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This paper deals with two aspects of the algebraic structure of •#, the
space of harmonic maps from a simply-connected 2-dimensional domain
(either Riemannian or Lorentzian) into a real Lie group GR, the real form
of a complex group G. In the language of theoretical physics, we study
the classical solutions of the chiral model In the first part of the paper
(§§1-8) we construct a representation of the loop group s#(Sι, GR) on Jf
corresponding to the Kac-Moody Lie algebra of infinitesimal deformations
observed by Dolan [8]. Here the main theorems are the description of the
action on Jί (Theorem 6.1) and the description of the action of a subgroup
on the space of harmonic maps into Grassmannians (Theorem 8.3). In the
second part of the paper (§§9-15) we restrict to a theory which applies only
when Ω is a 2-dimensional, simply-connected, Riemannian domain and
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the group is GR = U(N). We associate with every solution a nonnegative
integer n, which we call the uniton number, and show that every harmonic
map from S2 into U(N) has finite uniton number. Furthermore, for any
simply-connected Ω c S2 and n < oo, we find 0 < n < N - 1. We also
give a construction for obtaining every harmonic map of uniton number n
in a unique way from a harmonic map of uniton number n - 1 (Theorem
1.46). Moreover, this construction applies also to harmonic maps into
complex Grassmannians (Theorem 15.3). The moduli spaces of harmonic
maps are described in terms of holomorphic sub-bundles of holomorphic
bundles over Ω satisfying certain additional conditions.

The last section (§16) contains questions which are left unanswered and
might profitably be investigated further.

The results described in this paper are the product of what was originally
a joint research project with Steve Smith, who was interested in the group
theoretic aspects of the Kac-Moody representations. Unfortunately, the
actual representation found of the affine Kac-Moody Lie algebra is rather
dull from the group theoretic viewpoint (and its importance in differential
geometry is as yet unclear). However, the results in this paper owe a lot
to our joint discussions.

Discussions with Louis Crane and Dan Freed were very encouraging
and helpful. In particular, Louis found many Russian references, some of
which are listed in the references. He also analyzed the action of the loop
group on Yang-Mills [6]. Iz Singer directed the author to references [3]
and [4]. The existence of the Sι action of §7 was pointed out by Chuu-lian
Terng.

After the fact, the author discovered that there is a very large physics
literature on the subject. The bibliography of this paper is not complete.
By and large articles have been included which will be useful to the math-
ematical audience for which this paper is written. (More comments on
the literature can be found in §16.) Also, the author cannot claim that the
first part of the paper is original, since much of it can now be found in
many versions in the physics literature. However, the present exposition
should still be of use to mathematicians, and the author apologizes where
it duplicates the existing literature.

PARTI

1. Basic formulas and characteristic notation.

In the first part of this paper (§§1-8) we discuss the theory of harmonic
maps from a one-connected complex domain Ω c R2 ^ C into a compact
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Lie group GR, which is the real form of a complex group G. We actually
assume GR = U(N) and G = GL(7V,C), although by constructing a repre-
sentation p: G —> GL(N,C) and p\Gu —> U(7V), one can check our proofs
are valid for many other G. In particular, our reasons for using U(N)
instead of SU(iV) are more fundamental than we can explain, since the
"degree" in U(N) does describe instanton number. Determinant and trace
properties trivially factor out of the solutions, but not out of the construc-
tions. In this first part, the theory is also valid for domains Ω c J ? 1 1 . One
needs only to use the characteristic coordinates ξ = x - t and η = x + t
instead of x - iy and x + iy to make all the computations valid. Since the
global theory is completely different for is1*1, and from the point of view
of differential geometry we are ultimately interested in maps S2 —> U(N),
we restrict to Ω c R2.

If s: Ω -> U(N) = GR, the energy is

. - 1 ds
dxdy

- 1ds ds~{ ds ds~ι\

~dx~dx ^dyldy I X y'

For a e QR, a* = aτ = -a and \a\2 = trύfα*. Since s~ι(q) = s*(q) for
q e Ω, we can replace s"1 by 5*. However, we shall need formulas for
the complex group G = GL(N9 C), where s* must be replaced by s~ι. We
therefore consistently use the expression above.

The Euler-Lagrange equations for the integral E are the equations

(1) x

ds d
{

θs

Solutions to such equations are called harmonic maps from Ω c R2 into
GL(N,C) = G. When s~ι(q) - s*(q), then s is a harmonic map into
\J(N) = GR. Recall that if s: Sι -+ U{N), then s is a geodesic if

or s or

αG0R = u(iV). The harmonic map equations are therefore very natural ex-
tensions of the geodesic equation. Let Ax = \s~{ ds/dx, Λv = jS~ι ds/dy
and define the one-form

(2) A = Ax dx + Avdy = ds.
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Note both Ax and Ay are skew Hermitian matrices. In terms of A, we can
write (1) as

(3) d*A = £-(Ax) + ̂ (Ay) = 0.

As a consequence of the definition of A, we have the identity

(4) dA + [A, A] = j^Ay - ^Ax + 2[AX9 Ay] = 0.

In a simply connected region, equations (3) and (4) and a specification
of the basepoint s(p) at p € Ω are equivalent to (1). To see this, either
construct s by line integrals from A and s(p), or note 2(dA + [Λ^]) is
the curvature of the connection d + 2A in the bundle Ω x C^. Then
s: ΩxC^ —• ΩxC^ is the change in gauge (trivialization) which transforms
the flat connection d + 2A into the trivial connection d. We also record
the second variation formula, or the linearization of (1) at a solution s.
This is expressed in terms of Λ = s~ιδs, where Λ: Ω —• u(N). We call Λ
a Jacobi field if
(5)

( )]) =

(3) and (4) can be rewritten in a number of forms which are very rem-
iniscent of classical integrable systems. For example, if we let y be time,
d/dy = , Ax - iAy = P and Ax + iAy, then

(6) P = i2^P + i[Q,P], Q = ijfiQ-i[P,Q\.

The conditions that Ax and Ay are skew-Hermitian translate to P* = -Q
(which is of course a reality condition). We are in fact discussing exactly
the theory of these equations in this paper. The choice of time t was
however arbitrary, and the Hamiltonian formulations available are not
satisfactory to the author. For our theory, the correct change of coordinates
seems to be characteristic coordinates. Since (1) can be written

ds _! ds ds _xds Λ

its top order term is Δ and characteristic coordinates for the system are
(z = x + iy, z = x - iy). Recall that d = d/dz = \{d/dx - id/dy), d =
d/dz = d/dx + id/dy, dz = dx-\- idy, and dz = dx- idy. The harmonic
map equations (1) are now (we consistently use d/dz = d, d/dz = d)

(7)
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The one-form A is, of course, still

(8) A = Azdz + Az dz = \s~x ds,

so A2 = \{Ax + iAy) and Az = \(AX - iAy). We write the pair (3) and (4)
together as

(a) d*A = ΘAz+dA2 = 0,

(b) dA + [A,A) = 8Az-dA2 + 2[A2,Az] = 0.

The second variation formula is now

(10) Θ{dA + 2[A29 A]) + d(dA + [2A2, A]) = 0.

Also, the pair (6) makes quite a bit of sense as a pair equivalent to (9):

(a) dAz + [A2,Az] = 0,

(b) dA2 + [Az,A2] = 0.

We shall use (7)-( 11) throughout the paper. All the formulas can be written
in terms of (x,y) also, but they are far less illuminating.

As one final comment, note that out of habit, everything is pulled back
on the left (A = s~ιδs, A = jS~ι ds and so forth). Formulas (up to
sign changes) are valid for the right pull-backs. This is explained fully
as we proceed, especially in the explanation of the Sι action, where the
representation of (-1) acts to take s to s~ι. If s is harmonic, then s~ι is
also (see Theorem 8.3 for an explicit statement of this fact).

δ(s~ι) = -s~{δss~ι = -As1"1,

A = -\d{s~x)s.

The switch from s to s~ι clearly reverses my habit of using the left pull-
back to the right convention. There is no preferred choice and both are
used in the literature of differential geometry.

2. The canonical associated linear problem or Lax pair.

We recall that in considering the equations (9), the second is the state-
ment that the curvature of the connection (d + 2A2,d + 2AZ) in Ω x C^
vanishes. In seeking reformulations of (9) which will give us insight, we
discover an interesting fact which is the basis for our entire theory. This
is very well known although it is not known to the author who deserves
the credit for the discovery.ι

1 Added in proof. This is due to K. Pohlmeyer, Integrable Hamiltonian systems and
interactions through constraints, Comm. Math. Phys. 46 (1976) 207-221.
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Theorem 2.1. Let Ω be simply connected and A: Ω -> Γ* (Ω) (8) g.
2A = s~ι ds, where s is harmonic if and only if the curvature of the connec-
tion in Ω x C^

Dλ = (5 + (1 - λ)A2,d + (1 - λ " 1 ) ^ )

vanishes for all λ e C* = C - 0.
We write out the curvature equations and expand in λ:

= λ{8A-z - [A2, Az]) + λ°(θAz - dA-z + 2[A2, Az])

+ λ-ι{-dAz-[A2,Az]).

Clearly if A = y~ι ds for s harmonic, this curvature vanishes since
the coefficients of λa, a = -1,0,1, are (9)(b) and (ll)(a), (b). On the
other hand, if all the curvatures vanish, these coefficients vanish and we
get (ll)(a), (b) and (9)(b) to hold. However, (9)(a) is the sum of (ll)(a)
and (1 l)(b), and we have the existence of our harmonic s.

Naturally, again since Ω is simply-connected, our next step is to trivi-
alize the connections

This involves solving simultaneously the linear equations

(12) 8Eλ = (l-λ)EλA2, dEλ = (l-λ-{)EλAz

for λeC*. Since the curvature vanishes, we can do this, and a solution is
uniquely determined by prescribing Eλ(p) foτpeΩ any base point. For
the purposes of the first part of this paper, we will need to do this, and
we assume s(p) = / at the basepoint p e Ω and choose Eλ{p) = I (I is the
identity of the group). Since s = s~{(p)s is harmonic if s is, and s(p) = /,
we lose nothing by assuming s(p) = I. In Part II, and possibly in general,
this normalization is awkward and we abandon it. However, note that if
λ = 1, dE\ = 0 and E\ = E(p), which is / under our convention. The
condition E\ = I we find useful to preserve under all circumstances. At
this point we have very nearly given a proof of the next theorem.

Theorem 2.2. Ifs is harmonic and s(p) = I, then there exists a unique
£ : C * x Ω ^ G satisfying equations (12) with

(a) E{ = /,
(b) £ _ ! = * ,
(c) Eλ(p) = I.
Moreover, E is analytic and holomorphic in λ e C*. Finally, if s is

unitary, Eλ is unitary for \λ\ = 1.
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Proof. The existence and uniqueness of Eλ follow from understanding
the curvature condition of (2.1) (in whatever fashion the reader has al-
ready chosen). The regularity follows from the same conditions and the
analyticity of s. We check that from (12) we get

-dE~{ =(l-λ)A-zE~\ -9E'1 = {\ - λ~x)AzE-\

The adjoint of this pair of equations is

When s is unitary, (Az)* = -Az. If \λ\ = 1 or λ = λ~\ the uniqueness
gives (E^1)* = Eλ. This finishes the proof.

The converse now reduces the original harmonic map equation (1) to
an equation with an entirely different flavor.

Theorem 2.3. Suppose E: C* x Ω —• G is analytic and holomorphic in
the first variable, E{ = I and the expressions

x E~ιdEλ

l-λ ' 1-λ
are constant in λ. Then s = E-\ is harmonic.

Proof. We let

8Eλ = (l-λ)EλAz, ΘEλ = {\-λ~x)EλAz.

It follows that the connections d + (1 - λ)Az, d + (1 - λ~ι)Az have zero
curvature, which implies £_ i = s is harmonic.

