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CRITICAL POINTS OF YANG-MILLS
FOR NONCOMMUTATIVE TWO-TORI

MARC A. RIEFFEL

In [5] A. Connes and the author described the moduli spaces for the
minima of the Yang-Mills function for the case of connections on pro-
jective modules over noncommutative two-tori, in the setting of the non-
commutative differential geometry initiated by Connes in [4]. The main
purpose of the present note is to describe the critical points of the Yang-
Mills function for the same case, and also the moduli spaces for these
critical points. It turns out that the critical points coincide with certain
connections which were used in [3] to construct actions of the Heisenberg
Lie group on noncommutative tori. (In fact, we will make crucial use of
one of the arguments from [3].) We will find that the moduli spaces for
the critical points are finite products of the kinds of spaces which were
obtained in [5] as moduli spaces for the minima.

1. The Yang-Mills equations

We begin by recalling briefly the setting of [5]. Let G be a Lie group, and
let a be an action of G as automorphisms of a C*-algebra A. We let A°°
be the dense *-subalgebra of A consisting of the C°°-vectors for α. Then
the infinitesimal form of a gives an action, δ, of the Lie algebra, L, of G,
as derivations of A°°. Every finitely generated projective right ^-module
Ξ has a C°°-version Ξ°°. Since we will never work with A or Ξ, but only
with A°° and Ξ°°, we will for notational simplicity denote the latter by A
and Ξ from now on. Also, for brevity we will say "projective" when we
mean "finitely generated projective".

We can and will assume that Ξ is equipped with a Hermitian metric,
(9)A> that is, an ^-valued inner product for which it is self-dual. The effect
of the choice of Hermitian metric on what follows is discussed in [5, p.
241]. In the role of Riemannian metric for A we assume that L is equipped
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with an ordinary real inner product. This will define a bilinear form on
various spaces of alternating forms on L. In particular, if E = End^(Ξ),
then we obtain an £"-valued bilinear form, denoted { , }, on the space
of alternating ί'-valued two-forms on L. For computational purposes this
form is conveniently given by

{Φ, Ψ} = ] Γ Φ(Zi Λ Zj)Ψ(Zi Λ Zj),

where {Zz} is an orthonormal basis for L. But it is, of course, independent
of the choice of orthonormal basis.

Given a connection V on Ξ, that is, a linear map from Ξ to Ξ ® L* such
that

for X G L, ξ e Ξ and a e A, its curvature, Θ v , is defined by

One finds that θ v is an is-valued alternating two-form on L. If V is
compatible with the Hermitian metric on Ξ, in the sense that

δχ{(ζ,η)A) = (Vχξ,η)Λ + (ζ,Vχη)Λ,

then θ v has values in the space Es of skew-adjoint elements of E. The
space of all compatible connections on Ξ is denoted CC(Ξ). It is an affine
space over the vector space of linear maps from L to Es.

We assume that A has a faithful α-invariant trace, τ. From τ we obtain
a faithful trace, τ^, on E, determined by

where ({, η)E is defined by

The Yang-Mills function, YM, on CC(Ξ) is defined in the present setting
by

YM(V) = - τ £ ( { θ v , θ v } ) .

The Yang-Mills problem is that of determining the nature of the set of crit-
ical points for YM. The Yang-Mills equation is the Euler-Lagrange equa-
tion for the critical points of YM. We derive it here in the standard way,
since we need it and it was not derived in [5]. (A derivation has also very
recently been given in [11].) Given V e CC(Ξ), any other compatible con-
nection is of the form V + μ, where μ is a linear map from L to Es. Then
V will be a critical point for YM if for all μ we have

YM(V + tμ) = 0.
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But

A simple calculation shows that

d_
d t t=o

, Y) = [Vχ, μγ] - [Vy, μx\ - μ[Xj

But this latter expression is what is commonly denoted by (Vμ)(X, Y),
where here V is the extension to i?-valued 1-forms of the δ defined near
the bottom of p. 243 of [5] for 0-forms. Using this notation, we see that
a compatible connection V is a critical point exactly when

for all linear maps μ from L to Es. Define an ordinary real inner product
on £>valued 2-forms by

and on 1-forms by

Let {cfj} denote the structure constants of L for the basis {Z/}. Then

straightforward calculations show that V has a formal adjoint, V*, taking

unvalued 2-forms to 1-forms, and determined by

(V*Φ)(ZZ ) = Σ[Vz,,Φ(Z 7 Λ Zj)] - Σή^Zj A Zk).

