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ON COMPOSITIONS OF ISOMETRIC IMMERSIONS

MARCOS DAJCZER & RUY TOJEIRO

The starting goal of this work was to understand local and global isomet-
ric immersions with low codimension of the rc-dimensional round sphere
Sn into Euclidean space Rn+P. For codimension p = 2 and dimension
n > 4, this problem was considered by O'Neill [16], Erbacher [11], Henke
[12], Whitt [19], and Moore [15]. Erbacher proved that in a neighborhood
of a nonumbilical point the immersion is necessarily a composition of the
standard inclusion of Sn into Rn+Ϊ with a local isometric immersion of
R n + 1 into R n + 2 . A simple example provided by Henke shows that for an
umbilical point this may no longer be the case.

In fact, earlier work due to O'Neill strongly suggested that a result simi-
lar to Erbacher's should hold up to codimension p = n - 2 under suitable
regularity assumptions which extend the umbilical-free hypothesis. In the
process of getting a solution to this problem we realized the possibility of
setting a more general rigidity question. Namely, in §1, we provide con-
ditions on isometric immersions / : Mn -+ Q*+ι and g: Mn —> Qn

c*
p,

p > 2, which imply that g is necessarily (locally or globally) a composi-
tion. Here and throughout the paper, Mn is a connected n-dimensional
Riemannian manifold, Q^ denotes a complete simply connected Rieman-
nian manifold of constant sectional curvature c, and g is a composition
when there exists an isometric immersion h: U -> Q"+p of an open subset
U c Qn

c

+1 containing f(M) so that g = hof.
Let us denote by pΛx) the number of nonzero principal curvatures of

the hypersurface / at x € M. Without making any regularity assumption
we prove the following result.

Theorem 1. Let f: Mn -> Q"+ι and g: Mn -> β" + ' P ^ 2> b e

isometric immersions with pf(x) > p + 2 everywhere. If p > 6, assume
further that Mn does not contain an open (n-p + 2)-ruled subset for both
f and g. Then there exists an open and dense subset V c M so that g\v

is locally a composition.
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The restriction on the codimension in the above result cannot be weak-
ened. In a forthcoming paper (see [6]) we show that there exists a large
family of local isometric immersions of Sn into R2n~ι which are nowhere
compositions.

In fact, by imposing further conditions in Theorem 1, we are able to
prove a global and more general result. First we need some terminology.
Recall that the first normal space Nf(x) of an isometric immersion g at
a point x e M is the normal subspace defined as

N*(x) = span{α,(ΛΓ, Y): X, Y e TχM},

where ag stands for the vector-valued second fundamental form of the
immersion. From now on set"s (x) = dimiVf(jr). We say that g is
1-regular if s (x) is constant on M.

Theorem 2. Let f: Mn -+ Qn

c

+ι and g: Mn -> Qn

c

+P, p > 2, be
isometric immersions where g is l-regular and py{x)>sg+2 everywhere.

(a) Then a decomposes orthogonally and smoothly as a = α^ Θ γ,
where for all x € M, the nullity space of γ(x) verifies dimiV(y(jc)) >
Λ-J^ + 1.

(b) Suppose now that f is an embedding and άimN(γ(x)) = k is con-
stant If sg> 6 and k > n - sg + 2, assume further that Mn does not
contain a k-ruled open subset for both f and g. Then g is {globally) a
composition.

Our assumptions that g is 1-regular and that dimiV(}>(jc)) = k is con-
stant are precisely the regularity conditions considered by O'Neill.

The remaining of the paper is devoted to several applications where a
"hidden composition" turns out to be the main tool. In §2, we deal with the
problem of whether a Riemannian manifold Mn can be isometrically im-
mersed into two space forms Q"+ι and Q"+p with c < c. This situation
was first considered by do Carmo and Dajczer ([7], see also [1]). Given
/ : Mn - Qn

c

+X and g: Mn -+ Q^p they showed that if sg(x) < n - 3
at x e M, then there exists an umbilical subspace U(x) c TχM for both
immersions with dim U{x) >n- sg(x). It is a well-known fact (see [18])
that the umbilical subspaces form an integrable smooth distribution with
umbilical leaves on any open subset of M where they have constant di-
mension. In particular, a complete understanding of the geometric origin
of the common umbilical foliation follows from our next result.

