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RIGIDITY OF COMPLETE
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Dedicated to Manfredo do Carmo on his sixtieth birthday

Understanding the congruence classes of isometric immersions / of a
connected riemannian manifold Mn into euclidean space R"+1 for n > 3
is the classical rigidity problem for hypersurfaces. Let p be the rank of the
Gauss map γ: Mn —• Sn of / . It is well known that / is rigid if p > 3, by
the Beez-Killing Theorem, and highly deformable in the flat case p < 1.
The situation for constant rank p = 2 is quite complex. Sbrana [12] and
later E. Cartan [4] gave a detailed local analysis. The deformations are
discrete, a one-parameter family, and infinite dimensional only in the ruled
case, n > 4.

In this paper we deal with the rigidity problem for complete hyper-
surfaces. The compact case was solved in [11]. Here / is always rigid
provided the totally geodesic points do not disconnect M. This is not true
for complete hypersurfaces. However, we shall prove: If n > 4 and M
has no euclidean factors R"~3 anywhere, then nondiscrete deformations
of / are possible only along completely ruled subsets. This result extends
Sacksteder's Theorem.

In § 1 we discuss properties of a basic isometric invariant of immersions
with constant rank p, the splitting tensor. This is used in §2 to give a global
description of submanifolds with rank p < 2, in arbitrary codimension.
Recall that / is a cylinder over a curve for p < 1, as a consequence of
Hartman's Theorem [9]. We will also derive a related rigidity result for
real Kahler submanifolds. Finally, §3 contains the proof of our main result
and further discussions.
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1. The splitting tensor of a nullity foliation

Let Mn be a riemannian manifold with Levi-Civita connection V and
curvature tensor R, and let / : Mn —> Rn+P be an isometric immersion.
The relative nullity Ax of / at the point x e M is the subspace of the
tangent space TXM defined by

Ax = {XeTx\ a(X, Y) = 0 for all Y e TXM},

where a: TXM ΘTXM —• T^M denotes the second fundamental form of
/ with values in the normal bundle. Throughout this section, we assume
the index of relative nullity

I/(JC) = dimΔ c = v

to be constant in an open subset U of M. It is well known that in this case
the nullity distribution Δ is smooth and integrable, with leaves Lx totally
geodesic in Rn+P. We have an orthogonal splitting TU - ΔφΔ-1 and write
X = Xv + Xh accordingly for any X e TU. We also refer to Xv (Xh) as
the vertical (horizontal) component of X.

The splitting tensor C of f assigns to each T e Δ the endomorphism Cγ
of A1- given by

Lemma 1.1. (i) The distribution A1- is integrable iffCγ is self adjoint

for all TeA.

(ii) C vanishes identically if and only if each point in U has a product

neighborhood Vn~v x Lv on which f = f\ x id splits isometrically.

Proof Part (i) follows immediately from the definition of C. For

part (ii) observe that C = 0 iff Δ is parallel in U and therefore also parallel

along U in Rn+P. q.e.d.

We now derive some basic identities involving the splitting tensor and

the second fundamental form.

Lemma 1.2. Whenever T\,T2e A,

So in particular dC = [C, C].

Proof We compute with X eA±,

(VTιCT2)X = VTγCTlX - Cτ2VTιX
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h υ

Since Δ is totally geodesic, Vη VχT2 = 0, and thus

(1.3) {VTχCτ2)X = -VTιVχT2 - CT2VTιX.

Now R(TUX)T2 = VrIV^Γ2 - VxVTχT2 - V[Tι,χ]T2 = 0 by the Gauss
h

equation, and ^[τuxγT - 0. Therefore,

(1.4)

From (1.3) and (1.4) we obtain 1.2.
Lemma 1.5. For X, Y e Δ x am/ Γ G Δ ,

A A

(v^Cr)y — (VγCτ)x = Cv

Proof We first compute

h h h

(VχCτ)Y = VχCτY - CTVXY =
h h v

= —VχVγT + VχVγΊ

= -VχVγT-Cv X
vγτ

Thus,

(VxCτ)Y-(VγCτ)X= -Rh(X,Y)T-

7τxX 4-

we havi

Y -

h h

e

Cv .
vγτ

-VχVγT-
h

r + VΛ
V;

h

h

V[XfY]υ

T

T.
Y

T-C

n ι X

h

CτVχY

Y _L ί*1 V
v Λ T Li) I

vγτ vxτ
VYT

h

since R(X, Y)T = 0 by the Gauss equation and V[XJγ T = 0. q.e.d.
Given a normal field { along /, the selfadjoint tensor Aξ: TM -• ΓAf

is defined by (AξX,Y) = (a(X,Y),ξ). We denote by V-1 the induced
connection in the normal bundle along / .