Then the condition that V be a critical point can be rewritten as
(μ, V*(θv)) = 0. Since μ is arbitrary, we see that we have obtained

1.1 Theorem. A compatible connection V is a critical point of YM ex-
actly when it satisfies the Yang-Mills equation V*(θv) = 0.

The Bianchi identity, which holds for all connections, is Vθv = 0,
where V has been extended to E-valued 2-forms. It often appears as the
companion of the Yang-Mills equation.

We will need later:
1.2 Proposition. Let notation be as above, let Ξi and Ξ2 be two projective

A-modules with Hermitian metrics, and let V7 e CC(Ξ;) for j = 1,2. Let
V = Vi φ V2 on Ξ = Ξ\ θ Ξ 2 , so that V 6 CC(Ξ). Then V is a critical point
for YM on Ξ if and only ifV\ and V2 are critical points for YM on ΈL\ and
Ξ2 respectively.
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Proof, With the evident meaning, we view E\ and E2 as subalgebras
of E, and denote their identity elements by β\ and e2, so that β\ and e2

are projections in E such that e\e2 = 0 and e\ + e2 is the identity element
of E. With the evident notation, it is easy to verify that τ^7 = TE\EJ and
θ v , = βjθ^ej for 7 = 1,2. Using the trace property of τE, it then follows
that for any linear map μ from L to £ we have

Since e/μe, can be an arbitrary linear map from L to 2?/, the desired con-
clusion follows, q.e.d.

By similar arguments it is very easy to verify:
1.3 Proposition. With notation as above, let V; e CC(Ξ;) for j = 1,2.

Then
YM(Vi θ V2) = YM(Vi) + YM(V2).

Suppose now that G, and so L, is Abelian, as happens for the noncom-
mutative tori [10]. Then the structure constants for L are all zero, so that
the Yang-Mills equation becomes

for all X e L. For the situation which will be pertinent to noncommutative
two-tori we then clearly obtain:

1.4 Proposition. Let notation be as above, and suppose that L is Abelian
and of dimension two. Then V is a critical point for YM if and only if
ΘV(AΓ, Y) commutes with V z for all X,Y,Z e L. Thus either θ v = 0
(so that V is aflat connection, clearly minimizing YM), or the range ofV
generates a ^-dimensional Heisenberg Lie algebra.

2. The case of noncommutative two-tori

We will use the notation of [5, §3]. Thus θ is a real number, λ =
exp(2π/0), and Aθ is the universal C*-algebra generated by two unitary
operators, U\ and £/2, subject to the relation t/2ί7i = λl]\U^ The group
G = T2 acts on Aθ by the dual action and, following our earlier convention,
we will from now on let Aθ denote the dense *-subalgebra consisting of
C°° functions for the dual action, so that the elements of Aθ are of the
form Σf(m, fOt/^JTf, where / is a complex-valued Schwartz function on
Z 2 . The Lie algebra, L, of G is two-dimensional Abelian, and we take as
a basis for L the derivations δ\ and 52 of Aθ determined by

δk(Uk) = 2πiUk9 δk(Uj) = 0 ΐoτjφk.
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Accordingly, to define connections we only need to specify them on this
basis, and we will write V1 and V2 for the corresponding operators. The
curvature of the corresponding connection is then determined by [V1, V2].

