K into some
framed generic link and then inserts local twists, as in Figure 10, to fulfill
the condition on the framing.) The framed shlink S(K) is defined to be
the regular isotopy type of the shadow s(K). Independence of S(K) on
the choice of K is proved in the same way as Lemma 3.1 though instead
of Q1 and S1 one must use Q4 and S4. The transformation X — S(K)
commutes with both the forgetting of framing and the passage to sublinks.

In the same fashion as in §3 we define the action of H,(F) on the set of
isotopy types of framed links in N . The only difference is that the role of
generic links is played by the framed generic links with the framing tangent
to the fibers of p and cooriented with the fibers. Note that forgetting of
the framing is H,(F)-equivariant.

The following are the analogues of Theorem 3.2 and Corollary 3.3.

Theorem 4.2. The formula K — S(K) establishes a bijective corre-
spondence between the set of isotopy types of framed links in N modulo
the action of H,(F) and the set of framed integral shlinks on F with total
gleam —x(p).

The proof of this theorem is similar to the proof of Theorem 3.2.

Corollary 4.3. Let p: N — S* be an oriented circle bundle over the
oriented 2-sphere. Then the formula K — S(K) establishes a bijective
correspondence between isotopy types of framed links in N and framed
integral shlinks on S* with total gleam —x(p).

5. IRF-models and isotopy invariants of colored shadows

a. Colored links and shlinks. Fix a set I, the set of colors. An I-
coloring (or, briefly, a coloring) of a link K in a 3-manifold is a function
which associates with each component of X an element of I, called the
color of the component. By an isotopy of colored links we will mean
isotopy which preserves the colors of all components. Similar definitions
are applied to framed links.

A coloring of a shadow s is a function which associates with each un-
derlying loop of s an element of 7, the color of the loop. By a (regular)
isotopy of colored shadows we will mean a (regular) isotopy which pre-
serves the colors of all underlying loops. A colored shlink is an isotopy
class of colored shadows. Similarly, a colored framed shlink is a regular
isotopy type of colored shadows.

If K is a colored (framed) link in the total space of an oriented circle
bundle over the surface F, then the coloring of K in the obvious way
descends to S(K) so that S(K) becomes a colored (framed) shlink on F .
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b. The initial data. In this subsection we introduce some “initial data”
which will be used to define IRF-models for colored complex shlinks.
Essentially, our definition of the initial data is an axiomatization of certain
properties of quantum 6j-symbols (see [6]).

Let I be a finite set. Let u, v be two functions / — C which associate
with each i € I complex numbers u;, v; with v, # 0 for all i. Assume
that we have fixed a certain set of triples i, j, k € I, called admissible
triples, and also that any permutation of an admissible triple produces
again an admissible triple.

An ordered 6-tuple (i, j, k,l,m,n)el ® will be called admissible if
the triples (i, j, k), (k, !/, m), (m,n,i),and (j, [, n) are admissible.
We assume that with each admissible 6-tuple (i, j, k, !/, m, n) one as-
sociates a complex number, called the symbol of this tuple and denoted
by
I j k
! m n{’

The symbol is supposed to satisfy the following symmetry identity:

i j k| _ | n j

(.1 I m n|" |i kK m|’

This completes the definition of initial data.

We will say that the initial data satisfy condition (*) if for any j,, j,,
Jy» J4» Js € I with admissible triples (j,, jy, j,) and (j,, j,, js) we
have

Jp Jz U

‘ A Js o da|
"jl Js Ja

5.2 V. 1 4
(3.2) Ja Jo Js

Jel

anda forany j|3j2"" ,jGEI with j6¢j4s

(5.3) >,

JEI

s
iy Js s

N

13 e =0,
Jo Js

Here and below it is understood that we sum up only those expressions
which are defined, i.e, which include the symbols of admissible 6-tuples
only.

We will say that the initial data satisfy condition (x*) if for any j,, Jj,,
Jy»a,b,c,d,eel wehave
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(5.4)
Jpo@ J\|Js J €| |)s @ U
;vjexp(ub+ud+uf+uj) jpo¢c bl ljy d ci|j, e J
- Js b j . J; @ S . J2 Joe
__Zvjexp(ua+uc+ue+uj) o d ¢l \jy J bl |j 4 Jj|

JEI

We will say that the initial data satisfy condition (xxx) if for each i € 1

there exists a nonzero complex number Q, such that for any admissible
triple (i, a, b)

i j b

(5.5) Zvjexp(—-ua—uj+2ub)’ i a b =0,

jel

i j b -1

(5.6) gvjexp(ua+uj—2ub)- Ll oal=ot

j

An example of initial data satisfying these conditions will be given in

§6.