Lemma 1.6. IfTeAandξe ΓXM, then

= AξCτ + Av±ξ on A±.

Proof. From Codazzi's equation,

(VτAξ)X - Av,ξX = (VxAξ)T-

and VxAξT = 0, Av±ξT = 0, we obtain

(VτAξ)X = - i^V^Γ + Av±ξX = AξCτX + i4VjL^. q.e.d.
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The following "completeness" result for relative nullity foliations is of
basic importance (cf. [3], [8]).

Proposition 1.7. Let γ: [0,b] —• M be a geodesic such that γ[O,b) is
contained in a leaf of A in U. Then v{y{b)) = v and Cy> extends smoothly
to[0,b].

Lemma 1.8. Assume the leaves of the nullity foliation AonU are com-
plete. Then for any XQ e U and To e ΔXo, the only possible real eigenvalue
ofCτ0 is 0. Furthermore, ker CT is parallel along the velocity field T of the
line x0 + tT0.

Proof Suppose Co = CτQ has the nonzero real eigenvalues λ\9 ,λk.
Let τ " 1 = max|λ, |. By 1.2, the field CT satisfies VTCT = C£, and since
the operator Ct = I - tCo is invertible for - τ < t < τ, we have that

Q = C0(I - tCoΓ1

is the unique solution with initial condition Q for t = 0. Now either
(τ - t)~x or - ( τ + t)~x is an eigenvalue of Cu - τ < t < τ, which diverges
as t —• τ, or / —• - τ . This is impossible since Ct is well defined for all t,
by our completeness assumption, q.e.d.

From now on we restrict attention to the case where the Gauss map has
constant rank 2.

Lemma 1.9. Iff has constant relative nullity v = n - 2 on £/, and
the leaves in U are complete, then the codimension ofkevC in A satisfies
codimkerC < 1.

Proof Otherwise, the image of C would contain a self adjoint CT φ 0,
for dimension reasons, contradicting 1.8.

Lemma 1.10. Suppose v = n - 2 and codimkerC = I on U. Let T be
a {local) unit vector field perpendicular to ker C. If Cγ is invertible, then
kerC is a distribution on U, constant in Rn+P. If in addition the leaves in
U are complete, then U = L3 xR"~ 3 and f splits.

Proof. It follows from 1.5 that for arbitrary S € ker C and X, Y e Δ ± ,

(VxS,T)CτY=(VγS9T)CτX.

Therefore,

, T)Y- (vYs, τ)x9 στz) = o
for all Z G Δ 1 . Since det Cf φ 0, we obtain VXS e ker C. But (VXS, Y) =
-(CSX, Y) = 0, so VXS e kerC. On the other hand, we have by 1.2 for
any vertical R,

= 0,
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and therefore VRS e ker C. This completes the argument.

2. Complete submanifolds of rank at most 2

Let Nn be a riemannian manifold, possibly with some boundary dN.
An isometric immersion f\Nn-+ Rn+P is called ruled if N admits a con-
tinuous codimension 1 foliation tangent along dN such that / maps each
leaf {ruling) onto an open subset of an affine subspace of Rn+p. We say
that / is completely ruled if all rulings are complete. Observe that in this
case, the leaves in each connected component of N (called a ruled strip)
form an affine vector bundle over a curve with or without end points. We
then say / is a cylinder if N = Lι x R " " 1 and / = f\ x id splits. Now we
state our first main result.

Proposition 2.1. Let f: Mn —• Rn+P, n > 3, be an isometric immersion
of a complete riemannian manifold which does not contain an open set
L 3 x R"~3 with L 3 unbounded, and p the rank of the Gauss map. Suppose
that p < 2 everywhere, and let M* be the open subset of all points in M
with p = 2. Then the following hold:

(i) M* is a union of smoothly ruled strips.