From now on we replace the equations for s by the equations for Eλ.
In other words, our variables are

E: C * x Ω

with Eι = I. The holomorphic maps Q: C* -» GL(N,C) with Q{ = I act
by left multiplication, since if E satisfies the equations of Theorem 2.3,
QE does also. The old harmonic map £"_i becomes Q-\E-\, which is also
harmonic. The unitary condition is the requirement that Eλ be unitary for
\λ\ = 1. Note that we may expand Eλ in a Laurent series,

Eλ= Σ Taλ«,
a= — oo

where Tn: Ω —• iV x N matrices (= 9). The unitarity condition is

3Γ1 = Σ τ«λ~a

a= — 00
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The form of the unitarity or reality condition which we shall use most
often is one of the equations

(13) EλE*σ{λ) = I or E^ = E*β(lγ

Here σ: C* —• C* is the anti-conformal involution σ(λ) = (A)"1. In Yang-
Mills theory, the involution σ is replaced by λ —> -(A)"1, which is a great
deal more difficult to treat [6].

3. The Dolan representation

In this section we review the infinitesimal construction of the represen-
tation of the affine Kac-Moody Lie algebra based on GR due to Dolan [8],
[9] and Chau, Lin and Shi [3] for both the harmonic map equation and the
anti-self-dual Yang-Mills fields. These papers are based on the assumption
that the solution space of an equation is a differentiable manifold Jt with
the tangent space given by the linearized equations.

Definition 3.1. A conservation law for an equation is a vector-field
along the solution manifold Jt. This is actually the same thing as an
infinitesimal symmetry.

The Lie algebra structure of the conservation laws, or infinitesimal sym-
metries, is just the Lie bracket of the vector fields. So to verify the rep-
resentation, it is necessary to do some very messy computations with the
Lie brackets. Since we obtain directly a representation of a group, we can
avoid these computations. We also transform the "hidden" symmetry into
a directly constructable one.

What we actually describe in this section is how to canonically obtain
a large number of Jacobi fields, or solutions to the linearized harmonic
map equation (5) or equivalently (10). In the appropriate context, these
solutions would represent vector fields, and could be integrated to give
flows. We avoid this by going to the extended or so-called finite problem
and solving in another fashion.

Our first construction of solutions to the linearized equations follows
that of Chau, Lin and Shi [3] for anti-self-dual Yang-Mills equations. Small
elements a, b, c, etc. are reserved for elements of the Lie algebra, either QR
or g = g\{N, C) in our general case.

Let us review this linearized equation. For every local harmonic map
s: Ω —> U(N)9 we obtain A = \s~ι ds. Associated with s is the linear
equation (10) for Λ = s " 1 ^ . Since d*A = 0, this equation can be written
as either

(14) d*(dA + 2[A9A]) = 0
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or

(15) d*dA + 2[A,dA] = 0.

(14) and (15) are equivalent.
Theorem 3.2. IfλsC*, then Aλ(a) = E~ιaEλ solves the linearized

equation (14). If\λ\ = 1 and a is skew, then Aλ(a): Ω —• u(iV) is also skew.
Proof. The skew-Hermitian condition follows from the fact that Eλ

is unitary when \λ\ = 1. To do the computation, P2 = (1 - λ)A2, Pz =
(1 - λ~{)A2, and Λ = Λ - λ(a) temporarily. For λ = 1, Λ = a is automati-
cally a solution. For Λ Φ a

ΘA = [A,P2], dA = [A9P2].

To show Λ satisfies the linearized equation, we verify the form (15) of the
equation:

{dd + dd)A + 2[A2,5A] -h 2[Λ2, βA]

= 0[Λ,ft] + Θ[A,P2] + [2Λ2,0Λ] + [2ΛΓ,0Λ]

= [2A2 - P2, [A, Pz]] + [2AZ - Pz, [A, P2)] + [A, 0P 2 + dPz]

+ [A,{\ - λ)8Az + (I - λ~ι)dA2]

+ (λ - r-'xt^jA,^]] - μ - z,[Λ,̂ ]])

= [A, (1 - λ)SΛz + (1 - λ~ι)dA2 + (λ-λ-χ)[A29 A2]].

This vanishes according to (9) and (11).
Since Aχ(a) is linear in a and holomorphic in A, a large number of solu-

tions of the linearized harmonic map equation can be found by expanding
Aχ(a) appropriately in power series about various points in λ. The points
which are in fact used are λ = 1, where E\ = /, and A\(a) = a and λ = - 1 ,
where E-\ = s and Λ_i(<z) = sas~ι. Note that the first term in the expan-
sion about λ = 1, or δs - sA = sa represents the infinitesimal action of
the group by multiplication of solutions on the right by constants, whereas
the first term at λ = - 1 is δs = sA = as, or the infinitesimal representa-
tive of the action of the group on the left by multiplication by constants.
Both actions clearly preserve the harmonic map equation. To preserve the
condition s(p) = /, Aλ(a) evaluated at p e Ω is to be zero. The allowable
variation is δs = sa - as or A = A\(a) — Λ_i(<z).

The change of variables used to construct the representation due to the
physicists is completely mysterious without the following rather tedious
development (which is actually completely unnecessary for understanding
our final development but leads to some beautiful looking contour integra-
tion formulas).
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Theorem 3.3. Suppose A is a solution of the linear equation (14). Then
there exist two additional solutions Λ+ and A~ to (14) satisfying

(16) dA+ = *(dA + 2[jA9A]),

(17) dK=

If A+(0) = 0 and Λ~(0) = 0, the solutions are unique.
Proof Since the second variation equations read d(*(dA + 2[A, A])) =

0, and Ω is simply connected, the existence of Λ+ is assured. To see that
Λ+ satisfies the equation, note we can write it as

However, d+2A is the flat connection, and [{d+2A)y (d+2A)] = curvature
= 0. It follows that

d{*dA+) + [2A, *dA+] = [d + 2A,d + 2A]A+ = 0.

The existence of Λ~ and its properties follow exactly in the same way. It
is clear that the equation for Λ~ is implied by d2A = 0, whereas existence
follows from the fact that d + 2A is the flat connection in another gauge.
So if (d + 2A)Q = 0,Q = dA~ + 2[A, A" 1 ] . Another interpretation is that
we obtain the lowering operation A —• Λ~ by raising sAy"1, a solution to
the linearized equation for s~\ and conjugating back s~ι(sAs~ι)+s = A"
to a solution of the linearized equation for s.

In order for this operation to be unique, we emphasize that the nor-
malization A(p) = 0 at p e Ω is necessary. Also, it follows that if A is
skew-Hermitian, then (Λ+)* = -Λ+ and (Λ~)* = -A from the uniqueness.
For the same reason (Λ+)~ = (Λ~)+ = A if A(p) = 0.

We now describe the representation of the affine Kac-Moody Lie algebra
based on QR. First let us recall the definition

Definition 3.4. If 0R is a lie algebra, the (uncompleted) affine Kac-
Moody Lie algebra Σ ( 0 R ) based on QR is the ring of finite power series
Σaa<*ta> a<* ~ 0 for a < k and a > k1 with aa € QR. The Lie bracket
operation is

We do not actually attempt to discuss the completion (the ring of all
formal, infinite power series). However, from our point of view as analysts
we see
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By setting t = eiθ, we identify

where / is a map from Sι into g with finite Fourier series. The Lie algebra
structure is [/, g](θ) = [f{θ),g(θ)]. Another point of view is that we
identify the formal element Σaaat

a with the holomorphic map from C*
to Q with finite poles at 0 and oo which is given by considering ί e C * .
(Careful, t Φ λ\) This last approach is the one we will take.

We now describe the representation. We fix a harmonic map s. At s,
we define the representation on a basis ata by ata -» Aa{a). The elements
An(a) are defined used the raising and lowering operators of (16) and (17):

Aa(a) = {Aa-{(a))+, A~a(a) = (Λ"α + 1(α))-, Λ°(α) = a- s~ιas.

By our discussion above, at each solution s this is well defined. However,
it does not show that the space of solutions is a manifold. If the space
of solutions is a manifold Jf with tangent space given by solutions to the
linearized problem, then Aa(a) is a vector field along the solution space.
This does not begin to deal with the calculation of Lie brackets, however.

We now relate this discussion to the earlier construction. Note that
Eλ(p) = / does determine Eλ uniquely. The expression from Theorem
3.2, E^xaEλ = Aγ(a), is the unique map Aλ(a): Ω —• g c satisfying

a)) = (λ-l)[A2,Aλ(a)],

A simple manipulation gives

dAλ(a) = ( ^ j ) (dAλ(a) + 2[A-z,Aλ(a)]),

dAλ(a) = - ( ΐ ^ j ) (dAλ(a) + 2[Az,Aλ{a)]).

We compare with our previous construction, and set iτ = (λ - l)/(λ + 1).
The singularities at λ = (0, oo) go to singularities at ±i, λ - 1 becomes
τ = 0, and λ = - 1 becomes τ = oo. In our new variable τ

Aτ(a)-a = τ(Aτ(a))+.

Theorem 3.5. An equivalent description of the representation of

is
An{a) = h. {h
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for a > 0 and
A0(a) = a-s'ιas = A0(a) -

Proof. The theorem is straightforward, modulo the normalization
problem. Formally the power series

oo oo

Rτ(a) = ΣAa(a)τ«, \τ\ < ε, Lτ(a) = ^A-a(a)T"a

9 |τ| > ε,
a=\ a=\

solve

Rτ(a) = τ(Rτ(a) + A°a)
+, Lτ(a) = χ-\Lτ{a) + Λ°)-.

Note Λ°(0) = Λo(α) -Λoo(α) is correct, and it is useful to see that (s~ιas)+

= 0, a~ = 0. A little calculation shows Rτ(a) = Aτ(a) - A0(a) for |τ| < ε,
and Lτ{a) = -Aτ(a) + Aoo(a) for |τ| > ε.

4. The variation formulas for the extended solution

This section is needed to connect the discussion of the previous section
with the vector space representations given in §§5 and 6. We already know
that for γ e C* and ae Q

δs = δE\ = sAγ(a) = E-\E~ιaEγ

gives an infinitesimal variation of the harmonic maps. Morally we know
this must determine δEγ for λ e C*. However, the actual expression for
δEχ can be calculated. Note we actually use δs = s(E~ιaEγ - s~ιas) to
preserve the normalization Eλ(p) - I.

Proposition 4.1. Given the first variation δs = s(E~ιaEγ - s~ιas), we
obtain

j j - (λ- l ) ) ( y + \ ) ί τ r „_! „ r, λ
λ = 2(λ-γ) (EχEy aEγ " aEχ)'

Proof We do the calculation for d. The given expression is invariant
under λ —• λ~ι and y —> γ~ι, so the exact computation with λ —> λ~ι and
γ —• γ~ι holds for d. First we note

δA2 = ^d(E-ιaEγ) + [A29E-ιaEγ] = ~(γ + l)[E~laE79A2].

We also have

9(δEλE~ι) = (1 -λ)EλδA2E~ι - ^(γ

However
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Remember the normalization Eλ(p) = Eγ(p) and δEλ(p) = 0. These cal-
culations yield the candidate formula

δEλEλ = α y )

Repeat the calculation for d to discover that this answer is indeed the only
possible correct one.

In order to connect this formula with our earlier development, we shall
need to change variables to iτ = (λ - l)/(λ + 1) and iξ = (γ - l)/(y + 1).
We use the notation Fτ = Eλ. These changes in variables are unfortunately
terribly confusing. The singularities now are at τ,ξ = ±i. In these variables
FOΞ/,FOO=5 and

(FτF-ιaFξ-aFτ)
δFτ = τ —ξ .

Consider how to obtain the representation of Σ α > 0 aaξ
a = f{ξ). For α > 0,

we develop the expression in contour integrals \ξ\ < 1 to get the appropriate
representation

τ I ^ dξ

l l
enclosing 0

On the other hand, if f(ζ) - Σ Q > 0 ^αί~ α

5 we want minus the Laurent
expansion at { = oo:

l l
enclosing oo

Note that the expression inside the contour integrals is holomorphic at
every point ζ Φ (0, oo) and ξψ±i. As long as the Fourier series is finite,
we encounter no difficulties with convergence. One can check that the
constant term is correct, also.

Theorem 4.2. Let f(ξ) = ΣΪLN
 a*ξa for a<* € Q. Then the variation of

Fτ associated with f is just

ξ T
over any contour enclosing the two points ±i in a counterclockwise direction
and avoiding 0.