¢. The state model. Fix the initial data I, u,v--- as described in
subsection b. Let s be an I-colored complex shadow on the oriented
surface F . By an area-coloring of s we will mean an arbitrary mapping
from the set of regions of s into the set /. An area-coloring of s is
called admissible if for any edge d of s the colors of two regions of s,
adjacent to d, and the (fixed) color of the loop of s, containing d , make
an admissible triple. Denote the set of admissible area-colorings of s by
ad(s).

Let e ,---, e, be the crossing points of s. Each point e, is an inter-
section point of two (possibly coinciding) loops of s with the colors, say,
i and /. Each admissible area-coloring # € ad(s) provides us with the
colors j, k, m, n of the four regions of s incident to e, (see Figure 13).
Put
i j k
I m n

Note that admissibility of # ensures admissibility of the 6-tuple (i, j,
k,1, m,n). The equalities (5.1) imply that |e]| is correctly defined.

Let X,, -, X , bethe regionsof 5. Let x,, x,,and z, be respectively
the gleam, the Euler characteristic, and the number of corners (or edges)
of the region X,. Let x, = x, — z,/2 be the modified gleam of X, (cf.
Remark e.2 of §1). For each 5 € ad(s) set

no_
le, 1= e C.

q U
(5.7) Isl, = H €| x Hl“”nw»)” exp(2ty 5 X,))-
r= =
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FIGURE 13

Finally, our state sum on s is

(5.8) Isl= > Isl,eC.

n€ad(s)

There is an equivalent but sometimes more convenient expression for
|s|,,. Namely, for each i € I denote by x(#, i) the Euler characteristic
of the union of the (open) regions of s whose color under the coloring 7
equals /. Denote by x'(n, i) the sum of modified gleams of these regions.
It is obvious that

9 .
Isl, = TTle]t x [T} ™" exp(2u,x’'(n, ).
r=1 i€l

Theorem 5.1. Let s be an I-colored complex shadow on the oriented
surface F . If the initial data satisfy conditions (x) and (xx), then |s| is
invariant under the color-preserving moves S2 and S3. If the initial data
satisfy the condition (x x x), then for any colored shadow s, (resp. s_),
obtained from s by a single application of (Sl)_1 (resp. (Sl_)_l) toa
component of s with the color i, we have

Is,| = Qyls| (resp. Is_| = @ Is]).

Corollary 5.2. If the initial data satisfy condition (x x *), then |s| is
invariant under the color-preserving move S4.

Theorem 5.1 and its corollary show that each initial data which satisfy
conditions (*), (**), and (= *) give rise to a regular isotopy invariant
of colored complex shadows on any oriented surface F . In other words
we have a C-valued invariant of colored framed complex shlinks on F .
This produces via the constructions of §§2-4 a C-valued isotopy invariant
of colored framed links in F x R and in S'-bundles over F.
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Note that, as follows from Theorem 5.1, a single twist of the framing
of a link along a component of color / in the positive (resp. negative)
direction leads to multiplication of the invariant by Q, (resp. by O, l).

d. Proof of Theorem 5.1. First we redraw the moves S1, S1_, S2,
S§3 with the modified gleams (see Figure 14 where «, 8,7,d, ¢, u are
the modified gleams, and j,, j,, j;, i are the colors of loops).

Let us prove the invariance of |s| under the move S2. Let the shadow
s’ be obtained from the shadow s by a single application of S2. Let X,
X,, X, be the regions of s, marked respectively by 0, 8,6 in Figure 14.

[:s

B+1
i
82
a Y — o |B+8 | v
J1 J2 7 J2
'Y"‘l 1
B 2 B+5| 7
2
1 S3
oty A §
1
o =
T+
Y lesd A
J J J Hr2
! 2 3 N J2 J3

FiGURE 14
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These regions give rise to a region ¥ of s, marked by # + ¢ in Figure
14. Clearly,

2(X)=2(X,UX,)—x(Y)=1,

which corresponds to the appearance of v ; and v;, in condition (x).
Fix the colors of all regions of s except X, and vary the color j of
X . The convenient notation for the colors of the regions of s involved in
Figure 14 is the following: the colors of regions marked by a, 8, y, § are
respectively j,, j,, js, js- Equality (5.3) ensures that if the colors j,, Jjg
of the regions X,, X, are distinct, then the sum of the expressions |s|,
overall j €1 is equal to zero. If j, = j, then equality (5.2) ensures that
the same sum equals |s'[q , where 7 is the area-coloring of s’ induced by
the coloring of the regions of s distinct from X . Summing up all these
equalities we get |s| = |5].