Theorem 3. Suppose that Mn, n > 4, admits isometric immersions

f: Mn - Q Γ 1 a n d S M" - Qnc+P > c < £' w i t h sg(x) < « - 3 every-

where. Set G = i o g, where i is the umbilical inclusion of Q?+p into
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jjιen there exists a n o p e n dense subset V c M so that G\v is

locally a composition.
By the above, the immersions / and g can always be locally produced

as the transversal intersection of the image of a local embedding h of
QΓ 1 i n t 0 Qc+P+l w i t h Q?P contained in Qn

c

+P+1 as an umbilical hy-
persurface. The umbilical foliation is the intersection with Q"+p of the
leaves of the relative nullity foliation of h and has at least dimension
n - sg. The latter follows from the fact that the leaves of the relative
nullity foliation of h have at least dimension n - sh + 1, and sh = s
from our assumption of transversality. Applying Theorem 2 we can easily
provide conditions which imply that the composition is global; namely, if
/ is an embedding and g is 1-regular and has flat normal bundle.

Using the classical Cartan-Schouten theory for conformally flat hyper-
surfaces for dimension n > 4, it followed from the do Carmo-Dajczer
result that only conformally flat manifolds can be realized as hypersur-
faces of two space forms of different sectional curvature. After extending
Theorem 3 to the case where sg = n - 2, we conclude §2 by showing that
for dimension n = 3 this is no longer the case.

Classifying Euclidean pseudo-umbilical submanifolds of codimension 2
has been attempted by Yano and Ishihara [20] and Otsuki [17]. Recall that
an isometric immersion g: Mn -+ Rn*p is said to be pseudo-umbilical if
the (normalized) mean curvature vector H is an umbilical vector field. If,
in addition, H is parallel in the normal bundle of g, then it is easy to
show that g(Mn) is contained in an umbilical hypersurface of Rn+P as a
minimal submanifold. Among several other related results, the following
complete description is given in §3.

Theorem 4. Any pseudo-umbilical isometric immersion f: Mn -+ R π + 2 ,
n > 3, without umbilical points and nonparallel mean curvature vector is
a composition g = h o / . Here f: Mn —• Rn + 1 is a rotation hypersur-
face with axis en+λ and principal curvatures γ, β > 0 of multiplicities
1 and n - 1, respectively, satisfying -(n - \)β < γ < β, and the map
A = I d x c : R n x R - ^ RΛ + 2 is the right cylinder over the unit speed plane
curve c = c(s) so that

(γ - β)(γ + (Λ - \)β) + (fccosθ)2 = 0,

where k(s) is the curvature of c(s) and θ(s) is the angle between enJrX

and the principal direction correspondent to γ.
This paper was completed while the authors were on a leave of absence

at SUNY at Stony Brook. It is a pleasure to acknowledge the hospitality
and kindness of the people of the Stony Brook Mathematics Department.
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1. Isometric compositions

We first fix some notation. Let / : Mn -* Q"+p be an isometric im-
mersion with vector-valued second fundamental form αy: TM x TM —»

TM1. We denote by V x the connection induced on TM± by the con-

nection V of the ambient space. For a normal vector ξ e TχM , we

denote by Aς the associated endomorphism of TχM defined by

Given isometric immersions / : Mn -> Qn

c

+P and g: Mn -> £
<y > 1, we say that α decomposes as α = α . θ y if there exists a

smooth vector bundle isometry τ: T,M± —• L c T Mx such that α^
splits orthogonally and smoothly as α ^ i o α ^ θ y .

The proofs of Theorem 1 and 2 stated in the Introduction rely heavily
on the following result, which actually deals with a more general setting
and should be useful in other situations.

Theorem 5. Let f: Mn —> β^+ p be an isometric embedding and let
g: Mn —> Q"'¥p+q, q > 1, be an isometric immersion whose second funda-
mental form decomposes as a = afφγ. Assume further that τ is parallel
with respect to the induced connection on L, and that there exists a smooth
rank-/? vector subbundle Γ c TM θ L with Γ n TM = {0} so that

Vzμ e TMφL

for all μ e Γ and Z e TM. Then g is a composition.
Proof We consider the case c = 0, since the proof of the other cases

is similar. Consider the vector bundle isometry

f > TMφL,

where Id is the identity endomorphism in TM, and set Ω = Γ"" 1 ^) .
By assumption, Ω is transversal to TM. Thus the map F: Ω -• Rn+P

defined by
F(ξ(x))=f(x)+ξ(x)

parametrizes a tubular neighborhood of f(M) if it is restricted to a neigh-
borhood U of the 0-section of Ω.