(ii) Iff is completely ruled on M*, then it is completely ruled everywhere,
and a cylinder on each component of the complement of the closure ofM*.

As a consequence, if / is real analytic, then either M = L3 x Rn~3 and
/ = f\ x id splits, or / is completely ruled. Before going into the proof of
2.1, we will discuss some facts about ruled immersions.

Let f:Nn-^ Rn+P be smoothly ruled. Consider any unit speed curve
c: I —> N9 perpendicular to the rulings, and an orthonormal frame field
c = To, Tu , Tn-U N\,' ' , NP along c such that Tu - , Tn-λ are parallel
in the bundle of rulings and N\,- , Np are parallel in the normal bundle of
/ , with respect to the induced connections. This frame field thus satisfies

(2.2)

for i < i < n - 1 and 1 < j < p. Here ω, , /?//, yj are smooth functions on
/. Along c we have that ω = - Σ , ωf 7/ = VToTo is the curvature vector
of c in N, Σj βijNj = β(Ti) = a(T0, Γ,), and Σj 7jNj = Ί = α(Γ0, Γo) is
the mean curvature vector, since the second fundamental form a clearly
satisfies a(Th Tj) = 0 for 1 < / < n - 1.



406 MARCOS DAJCZER & DETLEF GROMOLL

We parametrize / near c by means of the normal exponential map of c
in N9 i.e. by the map F: I xRn~ι -> Rn+P,

n-\

(2.3) F(s,t) = c{s) + ΣtiTi{s),

restricted to a neighborhood of / x {0}. Conversely, prescribe ω, β, γ arbi-
trarily on /, as smooth curves in R " " 1 , ^ " 1 ® RP,RP, respectively. Then
(2.2) has a solution frame field, unique up to a fixed orthogonal transfor-
mation. With c(s) = f* T0(σ) dσ, equation (2.3) defines a parametrization
F of a smooth ruled submanifold, uniquely up to congruence, whenever
F is regular, so in particular near / x {0}.

We now argue that F is regular as far as / is defined. In order to decide
where F is singular, using (2.2) we compute

(2.4) Fs = (1 + (ωf T))T0 + β(T), Ft = T

at a point (s,t), where T = Σ f ί|7/. Therefore, F has maximal rank iff
Fs φ 0, or

(2.5) \Fs\
2 = (l + (ω,T))2 + \β(T)\2>0,

and F has precisely one singular point on each line in a direction T which
is not perpendicular to ω and in the kernel of /?, i.e. in the relative nullity
of / along c. For each s e I, the set of singular points of F in {s} x R""1

is empty or an affine hyperplane in the kernel of β.
Consider now any open neighborhood W of / x {0} in / x R""1 such

that Ws = WΓ\ {s}x Rn~ι is star-shaped with respect to s x 0 and F maps
Ws into the ruling through c(s) for all s e /. Then the exponential map
F\ W is injective in iV by construction, and we claim it must have maximal
rank. Let t eRn~ι and t e Ws on some open interval /o c /. The field
T = Ft is parallel along c in the bundle of rulings, and c(s) = c(s) + T(s)
is the reparametrization c = c\ o φ of the unit speed trajectory c\: /o —• N,
orthogonal to the rulings, C\(so) = c(so) for some so e To, where φ is the
C1 arc length function of c on /o, measured from SQ. If T\ is parallel in
the bundle of rulings along c\9 T\(so) = -T(so), then T\ o φ = -T on 70.
Since c = Cj o 9? -1- T\ o 9? is regular, we conclude $/ ^ 0. But this means
Fs Φ 0 in (2.4), and F is regular. This proves our claim.

We will also need that the rank of the Gauss map of / is constant
along a ruling if it is at least 2 somewhere. It suffices to consider the
parametrization (2.3). Let aγ be the second fundamental form at F(s, t) =
c(s) + T(s), and U a parallel vector field tangent to the rulings. Then by
(2.2) or (2.4),

(2.6) aτ(Fs, U) = «ω, U)T0 + β(U))\
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Here the component, taken at F(s,t), is simply obtained by subtracting
the projection in direction Fs. With L(U) = (ω, U)T0 + β(U), Fs is in the
image of L iff rkL = rkβ + 1. Therefore,

τkaτ(FSi ) = τkβ

is constant on the ruling. Now ker β is the relative nullity of / exactly
where β is not identically 0, i.e. the rank of the Gauss map of / is at least
2.