Proof. Provided one believes the formulas, one need only note that the
contour about zero and the reverse contour about infinity can be deformed
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into contours about ±i. Another description of an allowable contour is
one just below \ξ\ = 1 follows counterclockwise and one just above \ξ\ =
1 followed clockwise. This description we gave in the theorem has the
advantage that we can extend the representation of finite Fourier series to
include a representation of any function holomorphic in the neighborhoods
of±ι !

The striking thing about the development is that in this section we have
disposed entirely of the variable (z, z) = q which looked so very important.
The business end of the construction is entirely in the variable τ.

Finally, it might be useful to write the formulas back in terms of λ and
γ. We make the appropriate change of variable. Now the singularities are
at 0 and the contour |{| = 1 is γ = imaginary. Also, let υ(ξ) = / ( ί " 1 ) .

Theorem 4.3. Ifυ is holomorphic on C U {oo} - {+1, -1}, it represents
the variation

where the contours enclose 1 and —1. If we deform to contours enclosing 0
and oo we obtain a simpler formula which holds for any v holomorphic in
the neighborhood ofO and oo:

_ λ-\SEλE-'v{y)Ey _,__

5. The representation of srf {S1, G) on holomorphic maps C* —• G

The formulas we have derived show the existence of a large number of
vector fields tangent to the space of harmonic maps. Moreover, these same
formulas show the dependence is actually on the twistor parameter λ. In
fact, this map from the Kac-Moody algebra to vector fields is actually a
representation [8], [9]. However, the computations are quite difficult. We
have found it easier to construct the group representation. In this section
we omit the q dependence.

The group action we find is a modification of the standard Birkhoff
factorization. In the case of Birkhoff factorization, the 2-sphere C* u {0} U
{oo} = S2 = CPι is divided into two overlapping regions:

S: = {λ: \λ\ > (1 +£)- ' } , S- = {λ: \λ\ < (1+e)}.

Let

X+ = {e: S+ —> G is holomorphic on S+ for some ε > 0},

X~ = {/: S~ —> G is holomorphic on S~ for some ε > 0}.
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The Birkhoff factorization we want to use is the factorization of an
analytic map g: Sι —> G on λ = 1 extended to a holomorphic function on
S+ n S~ for some a into

where /£,/£ € X+ and fϊ ,fχ £ Jf~. However, the Birkhoff factorization
generally requires a central term Q,

The terms (? and Q' identify the holomorphic structure of the bundles on
S2 = CPι with g and g~ι as clutching functions. They can be chosen to
be / only if these bundles are holomorphically trivial. The reader is at
this point referred to Pressley and Segal [17] or Helton [13] for extensive
information on this general type of problem.

We shall be carrying out the construction of an action of the group X~
on the space X+ via this recipe. For e € X+ and / e X~ write

f(e)(λ) = f(λ)e(λ)R(λ)

for e e X+, f*{e) e X+, f e X~ and R = R(f,e) e X'. This involves
factoring g = fe in the opposite order:

g = fe = f*(e)R-{.

Clearly, when we can define such a factorization uniquely, it does con-
struct a representation p: X~ —• Diff(Z+). However, there are definite
obstructions to carrying out the factorization. Crane shows this problem
arises in Yang-Mills [6].

The group action for the sigma model is based on a different division
of the sphere into two regions. It is not this different division which in-
sures that the factorization can be carried out. The key lies in the reality
condition.

The two natural domains for our problem are

S+ = C* = S2 - ({0} U {oc}), S- = {λ: \λ\ < ε or |A| > ε" 1}.

In the standard Riemann-Hilbert problem or Birkhoff decomposition, the
contour is |A| = 1. Our contour, as can be seen in the description in
Theorem 4.3, is a pair of small circles about 0 and oo, in the intersection
of S+ and S~. We replace X+ by

Xk = {e: C* -• G such that e and e~{ have Laurent expansions

of order k and e{\) = /},

e(λ)= Σeaλ«, e-\λ)= ^ ^ ' 1 ° .
\o\<k \a\<k
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We allow 1 < k < oo. Our reality conditions restrict to

We replace X~ by the group of meromorphic maps

s/2(S2, G) = {/: S2 - {pl9 ,/?/} -> G meromorphic with

no zeros or poles at (0,oo) and /(I) = /}.

The smaller group J&2(S2,G) is somewhat easier to understand than
the maps which are meromorphic in neighborhoods of (0, oo), which is the
group corresponding to X~. As before our reality condition is

J / R

2 ( S 2 , G) = {/ e Jtf(S2, G) such that /(A)' 1 = f(σ(λ))*}.

Now the description of our group action is similar to Birkhoff factor-
ization. We write f*(e) = f e-R for f,Re^f2(S2,G) and e,f*(e) e Xk,

In words, e is holomorphic in C*, / puts in zero and poles on the left, and
Rf takes them off on the right. In the abelian case, R = f~K However,
when G is abelian, this factorization is certainly nontrivial.

Lemma 5.1. Iff*(e) can be defined, there exists a unique f*(e) taking
the value I at I e C*. Moreover, if f*(e) and g*(f*{e)) are defined and
normalized to be I at λ= 1, then

(gf)*(e) = g*(f*(e)).

Proof. Given the existence of some factorization, we can always re-
place f*{e) and /?/by f{e)*{f*(e){\))-χ and R{f*(e)(\))-χ. These have
the desired normalization. Supposing we have two such normalized fac-
torizations

f*{e)R-χ = f*(e)R-1 = fe.

Solve algebraically to get

The function Q is holomorphic in C* from the first term and in a neigh-
borhood of (0,oo) from the second. It is also / at 1. Therefore Q is
holomorphic on S2 and the constant / by Liouville's theorem. The fact
that g # / # = {gf)* follows from this uniqueness.

The success of the group action depends on two separate facts. The first
is the existence of the factorization for all "simplest type" / e ^(S2, G).
These will induce the Backlund transformations of the next section. The
second is the factorization of an arbitrary / into factors of "simplest type".
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Definition 5.2. We shall say fesf (S2, G) is of simplest type iff(λ) =
π + ̂ (A)π-1-, where π is Hermitian projection on a complex subspace, π1- =
(/ - π) is projection on the orthogonal subspace and ξ(λ) is a rational com-
plex function of degree one which is 1 at λ = 1.

If we in addition require that / satisfies the reality condition, then we
can check that

is completely identified by its zero at a. Since / e £f(S2, G), a φ (0,oo).
Also if |α| = 1, ξa(λ) = 1 is of no interest.

Theorem 5.3. If f{λ) = π + {α(λ)πx is of simplest type, then e* =
f*(e) = feRf is always defined.

Proof After a little thought, one realizes that Rf should also be of
simplest type in order to cancel with / :

R = π + ζσ{a)(λ)π± = π + £Q(λΓ 1irL .

At λ = a, we should have

(19) πe(α)π± = 0,

and at λ = 1/ά = σ(a) we need

(20) π±e(l/ά)π = 0.

However, these two equations are compatible, since e(l/ά)* = (e(a))~\
or (20) is the same as the adjoint equation

(20') π(e(a))-{π± = 0.

We use (19) and (20)' to define π to be projection on the subspace V.
Here V is the subspace V = e(a)* V, where V is the subspace π projects onto.
Then V-1 ispeφendiculartoe(o;)~1Vande(α)ί;-L = span of e{ά)e{a)~γ\/ L

= vx.
The reader may amuse himself by constructing an example where the

factorization is clearly impossible. Without the reality condition, the two
conditions corresponding to (19) and (20) can be incompatible.

Theorem 5.4. Every f e sfn(S2,G) factors into a product of factors of
simplest type and trivial factors in the center. (This factorization is clearly
neither unique nor continuously defined.)

Proof Since / is meromorphic, f(λ) has a nonzero kernel at a finite
number of points λ = (αi,α 2, >αw), where |α z | Φ 1. We prove the
theorem by induction on the total degree of / . For a factor of "simplest
type", det(ττ + ξa{λ)π)± = ζa(λ)m where m = r a n k ^ . Recall (18): ξa =
((λ-a)/(άλ- l ) )((ά- l ) / ( α - 1)). This determinant has a zero of order m
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at a and a pole of order m at (ά)~ι and total degree m. With our reality
conditions, zeros and poles always come with this pairing.

To define the total degree of /, we need to pair the zeros at 1 /a and
a, since the combination of a zero at a and a pole at a cancels out in the
determinant. To compute the total order of the zeros at (a, I/a), choose
one of them, say a, for which f{λ) has a zero at a or equivalently a pole
at l/ά. Let

fovn>0 have no pole at λ = a. The requirement f(a) φ 0 if n > 1
determines n. Define the order m > n > 0 of the zero of det/(Λ,) at λ = a
to be the total order of the zeros at (a, I/a). It is reasonably easy to see
that if both a and l/ά are zeros (i.e., n > 0) this definition is independent
of the choice of a or l/ά. The total degree of / is the sum of the orders
of conjugate pairs.

We prove our theorem by induction on the total degree of / . If its
degree is zero, / must be constant, and in fact f(λ) = / since /(1) = /.
Suppose we have demonstrated the factorization for all of / of total degree
less than m. Now suppose g satisfies the reality condition and is of degree
m. Select any zero of g and write

g(λ) = (ξa(λ))ng(λ)

for n > 0, so that g(a) is well defined and zero only if n = 0. Let V be
the kernel of g(a). If n = 0, then V may be C^. Then in this trivial case
g(a) = 0 and

where f(λ) has degree M-N. Note ξa(λ)~ι is ineffective in the loop group.
In the case V is not all of C^, define π to be the hermitian projection

on the orthogonal complement of V, so π± is the projection on V. Let

Then

f(a) = g{a)π

is finite. Thus det/(A) = detg(λ){ξa{λ))-s, where the power s > 0 is the
rank of the kernel of g(a). The total degree of

is m — s > 0. This completes the proof of the factorization lemma.
This does not quite complete the proof of Theorem 5.4. Due to the

lack of uniqueness in the order of factors, we need a separate proof of the
smoothness of the factorization.
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Theorem 5.5. There exists a smooth action ofsrfn(S2, G) on Xβ.

Proof. The action exists for the factors of simplest type by Theorem
5.3. By Theorem 5.4, every element of sfa{S2

9G) can be decomposed
into factors of simplest type. The existence and uniqueness of the action
follows from Lemma 5.1. We have only to demonstrate smoothness.

Recall the general solution to the linear Riemann-Hilbert problem. Let
Γε be the contour |λ| = ε,ε~ι oriented in the usual way about (0,oo).
Suppose also that T is holomorphic in punctured neighborhoods of the
points (0, oo). We wish also to normalize our solution to be zero at 1. We
define

T m λ~
{ ) )

Γ(ε)

for λ e C - {0}, ε < \λ\ < ε~{. For |λ| < δ or \λ\ > δ~x we have

r m λ - 1 JΓ T(ξ)
TR{λ) = ^Γf(ξ-i)(ξ-λ)dξ'

T(δ)

On the punctured neighborhood of 0 and oo

Also ΓQO(1) = 0, and TR(λ) is holomorphic in neighborhoods of 0 and oo.
Now assume we have factored

and look at the differential of this factorization:

(e*)~xδe* - δRR'x = {e*)-{δgR~ι.