Let Ξ be a projective ^-module with Hermitian metric, and suppose
that Ξ has been expressed as the finite direct sum of a family {Ξ^} of
projective ^-modules (which then inherit their Hermitian metrics from
Ξ). By Proposition 5.6 of [5], each Ξk has a compatible connection V^
with constant curvature, that is, such that [V1, V2] is a scalar multiple of
the identity operator on Ξ. But then V^ is a minimum for YM on Ξk by
Theorem 2.1 of [5], and so, in particular, is a critical point. By Proposition
1.2 it follows that φ V^ is a critical point for YM on Ξ. Our main result
in this section is that, conversely, every critical point for YM on Ξ is of
this form, that is:

2.1 Theorem. Let Ξ be a projective Aθ-module, and let V e CC(Ξ).
Then V is a critical point for YM if and only if there is a finite direct sum
decomposition Ξ = 0 Ξ ^ , and on each Ξk a connection Vk with constant
curvature such that V =

Proof We have given above the proof of one direction. For the other
direction, suppose that V is a critical point. We first reduce to the case
of free modules. Accordingly, let Ξ' be a projective ^-module such that
Ξ θ Ξ ' is free, say = An

Q for some n. By arguments similar to those on p.
241 of [5], we can adjust the isomorphism so that the Hermitian metric on
ΞφΞ' corresponds to the standard Hermitian metric on An

Q. By Proposition
5.6 of [5] we can choose a V in CC(Ξ') with constant curvature, which is
thus a critical point for YM. Then V θ V is a critical point for YM on
An

θ by Proposition 1.2. Let e denote the projection of An

θ onto Ξ, so that
e commutes with V θ V and V = e{V θ V)e.

For convenience, we will now denote V θ V by V, that is, we let V
be a critical point for YM on An

Q, and we let e be a projection operator
in E (= EnάΛθ{An

θ)) which commutes with V, so that eventually we will
consider eV on eAn

θ. Now V is determined by its two components, V1

and V2, while its curvature is determined by the operator C = [V1, V2] in
E. If C = 0, then V already has constant curvature, and there is nothing
more to show. So we suppose that C Φ 0. Because V is a critical point,
it follows from Proposition 1.4 that C commutes with V1 and V2, so that
V^V2 and C generate a Lie algebra isomorphic to the Heisenberg Lie
algebra. Now because we are using the standard Hermitian metric on Aθ,
the pair δ\ and 62, extended from Aθ to An

θ in the evident way, represents
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an element of CC(A%), and so

V' = δj + Sj

for some Sj e Es, for j = 1,2. But the dual action of T2 on Aθ extends to
An

Q in the evident way, and the corresponding action of L is determined
by the extended δ/s. Let us put on An

θ the Hubert space inner product
coming from the invariant trace on Aθ. Then, much as in the proof of
Theorem 2.5 of [3] or the part of the proof of Proposition 3.1 on [5, pp.
249-250], we find that we are exactly in a position to apply Proposition
3.1 of [2], which in turn is based on Theorem 9.9c of [6]. We conclude
that the Lie algebra spanned by V1, V2 and C exponentiates to a unitary
representation of the Heisenberg Lie group, which will carry the space An

Q

of C°° -vectors into itself. At this point we now need the following crucial
argument from [3]. Let H = δ\ - iδi and let

K = V1 - /V2 = H + (St - iS2).

It is easy to see that the kernel of H is finite dimensional, and that if P is
the projection onto the kernel, then (H + P)~ι is compact. The argument
for this is given just before Lemma 2.6 of [3] for the case of Aθ rather
than An

Q. But K, as a bounded perturbation of H, will then have finite
dimensional kernel and cokernel by Lemma 2.6 of [3]. Then C must have
finite spectrum by Lemma 2.7 of [3].