We claim that the map G: Ω -+ Rn+p+g given by

G(ξ(x)) = g(x) + Tξ(x)

is isometric on U with respect to the flat metric induced by F. Given
a local section f e Ω , s e t ξ = X + δ, where X € ΓΛf and 5 G TfM

± .
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Using the assumption on Γ, we have

= g.(x)(Z + VZX - Ag

τ{δ)Z) + (ag(X, Z) + vf

= (g o /); '(/»(x)(Z - V z * - ^ Z ) ) + τ(a/(ΛΓ, Z)

and now the claim follows easily. We conclude that the map

is an isometric immersion and g = h o / . This ends the proof.
Remark 1. Following Henke [12] we call h an isometric extension of

/ . Here A has been constructed to have the orthogonal complement of L
in T Mx as its normal bundle, and the fibers of Γ as part of its relative
nullity foliation. It is easy to see that under these conditions the isometric
extension h is unique.

Our next goal is to present several conditions on / : Mn -> Q"+ι and
g: Mn —> Q"+p which will allow us to conclude, by means of Theorem 5,
that g is a global composition. For that we will make use of various facts
and consequences from the theory of flat bilinear forms which, in fact,
will be crucial throughout the whole paper.

Let V and W be finite-dimensional real vector spaces and β: KχF->
W a bilinear map. We denote by N(β) the nullity space of β defined by

N(β) = {neV:β(X,n) = OVXeV},

and by the image of β the subspace S(β) of W spanned by β. For
an element X e V, β(X): V —> W will represent the linear map defined
by β(X)(Y) = β(X, Y). Our interest lies on those β which are flat with
respect to a nondegenerate bilinear form (inner product) ( , ): W x W —>
R, that is,

(1) (β{X, Y), β(Z , W)) - (β(X9 W), β(Z , Y)) = 0

for all X, Y, Z , W e V. In the following result we put together all we
need about flat bilinear forms.

Proposition 6. Let β: V x V -» W be aflat bilinear form with S(β) =
W, where { , ) has either positive definite or Lorentzian signature. Then

dimN(β) > dim V - dim W

and, if equality holds, there exists an element X eV so that β(X) is onto.
If in addition, equality holds, β is symmetric, and in the Lorentzian case
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there exists e eW so that (β, e) is positive definite, then β decomposes
as

where S(βt) = W. is one-dimensional and nondegenerate, W. ± W} if
i Φ j , and each β{ is fiat. Moreover, the subspaces W are uniquely
determined up to permutations.

Proof Except for the last assertion, the theorem is completely proven
in [14]. To show uniqueness we first sketch Moore's argument which pro-
vides the decomposition.

Without loss of generality we may assume that N(β) = {0} and dim V
= dim W. Let X £ V be such that β(X) is onto. For each Y e V define
a linear endomorphism B(Y) of W by setting

It is easy to see using flatness of β that the B{Y) 's form a commutative
Lie algebra of endomorphisms of W which are symmetric with respect
to ( , ). If ( , ) is positive definite, the B{Y) 's can be simultaneously
diagonalized by an orthonormal bases ξχ, , ξ{ of W. It is shown in
[14] that this is also the case when ( , ) has Lorentzian signature and the
additional hypothesis is assumed. Let W. ••= span{^} and let β. be the
JF-component of β. Then there are linear functional μ. on V such
that

where Id is the identity endomorphism. Therefore,

fit(Y9 ) = μi(Y)βi(X, ).

It follows that each βi is flat and ^ ^ θ θ ^ .
To prove uniqueness of the Wi 's it suffices to show the existence of an

element YQ e V for which μ^Y^) φ μj(Y0) whenever i φ j , since in this
case the W{ 's will be the one-dimensional eigenspaces associated to the
distinct eigenvalues of B(YQ).

If μ. Φ μj for / Φ j , then we may simply choose any element Yo £
\Ji J}ίeτ(μi - μ.). So it remains to show that -μ. = μ. for / Φ j leads to
a contradiction. Let ξ. = β{X){Z.) and ξj = β(X)(Zj). Using flatness,
we have

μi(Y) = (B(Y)ξi,ξi) = (β(Y)β(X)'lξi,ξi)

= (β(Y)Zi9 β(X)Zt) =iβ(Y, Zi)9β{X9Zi))
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Therefore,

(μt - μj)(Y) = (β(X)(Y), β(Zi, Zz.) - β(Zj , Zy)> = 0.