If we let T(λ) = e*{λ)-{δg{λ)R{λ), then the formula for e*(λ)-χδe*(λ) =
T<x>(λ) yields the correct result and normalization. Note that if we write
δg(λ) = v(λ)f(λ)e(λ) as in our earlier calculations, we obtain

Γ(ε)

It is clear that these formulas lead to a correct factorization in a small
neighborhood, which must agree with our factorization via simplest factors
by the uniqueness criteria. This also agrees with Theorem 4.3.
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6. The representation of <&R{S2, G) on extended harmonic
maps and Backlund transformations

Once we understand the representation of S/R(S2, G) on Xfr, our calcu-
lations become extremely easy. We let E: C* x Ω —• G be an extended
solution of the harmonic map equation. We define f(*E)(q) = (f*E(q))
for all q e Ω. Elementary properties follow immediately from §5. First
we define

(22) Jίk(G) = { £ : C * x Ω - ^ G satisfying (a)-(d)} :

(a) E-χdE = {\ -λ)A2

 ι

(b) Ex{q) = I,
(c) E* = (Eι/λ)-\

(d) Eλ(q) = Σ\a\<k

Presumably the correct description of Jίk[G) is as an algebraic variety.
Theorem 6.1. Given f € sfa(S2, G), f*: Jίk{G) -> Jtk{G). Moreover,

f —• f* is a representation.
Proof. The proof of the theorem, modulo the harmonic map prop-

erty, is already contained in (5.1) and (5.2) and the inherent assumption
(easily proved) of analyticity in all variables. Note we prefer to ignore
the topology on J&R(S2, G) and Jίk{G) as all the appropriate ones will be
equivalent, and interest in them is unknown. Appropriate complex struc-
tures would be another matter! Thus we will only verify the harmonic map
property. This we reduce to Theorem 2.3, and we make the computation
of d/dz = d. The d term can be computed algebraically from the d term,
or as an exercise following our computation. Our first observation is that
the expression

(23) (l-λ)-ι(fE)Jιd(fE)λ

is holomorphic by construction except at possibly 0, oo and 1. The condi-
tion that (f*E)\ = / means that the numerator vanishes at λ = 1, and that
no pole is introduced by the denominator at λ = 1. However,

(fE)-ι8(fE)λ = (f(λ)EλRλ)-ld(f(λ)Eλrλ).

Since / is independent of q, we get this expression equal to

(24) R-\E[dEλ)Rλ + R-χdRλ.

Now divide (24) by (1 - λ) to get (23). Because E-\ is harmonic, the
first term is R^ιA2Rλ, which is holomorphic near 0 and oo. Likewise,
by construction the second term is also holomorphic near 0 and oo. By
Liouville's theorem
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has no λ dependence. It follows that (f*E)-\ is harmonic from the equiv-
alent computation for d and Theorem 2.3. Clearly A2 dz + Λzdz = A is
the one-form belonging to the new harmonic map. Finally, since Eχ(p) = I
for all λ, it follows that (f*E)λ(p) = f{λ)If-χ(λ) = /, the normalization
required.

An appropriate retranslation of all these calculations into the infinites-
imal framework shows that the map into vector fields described in §3 is
really a representation (i.e., brackets go to Lie brackets). This is an elemen-
tary exercise. However, note that we have also shown that the elements in
the image of the representation are in the infinitesimals of integral curves
in Jtk(G).

It is interesting to see what kind of new solutions are produced from
known solutions by "factors of simplest type". The argument here is quite
simple. We notice that the action of factors of simplest type on the left
of extended solutions is cancelled by factors of simplest type on the right.
That is, the following result is a corollary of Theorem 6.1 (using Theorem
5.3). Our notation will be simplified if we let

& = {π e L(CN, CN) :π2 = π a n d π* = π}.

Recall
, „ _ (λ-a) (a-I)

Corollary 6.2. Let f = π + ξa{λ)πL

t where πe3P. Then

f(Eλ) = (π + ξa{λ)π^)Eλ{π + ^ f l ) " 1 * 1 ) ,

where π: Ω —• 3?. Moreover, π(q) is the Hermitian projection on the sub-
space {En{q))*V, where π: CN -> V.

The mathematical description of a Backlund transformation is as a
method of obtaining new solutions of a system of partial differential equa-
tions from old solutions via solving ordinary differential equations. We see
that this description applies to our new solutions produced from factors
of simplest type. We need to choose the subspace V and a eC* - {S{}.
The extended Eλ is produced by integrating a pair of consistent ordinary
differential equations in d/dx and d/dy which are compatible. Then the
new solution is obtained algebraically from Eλ. Note however that the
algebra is horrendous.

It is true that when applied to harmonic maps EXΛ -> S2 C SU(2)
with a somewhat different normalization convention on Eλ, these factors
of simplest type produce the ordinary Backlund transformations of Sine
Gordon. The description of this relationship is beyond the scope of this
paper (which is already overly long).
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On the other hand, we find it useful to give a direct description of the
Backlund transformation, bypassing the extended solution.

Theorem 6.3. Let s: Ω -• U(N) be a harmonic map, and A = ^s~ι ds
as usual Then a family of new solutions parametrized by a e C* and
π e & can be found by solving the consistent pair of ordinary differential
equations for it: Ω —• & with π(p) = π;

8π = (l- a)πAz - (1 - δΓx)A-zπ + (α - ά'ι)πA2π9

dft = (l- a-{)πAz - (1 - ά)Azπ + (α" 1 - ά)πAzπ.

The new solution can be written

/ i x / Λ _ A κ , 1 - ά l + α ^.i
s = (π - γπJ-)s(π - γπ ), where γ = - — G S.

1 H- a 1 — a

Proof Note that π - π± e U(N) is ineffective and can be left off the
left. To prove this theorem we note that we already know our new solution
is of this form from the information that our new extended solution is of
the form

£λ = {π + ξaπ
±)Eλ{1t+ζ-ι1t±).

Now, rather than following through the Birkhoff factorization, we go back
to Theorem 2.3. From this theorem Eλ is an extended solution if and only
if

are constant in λ. We check that the coefficients of the poles at λ = (α, 1/α)
vanish. This gives four equations:

π^\A-zπ + (1 - ά-χ)-χdπ] = 0,

Remember π1- = / - ft. Algebraic manipulation yields the equations given
in the theorem.

It is certainly true that the Backlund transformation can be written in
a simpler form. However, it seems appropriate to leave this as the subject
of future papers.
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7. The additional Sι action

The construction of this Sι action follows from the construction of
Chuu-Lian Terng of this action on harmonic maps from E1*1 into Grass-
mannians. We construct the group action, and observe how the additional
infinitesimal symmetry θ interacts with the Dolan representation of Σ ( B )

Of course, we construct a C* action and show it preserves the reality
conditions when \γ\ = 1, γ e C*. This action also is based on the extended
solutions rather than the solutions themselves. Recall Jίk{G) is defined in
(22).

Theorem 7.1. IfγeC* and E e Jfk(G), then

* ι k for\γ\ = L

Proof. All conditions are quite simple to verify except the harmonic
map condition. The restriction \γ\ = 1 is needed only to verify the reality
condition. The harmonic map condition again reduces to the combination
of Theorems 2.2 and 2.3. Also, we do the necessary computation for 8
and leave the other in d as an exercise in algebra or the chain rule,

(γ*Eλ)-ι8γ*Eλ = EγE-γ

ιd(EλγE-{)

= Eγ(l- λ)A2E-χ -Ey{\- y)A-2E~x

= γ(l - X)EyA2E-χ.

Since (γ*E~ιdγ*Eλ)(l -A)" 1 , (and the similar expression (γ*E-[dγ*Eλ)
x (1 - A" 1)" 1) are independent of A, we have the appropriate harmonic
condition verified.

Now what about the relationship of the action of s/(S2, G) and C*? Let
//W = f(yλ) if / G s^{S\ G), γ e c*.

Proposition 7.2. y#(/*£) = {γ*f){γ*E).
Proof. This again follows from the uniqueness. We have

γ*{/*E) = f(γλ)Eγλ(q)Sγλ(Eγ.(q),f(γ.)) = (fE(q))(γλ).

This is all straightforward. However, the interaction with the represen-
tation as presented by Dolan is somewhat more complicated. We must
figure out not the infinitesimal action with respect to the variable λ, but
that with respect to the variable τ = -i(λ - l)/(λ + 1) for which we have a
grading. The energetic can compute the full action. Note that for \γ\ = 1,
λ —• γλ does not preserve the imaginary axis, so that the action of γ does
not preserve the unit circle, |τ| = 1, which was the basis for the chosen
grading in the Kac-Moody Lie algebra. So it comes as no surprise that the
infinitesimal action of θ does not preserve the grading.
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Proposition 7.3. The infinitesimal generators ofC* on the variable τ is
τ) = ±(τ2+l).
Proof.

d 2λ

dθ θ=0

Theorem 7.4. If we adjoin the infinitesimal generator θ of the Sι action
to the affine Kac-Moody Lie algebra with the relation

we obtain a larger Lie algebra, which has a representation on the vector
fields Jίk{G) extending the Dolan representation.

Proof This is just a translation of the group action which we just dis-
cussed into infinitesimals. It is not hard to show, independently of our
derivation, that the enlarged object is a Lie algebra by verifying the Jacobi
identity.

The existence of this larger representation is what convinces us that our
representation has very little to do with the complicated algebraic repre-
sentations usually constructed. To change the grading so that θ preserves
the grading uncouples the two halves of the Kac-Moody algebra, leaving it
without much algebraic interest. Naturally this decoupling will correspond
to the decoupling of the germs of the maps at ±i.

8. Harmonic maps into Grassmannians

The mathematics literature does not deal with harmonic maps into Lie
groups, but concerns itself primarily with harmonic maps into Sk, CPN~{

or various real or complex Grassmannians. In our theory we can treat the
case of harmonic maps into the complex Grassmannians GkN of k-planes
in N space. We consider

GktN cGR =

Gk,N = {φ e GR: φ2 = I and the eigenspace corresponding to +1 is k-
dimensional}.

We identify φ with the k-dimensional subspace corresponding to the
eigenspace of +1. This embedding of GkN c U(N) does put a multiple
of the usual (Kahler) metric on Gk N. Moreover, Gk N c U(N) is totally
geodesic.

Proposition 8.1. Ω -^ GkN Λ \J{N). Then s is harmonic if and only if
φs is harmonic.
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Proof, Such a theorem is true for any φ: X —> Y, φ totally geodesic.
We now wish to look at harmonic maps s: Ω -> U(N) satisfying s2 = I

or s = s~ι. Our first observation is that we shall have to change our
normalization s(p) = I. For the Grassmannian GkN, we introduce a new
normalization Eλ(p) = Qk(λ). In fact, Qk{λ) can be chosen in any way
which satisfies

(a) fit(l) = /,
(26> α.) & ( - » = ( V _°/),
where β^(-l) has /c eigenvalues +1 and N - k eigenvalues - 1 ,

(c)

We can always conjugate a harmonic map s: Ω —• U(ΛΓ): s2 = I into one
satisfying Qk(-l) = s(p). With this new normalization, the choice of Eλ

is uniquely determined.
Our first observation is that the C* action acts to carry harmonic maps

satisfying s2 = / into those satisfying (γ*s)2 = 1 for γ e C*.
Proposition 8.2. IfEλ(p) = Qk(λ), we have for \γ\ = 1

harmonic ifs:Ω^ GkN.
Proof By our previous discussions, γ*s: Ω —• U(N) is harmonic. The

change is normalization does not affect them. We just need to check that
(γ*s)2 = I.

An extended solution for γ*s is given by

Since
(-\*E)λ(p) = E_λ(p)El{(p) = Qk(λ),{

this is the unique solution satisfying the normalization condition for γ = 1.
Since

(^iyEU=E{Ezl=s'l=s9

the extended solutions for γ = -1 and γ = 1 are the same. This means
that

Eλ = E-λEz\ = £-ΛS.

Therefore (y*5)2 = {y*E_x)
2 = {E.γs-ιEZι

γ)
2 = f-^-2^1 = /. This

verifies 7*5: Ω —• GkN.
We wish to deliver an appropriate subgroup of J/R(S2,G) which will

preserve the condition s2 = / or s = 5~ι. Rather than simply make a
definition, we do the computation first as motivation.
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In order to preserve the condition s = s~ι, we need to relate the action
of / e £?{S2, G) on s to an action of some element g e J / ( S 2 , G) ons~l.
Once we do this, we will not only understand how to preserve s - s~ι, but
we will understand completely why the action of s/(S2,G) operating on
left pull-backs of s corresponds to an action of stf(S2, G) on left pull-backs
of s~\ or right pull-backs of s. This explains fully our comment in the
very first section: it does not matter whether we use right or left pull-backs.

Corresponding to the harmonic map s = E-\ we have

{f*E)λ = f(λ)EλSλ.

For the time being, we assume the normalization Eλ(p) - Q(λ) is cho-

sen. Then the extended solution corresponding to s~ι = EγEz} is Eλ =

E_λEz\. Then

(g*E)λ = g(λ)EλSλ = g(λ)E_λEl{Sλ.