Let F\, •• ,Fn be the eigenprojections of C, for the (pure imaginary)
eigenvalues λ\, ,λn. Now C commutes with V1 and V2, and each Fj is
a polynomial in C. Thus each Fj commutes with V1 and V2. For each Fk

let Ξ^ = FkA
n

Q. Then the connection V carries each Ξ^ into itself, and if
we let V^ denote the restriction of V to Ξ^, then V^ is a connection on Ξ^
whose curvature, θk, is determined by

That is, V7 has constant curvature. Thus the theorem is established for
the case of free modules. But now we can cut down by the projection e of
the beginning of the proof, to obtain the general case.

3. The values of YM on critical points

Let us consider briefly the potential for using YM as a gauge-equivariant
Morse function on CC(Ξ), along the lines described in [1], though we will
not undertake here to actually apply Morse theory. If θ is rational, then
Aθ is strongly Morita equivalent to C(T2), and so matters behave much
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as they do for C(Γ 2). Thus we will concentrate here on the case in which
θ is irrational. For convenience we assume that θ > 0.

From the work of Pimsner and Voiculescu [7] we know that KO(AΘ) =
Z 2 , and that (for θ irrational) the homomorphism, τ, of KO(AΘ) into the
real numbers, R, given by the standard trace, τ, on Aθ is an isomorphism
of KQ(AΘ) onto the dense subgroup Z + Zθ of R. Combining this with
the results of [8], one knows that under τ the positive cone of KQ(AΘ)

corresponds to the positive numbers in Z + Zθ. But the main result of [9]
is that projective ^-modules which represent the same element of KO(AΘ)
are isomorphic. (A somewhat different view of this result is given in [10].)
Thus we see that the isomorphism classes of projective ^-modules are
exactly labeled by the positive numbers of formp + qθ forp,q eZ (these
positive numbers being the Oth Chern characters, as explained in [4]). We
will indicate this labeling by expressions such as τ(Ξ) = p + qθ.

Let Ξ be a projective ^-module, and let V be a connection of constant
curvature on Ξ, so that it is a minimum for YM. If Ξ is free, then the
curvature of V is 0. If Ξ is not free, then Ξ is isomorphic to one of
the Heisenberg Aθ-modules first introduced in [4] and studied further in
[5]. If τ(Ξ) = p + qθ, then it is shown in [4], with slightly different sign
conventions, that the curvature, θ , of V, is determined up to a sign by

By the definition of YM, we find then that

YM(V) = -(2πiq/(p + qθ))2τ(Ξ) = 4π2q2/(p + qθ).

Notice that this expression is always nonnegative, and that earlier ambigu-
ities about signs do not matter because of taking squares. For notational
simplicity we will omit the factor 4π2 from now on.

Suppose instead that we are given a decomposition of Ξ as a direct
sum of a finite family {Ξ^} of submodules, and that we have in mind
choosing on each Ξ^ a connection of constant curvature, so as to construct
a critical point for YM on Ξ. Then we should combine submodules for
which the connections of constant curvature have the same curvature, since
the combined connection will again have constant curvature. But any
p + qθ can be written as m(p' + q'θ) where {p',q') = 1, i.e., pf and q'
are relatively prime, and m is positive (where if q1 = 0 then relatively
prime means p' = 1, and similarly if p' = 0). Furthermore, the expression
2πiq/(p + qθ) for the constant curvature shows that the curvature depends
only on p' and q' and not on m. Thus, to reflect this combining of modules
with connections of the same curvature, we should require that if τ(Ξk) =

) with (Pk,Qk) = 1> then all the Pu+Qkθ are distinct for different
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k. Correspondingly, if d = τ(Ξ), then by a partition of d we will mean a
family {(mk,pk, qk)} where mk,pk, qk e Z, with mk > 0 and pk + qkθ > 0,
with (pk,qk) = I, and with the pk + qkθ all distinct, such that

From the results mentioned above, to each partition of d we can associate,
in many ways, a decomposition {Ξ^} of Ξ such that τ(Ξk) = mk(pk + qkθ)
for every k. Then for each such decomposition we can choose connections
of constant curvature in many ways, whose direct sum will be a critical
point for YM. But for a fixed partition, YM will have, by Proposition L3,
the same value on all these connections, independent of the choices made,
the value being