In this context, we also conclude from (2.5) and (2.6) that for any T e

(2.7) atτ(Fs/\Fs\9U)->0 as ί - oo.

We will make use of two particular applications of the preceding dis-
cussion.

Lemma 2.8. Let f: Nn -> Rn+P be smoothly ruled such that ρ = k>0

everywhere for the rank p of the Gauss map of f. Suppose the leaves of the

relative nullity foliation Δ are complete. Then every point in N has an open

neighborhood W such that f\ W extends uniquely to a smoothly ruled strip.

Furthermore, for this extension p = k. If N is simply connected, then f

extends to a ruled strip globally.

Remark 2.9. Let f:Nn-+ Rn+P be a simply connected ruled strip.
Then any other ruled immersion f:Nn-+Rn+p with the same rulings in
N is given by (2.2) and (2.3) (after fixing an orthogonal trajectory to the
rulings in N), where ώ = ω, β = Qβ, and γ is arbitrary. Here Q is any
smooth curve in the orthogonal group O(n - 1) of R""1, parametrized on
/. Clearly, / and / are congruent iff

β = β and γ = γ,

up to a constant orthogonal transformation. This is an immediate conse-
quence of (2.4) and (2.5).

Proof of '2.1. (i) According to the degeneracy of the splitting tensor C
of /, we have a disjoint decomposition M* = Mo U M\ u Mi such that Mo
is the (in A/*) closed set of points where C = 0, and Mi is the open set of
points where rank Cτ = 2 (cf. 1.9 and 1.10). By 1.8, these three sets are
saturated, i.e. they are unions of (complete) leaves of Δ.

Let V = intMoUMi. It follows from 1.1 that any connected component
of int Mo is a product L2 x Rn~2 on which / splits. By 1.10, any component
of Mi is a product I 3 x R""3 where / splits. We conclude that M2 = 0,
Mi is open, and intΛ/o = 0.

Now we claim that the bundle Δ Θ ker Cγ is smooth and involutive on
Afi, with leaves totally geodesic in Rn+P, i.e. M\ is smoothly ruled. To see
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this, let ker Cγ be spanned locally by a unit vector field X. Since CγX = 0,
h

we have VXT = 0. Using 1.8, we obtain VTX = 0. Thus [X, T] is vertical
and Δθker Cr involutive. By 1.6, for any normal field ξ parallel along the
leaves of the nullity foliation,

= AξCτ,

so

(2.10) AξCτ = C^Aξ.

The last relation yields OτAξX = 0. On the other hand, both eigenvalues
of Cτ are 0 by 1.8, so Cτ and thus Oτ are nilpotent. Therefore,

(2.11) kerCf = imCf.

We conclude from (2.10) and (2.11) that

(2.12) (AξX,X) = 0

for any ξ e T±M, i.e., the leaves of Δθker Cγ are totally geodesic in Rn+p.
Our next step is to show that the rulings in M\ are complete. Consider

orthonormal basis fields X, Y of Δ-1. Since Cγ is nilpotent, we have Cγ Y =
μX, where μ is a smooth function. On the other hand, by 1.5,

or equivalently,

(2.13) Xμ = (VγY,X)μ.

The leaves of the relative nullity foliation are complete, and thus parallel
hyperplanes in each ruling. Therefore, any integral curve of X is a line
segment in Rn+P. It suffices to show: If γ: [0,b] —• M is the segment in
Rn+P whose restriction to [0, b) is an integral curve of X, then γ(b) e M\. It
follows from 2.8 that γ(b) e M* and the linear differential equation (2.13)
extends smoothly to the point γ(b). Now / / ^ 0 o n [0,6], and γ(b) e M\9

which is sufficient since M\ is open.
The closure N in M of a connected component TV of M\ is a smooth

submanifold, with possibly nonempty boundary, on which / is a ruled
strip. Let x e N and Xj e N be a sequence, Xj —• x. Now the rulings Lj
through Xj must converge to a complete totally geodesic euclidean space
L = Rn~{ through x in N. Otherwise, we would find subsequences L' and
L' converging to limits L' and L" in TV which intersect transversally at x.
But then almost all Lj and L'j would intersect transversally near x, which
is impossible for leaves of a foliation. It follows that L c dN, and N is a
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continuous affine vector bundle over a connected 1-dimensional manifold
with or without boundary, and the last claim is immediate.