Our goal is that (f#E)λ should be the extended solution for s = (/#£)_ 1
and (g*E)χ should be the extended solution for s~ι = (g*E)-\. This
means

(g*E)λ = (fEU(fE)z\
or

g(λ)E_λEz\Sλ = f(-λ)E_λSλΓ
ι.

Let g(λ) = /(-A). Then

(g*E)λ = f{-λ)E_λEz\Sλ = (fE)_λQ,

where Q is chosen so (f*E)-XQ = /, or Q - (f*E)z\ = s~\ as required.
Now the situation for Grassmannians is not quite so simple, since the

normalization required, Eλ(p) = Qk{λ), is not preserved by the action
of JZ?R(S2,G). We simply allow the group to act on extended solutions,
carrying extended solutions to extended solutions.

Theorem 8.3. Suppose Eλ is an extended harmonic map satisfying
(a) (E* = (Eλ->Γ\

(b) E{ = I,

(c)Eλ = E_λEzί
Then the action of {f e s/R{S2,G): f(-λ) = f(λ)} on E preserves these
conditions.

Proof Conditions (a) and (b) are verified (the normalization was nec-
essary only to have £?R(S2, G) act in a unique fashion on solutions). To
verify that (c) is preserved, note that

{f*E)λ = f(λ)EλSλ = f{-λ)E_λEz\Sλ



HARMONIC MAPS INTO LIE GROUPS 27

It follows that

A straightforward computation on the change of variables shows that
λ -> -λ corresponds to τ —• -1/τ. The condition f(—λ) - f(λ) corre-
sponds to f(τ) = /(-1/τ), or in the Fourier series expansion Σa

 α<*τα, we
must have aa = (-\)aaa. We may conclude that half of the affine Kac-
Moody Lie algebra Σ(fln) has a representation in the vector fields tangent
to harmonic maps into Grassmannians.

PART II

9. The single uniton

The question arises of identifying the "simplest" harmonic maps Ω —•
U(N). We choose to define the level of complexity of a harmonic map
by the minimal number of terms needed in the expansion of an extended
solution.

Definition 9.1. An n-uniton is a harmonic map s: Ω —> U(iV) which
has an extended solution

with
(a)^ = Σ L o ^ α f o r Γ α : Ω - 0 5

(b) Ex = I,
(c) £_i = Qs'x for Q e \J(N) constant,

There are a few observations which we can make about these conditions.
For n = 0, Eλ = / is the only extended solution, which represents ^ Ξ ^ " 1 ,

or the constant harmonic maps. For any harmonic map s and constant
Q e U{N)9 both Q~xs and sQ are also harmonic maps. In condition (c),
we allow the same extended solution to represent s and Q~ιs. For right
multiplication, the extended solution Eλ which represents s can be replaced
by Q~ιEλQ to represent sQ. In either case, s, Q~xs and sQ have the same
uniton number.

The important condition (d) is the reality condition. Finally, note that
the uniton number n can always be enlarged in a fake way by multiplying
an extended solution Eχ by a Q: C —> G (constant in p). This difficulty is
resolved in §13.

The term "uniton" is meant to be analogous to the term "instanton".
The harmonic map equations are partial differential equations in two real
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variables with certain remarkable similarities to the self-dual Yang-Mills
equations, which are equations in four real variables whose solutions are
called instantons. Neither unitons nor instantons are much like "solitons",
which are special solutions of equations with a time parameter. Presum-
ably, the E1'1 —• GR equations for harmonic maps have solitons. However,
they can have no unitons. In the EXΛ case, the appropriate reality condi-
tion on the extended solution is (Ej)* = {Eλ)~ι, which admits no finite
power series solutions in λ whatsoever. If we are willing to abandon the
reality condition, there may be more similarities between the Minkowski
and Euclidean problems.

Our goal in this section is to understand the single or one uniton. As
a preliminary step to our first proposition, recall that if η c Ω x C^ is a
k < N dimensional complex sub-bundle, then we can construct π: Ω —•
& C L(CN,CN), where π(q) is the Hermitian projection on ηq c C^.
Algebraically we can identify π e & by noting that

(a) π*(q) = π(q) for all q e Ω,
(27) (b) π2(q) = π(q) for all? G Ω,

(c) π(q) has rank k at every point q e Ω.

Moreover, every time we find a π satisfying (27)(a)-(c), we can find the
sub-bundle η (just the image). We identify sub-bundles and the Hermitian
projections on them without any further comment. We also suppress the
dependence on q e Ω, which we take for granted. Moreover, note that
π1- = (/ — n) is the Hermitian projection on the bundle η1- which is or-
thogonal to η. In discussing harmonic maps into Grassmannians in §8, we
could have mentioned that a harmonic map s: Ω —• G^ N is represented
by

s = (π - π x ) = (2π - /),

where π(q) is the Hermitian projection into the image subspace s(q) at
each q e Ω.

Proposition 9.2. s: Ω —• U(ΛΓ) is a one-uniton if and only if s =
Q(π - π-1) for Q e U(N), where π satisfies (27) and π±dπ = 0.

Proof We have Eλ = To + λTx and E{ = To + T{ = /, so Eλ = To +
λ(7 - 7b). The reality condition (d) is equivalent to

(7-7b) (7b = 0, Γ0*(7-7b) = 0,

I - (7 - 7b) (7 - To) + Γ0*7b = 7 - Γo* - Γo + 2Γ0*Γ0.

The difference between the first two equations gives 7Q - Tζ — 0. Once we
know Γo = 7Q , both equations read Γ0

2 = Γo. It follows that To = π and
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T\ = (/ - 7b) = π1- are projections on orthogonal sub-bundles:

(\-λ)-\Eλ)-χdEλ = (l-λ)-1(7Γ-fλ-1τr±)5(π+A)(/-π) = πdπ+λ-{π±dπ.

The dual condition is

(1 - λ-ι)-ιEϊιdEλ = -(1 - A " 1 ) " 1 ^ ) " 1 ^ = -dπ(π + Aπ^).

The harmonic condition that both expressions be independent of A reduces
toπ±{dπ) = {{dπ)π±)* = 0.

Checking back to §8, we note that s = π - π1- is a harmonic map into
Gk,N- It is in fact a special kind of harmonic map. Recall that G ^
is a Kahler manifold with its usual metric. It is well known that every
holomorphic map Ω —> X, where X is Kahler, is automatically harmonic.
These basic unitons correspond to holomorphic maps.

Choose Uj\ Ω —• C^ so that (w_i(#)), 9Uk(q)) form an orthogonal
basis for π(q). The w's are not unique and it is not necessary to choose
them globally. In terms of fc-planes, the image fc-plane is (projectively) at

q
Uι(q)Λ - Λuk(q)e/\CN,

k

and the formula for our projection is (exactly)

k

(28) *(ί) = I > ( ί ) * «y(ίΓ-

The map into G^ N is holomorphic if

d(U\ Λ Λ ttfc) = λ(U\ Λ Λ Uic)

for A: Ω->C, i.e., if

(29) dUj = ΣcιjUι
I

This is equivalent to the statement that the complex sub-bundle η c Ω x
C^, which is the image of π, is holomorphic. In particular, this means
that if / : Ω —• η is a section, then df: Ω —• η is also a section.

Theorem 9.3. Γλe map 5: Ω —• U(N) is a single uniton if and only if
s = Qiπ-π-1), where Q G U(N), andπ: ΩxCN is the orthogonal projection
into a holomorphic sub-bundle η c Ω x C^.

Proof Use the formula for π given by (28), where (u\9 , « ,̂ ^+i> * s
vN) are locally an orthogonal basis for C^, and η is spanned by the w's.
Then

TV k

(30) (7-π)5π= Σ
l=k+\ j=\
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If the bundle η is holomorphic, (dUj,Vι) = 0 by (29), and (/ - π)dπ = 0.
On the other hand, if (/- π)dπ = 0, since Uι®Vj are linearly independent
in L(CN,CN), it follows that {βuJ9υι) = 0, j = 1,2, ,k and / = k +
1, ,N,oτ (29) holds. This shows η is holomorphic. The theorem follows
as a consequence of Proposition 9.2.

We hope it might be of some interest to show how the Kac-Moody Lie
algebra acts in this simplest case. Return to the formula in Theorem 4.3.
We indicate infinitesimals by δf to distinguish from the group action.
Because Eγ is so simple, and δf is holomorphic in a neighborhood of 0
and oo, the expression

E-χδf{y)Eγ (π + r 1 π

has only a single pole at zero and a single pole at infinity, the contour
integral in (4.3) is very easy to compute by residues.

Theorem 9.4. The action of the group s/R(S2, G) on the single unitons
reduces to an effective action of G - {(/(0),/(oo): /(0)* = /(oo)"1)} c
G x G. The infinitesimal action is

SEλ = (A -

where δf{0)* + δf(oo) = 0.
Proof. By residue calculations we obtain at zero

1 jE->δA-γ)Eλ^_l
2πi T (1

\y\=ε

At infinity

2πi
f E-'δf(-γ)Eγ χ

f ii-y)iλ-y)=πδf{Όθ)π •

Applying this to Theorem 4.3 we get

δEλ = (A - l)£A(A-|τr-L<y/(O)π - π<ί/(oo)π-L)

= (A - L ^

Since only /(0) and /(oo) affect the formulas, the reality condition (/(I))*
= ( / ( Ί " 1 ) ) " 1 becomes /(0)* = /(oo)" 1, or infinitesimally «ί/(0)* +δf(oo)
= 0.

Note that GR acts naturally by conjugation. For a € gp, a - δf(O) =
δf(oo),

δEλ = Eλa - aEλ = {λ- l)(π±a - α π 1 ) = (λ- l)(πxtfπ - παπ x).
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This helps check the signs. Note that the group of holomorphic transfor-
mations of Gic N acts on holomorphic maps into G^N by composition. In
the case of G\ι = CP 1, we have checked that our action of SL(2,C) (the
center of GL(7V,C) acts trivially) is exactly that of composition with the
conformal group of CPι. We conjecture that the constructed action of
SL(iV,C) on GkN is similar, but have not checked this.

10. The fixed points of the Sι action

Before we proceed further, we give some examples of harmonic maps,
which all happen to have images in the Grassmannians, and are based on
the holomorphic (single uniton) map of the previous sections. Harmonic
maps from S2 into GUN = CPN~ι have been classified ([10], [11], [7]) and
we sketch how they fit into the theory as 2-unitons. In particular, we show
how the Grassmann subalgebra of the Kac-Moody representations acts on
these 2-unitons.

Throughout this section, we ignore the fact that there are point singu-
larities in our constructions. It is well known that the singularities of these
complex constructions have complex codimension two, and the apparent
point singularities in our one complex variable constructions are remov-
able. Also, we regard S2 = R2 U {oo} or CP1 = C U {oo} without comment,
although some details of this relationship are given in the next section.

First, let us redescribe the construction of the single unitons. Choose
k meromorphic maps Uj•: Ω —• C^ which are independent except at iso-
lated points. Use the Gramm-Schmidt process to orthogonalize, giving
(si,-- ,sk). Then

is harmonic (apparent point singularities are removable). If π = Σk =\ sj ®
Sj, then s = (π - πL) = (2π - I) and an extended solution is of the form

Here π(q) is the Hermitian projection on the subspace η(q) c CN spanned
by the w(<?)'s. The bundle

is a holomorphic sub-bundle.
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For a more complicated construction, we repeat this process n times,

obtaining n holomorphic sub-bundles ηa c Ω x C^ and n Hermitian pro-

jections on them. There are specific constraints however:

π n (a) ηa C ηa+ι is proper,
1 ; (b) / : if/: Ω -> ηa, then df: Ω - ηa+ι.

The holomorphic condition requires that

(c) if / : Ω -+ ηa, then df: Ω -> ι/α.

Another way to explain the conditions is that the meromorphic maps used
to construct ηa and their d derivatives should be contained in the span of
those used to construct ηa+ι

If we assume ηa c ηa+i is proper, a counting argument shows that
ηa - Ω x CN for a > ao > N. Assume ao = n and i | B = Ω x C^.