Thus we have obtained:
3.1 Proposition. Let Ξ be a projective Aθ-module with d - τ(Ξ). Then

the possible values of YM at its critical points in CC(Ξ) are exactly all
numbers of the form

as {(mk,pk,qk)} ranges over all partitions ofd, as defined above.
Since we know that the minimum of YM is taken exactly at connections

of constant curvature on Ξ, on which YM will have value q2/(p+qθ) where
τ(Ξ) = p + qθ, we obtain the following amusing corollary:

3.2 Corollary. Let {(mk,pk, qk)} be any partition ofp + qθ. Then

> Q2I(P + Qθ).

We did not seek the elementary proof that should exist for this, but
the referee reported that one of his colleagues found that it consists of
applying the Cauchy-Schwarz inequality to the vectors a and b where

ak = qk{mk/{pk + qkθ))x'2, bk = (mk(pk + qkθ)){/2.

If YM is to be a possible candidate for a useful Morse function, then
its set of values on critical points should be discrete. This is indeed the
case:

3.3 Proposition. With notation as above, for any constant c there is only
a finite set of partitions ofd such that the value of YM on any corresponding
critical point connection is less than c.

Proof Suppose that {{mk,pk,qk)} is a partition of d such that
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Then for each k we must have

mkql <c(pk + qkθ).

But

and so mk(pk + qkθ) < d for each k. Combining these two facts, we see
that mkq\ < cd. Since mk Φ 0, it follows that q\ < cd. If qk Φ 0, we also
see that mk <cd. But if qk = 0, then pk > 0 and we must have mkpk < d.
Putting all this together, we see that mk and qk can range over only a finite
number of integers. But 0 < mk(pk + qkθ) < d for each k, so we see that
the pk's also can range over only a finite set of integers, q.e.d.

It would be nice if YM took distinct values on distinct partitions (where
partitions which differ only by a permutation are not viewed as distinct).
But this is not in general the case. The simplest example is perhaps given
by the following two partitions of 10 + 4\/2 for θ = y/2:

6(0 + Λ/2) + 2(2 - Λ/2) = 6(1 + Ov^) + (1 + y/ϊ) + 3(-l + y/l).

A simple calculation shows that YM has the same value for both. The
general state of affairs is described by:

3.4 Proposition. If θ is algebraic over the rationals, then there always
exist projective Aθ-modules with distinct partitions for which YM takes the
same value. But if θ is transcendental over the rationals, then YM never
takes the same value for distinct partitions.

Proof Suppose first that θ is algebraic, so that the field F it generates
over the rational numbers has finite dimension, say n. Any expression of
form q2/{p + qθ) will lie in this field. Choose 2n + 1 distinct relatively
prime pairs (pk,qk) such that pk + qkθ > 0. Then the set of 2n + 1 vectors
(Pk + Qkθ> Qk/(Pk + <lkθ)) in F2 must be linearly dependent over the rational
numbers, so that we can find integers mk, not all zero, such that

Since all the pk + qkθ are strictly positive, there must be some mk's which
are strictly positive and some which are strictly negative (while some may
be 0). Then in the two equations above we can move all the terms with
negative mk's to the right-hand side. This gives two distinct partitions of
some positive element of Z + Zθ such that YM for the two correspond-
ing decompositions of the corresponding projective module has the same
value.
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Suppose now that θ is transcendental. Then we claim that for any finite
collection {(pk, qk)} of distinct relatively prime pairs for which Pk + Qkθ >
0, the set of numbers (Pk+Qkθ)~ι is linearly independent over the rationals.
For if a linear combination, say with integer coefficients {mk}, is zero, then
on clearing denominators we find that θ is a root of the polynomial

with integer coefficients. But this polynomial is not the zero polynomial,
since by the distinctness assumption and the assumption that pk + Qkθ > 0>
it is easily seen that no -PklQk is a Γ 0°t of it (with a little extra argument
if qk = 0 for some k). But if YM had the same value on two distinct
partitions, then on combining them we would obtain an expression of
form

contradicting the linear independence shown above, q.e.d.
Nevertheless it is clear from Proposition 3.3 that even when θ is alge-

braic, for any given critical value of YM there will be only a finite number
of distinct partitions for which YM will have that value. In particular, to
study the set of connections which are critical points at which YM takes
some fixed value, it suffices to study separately the sets of critical point
connections corresponding to each partition for which YM has that value.
We undertake that study next.