Thus, /?(Z-,Z.) = β(Zj,Zj) since £(ΛΓ) is onto. But β{Zi,Zι) =

β{Zύβ{X)-% = ^ ( Z ^ i i = ^ ( Z ^ . , and analogously, /?(Z, , Z ; ) =
μj(Zj)ξj. We conclude that >ff(Z., Z.) = β(ZjyZj) = 0, which is in
contradiction with

</?(Z/5 Z, ), J»(ΛΓ, ΛΓ)) = (β{X)Zi9β{X)Zg) = «., {,) = 1,

and concludes the proof.
Let (2?, π , Af) denote a pseudo-Riemannian vector bundle of rank

^ over a differentiable n-dimensional manifold M . As usual, we refer
to (E, 7Γ, Af) simply by Zs . The vector bundle over M whose fiber at
x e M is the vector space of all r-linear symmetric maps TχM x - x
7^M -> ^ will be denoted by Sr{M; £ ) . F o r £ = M x R w e simply
write S\M). We denote by T{E) (respectively, T{Sr{M\ E))) the set of
all sections of E (respectively, Sr(M; E)), and by C°°(E) (respectively,
C°°(Sr(M; E))) the set of all smooth sections.

Proposition 7. Let (E, π , M) be either Riemannian or Lorentzian of
rank s, and let β e C°°{S2{M; E)) so that S{β{x)) = Eχ for all xeM.
Assume further that for every x e M, β(x) is flat, άimN{β{x)) = n - s,
and in the Lorentzian case there exists e e Γ(E) so that (β(x), e) is
positive definite. If M is simply connected, then there exist orthonormal
ξx, , ξs € C°°(E) so that each (β, ξ.) has everywhere rank one.

Proof It is sufficient to consider in the proof of Proposition 6 the
distinct eigenvectors of B(Y), where Y is a local smooth extension of
Yo. The rank conclusion is equivalent to flatness, q.e.d.

Recall that a submanifold is k-ruled if it admits a continuous k -dimen-
sional foliation by totally geodesic submanifolds of the ambient space. We
will make use of the following result.

Theorem 8. Let f: Mn -> <2"+1 be a nontotally geodesic isometric
embedding and let g: Mn —> Q"+p be a l-regular isometric immersion so
that a decomposes as ag = af θ y with dimN(γ(x)) = k a positive
constant. Assume also that either

(i) Nf is parallel

or one of the following conditions holds everywhere.

(ii) pf{x) >n-k + 2,

(iii) pf(x)>sg+l,
(iv) k > 2 and the index of relative nullity vg(x) = dim N(ag(x)) <

k-2.



8 MARCOS DAJCZER & RUY TOJEIRO

If s > 4 and k > n - s + 2, suppose further that Mn does not contain
an open k-ruled subset for both f and g. Then g is a composition.

Proof For all x e M, we have from the Gauss equations for / and
g that γ(x) is flat. Proposition 6 yields

(2) k>n- dimS(γ(x)) = n-sg + \.

From our assumptions, L = S{otj) is a globally defined line bundle.
Let η be a local section of L. By comparing Codazzi's equations of /
and g for Aη, we get

for all X, Z e TM. It follows that

(4) ( V ^ ) ^ = 0 for all Y e N{γ).

We claim that

(5) Vχη€ N* for all X e TM,

which is trivial if we assume (i). For the remaining cases, suppose there
exists a normal vector field δ e N*~L such that (V^ η, δ) Φ 0 for some
Xoe TχM. From the Codazzi equation for Aδ (= 0), we have that

from which we conclude that

(6) (Vχ6, fί)^y - (V^ , η)AηX e N(γf

for all X, 7 € ΓAf. Now (6) and our assumption yield

AηZeN{y{x)f

for any Z in the (w - 1)-dimensional kernel of the linear functional Z ι-»
(v£tf»<*} This easily implies

Pf(x) < dimNiγix))-1 + 1 = Λ - A: + 1

and

vg{x) >k-l,

which is in contradiction with either (ii), (iii) using (2) or (iv), and proves
the claim.