The other claims of Theorem 5.1 are proved along the same lines. The
convenient notation for the colors of regions which establishes the exact
correspondence with the conditions (xx) and (* % x) is the following:
the colors of regions marked by o, 8,7,9d,¢, 1, and =F% should be
respectively denoted by a, b,c,d, e, f,and j.

6. Quantum invariants of colored shlinks

a. The initial data associated with U (sl,). Representation theory for
the Hopf algebra Uq(slz(C)) naturally leads to the so-called quantum 6j-
symbols (or (g—6j)-symbols) which essentially satisfy our conditions (x),
(#x), and (**x). We describe the initial data obtained in this way, refer-
ring to [6] for details on (g — 6j)-symbols.

Fix an integer r > 3 and denote by I the set {0,1/2,1,---,
(r —3)/2, (r — 2)/2}. Fix a primitive complex root Q of 1 of degree
4r, so that Q = exp(nv/—1h/2r) with h € Z. For each integer n > 1 put

2n —2n
Q —

m="g—o= ¥

and
[n]! = [n][n — 1]---[2][1].
In particular, [1]! =[1] = 1. Putalso [0]! = [0] = 1. Note that [#]! =0
for n>r and [n]! #0 for n<r.
A triple (i, j, k) e I’ is admissible if i+j+k isaninteger, i+j+k <
r—2,and i< j+k, j<i+k, k<i+j. For each admissible triple
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i,7,k set

Aj) = ([i+j —kWi—j+ k)i +J +k]!)1/2'
+j+k+1])
Here by the square root of a real number a we mean a'? >0ifa>0
and v=Tja'” if a<0.
Recall the notion of admissible 6-tuple (see §5.b). For any admissible
6-tuple (i,j,k,l,m,n)el ® one defines the Racah-Wigner 6j-symbol
which is computed as follows:

i k\RY
{l m n }
= A(ijk)A(imn)A(ljn)A(Imk)
Dz + 1z —i—j—k)[z—i—m—n]!

‘z=l-j-—nz=-l-m-kli+j+l+m-2z]
li+k+l+n—zPj+k+m+n-z]}"".

Here z runs over nonnegative integers such that all expressions in the
square brackets are nonnegative.

Set
i j k
I m n

A . . RW
— \/j—z(z+j+k+1+m+n) { [ | k } '

! m n

This number is either real or purely imaginary.
We have the following obvious symmetry relations:

k

_J i i m n
m Il n

I j k

i j k
| m n

ik oj|_

(6.1 I nom

b

which imply (5.1).
For j € I we put

U, = V=Lj(l-h(+1r7Y), v = (=)Y[2j + 1),

(Recall that Q = exp(nv/—1k/2r).) This completes the description of the
initial data.

Theorem 6.1. The initial data (I, u,v,---) described above satisfy
conditions (x) (xx), and (xxx) with Q, = (-D¥Q¥ Y for jel.



SHADOW LINKS AND FACE MODELS OF STATISTICAL MECHANICS 63

The state sum (5.8) defined via the initial data described above will be
denoted by J (Q). Theorems 5.1 and 6.1 imply that the complex number
J.(Q) is preserved under regular isotopies of s and gives in this way a
C-valued invanant of framed shlinks. If S is the framed colored shlink
presented by a colored shadow s, then J (Q) does not depend on the
choice of s, and so we may define

J5(Q) = J(Q).

b. Proof of Theorem 6.1. Theorem 6.1 basically follows from equalities
6.16, 6.19, 6.20 in [6]. These equalities are formulated in terms of (g—6j)-
symbols which are related to the Racah-Wigner 6j-symbols by the formula

i j k)l _ 1/2 /2, \m+2k—i=j [ 1] 2
{l m n}_[2k+1] [2n+1177(=1) {l m n} ,

which implies that

(6.2) {; r’n :}=\/—12k+2"[2k+1]l/2[2n+1]1/2

i j k
! m n|’