It remains to show N Π M* is a smoothly ruled strip. If x e L n M*
we will conclude that L c M*. The field X spanning kerCr near x in N
extends smoothly to a field X in a neighborhood of x in M. To see this
take a normal field ξ near x so that Aξ is invertible on Δ x . By (2.12) we
may choose X to be the unique smooth isotropic unit vector field of the
nondegenerate bilinear form

on Δ-1 which extends X. Now N Γ\Mχ is smoothly ruled, and L c M\ by
2.8. Notice also that if N\9N2 are two such completely ruled strips, closed
in Af *, N\C\NιΦ 0, then iVi U Λfc is again a smoothly ruled strip.

(ii) First consider the subset Af** of all points in M with p = 1. We
claim all leaves of the relative nullity foliation in the interior of Af ** are
complete. Otherwise, there is a geodesic γ: [0,b] —• M such that γ[O,b)
is contained in a leaf, but γ(b) is not. Since /? = 1 at γ(b), this point lies
in the closure of Af*, which is completely ruled by assumption. But the
relative nullity space at γ(b) is contained in the limit ruling transversal
to y(b). This is a contradiction. By 1.1 and 1.8, / is now a cylinder
on each connected component of intΛf**. The remaining arguments are
straightforward, q.e.d.

Although ruled strips have been completely described earlier in this sec-
tion, it is sometimes useful to have more explicit examples:

(i) Suppose the curve c has a Frenet frame c = e\, , en+p. Then

n-\

(2.14) F ( J , 0 E

parametrizes a smoothly ruled strip, t e Rn~ι.
(ii) If c is a straight line in R"+1 and ξ is a nowhere parallel unit normal

field, then the orthogonal complements of c and ξ are the rulings of a
complete hypersurface with p = 2.

(iii) We give an example of how a ruled strip can be "attached" to a
reducible immersion of a nonruled L2 x Rn~2 as a complete hypersurface
in R"+1. In the situation of (i), let e\9 ,en+\ be the Frenet frame with
curvatures τi, ,τ π . Assume τi,T2 φ 0 everywhere, and τ^ = 0 exactly
on some interval [a,b] for 3 < k < n. Then F in (2.14) parametrizes a
completely ruled hypersurface which splits as a product TV2 x Rn~2 over
[a, b]. Clearly, N2 can be replaced smoothly by a nonruled surface L2 over
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We conclude this section with a result on complete real Kahler subman-
ifolds of euclidean spaces.

Theorem 2.15. Let f: M2m -> R2m+P be an isometric immersion of a
complete Kahler manifold, with p = 2 on an open dense connected subset
ofM. Then M2m = L2 x R 2 m " 2 and f = fx x id splits.

Remark 2.16. If M2m is not everywhere flat, the splitting M2m =
L2 x R2m~2 s I2 x Cm~ι is Kahler. Moreover, if / is real analytic, the
conclusion of the theorem holds under the assumption p < 2 everywhere.

Special cases of 2.15 were obtained in [1], [2], and [10] (cf. also [6] for
the classification of (noncomplete) real Kahler hypersurfaces).

Proof We claim C = 0 in the open dense and saturated subset M*
where p = 2. To see this, let x e M*. First consider the case where
M is not flat at x. It follows from the relation Ro J = J o R and the
Gauss equation that the relative nullity distribution Δ is invariant under
the Kahler structure J of M, in a neighborhood of x. Then, we have
CJS = JCs for all vertical S. It is an immediate consequence of the last
relation and 1.9 that C = 0 at x.

Now let x G M* be a flat point of M. By the Gauss equation, for any
orthonormal basis ξ\, - ,ξp of T^-

i=\

Then we can choose a particular basis such that all the summands are zero,
or equivalently,

rkAξ. < 1 for 1 </</?.