From Codazzi's equation for ξ e TM± n i 1 , Ye N(γ), and any
X e TM, we have

(7) VγAξX + Avxξ Y + Aξ[X, Y] - Av±ξX = 0.
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By taking the inner product of (7) with Z e N(γ) and using (4) and (5),
we get

(VrAζX9 Z) + (V$ξ, η)(ag(Y9 Z), η) = 0,

which is equivalent to

(8) (VγZ9-AξX + (VΪζ

Assume that Mn is not &-ruled. We claim that the subspaces W{x) c
N{y{x)f®L{x) defined by

W(x) = span{(V^) r Λ / φ L : I E Γ ^ , ^ Γ M 1 n Z^}

form a one-codimensional subbundle of N(γ)± ΘL. Clearly, the claim is
equivalent to L being everywhere transversal to W. If W(y) = N{γ(y))±

θ L(y) at some point y e M, then the same holds in a neighborhood F .
It follows from (8) that on V

{VγZ9η) = (AηY,Z)=:0 and (VYZ,X) = 0

for all Y,Z e N(γ), X e A^y)"1. Thus N(γ) is integrable and the leaves
are totally geodesic in Q"+ι and Q^p. This contradicts the assumption
of the theorem and proves the claim.

To obtain the proof from Theorem 5, it suffices to take Γ there to be
the orthogonal complement of W in iV(y)"1 ®L.lfk>n-sg + 2y from
sg = 1 + dim5(y) < 1 + \{n - k)(n - k 4- 1) we have that sg > 4. So, to
conclude the proof, it remains to show that our hypothesis that M does
not contain an open A>ruled submanifold can be dropped if dim JV(y(jc))
takes everywhere its minimum value n - s + 1. But if this is the case,
Proposition 7 implies that α splits orthogonally and smoothly as a direct
sum,

with rank?; = 1, 1 < j < sg - 1. Consider an orthonormal frame

ξ p , ξs _j so that 5(yy) = span{ί7}. Let Xχ, , Xs _j be local unit

tangent vector fields so that Xj is the eigenvector of Aξ correspondent

to the unique nonzero eigenvalue λ-. By assumption, Xi, , Xs _1 are

linearly independent. (3) yields

Σ K\^xnAk)[xPxk) - (v^, ̂ )(x/5 xk)\xk = o,

which implies that
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Therefore,

(9) 0 ^ , ^ = 0 for all Z ± Xk.

From (9), we have

W = span{-Λ. X. + <V^ £., η)η: 1 < 7 < s - 1},

which again implies that W7 has codimension one in N(y) x e L. This
concludes the proof.

Remarks 2. (i) If the sectional curvature of M satisfies KM > c, then
/ cannot be niled.

(ii) The isometric extension h of f has index of relative nullity vh =
k + 1 and is unique if k = n - s 4-1 (cf. Remark 1).

(iii) If g has flat normal bundle, then k = n - sg + 1 . In fact, let

Λ^ , , Z r t be an orthonormal basis diagonalizing ag so that ^(/(x))" 1

= span{Xj, , Zπ_^} . Then

S(γ(x)) = span{y(ΛΓ., X.): 1 < i < n - fc}

and the opposite inequality k < n - s + 1 also holds.
For the proof of Theorem 2 we need the following.
Proposition 9. Let (E, π, Af) fe <2 Riemannian vector bundle of rank

s and let β e C°°{S2(M; E)) be so that S(β(x)) = Ex for all x e M.
Assume further that β splits orthogonally as β = φη Θ γ, wλere φ e
C°°(S2(M)), η e Γ(E) with \\η\\ = 1, and γ e Γ(S2(M E)). If φ never
vanishes, then η e C°°{E) and γ € C°°(S2(M', E)).

Proof At x e M, let (X. , X. ) , 1 < /c < s, be a set of pairs so that

Extending the pairs (Xί , X. ) smoothly in a neighborhood of x, one still
has that the β(Xi , X. ) 's form a basis of Zs>7 for any y in a neighborhood
U of x . In particular, there are well defined functions fk, 1 < k < s, in
[/ such that

On the other hand, the functions φk = ^(Xz , Xj.), 1 < k < s, are

smooth and cannot all vanish simultaneously at any point of U. Moreover

φr = (β(Xir, Xj), η) = Σfk(β{Xir, Xj), β(Xik, XjJ)
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The functions ψrk, 1 < r, k < s, are smooth and the matrix (ψrk) is
invertible at any point in U. We conclude that the fk 's are smooth as we
wished.

Proof of Theorem 2. At x e Λf, define a Lorentzian inner product on
W = Tf

χM^ θ Nf(x) by

By the Gauss equations for / and g, the symmetric bilinear form β: TχM
x TχM -> ^ defined by

Y) = (af(X,Y),ag(X,Y))

is flat with respect to (( , » . Thus dim N(β) <n- pf{x), which forces
S(β) to be degenerate. Otherwise, we would have from our hypothesis
and Proposition 6 that

> n - dimS(^) >n-sg-\>n- pf(x) -f 1,

a contradiction. Hence, there exists a unit vector η e Nf(x) so that

(N,η)eS(β)nS(β)±

y

where TV is a unit vector normal to / at x. This is equivalent to

(af(X, Y),N)τrM, = (α^(JΓ, Y)9

Thus, we can write

where y(jc), the {y/}"1-component of α (JC) , is flat. In particular,(

dim7V()>(jc))> n-dimS{γ(x)) = n-sg+ 1.