Substituting this in 6.16, 6.19, and 6.20 of [6] one gets the desired
conditions (*), (xx), and (**x). However, one should be cautious since
[6] contains inaccuracies. There are in particular wrong signs in 6.19. The
correction leads to the following version of 6.19: ’

Z(_ 1 )—a+b+g-t-fq(c,z —C—Cg—¢)/2
gel

fi» a g\ [J; &8 el[J; a f
jy ¢ b Jj, d ¢ J, € &
- Z(_ 1)—d+c+g+eq(cd—cc—cg—c,)/z

g€l
.{1'3 b g}{f; a f}{jz f e}
jh, d c¢Jli g bJlj d g}’

where g = Q4 and c; = i(i + 1). Substituting

(6.3) (—1)'q™%"* = exp(u,)

and (6.2), and replacing g by j, we get (5.4). There are also wrong
signs in the formulas 6.10, 6.11, and 6.14 of [6], the correct signs being
respectively

(_l)jl“jz_jnz , (_1)j1+jz_j|z , (_1)j1_j2‘j12_
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This leads to the following correct version of 6.20: for any ¢ = +1 and
any admissible triple (a, b, i) e[l 3

Z( le(j a) e(c +C; —Zcb)/2[2j+ 1] {i J b}
< [26+111i a b

= ((_I)Ziqc,))s — ((_1)21‘Q4i(i+l))e — Q::

Substituting (6.2) and (6.3), we get (5.5) and (5.6).

Note also that the paper [6] is concerned mostly with unrestricted IRF-
models corresponding to generic ¢ ; for parallel results on the restricted
models corresponding to roots of 1 see the last section of [6].

c. Examples. 1. Let y be a simple (imbedded) closed curve on the
oriented surface F such that the complement of y in F is connected.
Provide y with a color j € I and provide the complement of y with a
gleam x € C. This gives us a colored shadow s on F. If j is a half-
integer but not an integer, then s has no admissible area-colorings and
therefore |s] =0. If j € ZN I, then one easily computes that

Is| = Z 'Uf(F\r) exp(2xu;),
25325
where yx is the Euler characteristic.

2. Let y be a simple closed curve in F which splits F into two surfaces
F, and F,. Equip y with the color 1/2, and equip the regions Int F,
Int F, with the gleams x, y € C. This gives us a colored shadow s on F
with the only underlying closed curve y and the total gleam x + y. The
admissible area-colorings of s associate certain i € I with IntF,, and
either i —1/2 or i+ 1/2 with IntF,. Thus,

s = > vivk /2 €XD(2XU; + 2y, )

i€l

i#0

+ E ’Ux"Um/z exp(2xu; + 2y“i+1/2)’

r=2)/2
where x, = x(F,) and x, = x(F,).
Letustake r =3 and Q = exp(zv—1/6). Then I = {0, 1/2}, vy=1,

vy, = —[21= —(@*+Q7Y) = -1, uy =0, and u,,, = nv/~1/4. One
easily computes

(6.4) Is| = (=1)** exp(mv—1x/2) + (1) exp(nv=1y/2).
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This complex number |s| is invariant under regular isotopies. The same
number considered up to multiplication by integral powers of Q, 2=

—Q® = —v/=T is invariant under arbitrary isotopies.

This example shows that on any oriented surface F there exist real
shadows nonisotopic to rational shadows. Indeed, when we vary x and
y in R, the number |s| runs over a noncountable set, whereas the set
of rational shlinks is easily seen to be countable. Similarly, there exist
complex shadows nonisotopic to real shadows (cf. also Remark f.1 below).

d. A recurrent formula for J (Q). In this subsection we present a re-
current formula which may be used to compute J(Q). This formula is
applicable in the case when certain components of the shadow s are col-
ored by 1/2 € I'. In the case where all components are colored by 1/2,
the formula enables one to reduce the computation of J (Q) to the case
where s consists of simple disjoint loops on F . The results of this sub-
section are closely related to the Kauffman model for the Jones polynomial
of links; this relationship will be discussed in subsection e.

Let us say that three /-colored complex shadows s, s, ,s_ on F form
a splitting triple if there is a 2-disc B C F such that s, s _, s_ coincide
outside B and look as in Figure 15 inside B, where the colors of the
components of s, s, ,s_ which meet B are equal to 1/2 € I. Note that
the symbols x,y,z,t,y+t—-2, y—1, t—1, x+ z in Figure 15
represent the (nonmodified) gleams of the corresponding regions (under
the convention exhibited in §1.a).