Simply observe that if d e t ^ J Δ ^ > 0 and d e t ^ |Δ^ < 0, then there exists
a unit vector ξ e span{^/,^y} such that d e t ^ | Δ ^ = 0. Replacing ζi,ζj by
ξ.ξ1- where ξ1- € span{ξi,ξj} is a unit vector orthogonal to ξ, we continue
this process and obtain the desired basis. Now if Z e ker^JΔ^, we
conclude CTZ e k e r ^ J Δ ^ using the relation Aξ.Cτ = OTA^r It follows
then from 1.8 that CTZ = 0 if rkAξ. = 1. Since all Aξi\A£ cannot have a
common nontrivial kernel, we have again C = 0 at x.

Since C = 0, as a consequence of 1.1,/ is the identity on a euclidean
factor R2 w~2, first in the open dense and connected set M*, and then in
M.

As to Remark 2.16, if M is not flat at some JC, then JAX = Ax by the
above, and the euclidean factor R2m~2 is everywhere /-invariant, since /
is parallel. For the real analytic case, observe that the subset M* is open
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and dense if nonempty, although not necessarily connected. We omit the
straightforward argument. The case p < 1 is similar.

3. Rigidity of hypersurfaces

We begin this section with a discussion of isometric deformations of
ruled hypersurfaces.

Proposition 3.1. Let f:Nn -• Rn+ι, n > 3, be a ruled strip with
p = 2 everywhere. Suppose N is. simply connected and does not contain
an open subset L2 x R"~2. Then all isometric immersions ofN into Rn+ι

are smoothly ruled, with the same rulings in N, and in one-to-one corre-
spondence with the differentiate functions on an open interval

Proof. We refer to notation and some facts in the proof of 2.1. There
are smooth orthonormal horizontal fields X, Y such that Y is orthogonal
to the rulings, globally defined since N is simply connected. Therefore,

(AX,X) = 0 and CSX = 0

for all vertical S. Let / : JV —> Rn+ι be another isometric immersion. Since
C Φ 0 on a dense subset, it follows from the proof of 2.1 that / is also
ruled, with the same rulings in N. In particular, (AX, X) = 0. Thus by the
Gauss equation,

( : )
on A1- relative to the basis X, Y. Compare also our Remark 2.9 in this
context. The differentiable function φ on N is constant along leaves of
the nullity foliation, and the Codazzi equation for / is equivalent to the
intrinsic linear differential equation

(3.2) Xφ = (VγY,X)φ.

Now the claim follows by choosing initial conditions along a fixed maximal
orthogonal trajectory to the rulings, q.e.d.

The last result is clearly false for N = L2 xRn~2. Consider for example
the helicoid L2 in R3 whose associated family of minimal surfaces is not
ruled.

Corollary 3.3. Let f:Nn-+ R"+1, n > 3, be completely ruled and
suppose N does not contain an open subset L2 x R"~2. Then any other
isometric immersion of N into Rn+X is completely ruled, with the same
rulings in N.

Proof Observe that p < 2. On the open set N2 of points with p = 2
the leaves of the relative nullity foliation are contained in the rulings and
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thus complete. By the proof of 2.1, we conclude that the integrability
tensor Cj has rank 1 on an open dense saturated subset N'2 of iNfe Now
each connected component of N2 satisfies the assumptions of 3.1, and
therefore any isometric immersion f:N-> Rn+{ is smoothly completely
ruled on N2. Our claim then follows by continuity.

We now state our main result.
Theorem 3.4. Let f: Mn —• R"+1, n > 3, be an isometric immersion

of a complete riemannian manifold which does not contain an open set
L 3 x R"~3 with L 3 unbounded. Then f admits (nondiscrete) isometric de-
formations only along ruled strips. Furthermore, iff is nowhere completely
ruled and the set of totally geodesic points does not disconnect M, then f is
rigid.

Remark 3.5. By 3.3, all isometric deformations of / preserve rulings.
If M is simply connected, then any ruled strip gives rise to global isomet-
ric deformations, according to 3.1. Recall that a closed ruled strip is the
closure of smoothly ruled strips. Notice also that our proof shows the as-
sumption that L? is unbounded can be weakened to that L3 is not foliated
by complete totally geodesic lines. For the existence of such (deformable)
L 3 compare [5, in particular pp. 8-9]. As far as discrete deformations are
concerned, they sometimes do exist. We will analyze this question further
at the end of the section.