4. The moduli spaces

We now fix a projective module Ξ, and we fix a partition π =
{{mkiPkiQk)} of d = τ(Ξ). We will say that a decomposition {Ξ^} of
Ξ is of type π if τ(Ξk) = rrik{Pk + Qkθ) for all k. We will say that a critical
point connection V is associated with a decomposition {Ξ^} of Ξ if there
are connections V^ of constant curvature on each Ξk, such that V = 0 V^.
We let CP(π) denote the set of critical point connections of type π, that
is, associated with a decomposition of type π.

As described in [5], the gauge group UE, consisting of all unitary ele-
ments of E = End^(Ξ), acts by conjugation on CC(Ξ), leaving YM invari-
ant. It also acts in the evident way on decompositions of Ξ, and clearly
carries decompositions of type π to decompositions of type π. It easily
follows that UE carries CP(π) into itself for each π. We wish to describe
the space of orbits, CP(π)/UE, for this action. We will call this space of
orbits the moduli space of type π.
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Let us fix now a decomposition {Ξ^} of Ξ of type π. Let {Ξf

k} be any
other decomposition of Ξ of type π. Since τ(Ξ'k) = τ(Ξk) for each k,
the main result of [9] mentioned earlier implies that Ξ'k = Ξk for each
k. By taking polar decompositions, one can adjust the isomorphisms to
be unitary. (Although E is not complete, it is closed under the holomor-
phic functional calculus for the reasons given in [5, p. 241], so there is
no problem in forming polar decompositions of invertible elements in E.)
Combining these unitary isomorphisms, we obtain a U e UE which carries
{Ξk} onto {Ξ^}, in the obvious sense. Then it is easily seen that conjuga-
tion by U carries any element of CP(π) which is associated to {E'k} onto
one associated with {H^}. That is, if we let CP({Ξ^}) denote the set of
elements of CP(π) which are associated with {Ξ^}, then CP({Ξ^}) meets
every orbit of CP(π) for the action of UE. Thus what remains to be done
is to determine when two elements of CP({Ξ^}) are in the same orbit for
UE.

Suppose now that we are given a V e CP({Ξ^}), so that V = 0 V ^
where V^ is a connection with constant curvature on Ξ^. Let U e UE
conjugate V to another element of CP({Ξ^}). Since the curvature of any
connection on Ξ^ with constant curvature must be 2πiqk/(pk + qkθ), and
since these numbers are all distinct by the definition of a partition, and
since conjugation of connections of constant curvature does not change
the curvature, we see that U must carry each Ξ^ to itself. That is, U =
0 U/c where U^ e UE(Ξ^). It follows that the set of equivalence classes
in CP({Ξ^}) under conjugation by UE is just the Cartesian product over
k of the moduli spaces of the space MC(Efc) of connections of constant
curvature. But the main result of [5] implies that the moduli space for
MC(Ξk) just looks like (T2)mk/Σmk, where T2 is the ordinary two-torus,
and Σmk *s ^ e SΓOUP °f permutations of mk objects, acting on (T2)mk in
the evident way by permuting entries. Putting all of the above together,
we obtain:

4.1 Theorem. Let Ξ be a projective Aθ-module, for θ irrational, and let
n = {(mk,Pk, qk)} be a partition ofτ(Ξ). Then the moduli space for the set
of critical points of ΎM on CC(Ξ) of type π looks like

We remark that some closely related moduli spaces are described in §2.9

of [3].
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