The local picture of a splitting triple with modified gleams (cf. Remark
e.2 of §1) is represented in Figure 16 (next page). This picture reveals the
skew-symmetry between s, and s_.

Theorem 6.2. If s,s,,s_ is a splitting triple of I-colored complex
shadows on the oriented surface, then

(6.5) J(Q) =0QJ, (@) +Q7'J, ()
y=-1
x Jy+t-2 z ; x+2z
-1

FIGURE 15
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Proof. Let us first compute all symbols
l .
(6.6) 2 Sk
3 m n
with j, k, m, n € I. Applying the symmetry relations (6.1), if necessary,
we may assume that j < m < n and k < n. Admissibility of the triple
1/2, m, n implies that 1/2 + m + n € Z and therefore that m # n.
Hence m < n— 1/2. Admissibility of the triple 1/2, j, n implies that
j>n—1/2.Since j < m,wehave j=m=n-1/2. Also, admissibility
of the triple 1/2, j, k implies that
n>k>j-1/2=n-1

and k +n € Z. Therefore either Kk = n, or Kk = n—-1. Thus, up to

symmetries (6.1), the symbol (6.6) equals
1

L n-1 n+e
(6.7) S S
where € =0 or ¢ = —1. A direct computation shows that
68 |3 no3 on+e ={(“)zn_1[2”1—' ife=-1,
3 n—3 n (=020 ' 2n+ 117" ife=0.

(The sum in the definition of { }*¥ is reduced in this case to one nonzero
term corresponding to z = 2n.)

Let us prove (6.5).

Denote the regions of s marked by x,y,z,t by X,Y,Z, T re-
spectively. Let 5 be an admissible area-coloring of s. There are six
possibilities for the #n-colors of X, Y, Z, T given in the following table,
in which 7 is an element of I:

In the cases I, II the area-coloring 7 in the obvious way determines an
area-coloring 7, of s_ and, as we will show,

(6.9) sl, = Qls,,
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)| II I Iv \' VI
X|n-1 n n-itn-1n-1 n
Y| n-3yn-3 n n-1 n n-1
z n n—-ln-in-in-1 n
Tin-in-4in-1 n n n-1%

Similarly, in the cases III, IV the area-coloring # determines an area-
coloring n_ of s_, and we have

(6.10) Isly = Q7 'Is_,._-

In the cases V, VI the coloring # determines both an area-coloring 7,
of s, and an area-coloring 7_ of s_, and we have

(6.11) Isl, = Qls,1, +Qls_, -

Summing up (6.9), (6.10), (6.11) over all admissible area-colorings #
of s we get (6.5).

The equalities (6.9), (6.10), and (6.11) follow directly from the defini-
tions and the following equalities:

1 1
b= -1 _ o
I -1 n = Qv pexpu,_ +u, =2u, ),
«5— n—% n—1| 1,1 5
I n-1 n =Q U, €XP(2U,_y )y — Uy~ U, y),
1 1
3 - n -1 -1, -1
li n—E n =(Quv, +Q v, ) exp(2u,_, ), —2u,),
2 2
1 1
5 NH—35 R -1 -1 -1
1 n—i ol = QU1+ Q vy, Yexpu, = 2u, ).
2 2

All these formulas follow directly from (6.8). Actually, the second and
fourth formulas are obtained respectively from the first and third ones by
complex conjugation. This completes the proof of the theorem.

e. Relation to the Jones polynomial. V. Jones [3] introduced for each
oriented link X ¢ R’ a polynomial V,(f) € Z[vZ, v7 ']. Kauffman [5]
introduced a version L (¢) of this polynomial which is defined for every
framed link K c R>. If the link X is both oriented and framed, then
L ()= st VK(I4) , where the integer a is determined by the framing and
the linking coefficients of the components of X, and 6 = —(t2 +172 ).
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(- X

FIGURE 17

The polynomial L, (and its value for each specified 7) may be char-
acterized by the following three properties: (i) if a diagram of a framed
link K’ ¢ R® is obtained from a diagram of a framed link K C R? by
inserting one positive (resp. negative) twist as in Figure 10, then

Lo (t)= L (1) (resp. Lp(f) = =t L (1))

(i) if three framed links K, K _,K_ C S3 are represented by link
diagrams in the plane which coincide outside some disc and look as in
Figure 17 inside the disc, then

Lty =tL ()+ 'L (0);

(iii) if K is a trivial knot in R® with the framing orthogonal to R,
then L (f)=4.