Proof of 3.4, Let / : Mn —• RAZ+1 be any other isometric immersion.
For k > 0, we define the open subsets U^, Ό^ of M where the ranks p, p
of A, A are > k. By the Gauss equation, tjk = Uk whenever k > 2, and
by the classical Beez-Killing rigidity theorem, A = ±A on each connected
component of C/3 = C/3.

We consider first the open set W = U2-U3. Through any point p eW
we have Ap = Ap for the leaves of the relative nullity foliations, again
by the Gauss equation. Let y : [ 0 , α ] ^ ¥ b e a geodesic with γ(0) = /?,
γ[0,a) c Δp, and γ(a) £ W. Using 1.7, γ(a) e T73 and thus A = ±A at
γ{a). Now by 1.6,

(3.6) vfA = cμ

on [0,<z), and (3.6) extends smoothly to [0,a] according to 1.7. Therefore,
A(p) = ±A(p). Consider the open saturated subset

(3.7) V = {q e W\A(q) φ ±A(q)}.

By the above, all leaves in V are complete. Since V does not contain an
open set L? x R"~3, our proof of 2.1 shows that / and / are smoothly
ruled on V. We will argue next that these rulings must be complete in V.
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Suppose there is an incomplete ruling L in V. Then we find a geodesic
δ: [0, b] -+ M such that δ[0, b) c L, δ{b) £ V, and j € A±. Now we apply
2.8 to conclude that δ(b) e W and thus A = A at £(&), after possibly
changing the local orientation of /. Moreover, the differential equation
(3.6), with X = δ, extends smoothly to [0,b], Since φ in the proof of
3.1 vanishes at δ(b), we have φ = 0, so A = A at δ(0), and this is a
contradiction. Now / and / are smoothly completely ruled on V. The
closure of a connected component Vλ of V is a ruled strip. We record

(3.8) i = =b4 onC/2-T7.

In our next step we deal with the open subset W = U\Γ\U\ -Vi- We first
claim Δ = A on W. Otherwise, consider the open set V* = {q e W\Aq =
Aq} and the smooth (n - 2)-dimensional foliation q —> Γ^ = Aq Γ\Aq. The
leaves are in fact complete affine subspaces. To see this, let ε: [0, c] —• M
be a geodesic, e(0) = q e V*9 ε[0,c) c Γ ,̂ ε(c) $ W. We conclude
ε(c) G ί/2 and A = ± 4̂ at e(c). Otherwise, ε(c) e dVl0 for some io, and
/? = 1 at ε(c) by 1.7. This is a contradiction since Lε^ = Δε(C) and ε is
transversal to Le(C). Now, in particular, A = ±A have the same kernel at
ε(c), and then at β(0) = q, contradicting q eV*. The complete leaves of Γ
must be parallel both in the leaves of Δ and A. Therefore, they are parallel
in M9 and then in R"+1, along V*. This means V* contains a product
L2 x R"~2, which we had excluded. Hence our claim is proved. Now it
follows that A = ±A on W. The argument is analogous to the one applied
to W, using also the above transversality. In particular, we have

(3.9) A = ±A onU{ΠU{-V.

Finally, the open set W" = U\ - U\ must be empty, and the same
applies to ϋ\ -ΊJ\. Otherwise, there exist a point p e W" and a geodesic
η: [0,d] -+ M such that η(0) = p, η[0,d] c Ap, but η{d) £ W". Here
we use that the relative nullity foliation Δ cannot be complete on an open
subset of W" by our assumption. According to 1.7, p = 1 and β = 0 at
η(d). Again we apply the transversality argument to obtain first η(d) φ V.
lfη(d)tUΪ9 then η(d) eV2-V. If η{d) e Uu then η(d) e Ux nϋ{ - V c
U\ Π ϋ\ —Ύ. Now (3.8) or (3.9) implies the contradiction p = β at η{d).
We have therefore shown that U\ Π U\ is dense both in U\ and ϋ\9 and
this together with (3.9) yields A = ±A on U\ - Ύ = U\ - V, and thus on
M-V.

If V is empty and the set of totally geodesic points M - U\ = M - ϋ\
does not disconnect M, then A = A or A = -A on M. This completes our
proof.
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Corollary 3.10. Let f\ Mn ^ R"+1 be a complete irreducible real an-
alytic hypersurface, n > 4. Then unless f is completely ruled, f is rigid
in the category of analytic isometric immersions, and f is also rigid in the
C°°-category if the set of totally geodesic points does not disconnect M.