Theorem 10.1. Let πa be the projection on ηa, a - 1,2, , ny where ηa

satisfies (31). Then
n

Eλ = πo + Σλa{πa - πα_i)
α=l

is an extended solution to a harmonic map s = E-\.
Proof. Note E\ = πn - I, which verifies one normalization. Since

>7α-i C ηa, we have πa = πa - πα_i is the projection on ηa n η^_x =
{(q,v): (υ) e ηa(q) and (υ,w) = 0 for (w) e ηa-\(a)} C ιyβ. If π0 = π0,
then

(32) Eλ =
a=0

where the πa are all projections into mutually orthogonal subspaces. The
harmonic map is

£ - l = Σ > l ) α * α .
α=0

For a > β, we automatically get from πaτtβ = 0

7iadnβ = πaπβdπβ = 0.

This uses the condition that ηβ c Ω x C^ is holomorphic so π βdπβ = 0

and dπβ = πβdπβ. For α < β, πaπj = 0 and dπj = -5π^. We conclude

(33) πadπβ = -πadπj = 8πaπj = (πfdπa)*.

We show (33) is zero in two steps. Locally we can write

πfdπa = πj
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Because Sj(q) € ηa{q) and 7tβ(q)ηa(q) = 0, the second term vanishes.
However dsj(q) e ηa+\(q) from (31)(b), and ηa+\(q) C ηβ(q), so the first
term also vanishes for the same reasons.

β=0 β=0 α=0

We have just shown that the only nonzero term is

which is independent of A. A similar calculation in d verifies the hypothesis
of Theorem 2.3, and £"_i is harmonic.

The details of the Eells-Wood analysis of harmonic maps into CPN~1

explicitly show that every such harmonic map is a 2-uniton. We refer
the reader to their paper, but briefly translate their discussion into ours.
The subspace ô is generated as the span of {s,ds, ••• ,dk~ιs}, where
s: S2 -* C^ is meromorphic (s: S2 -• C^/C* = CPN~ι is holomor-
phic (with removable singularities)). The sub-bundle η\ is spanned by
{s, ds, , dks} and ηa = S2 x C^. Then

Eλ = πo + λ{π{-πo)+λ2(I-πι),

£"_! = (/ -h π 0 - πi) - (πi - π 0).

The projection π = π\ - πo is a projection onto a one-dimensional sub-
bundle

ί *
η= l(q,υ):υ = Σ aJdJs^) a n d (^' 5 ^ ( ^ ) ) = ° f o Γ J

Technically, E-\ =π±-π, so the harmonic map to C P ^ " 1 associated with
this extended solution is s = -E-\. This is due only to the convention of
associating the A:-plane in Gk,N with the +1 eigenspace of s, rather than
the - 1 eigenspace.

Proposition 10.2. The simple multi-uniton construction yields an ex-
tended solution of the form

Eλ = (π0 + λπ

where πn is the Hermitianprojection on ηa c ΩxC^. Rankπα > Rankπα +i.
Moreover, Ex is an extended solution when
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(a) ηa C ηa+{,
(b) ///: Ω -> ηQ, then 8f: Ω -> ι/α,
(c) ///: Ω -> ι/α, ίΛe/i 9 / : Ω - ι/α+1.
In § 12 we generalize this construction. It is highly nonunique, due to the

lack of uniqueness in the factorization. In our case, the factors commute.
In the general case, they do not.

A simple calculation shows that the infinitesimal action of the represen-
tation of the Kac-Moody Lie algebra does not preserve this construction
unless n = 1. If we add the constraint f(-λ) (= f(λ)), which is needed to
preserve the Grassmannian image as we say in Theorem 8.3, we find the
Laurent series expansion of / about zero and infinity must be even. Since
for 2-unitons only the one-jet at 0 and oo act effectively, in this case the
action reduces to an action of SL(N, C) as described for the single unitons.
From contour integration we get:

Proposition 10.3. Ifn = 2, then g acts infinitesimally on the Grassman-
nian 2'Unitons by

δEλ = (λ - l)[π£δf(0)π0 - π0δf(oo)π£ + λ(πϊδf{0)πx - πxδf{oo)πϊ)l

where <$/(0) + <5/(oo) = 0 and δf'(0) = δf'(oo) = 0,

- π0)

Then

δπ0 = - π

Σ.

The actual significance of the solutions constructed in this section is
that they are the only solutions which are fixed by the Sι action of §7.

Proposition 10.4. An extended harmonic map Eλ is fixed by the Sι ac-
tion if and only if it satisfies the hypotheses of Theorem 10.1.

Proof In Theorem 7.1, we have y*Eλ = EλγE~ι. In our case, Eλ =
Z=o λaπa, where the πn are Hermitian projections on mutually orthogonal

sub-bundles. Certainly

γ*Eλ = [jyxyγΛ (Σγ-erλ = Σ,(λrry-*o = Ey.
\a=0 J \β=0 / a=0

Therefore, these extended solutions are fixed points for the S{ action.
Now suppose conversely that γ*Eλ = Eλ. Then

β=0 ) a=0 β=0 a=0
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It follows that
n

Σ vot-βηr γ* _ γ

β=0

or TaT* = 0foτaφβ and ΓαΓQ* = Ta. Since ΓQ* = (ΓαΓQ*)* = TaT^ = Ta,
we can conclude that Ta = π α , where πQ is the Hermitian projection on a
sub-bundle ?/α c Ω x C^. Because πα7fy = 0 for a φ β, the sub-bundles
are all mutually orthogonal. From the harmonic map equations dEλ =
(1 - λ)EλA-z and dEλ = (1 - λ~{)EλAz, we obtain

dπa = (πa - πa-\A2, dπa = (πa - πa+\)Az,

when π_i = πn+\ = 0. From these two equations, we verify Theorem
10.2(b), (c) for the sub-bundles

β<a

11. Global conservation laws and finiteness

In our constructions up to this point, the only topological property we
have used is simple connectivity o f Ω c R 2 . However, our global classifi-
cation theorems apply only to harmonic maps from S2 = R2 U {oc} —• GR.
Recall that if Ω = R2 = S2 - {oo}, a harmonic map s: Ω —• X can be
regarded as going from the domain S2 - {oo} —• X due to the conformal
invariance in the domain of the harmonic map equations. The follow-
ing theorem is a special case of a more general theorem proved in Sacks-
Uhlenbeck[18].

Theorem 11.1. Ifs: R2 -> GR is harmonic and fR2 \ds\2dx < oo, then
s: R2 = S2 — {oc} —» GR extends to a smooth harmonic map s: S2 —• GR.

Corollary 11.2. Ifs: R2 -> GR is harmonic and j R 2 \ds\2 dx < oo, then
the entire §§1-8 apply to s:Ω.->GR, where Ω = S2.

Proof. The only properties we used in §§1-8 were simple connectivity
and connectivity of Ω. In particular, Eλ: S2 —• G plays the same role for
Ω c S2 as Ω c R2.

From now on in this section we assume the harmonic map s: S2 —• GR.
Note that for any w-uniton, if we write the equation dEλ = (1 - λ)EλAz

and expand in power series, the first term is EOAZ = 0. It follows that Az

must have a kernel. In fact, much more is true on S2.
Theorem 11.3. Ifs: S2 -+ GR is harmonic, then Az = -(AΣ)* = ±s-{ds

is nilpotent, that is, A\ = 0 for k < N.
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Proof. Return to equation (11). On S2, A2 dz is a section of g ® Σ+,
where Σ + is the appropriate line bundle generated by dz. The power
{A2)

p{dz)p is a section of a similar product g ® (Σ+)p over S 2. For all p

d{{A-zγ{dzy + [Az, {A-Zγ{dz)p]) dz = 0.

It follows that d tτ(A2Y(dzγ = 0. But tr{A2γ{dzY is a section of (Σ+y\
which has no nonzero anti-holomorphic sections. It follows that tτ(A2γ =
0, so all the eigenvalues of A2 vanish.

Incidentally, the minimal surface condition on the harmonic map s: Ω
- GR is tτ(A2)

2 = 0.
Even more important to our theory is the fact that our solutions are

w-unitons for n < oo. The following theorem is related to Theorem 3.3.
Theorem 11.4. If Eλ: Ω —• G is an extended harmonic map, then for

all λ e C , Eλ = X solves

(34) LX = ddX - dXAz - dXAz = 0.

Proof First rewrite (34) slightly as

2LX = d(5X - 2XAZ) + d(dX - 2XAZ).

Here we used (9)(a). From (2)

LEλ= -d((\+λ)EλAz)-d((\+λ-ι)EλA2)

= Eλ((λ - λ~ι)[A2,Az] + λdA2 + λ'ι8A2 = 0.

Now L is clearly an elliptic operator, and on S2 has a finite-dimensional
kernel. This is the basis of our finiteness theorem.

Theorem 11.5. Let E: C x S2 —> G be the unique extended solution for
a harmonic map S2 —• Gu with Eλ{p) = I for p e S2. Then Eλ has a finite
power series expansion

Eλ= Σ λaτ«
a=—m

Proof We let Eλ = Σ£l-oo^β^*> where the Laurent expansion of E
in λ is unique, but possibly infinite. Since L{Eλ) = 0, L(Ta) = 0 for all a.
Note Ta(0) = 0 for a Φ 0 for a Φ 0, and that

T

\λ\=R
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The terms Ta depend on q e S2\ Ta: S2 -+ g. Suppose n = oo. Then, due
to the finiteness of the kernel of L, for some q > 1

q

Tq+\ + z2ajTq-j+\ = 0.
7=1

From the uniqueness of Eχ, we then have for / > 1

q

Thus

where Eλ has a finite pole of order q at λ = oo. But

ιπ = —

"-1 dλ

- α - l rfA

Here |α/| ^ 0 and ^^ is the top term in the Laurent series for Eλ at λ = oo.
Clearly Γα = 0 for α > q - I.

A similar argument at 0 shows that the order end of the Laurent series
is also finite.

12. Adding a uniton by singular Backlund transformation

In this section we give a general procedure for generating new, extended
solutions from a given solution. At least for the Euclidean (elliptic) case,
this procedure differs from the continuous group actions described in §§6
and 7. In fact, the Backlund transformations described in §6 depend on
a parameter a e C* - {S1}. As \a\ -> 1, the Backlund transformations
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approximate /. However, as a -> (0,oo), the pair of ordinary differential
equations degenerates into a single Cauchy-Riemann equation and a func-
tional constraint. This degenerate Backlund transformation is the equation
for adding or subtracting a uniton.

Care must be taken. Factorization is not unique and depends on many
choices. For example, all harmonic maps S2 —• SU(2) are known to be
single unitons, so we shall have to explain exactly when new solutions can
be obtained by this method.

In this section, Ω is any two-dimensional simply connected domain. We
abandon the normalization Eλ(p) = I and work with arbitrary extended
solutions. Also G = GL(N,C) as before and GR = \J(N).

Theorem 12.1. Let Eλ: C* x Ω -> G be an extended harmonic map,
Eλ: Ω —• GR for \λ\ = 1. Then Eλ = Eλ(π + λπ^) is an extended map for
π: ΩxCN —> η a Hermitian projection if and only if

(a) π±Azπ = 0,
(b) π±(dπ + A-zπ) = 0,

where Az = ±s-{8s = -(Az)\

Proof Firstcheckthe Hermitian condition. Since E^1 = (π-{-λ~ιπ±)E^1,
we have

£λ-ι = (π + λπ^)(E-\) = (π + in^E? = (Eλ(π + λπ^))* = E{.

Also, if we recall the fact that πL = I - π, we note

E~ιdEλ = (π + λ-χπ^)E-χd{E(π + λπ^))

= {π + λ-1π-L)(£ - 15£'A(π -h λπ^) + (1 - λ)8π).

Now from the definition of extended solution, (1 - λ)E^x8Eλ = Az, so

(35) Az = (1 - λ)-ι£-ιdEλ = (π + λπ^\Az{π + λπ1-) + θπ).

From Theorem 2.3, Eλ is an extended solution if the λ~ι term (a) and
the λ term (b) vanish. One checks that the lack of dependence of
(1 - λ~ι)EχldEχ on λ yields the transpose of (a) and (b).