Put
o= 3 [2i + 17 exp(2u,).

i€l

For example, if r =3 and Q = exp(nv/—1/6), then ¢, =1+ v -1.

Theorem 6.3. Let K be a framed link in R, let S = S(K), be the
integral shlink on S corresponding to K (see §2.b), and provide all com-
ponents of S with the color 1/2 € I. Then

Js(Q) = CQLK(Q) >

where J4(Q) is the invariant of the colored shlink S defined in subsection
a, and Ly (Q) is the value of Ly (t) for t=Q.

Theorem 6.3 shows that (whenever ¢, # 0) one may regard the set
{J5(@)}, as an extension of the Jones polynomial to complex shlinks.

In subsection g we will considerably generalize Theorem 6.3, extending
it to colored framed links in R>.

Proof of Theorem 6.3. The mapping K — Jg(Q) with § = S(K),
satisfies properties (i), (ii) of the polynomial L, . This follows from the
equality Q, 2= —Q3 (cf. the statement of Theorem 6.1) and the fact that
Figure 15 is the shadow version of Figure 17. Thus J(Q) = cLg(Q) for
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a certain ¢ € C. One computes ¢ to be o applying the latter equality to
the trivial knot.

f. Remarks. 1. One may deduce from Theorems 6.1 and 6.3 that there
exist rational shadows on S° with total gleam 1 nonisotopic to integral
shadows. Indeed, these theorems imply that for each integral shadow s
on S? with total gleam 1, the number J(Q) must be a linear combi-
nation of 1, Q, Q2 PR Q‘"_l with integer coefficients. However, for
X, ¥y =1-—x € Q the expression (6.4), generally speaking, cannot be
presented as such an integral linear combinationof 1, @3, --- , Q“ with
Q = exp(nv—1/6).

2. An interesting question regarding the invariants {J (Q)} 0 of a col-
sred shadow s on F is whether the mapping Q — J(Q) extends continu-
susly to the unit circle or not. Theorem 6.3 shows that for integral shadows
on S? with total gleam 1 the answer is positive. One may show that the
answer is positive for arbitrary integral shadows on S? with nonzero to-
tal gleam. Moreover, the mapping Q — J(Q) is actually a polynomial
on Q. The proof of these claims appeals to quite a different technique
and will be presented elsewhere. The essential point is the existence (and
uniqueness) of the Jones-type polynomial for framed links in lens spaces.
For links in RP® such a polynomial has been recently constructed by Ju.
Drobotuchina and independently by J. Hoste and J. Przytycki.

g. Relation with invariants of colored links in R’. The Jones polyno-
mial was generalized by several authors to an invariant of colored framed
links in R’ (see for instance [9], [11] and references therein). The col-
ors are irreducible representations of a ribbon quasitriangular Hopf alge-
bra. In particular, with each primitive complex root Q of 1 of degree
4r one associates such a Hopf algebra over C, denoted somewhat abus-
sively by Uq(slz) , where ¢ = Q4 . There are canonical irreducible finite-
dimensional representations of Uq( sl,) indexed by the elements of the set
I=1{0,1/2,1,3/2,---,(r—2)/2}. Thus for each I-colored framed
link X ¢ R® we have a C-valued isotopy invariant of K denoted by
Jx(Q). (Actually one may show that the mapping Q — J(Q) is given
by a polynomial in Q, Q_l .) In particular, when all the components of
K are colored by 1/2 €I, then

Jx(Q) = Ly (Q),

where L is the Kauffman version of the Jones polynomial.
Theorem 6.4. Let K be an I-colored framed link in R?, and let S =
S(K), be the corresponding shlink on S2. Then
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Js(Q) = CQJK(Q)'

This theorem generalizes Theorem 6.3. It also shows that our invari-
ants of colored complex shlinks generalize the Jones-type invariants of
I-colored links in R*.