Part (a) of the theorem now follows from Proposition 9.
To conclude the proof of part (b) from Theorem 8, first observe that, in

general, if / is /-ruled, then pf < 2(n-l). Therefore, if / is (n-sg+2)-
ruled, we have

sg + 2<pf< 2(sg - 2),

which can only occur if sg > 6.
Remarks 3. (i) Part (b) of Theorem 2 may not hold if / is only an

immersion instead of an embedding (cf. [5]). But it is still true from the

proof that there exist a manifold N"+ι of constant sectional curvature c

and isometric immersions / : Mn -+ N?+ι and h: N^1 -+ Qn

c

+P such

that f is locally congruent to / and g-hof.
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(ii) No additional assumption is needed for sg > 6 if the sectional
curvature of M satisfies KM > c. Under this condition, the existence of
fc-dimensional rulings with k > n — s +2 would imply that p, < sg + 2.

(iii) For p = 2, Theorem 2 was already obtained in [5].
We conclude this section by extending to convex hypersurfaces a result

proved by O'Neill [ 16] for the round sphere.

Theorem 10. Let f:Mn-+ Rn+1, n > 4, be an isometric immersion
of a compact manifold of positive sectional curvature. Then there is no
l-regular isometric immersion of Mn into R n + 2 other than the trivial one.

Proof Assume that g: Mn -* RΛ + 2 is a l-regular isometric immer-
sion, and let h: U c Rn+{ —> Rπ + 2 be the isometric extension of /
given by Theorem 2. Suppose sg = 2. Then ph = 1 everywhere, and
the ^-dimensional leaves of the relative nullity distribution of h are
transversal to f(M). Hence, their intersections with f{M) provide a
one-codimensional foliation of M whose leaves are easily seen to be com-
plete. This is clearly a contradiction. Thus, s Ξ 1 and h is just an
inclusion.

2. Submanifolds of two manifolds

First we prove Theorem 3 from the Introduction.
Proof of Theorem 3. To reduce the proof to Theorem 8, we start by

showing that the second fundamental form of G decomposes as aG =
α ^ φ y . This follows from the proof of Theorem 2 if we show that the
flat symmetric bilinear form β = (α^, aG) satisfies N(β) = {0} . To see
this, let δ denote a unit normal vector field to the inclusion of Q"+p into
Qn

c^
1. Then

(10)

and in particular, vQ = 0 everywhere. Thus N(β) = 0.
It also follows from (10) that G cannot be ruled. To conclude the

proof, observe that from sg < n - 3 we have άimN(γ(x)) >n — s>39

so G satisfies condition (iv) of Theorem 8. This concludes the proof.
Next we extend Theorem 3 to the case s = n - 2.
Theorem 11. The same conclusion as in Theorem 3 holds if s (x) =

n - 2 everywhere, unless there exists an open subset of M where the sec-
ond fundamental forms αy and ag can be simultaneously orthogonally
diagonalized.
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Proof Let β and δ be as in the proof of Theorem 3. It is sufficient
to show that S(β) is a degenerate subspace everywhere. If S(β(x)) is
nondegenerate at x e M, then the same holds in some open neighbor-
hood V of x. From Proposition 6 and N(β(y)) = {0}, we have that
dim S(β(y)) = n for all y e V. It follows from Propositions 6 and 7
(Lorentzian case) that there exist a smooth orthonormal basis ξ{, , ξn

of Γ^Άf1 Θ TVf and a basis 0 1 , . , 0Π of ΓΛf* so that

7 = 1

Thus, β(Zi, Zj) = 0 for i Φ j , where Zj, , Zπ is the dual basis to

θι, , θn . On the other hand,

o = ((β(z., z.), j)) = VF^iz., z.),
that is, Zj, , Zn is an orthogonal basis. This completes the proof.

Assume that the Riemannian manifold M3 admits isometric immer-
sions / : M3 — Q4

c and g: M3 — Q* with c < c, so that G = /o^: Λf3 -..
β^ is nowhere a composition. By Theorem 11, the second fundamental
forms of / and g can be simultaneously orthogonally diagonalized at
any point of M. Using this fact, a long but straightforward computation
yields the following result.