Theorem 3.11. Let f: Mn -> R"+ι, n > 3, be an isometric immersion
of a complete riemannian manifold which does not contain an open set
L2 xRn~2. Suppose the scalar curvature s of M satisfies either s > 0 or
s < ε < 0 everywhere. Then f is rigid.

Proof We argue first that / is nowhere completely ruled. Otherwise,
on a ruled strip, the scalar curvature s = o(t4) approaches zero (from
below) along any line in the rulings transversal to the nullity Δ, according
to (2.7), which we had excluded. It is interesting to observe that s is
constant along leaves of the nullity foliation, which follows also from (2.7)
or (3.12), since the splitting tensor is nilpotent.

Next, suppose / has constant relative nullity n - 2 on some open set
U. Along any unit speed line Xo + tT0 in the leaf of the relative nullity
foliation, A{I - tCo) is parallel, Q = Cr0. This follows immediately from
1.6 and 1.8. In particular, we have for the scalar curvature

(3.12) s det(/ - tC0) = s0.

Thus if the line is complete, s —• 0 as t —> ±oo, unless Q is nilpotent. On
the other hand, in case Q has nonreal eigenvalues, an easy argument for
2 x 2 matrices shows s = del A < 0, since AC = A1 is selfadjoint on Δ-1.
If all leaves in U are complete, it follows with our assumptions from 1.8
and the above that Cs is nilpotent for all S e A. Furthermore, C Φ 0 on
an open dense (saturated) subset U' of U (cf. 1.1). As we had shown in
2.1, this implies / is smoothly ruled on U1.

Finally by one of the crucial arguments in 3.4, the immersion / can be
deformed along a connected ruled subset V with relative nullity n - 2 only
if V is contained in a smoothly ruled strip. But such strips cannot exist
according to the first part of this proof, and thus / is rigid.

Remark 3.13. It is clear that 3.11 holds as well for s > 0 provided
the set of totally geodesic points does not separate M. Furthermore, the
conditions need only be satisfied outside some compact set.

We finally discuss to what extent isometric deformations may exist if
the set of totally geodesic points separates the hypersurface in 3.4. The
following fact actually holds for arbitrary codimension.

Lemma 3.14. Let f: Mn —• R"+1 be any isometric immersion, and S a
connected component of the subset of totally geodesic points. Then f(S) is



RIGIDITY OF COMPLETE EUCLIDEAN HYPERSURFACES 415

contained in an n-dimensional affine subspace ofRn+ι tangent to f along
S.

Proof. Note that any smooth function φ: Mn —• R with dφ = 0 on S
must be constant on S. This is because φ(S) is an interval in R, which must
contain regular values of φ unless it is a point. Let xoeS and f(x0) = 0.
Now <pι = (N,a) satisfies dφx = 0 on S if N is a unit normal and a is
any constant vector field in Rπ + 1. Thus N is constant in R"+1 along S by
the above. Furthermore, we also have dφi = 0 for the support function
ψi = (/, N), and thus ψi = 0 along S. This completes the argument.

Consider a complete hypersurface / : Mn —• Rn+ι without ruled strips
and open sets L 3 x R"~3 as in 3.4. Looking back at the proof it is now easy
to see that the set of all isometric deformations of / is discrete and can
be obtained by reflecting components of the complement of a connected
separating set S of totally geodesic points in the common affine tangent
space along S in RΛ+1.

In this paper we have restricted attention to isometric deformations of
hypersurfaces Mn in euclidean space. If the ambient space is a euclidean
sphere, the local rigidity problem becomes a special aspect of the euclidean
case by considering cones, as was already observed in [12, p. 44]. Com-
plete Mn are always rigid for n > 4 (D. Ferus, unpublished), but not for
n = 3 (cf. the discussion in [5, p. 9]). Even the local situation in hyper-
bolic space is not completely clear as yet; the claims in [7] are incorrect.
We expect that there are more types of complete deformable hypersur-
faces. Another important question in euclidean space R4 concerns the
existence of complete nonruled deformable hypersurfaces M3 with rank
p = 2 almost everywhere. This problem arose already in [5] for minimal
immersions.
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