Proof of Theorem 6.4. The proof is based on the computation of J,(Q)
given in [6]. The computation goes as follows. Take a link diagram < in
R? which presents K. Deforming & , if necessary, we may assume that
2 lies in general position with respect to the second (vertical) coordinate
in R”. This means that this coordinate has a finite number of nondegen-
erate local minima and maxima on 2 . We may also assume that in each
crossing point of & the two branches of & are mutually orthogonal and
make the angle 45° with the horizontal and vertical lines in R?. Let n be
an admissible area-coloring of the shadow s(Z') on R?. With every local
extremum of the second coordinate on & and with every crossing point
of & we associate one of the following complex numbers, according to
the rule exhibited in Figure 18:

u—u . T |J3 I s
(A) exp(u; +u; —u;—u;)v; T, Jy b dpl’
(B) exp(-u, —u, +u,+u, )0 U, J3 Iy i
Ji3 Ji2 J Wods el j, J I ’

C) V=17, 77!,

jl2 -il

_2j2— ——1
(D) V=T ", 77!,

1
where _
7, = Vo1 [2i +1]'2,
J,» J3 are the (fixed) colors of the components of K, and j, j,, j,, Jj3
are the #-colors of the corresponding regions of §(Z). Clearly, ﬁf =v,.
Let |n| be the product of all these complex numbers associated with local

extrema and crossings of & . Let U be the only unbounded region of
s(Z) on R’ . Then for any i el

(6.12) R@= Y Il
n€ad(S(2))
n(U)=i
Three remarks are in order. First, formula (6.12) is stated in [6] only
for the case i = 0. However, the arguments of [6] work for all j € I.
Second, the numbers (A), (B) associated here with the crossings have been
associated in [6] with the mirror images of these crossings. This corrects
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v —~ D
J12
J1
FIGURE 18

IS(@)I |,, = exP(2u1)|5(9)01”~
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the uncommon definition of positive and negative crossings used in [6]
to define J,(Q). We follow the standard conventions used, say, in [1].
Third, we have incorporated here the corrections to the formulas of [11]
mentioned in subsection b.

The shadow $(Z) in R’ extends to the shadows s(Z )o and $(Z), in
S2. The latter two shadows differ only in the gleam of the region U =
UU{oo} which is larger by 1 for s(<Z), . The admissible area-colorings of
5(2), s(2),, and s(2), are the same. For each such coloring # with
n(U)=iel we have
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We shall prove that
2
(6.14) [s(2)l, = v; 1nl,

which together with (6.12) would imply the claim of the theorem:

IQ) =1s@)l=3 > [s(2)],

i€l nead(s(2))
n(0)=i
Q) -3 vl exp(2u,) = J(Q) 3121 + 11 exp(2u,).
iel i€l

To prove (6.14) we shall compare the definitions of |#| and |s(Z),| "
Each crossing point e, of & as in Figure 18 contributes the multiple

J3 Ji s
Jo T Jp
to both products. It follows directly from the definition of the shadow of
a diagram that the product of exponents exp(...), which are involved in
the expressions (A), (B) associated with the crossing points, over all these
points exactly equals the multiple

u
I1 exp(Zu”(X’)x,')

t=1

e"
ley| =

which appears in (5.7).

Each closed curve in R’ obviously has the same number of local max-
ima and minima with respect to the second coordinate. Therefore the
product of the expressions v—1 2 , V=1 %2 which appear in (C), (D)
equals 1.

It remains to compute the product of the multiples 7 j which appear in
(A), (B), (C), (D). Let X be a region of s(Z), and let / be the n-color of
X . Each crossing point of & lyingon X contributes either v, , or ﬁ," s
or 1to |n| (see Figure 19, where X is shaded). An elementary application
of the Morse theory implies that the product of these contributions equals

_21 x
v =1,

where xy = x(X) is the Euler characteristic of X if X is a bounded
region of s(2),and y = x(X) -2 if X = U U {oo}. Since i = #(T),
the product of the multiples 7 dlﬂ’ers from the corresponding term in

Is(Z),l by vi . This implies (6.14) and completes the proof of Theorem
6.4.
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FIGURE 19

7. Shadow 3-manifolds and topological quantum field theory

It is well known that closed oriented 3-manifolds may be described
in terms of framed links in S° and the Kirby-Fenn-Rourke moves on
these links (see [1]). One may invert this procedure and define shadow 3-
manifolds as the equivalence classes of framed shlinks modulo the shadow
version of the Kirby-Fenn-Rourke moves. Moreover, one may define
shadow 3-manifolds with boundary. The results of §6 show that the tech-
nique of [10] is applicable to shadow 3-manifolds. This technique produces
a “shadow” topological quantum field theory in dimension 3. The author
plans to explore this subject in more detail elsewhere.
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