Conditions (a) and (b) can be interpreted as conditions on the sub-
bundle η, the sub-bundle on which π is the Hermitian projection. Condi-
tion (a) says AΣ: η —> η and condition (b) says that η is holomorphic in
the complex structure 8 -f Az. These two conditions are compatible, since
by (11) [8 + AZ,A2] = 0. For further reference, we restate Theorem 12.1
in this language.

Corollary 12.2. Let Eχ\ C* x Ω -+ G be an extended harmonic map
satisfyingEλ:S

ι xΩ^GR = \J(N). Then



HARMONIC MAPS INTO LIE GROUPS 39

is an extended harmonic map for π: Ω x C^ -» η, the Hermitian projection
onto a sub-bundle η<z£lxCN of rank between 1 and N - 1, if and only if

(a) η is holomorphic in the d + Az complex structure,
(b)Az: η-+η.
For future reference, there is a variety of ways to construct such bundles

η. Our difficulty will be with the uniqueness of the construction. First we
make a general definition and give some general comments on the defini-
tion.

Definition 12.3. Let A: Ω x C^ -* Ω x C^ be an analytic linear bundle
endomorphism. Then A has maximal rank on an open set Ω'. Define

kernel bundle of A\Q! = {(υ, q): A(q)υ = 0,q e Ω'} c Ω' x C*,

range bundle of A\Ώ! = {(υ,q):v = A(q)w, all w e C^,q e Ω'}.

In all the cases we deal with, A is holomorphic or anti-holomorphic with
respect to complex structures on Ω x C^, and the points where its rank is
not maximal are isolated. Likewise, it follows that the range and kernel
bundles of A are holomorphic in an appropriate associated complex struc-
ture and extend to smooth bundles. If the appropriate complex bundles
are used instead, as would be proper in algebraic geometry, the kernel and
range bundles are just sheaves, which in dimension 1 have double duals
which are bundles. We make the computations to show the appropriate
complex structure, but tacitly ignore the problem of singularities.

Let γ\κ be the kernel bundle of Az (note that over S2, Az: S2 xCN -^
S2 xCN xΣ+, but the definition of kernel bundle is still valid).

Lemma 12.4. The bundle r\κ is holomorphic in the 5 + A2 complex
structure.

Proof Suppose / : Ω -> ηκ. Then Azf = 0. But

(d + A,2)(AJ) = A2(8 + A-J) + [δ + A2), Az]f = 0

and
[(8 + A2\ Az] + (8AZ + [A2, Az])f = 0

from the harmonic map equations. It follows that (d + A2)f: Ω —> r\κ.
This shows that r\κ is holomorphic in the d + Az complex structure.

Corollary 12.5. Let η <zηκ be any sub-bundle of Az which is holomor-
phic in the complex structure d + Az. Let π be the Hermitian projection on
η. Then Eλ = Eλ(π + λπL) is an extended solution.

To understand the complicated possibilities, we list some other possible
choices of η. We check that the cokernel bundle

ηc = {(q,υ): A2(q)v = -A*z{q)v = 0} c Ω x C"
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is anti-holomorphic, namely d + Az maps sections of ηc to sections of
r\c. Choose any anti-holomorphic bundle of ηc in this structure d + Az.
Then call this η1- c ηc. Check that η is now holomorphic in the structure
d + Az. Clearly π±Azπ = 0 since π x is the projection on η1- and (Az)*
maps elements of η1- to zero.

Other choices for η include the kernel bundle for (Az)
k and a variety of

other possibilities. However, we knew from the start that the construction
is not unique. We shall show that the type of construction leading to
Corollary 12.5 is sufficient to produce every AZ-uniton solution, n < oc.

Theorem 12.6. Suppose that Eλ is an extended solution and Eλ —
Eλ(π + λπ^) is also. Then if A-z = \EλBE~x and Az = \E~xdEλ,

Az = πAz π + π:LAzπ
1- + πdπ = Az + dπ.

Proof. The terms in (35) which do not contain λ are

A-z = (1 - λ~ιE~ιdEλ = πAzπ + π±Azπ + πdπ

which is automatically

Az + dπ - π±Azπ - π±dπ - πAzπ^.

The last three terms vanish by Theorem 12.1.
Note that it is extremely hard to make Az = A2, since then dπ = 0.

Then the sub-bundle η c Ω x C^ is just η = ΩxVocΩxCN. Also, if
Eλ: C* x Ω ^ GL(2,C), there is very little choice for π. One checks that
in this case As = A2 + dπ = 0 and the attempt to add a uniton to the one
uniton solution can only result in cancelling the solution already there.

13. The minimal uniton number

Up until this stage in the second part of our discussion, we have not con-
cerned ourselves with the lack of uniqueness in choosing E^. This section
will describe a unique choice for which the uniton number n is minimal.
Throughout this section we assume the reality condition (Eλ-ι ) ~ ι - (Ex*)*.

Definition 13.1. Given an extended solution Eλ = Σ"n=oλ
nTn, Vo =

V0(E) = linear closure of {v e CN: v = T0(g)w, q eΩ,w e C^}.
Since everything is analytic, Ω may be taken as any subset of the domain.

As usual, we find the uniqueness easier to prove than the existence.
Theorem 13.2. A solution Eλ = Σ" = o λ°Γ α where Vo = V0(E) = CN is

unique (if it exists).
Proof Suppose there were two extended solutions with this property:

a=0 a=0
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where V0(E) = V0(Ef) = CN. Then E'λ = Q(λ)Eλ for Q(λ) = ΣaL-n> **&*
= E'λE^{. Here Q(λ) e G satisfies the reality condition, and we assume
Q-n> φ 0 for ri < n, Qn, φ 0 for rri < m. However, if ri > 0

for all q e Ω. It follows that Q-n>\V0(E) = Q_n = 0 since V0(E)
which contradicts the assumption that «' > 0. We conclude n' < 0.

Similarly, we have

a= — m'

Repeat the same argument. It shows m! < 0. It follows that m' = n' = 0
and the normalization E\ = E[ - I implies Q(λ) = /.

The idea behind the existence is simple, although the proof is a little
complicated.

Theorem 13.3. Let n be the minimal uniton number. Then there exists
an Eλ with Vo(Eλ) = CN which has this minimal uniton number.

Proof. Suppose not. Then choose a solution Eλ = Eλ0 such that
dim VQ(E) is the maximum possible for solutions with minimal uniton
number n. Suppose dim V0(E) = M < N.

Starting with Eχ$ = Ex, by induction we construct the following se-
quence of solutions Eλj, j > 0 by iteration.

Let EλJ = ΣI!=o λ " Γ «J L e t VJ = VO(EJ) = l i n e a r closure of {v e
CN: v = T0J(q)w for all q e Ω, w e CN}. Let Pμ CN -> C^ be the
Hermitian projection on Vj. Define

Since PfToj = 0, it can readily be seen that Eλj+{ has the required form.
Also

(36) Toj+ι = PjToj + PfTXJ = Toj + PfTXJ.

Since M is the maximal rank possible for VQ(EJ), rankPk+{ = dim F7+i <
M. However, from the construction, it can be seen that

dim Vj+\ > dimVj.

It follows that
dim Vj=\ = rankP/+i = M

for all j . It is also clear that this construction continues for all j > 0. We
claim this is impossible. According to our construction Exj = Qj{λ)Eλ,
where Qj(λ): Cn -• C^ has the formula
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Since Qj(λ) = EλJ(q)E^ι(q) = ΣL-nλaQ°J f o r a 1 1 « E Ω> t h e l e a d i n 8
term

for 7 > n. This is impossible by the following proposition.
Proposition 13.4. IfPfP^v = 0, ίAe/i P^_χv = 0.

/V00/ Suppose not. Let w = ί ^ i ^ s i n c e Pkw = °> w e h a v e

w = Pkv' = P£LXV. However, by (36), we see that this means dim Vk >
dim Vιc_{, which is impossible.

14. The unique factorization theorem

In § 12 we gave a general method for changing any solution with finite
uniton by adding a factor to the right of the extended solution. Canoni-
cally this should, we suspect, add a uniton, but there are so many ways to
do it that the process is highly nonunique. In this section we prescribe con-
ditions which insure uniqueness of the construction, which is equivalent
to a unique factorization of Eλ = Σ" = 0 A α Γ α . Appropriately, we assume
the condition of uniqueness of the extended solution discovered in § 13
always holds. If Eλ = E L o ^ 7 ^ t h e n

Vo = linear span of{?; = T0(q)w, q eΩ,w e CN} = C^.

Note the results of this section apply to harmonic maps S2 —> U(N) pri-
marily. However any harmonic map Ω —> U{N) with finite uniton number
also can be obtained by our construction.

Lemma 14.1. Let P: CN —• C^ be a Hermitian projection, and let ηp
be the kernel bundle ofPT0. Then ηp extends to a bundle over Ω which is
holomorphic in the complex structure d + A2. Moreover, Az: ηP —• ηP.

Proof. Let πP be the Hermitian projection on ηP, and Up - I - nP

be the Hermitian projection on the orthogonal complement. The first two
terms in the power series for ΘEλ = (1 -λ)EλA2 and dEλ = (1 -λ~ι)EλAz

give us, after multiplication by P,

(37) d(PT0) - (PTO)A-Z = 0, (PT0)A2 = 0.

From the first equation and PToUp = PTQ we have

0 = Θ(PTO) - (PT0)π£A2 - (d(PT0) - {PTQ)A-Z)π^

= (PT0)π£(dπ£ + [A2, πj>]) = -(PT0)π£(dπP + [Az, πP]).

Since (PT0)nP = 0, we have
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This implies the holomorphicity of πP in the d + Az complex structure.
Likewise

PT0A2 = PToπ^Az = 0

or Up Az = 0, which implies UpAzπp = 0, or Az: ηp —> /̂>.

Lemma 14.2. Let π/ te the projection on ηi, the kernel bundle of TQ.
Then

£λ = λ-ιEλ{πj + λπj-)

is a new solution ofuniton number n-\. Moreover, ifλz = (1 -λ)~ιE^ιdEλ,
then Azπf = 0.

Proof. By Theorem 12.1 and Lemma l4Λ9Eλ = E L - i λaTa is a new
extended solution. It could be that f_i Φ 0, or Tn Φ 0. However f_i =
Γoπ/ = 0, and 7^ = Γ^πf. By construction, range πj- = range TQ =
orthogonal subspace to the kernel of Γo. Since TnT£ = 0 by the reality
condition, it follows that Tn\ range Γo* = 0, or Tnπj- = 0.

This shows us that we can build up every «-uniton solution from a « - 1
uniton solution. Moreover, this decomposition is canonical (we just gave
the recipe). However, we are interested in the details of this construction.

Proposition 14.3. If Eλ is an extended solution with Vo = CN, then
rank Tb > rank 7Ό.

Proof From the multiplication formula

(38) To = Toπϊ + Txπi = To

Clearly, rank 7b > rank TQ. We need to show strict inequality. If equality
holds, then, since range To = range Toπj-, we must have

range(Γiπ/) c range Γo.

Of course, we do these computations on the open set where the rank is
maximal. By the usual arguments, the set where the rank drops is a set of
isolated points, and the singularities in the bundles are removable there.

Our goal is to show it is impossible for range(Γiπ/) c range 7b almost
everywhere. First we list the relevant terms from the power series expan-
sions of the equations describing the extended solutions

TOAZ = 0, dT0 = TOAZ, dT0 = TOAZ - TXAZ.

Since Tonj- = To and 7bπ/ = 0, we conclude from the first equation
that nj~Az = 0, or Az = πjAz. From the second equation, we conclude
that the range bundle of To is holomorphic. If range T\π\ C range Γo, we
conclude from the third equation that the range bundle of To is also anti-
holomorphic. This implies that the range bundle is a constant subspace
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Vo C CN. By assumption, Vo = CN. However, there are several argu-
ments which show rank 7b < n. In particular, TQT* = 0 from the reality
condition.

Corollary 14.4. Ifs: Ω —• U(N) is a harmonic map with finite uniton
number, then its minimal uniton number is less than N.