Proposition 12. Let f: M3 -> Q* be an isometric immersion of a sim-

ply connected Riemannian manifold with principal directions eχ, e2, e3,

and correspondent distinct principal curvatures λl9 λ2, λ3. Then M3 can

be isometrically immersed into Q*, c ψ c, if and only if for all indices

(11) (λfa - 1)(^ - λfciλj) + (λjλt -

Proposition 12 provides a negative answer to the question of whether
Λf3 must be conformally flat. In fact, conformally flat hypersurfaces M3

of Q* have been characterized by E. Cartan (see [13, p. 84]) by the fol-
lowing relations:

(12) <Vr*>-°.
v } (λj - λ,)e,.(A,.) + (λt - Λ,)^.(λ.) + (λj - λt)et(λk) = 0

for all indices i Φ j Φ k. It is not difficult to show that the second
condition of (11) and (12) are both simultaneously satisfied if and only if
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e^λj) = 0 for all i φ j . An example of this situation is provided by a

cone in R4 over a nonumbilical surface of constant curvature in S (see

[13, p. 81]).

3. Further results

We say that a unit normal vector field η to an isometric immersion
g: Mn -» Qn

c

+P is an umbilical vector field if there exists a nowhere van-
ishing function λ e C°°(M) so that A8

η = Aid. It is an elementary fact
that η is parallel in the normal connection of g if and only if g(M) is
contained in an umbilical hypersurface of Q"+p . Our next results shows
that for low codimension, umbilical vector fields are "generically" paral-
lel. But first, we recall from [9] the concept of s-nullity, vs(x), of g at
x e M. By definition,

κ ( x ) = m a x { d i m N ( π T J s o a ) } , l < s < p ,

where Us ranges over all s-dimensional vector subspaces of T M , and

πvs: TχM
± -* Us denotes the orthogonal projection onto Us.

Proposition 13. Let g: Mn -> Qn

c

+P, 2 < p < n - 1, be an isometric
immersion with an umbilical vector field. Assume vs(x) < n — s for all
1 ^ s < p — 1 and all x e M. Then g(M) is contained in an umbilical
hypersurface of Q"+p.

Proof At x e M, consider the linear map φ: TχM -> TxM
L Π {r\γ

defined by

(13) φ{X) = V±

χη,

where η is the umbilical vector field. We argue that φ = 0.
Suppose that dim Im #> = r > 0. Since r < p — 1, we have dim ker φ =

tt - r > 2. Codazzi's equation for Aη yields Γ(λ)Z = Z(λ)F for any
Y,Z e ker^. Thus Y(λ) = 0 for all Y e ker^. Using Codazzi's
equation again, we get for any Y ekerφ and X e TχM

Here ψ: TXM -> Γ^Λ/"1 is the linear map defined by

y(ΛΓ) = φ{X) - \x(λ)η.

Since d i m l m ^ = d i m l m ^ = r, we conclude that vr(x) > n - r, which
is a contradiction. Therefore, r = 0 and this concludes the proof.
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Remark 4. From the proof it is sufficient to assume v < n - s for
s

\ <s < dim Im φ , and only consider V c Im ψ. This implies Theorem
1 of [4].

Recall that the classical Cartan-Schouten result asserts that any hyper-
surface Mn of N"+ι, n > 3, which has only principal curvatures of
multiplicities 1, n - 1, or n at any point is conformally flat, whereas the
converse holds for n > 4. In particular, if a conformally flat hypersur-
face has two different principal curvatures everywhere, then it will carry
a codimension one foliation by umbilical leaves in both Mn and N"*{.
(See [10] for a parametric description of such hypersurfaces.)

An umbilical vector field is said to be nonparallel if the associated map
φ defined in (13) is nonzero everywhere. Isometric immersions g: Mn —>
ΈLn+2, n > 3, with a nonparallel umbilical vector field have been shown
by Chen and Yano [2] to be conformally flat.

Theorem 14, Let g: Mn —• Q"+2, n > 3, be an umbilical free iso-
metric immersion with a nonparallel umbilical vector field. Then g is a
composition g = h of, where f: Mn —• N"+ι is a conformally flat hy-
persurface and h: N*+ι —• Q"+2 verifies ph = 1 everywhere. Moreover, on
the open subset of nonumbilical points each leaf of the umbilical foliation
of f is contained in a leaf of the relative nullity foliation of h . Conversely,
any such composition has an umbilical vector field.