Proof. We reformulate the theorem, and show instead that if Eλ is an
extended solution with Vo = C^ of uniton number j , then rank TQ < N-j.
This is easily demonstrated by induction. For 7 = 1, the 1-uniton solutions
are of the form π + λπ, and rankπ < N - 1. Proposition 14.3 is the
induction step.

We now describe how to build uniquely the «-unitons from the n - 1
unitons. Recall that we assume Eχ = Σ " I Q Ta *s a n w " u n i t ° n solution,
E~ιdEλ = (1 -λ)Az and E~ιdEλ = (1 - λ~ι)Az. By Lemma 12.4, ήκ =
kernel bundle of AΣ = {(v, q): Az(q)v = 0} is holomorphic in the complex
structure d + A2. Likewise, by Lemma 14.1, ήι = kernel bundle of To is
holomoφhic in the same complex structure. Furthermore, by duality f\\ =
kernel bundle of Tn is anti-holomoφhic with respect to the d+Az structure.
Finally, suppose Z € CPN~ι and P(Z): C^ -> C^ is the projection on the
one-dimensional complex subspace Z. From Lemma 14.1, ///>(Z) = ήz =
kernel bundle of P(Z)f0 is holomorphic in the d + A2 complex structure.
The bundles ήz for Z € CPN~ι are a complex N - 1 dimensional family
of bundles of Ω x CN of dimension N - I. This explains the terminology
of the next step.

Proposition 14.5. IfEλ = λ^Eλfa+λπf) as in Lemma 14.2, Fo = C^
(for Eχ)t and η = ηj- = range bundle ofT£ = Hermitian complement to ηi,
the kernel bundle of TQ, then

(a) η is holomorphic in the d + Az complex structure,
(b) η c η% = kernel bundle of Az,
(c) η Π ήi = 0, where ήj is the kernel bundle of to,
(d) η <£ ήz for Z e CPN, where ήz is the kernel bundle ofP(Z)f0.
Proof Condition (a) follows from the fact that

Eλ = Eλ{πi + λπi) = Eλ(π + λπ-1),

where π is the Hermitian projection on η = ///". Condition (b) follows
from Azπ = 0 as shown in Lemma 14.2. Condition (c) is equivalent
to the statement that rank(rO7r) = rank(Γ0) = rankπ. Since n1- is the
kernel bundle of To, this is true. Condition (d) follows from the fact that
P{Z)T0 = P(Z)fon cannot be identically zero for any Z e CPN, since
whenever P(Z)fon = 0, Vo c Z±. Since Vo = C", P(Z)f0 φ 0. This is
equivalent to η £ ηz.
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Our main theorem is now at hand.

Theorem 14.6. Every n-uniton solution can be built in a unique way
from an n — 1 uniton solution by means of factorizing Eχ, the unique ex-
tended solutions with V0 = CN. We have

where Eλ = Σ " ~ Q ^*^* an(^ ^^λ = ^ ~~ λ)EχAz. Here π is a Hermitian
projection onto a sub-bundle ηofΩxCN where

(a) η is holomorphic in 8 + A2,
(b) η G kernel bundle of Άz,

(c) ηΠ kernel bundle of 7b = 0,

(d) η<£ήzforZe CPN, where ήz is the kernel bundle ofP{Z)T0.
Proof By the previous proposition, Eλ can be built up this way from

a unique Eχ. However, if we define Eλ this way, we certainly have

λ~{Eλ(π±+λπ) = Eλ.

From (a) and (b), Eλ is an extended solution. From (c), rank Γo = rank(Γoπ)
= Γankπ, and TQ Φ 0. Moreover, π is clearly projection onto the perpen-
dicular of the kernel of 7p, as in the construction. Moreover, we know
Eλ has one less uniton than Eλ, so Eλ is in truth Eλ = Y^^=oλ

aTa with
TQ φQ,Tnφ 0. Finally Vo = linear closure of the range of TQ = CN. If
not, P(Z)T0 = 0 for some Z <E CPN~ι, and P(Z)T0 = P(Z)foπ = 0, or
ήz = kernel P(Z)To D η. Condition (d) forbids this.

We leave it to the readers who have made it this far to discover a nice set
of parameters for the moduli space of the solutions. In fact, conditions (c)
and (d) are in the right dimensions going to be lower dimensional varieties
which lead to redundancy in the description of harmonic maps due to lack
of uniqueness in the extended solutions.

15. Complex Grassmannian manifolds again

Recall from §8 that we wish to consider a harmonic map s: Ω —• G^N

as a harmonic map s —• G^ # satisfying the extra condition that s2 — I and
rank(/ + s) = k at each point x e Ω , We prefer our extended solution to
satisfy

Eλ = E_λ(E-{)-{.

It will turn out that our extended solutions which satisfy Vo = CN will
almost have this property, although this is not at all obvious. First we
discover what property they will have.
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Lemma 15.1. Suppose that Eλ is the extended solution with Vo = CN

for a harmonic map into a Grassmannian. Then Eλ = QoE_λE-\Qo for
Ql = I {or Qo e GkN, some k).

Proof Since Eλ is an extended harmonic map associated to a map
s: Ω -> GkN, we know that there exists a Q: Ω x C* -> GL(N9 C) satisfying
the reality condition, so that if E'λ = Q(λ)Eλ

E'λ = E>_k{E'_y)-χ.

Rewriting in terms of Eχ gives us

Q(-λ)-ιQ(λ)Eλ = E_λEz\Q{-\)-\

Now Q(γ)-ιQ(-λ) = Σα=-m'A αfl» However, Eλ = ΣLo^τa where To

spans all of C^. Therefore, if Q-m> φ 0, Q-mTQ φ 0. We conclude that
Q(ϊ)-ιQ(-λ) = ΣZZZ&Qa By the same reasoning

(Q(-λΓιQ(λ)ΓιE_λ = EλQ(-l)E-X.

By the reality condition and the same argument (Q(-λ)~ιQ(λ))~ι =

Σα=-m*'(β-«)*> W h e Γ e ^ = 0. SO

as we require. This completes the proof of the lemma.
We now describe how to add a uniton to a harmonic map into a Grass-

mannian.
Theorem 15.2. Suppose s is a harmonic map into a Grassmannian with

extended solution Eχ, s = QQE-\, and Eλ = QoE_χEZ\Qo Then

Eλ = Eλ(π + λπ-1)

is the extended solution for a harmonic map s = QoE_ \ into a Grassman-
nian ifπ: Ω x C^ —• η is the Hermitian projection to the bundle η c Ω x C^
where

(a) η is a holomorphic in the d + A2 complex structure,
(b) Az: η-*η,

Proof By Corollary 12.2, Eλ is an extended harmonic map. We need
to verify the Grassmann condition Eλ = QoE_λEZι

{Qo. But

Eλ = Eάπ + λπ^) = Qχ>E-λEz\Qx>{π + λπ^) = Q0E_λs-{(π + λπ±).

Since s~ι = (Q0E^\)~ι = s = βo^-i , we have

= Q0E_λ(π - λπL)(π - λπ^Ez] Qo)

= QoE_λEZΪQo
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z\Note for λ = - 1 , this condition E-X = QoEz\Qo implies s =

EZ\Qo = s~\

Theorem 15.3. A harmonic map s: Ω —• G^ N with finite uniton number
n is uniquely obtained from a harmonic maps: Ω —• G^^N of uniton number
n-\ by setting the unique extended solution Eλ with Vo = CN for s

Here s = QoE-\, s = QoE-\ and Eχ is the unique solution for s with
VQ = CN. Moreover, π is the Hermitian projection into a bundle η satisfying
(a)-(d) of Theorem 14.6 plus the condition

(e)[ί,π] = 0.
Proof By Theorem 14.2, Eλ is uniquely obtainable from Eλ as de-

scribed. Moreover, if s is harmonic into a Grassmannian, by Theorem
15.2, s is also.

We need to show that if s lies in a Grassmannian, then s does also and
condition (e) is satisfied. We have

a=0

where rankΓ0 = rankπ and kernel To = kernel π. We also have from
Lemma 15.1

= QoE_λ(π-λπ±)(π-π±)Ez\Qo

where π = (QoE-ι)π(QoE-\)~{ = sπs~{. But rankπ = rankπ = rankΓ0,
and kernel ft — kernel π = kernel TQ. It follows that

π = π = sπs , or [π,s] = 0.

I.'!Again, by uniqueness, Eλ = QoE_λE_\Qo, which implies that {s)2 = I as

required.

16. Additional questions and problems

The original list of questions which accompanied the first version of
this paper (written in the fall of 1984) is contained in problems 1-12 be-
low. Since I now understand more physics, I have added four questions
which originate in the papers of theoretical physicists (problems 13-16).



48 KAREN UHLENBECK

Graeme Segal has since given an insightful interpretation of the construc-
tion in terms of the loop group and infinite Grassmannians which should
answer problem 12 [19]. Extensive work has been done on the classifi-
cation of harmonic maps into complex Grassmannians [5], [2], which is
the subject of problem 9. Several other details of our construction have
been elaborated on [16], [24]. However, the work of Hitchin on harmonic
maps from sι x S1 —• SU(2) and the explosion of results on constant mean
curvature surfaces in R3 [21] indicate that problem 6 is immensely compli-
cated, and certainly not purely algebraic. Similarly, just as the physicists
thought, the theory of harmonic maps into flag manifolds (problem 4) is
not yielding [12], [15]. I still think the question of the algebraic geometric
structures on the moduli space of solutions is important. Work of Verdier
is surely important [20]. Problem 7 is restated in problem 15. Much of
the rest may be irrelevant.

In reference to the new problems, I am pessimistic about a positive
answer to question 13. I believe problem 14 can be carried out rather
easily, but as with all supersymmetric theories, the geometry is hard to
come by. Problem 15 relates to questions of Wick rotation. Problem 16
is open-ended. String theory relates to everything.

1. All the proofs in this paper relate to GR = U(N). The first eight sec-
tions should apply directly to any real form of a complex group if phrased
in a sufficiently abstract setting. Can anything interesting be said about
specific groups?

2. On the other hand, the ideas in Part II are based entirely on GR =
U(N). What can be said about constructing general harmonic maps of
finite uniton numbers into any GRΊ

3. Is there a decomposition theorem for harmonic maps from 1-con-
nected 2-dimensional Riemannian domains into GL(ΛΓ, R)? Into any GΊ
The reality condition plays an essential role in our arguments.

4. Can any of the results of this paper be modified to apply to harmonic
maps into M = U(N)/GΊ (We have in mind flag manifolds.)

5. Solutions of the Ernst equations of general relativity are similar to
harmonic maps into SL(2, R) whose images lie in the self-adjoint matrices.
Is there any connection between the constructions described in this paper
and the Geroch group?

6. The condition that the domain Ω be simply connected is essential in
our construction. Can any of the ideas be modified to include the periods
which must arise when Ω is not simply connected?

7. When Ω is in Eι>1, part I goes over directly by replacing (z, z) by light-
light (characteristic) coordinates {η,ζ). However, there are no real unitons
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with finite uniton number. This is because the reality condition would be
Eχ{Ej)* = /. The conjecture is that this system of equations E1*1 —> GR
is completely integrable. Since Sine-Gordon is essentially equivalent to
E1'1 —• CP 1, some details are known.

8. Can a proof of the Glaser-Stora, Din-Zakrzewski and Eells-Wood
classification of harmonic maps into CPN~ι be obtained directly from our
construction?

9. If s: Ω —• GkN is a harmonic map of finite uniton number, is there
a bound on the minimal number which is less than N - 1? (Note if k = 1,
or N — 1, n < 2). I believe the answer is n < 2 min(/c, TV — k),

10. Does the minimal uniton number n have any topological interpre-
tations?

11. In principle, our construction does show that the moduli space of
solutions is an algebraic variety. However, the description is very awkward.
Is there a more elegant description?

12. What is the connection between Parts I and II of the paper? How
does the loop group act on the abstract space of solutions?

13. Is the group action of §§5-7 symplectic with respect to a natural
Hamiltonian structure?

14. Is there a supersymmetric version of this paper?
15. What is the relationship between the Minkowski and Euclidean

harmonic map problems? Are there any structures (classical or quantum)
which transform nicely?

16. Does any of the theory in this paper carry over into a quantum
theory? If so, does it have anything to do with string theories?
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