Proof Let φ: TM -> TML Π {η}1' be the globally defined linear map
given by (13), and let X be a local unit tangent vector field orthogonal to
ker φ . Using that g has not umbilical points, we obtain from the proof
of Proposition 13 that the unit normal vector field

satisfies everywhere that k e r ^ = ker^>, and therefore it is globally de-
fined. Thus, for a unit normal vector field ζ orthogonal to δ, we have
that AξY = βY for all Y e-ker^ . Since Aη = Aid, where by definition
λ never vanishes, we conclude that ξ is globally defined by the condition
/ ? > 0 .

We claim that the endomorphism Aξ satisfies the Gauss and Codazzi

equations for an isometric immersion into Q"+ι. To prove the claim, first
observe that from the Codazzi equation for Aδ we get that ξ is parallel
in the normal bundle along kerAδ . This implies

for all Z , W e TM, and the claim follows easily. The proof of the
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first part of the theorem now follows from Theorem 5' below, a slightly
modified version of Theorem 5. The converse is left to the reader.

Theorem 5;. Let g: Mn -+ Q"+p+g be an isometric immersion whose
normal bundle contains a smooth rank-/? subbundle L c TgM

L so that
the L-valued symmetric bilinear form aL = 7tLoa satisfies Gauss, Codazzi,
and Ricci equations as a submanίfold of Q"+p with respect to the induced
connection on L. Assume further that there exists a rank-/? subbundle
Γ c TM θL as in Theorem 5. Then there exist a Riemannian manifold
N^p and isometric immersions f:Mn - N"+p and h: N"+p - Q"+p+q

such that oίf = aL and g = h o / .

Remark 5. It is implicit in the statement of Theorem 14 and follows
from the proof that / has at most two different principal curvatures even
for n = 3 •. •

We now prove Theorem 4 stated in the Introduction.
Proof of Theorem 4. Let δ, ξ be the global orthonormal frame con-

structed in the proof of Theorem 14. Then Aδ has a unique nonzero prin-
cipal curvature μ, while Aξ possesses two principal curvatures γ, β > 0
of multiplicities 1 and n — 1, respectively. Moreover, μ and γ correspond
to the same unit principal direction, which we denote by X. Therefore,
the mean curvature vector is

and from AH = λ Id, we easily get

(14) (γ - β)(γ + (n - \)β) +

Using Codazzi's equation for Aδ , we obtain

for all Y, Z € keτAδ . The Codazzi equation for Aξ and (15) yield for
all YekeτAδ

(16)

Y(β) = 0, Y(γ) = (y - β)(VχX, Y), \\Y\\2X{β) = (β - γ)(VγY, X).

Since μ φ 0 we have from (15) and (16) that

(17) μY(V) = {Y~β)Y{μ).

On the other hand, differentiating (14) with respect to Y gives

(18) (2γ + (n- 2)β)Y(γ) + 2μY(μ) = 0.
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From (17) and (18) it follows that

((2γ + (n~ 2)β){γ - β) + 2μ2)Y(γ) = 0.

Using (14), we get

(γ-β)βY(γ) = O.

Since γ - β φ 0 by (14), we conclude that

(19) Y(γ) = 0 for all Γ e k e r ^ .

As in the proof of Theorem 14, Aζ satisfies the Gauss and Codazzi

equations for an isometric^immersion into Rn+ι. Thus, there exists an
isometric immersion / : Mn —> R Λ + I , defined on the universal covering
M, whose second fundamental form is Aξ . From (19) and Theorem 4.2
of [8], it follows that / is a rotation hypersurface. (14) yields

—(/i — l)Jff < y < jff.

In particular, / is an embedding. The remainder of the proof is now
straightforward.

Remark 6. Chen and Yano [3] also considered pseudo-umbilical iso-
metric immersions g: Mn —> RΛ + , n > 3, with nonparallel mean cur-
vature vector of constant length and flat normal bundle. It is possible to
show that all examples are compositions g = h o / . Here / : Mn —> RΛ+1

is a rotation hypersurface with axis en+ι and principal curvatures γ and
β of multiplicities 1 and n - 1 respectively, isometric to an /i-catenoid
in 5C

Λ+1 (see [7]), and h = Id xd: Rn x R -> R*+3 is a right cylinder
over a unit speed plane curve d = d(s) with curvature A:(s) satisfying the
equation

γ(γ + ( i - 1)0) + (kcosθ)2 = nc,

where 0(s) is the angle between en+ι and the principal direction corre-

spondent to y.
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