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LINEAR GROWTH HARMONIC FUNCTIONS
ON A COMPLETE MANIFOLD

PETER LI k LUEN-FAI TAM

1. Introduction

In [3], Yau proved that on a complete manifold with nonnegative Ricci
curvature, there does not exist any nonconstant positive harmonic function
which is defined on the entire manifold. In fact, his argument also showed that
the space of sublinear growth harmonic functions on such a manifold consists
of constant functions only. More precisely, if M is a complete manifold with
nonnegative Ricci curvature and / is a harmonic function on M which satisfies

1/1(2/) < o{r{y))

for some distant function r to a fixed point, then / must be identically con-
stant. This led Yau to ask the following questions:

(1) For each integer p, is the space of harmonic functions on a manifold
with nonnegative Ricci curvature satisfying

finite dimensional?
(2) If so, is the dimension less than or equal to the dimension of the space

of homogeneous harmonic polynomials of degree less than or equal to p in Rn

for n = dim M?
The purpose of this article is to show that when p = 1 the answers for

the above questions are affirmative. In fact, we will prove that the dimension
can be estimated in terms of the order of the volume growth. Together with
the volume comparison theorem, this implies that the space of linear growth
harmonic functions is of dimension at most n.

The authors thank S. T. Yau for suggesting the problem and also thank R.
Schoen and S. Y. Cheng for their interest in this work.

Theorem. Let M be an n-dimensional Riemannian manifold with non-
negative Ricci curvature. Assume that the volume of the geodesic balls of
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radius r centered at some point x G M satisfies

Then the dimension of the space of linear growth harmonic functions on M
must be less than or equal to k. In particular, using Yau}s theorem, the space
of harmonic functions on M satisfying

\f\(y)<O(r(y))

must have dimension less than or equal to k + 1.
In view of the above theorem, perhaps it is reasonable to ask that if the

manifold satisfies the assumption of the theorem, does the space of all har-
monic functions on M which grows like

have dimension less than that of RkΊ

2. Slow volume growth

Before we prove the theorem, we would like to remark that the situation
simplifies substantially if the volume growth of M is slow, that is

'v(Bx{Vt))-1dt = oo.

In this case, any linear growth harmonic function must have parallel gradient,
and hence the manifold splits into M = βxΛΓ, where N is a complete manifold
with nonnegative Ricci curvature. More precisely, we have the following:

Proposition. Let M be a complete manifold with nonnegative Ricci cur-
vature. Suppose there exists a point x € M such that the volume of the geodesic
ball, V{Bx(r)), centered at x with radius r satisfies

Ji
{x{f)) dt =

i

If M admits s linearly independent nonconstant linear growth harmonic func-
tions {fi}, then M must be isometrically the product M = RsxN, where N is
a complete manifold with nonnegative Ricci curvature. Moreover the harmonic
functions fi must be linear functions of R9. In particular, the dimension of
the space of nonconstant linear growth harmonic functions must be at most 2.

Proof. Let / be a nonconstant linear growth harmonic function. By the
gradient estimate of Yau ([3], [1]) the function |V/|(y) is a bounded function
on M. Bochner's formula also implies that |V/| is subharmonic on M in the
sense of distribution. On the other hand, it is known (see Proposition 2 of
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[2]) that if the volume growth of M is small then there does not exist any
nonconstant bounded subharmonic function. Hence |V/| must be identically
constant. Bochner's formula then implies that the vector field V/ must be
parallel which gives us the splitting for the universal covering M1 = R x N
of M. However, since / is defined on M, it is invariant under the action of
the deck transformations so M itself must split. If g is another linear growth
harmonic function on M which is linearly independent to /, then we may
assume that at a point x, the vectors V/ and Vg are perpendicular. By
the fact that they are both parallel, they must remain to be perpendicular
everywhere. Hence g must be a function of N alone. We now argue that
N splits as a product R x N'. Inductively, we observe that M must split
into Rs x TV if there are s linearly independent nonconstant linearly growth
harmonic functions. However, this will violate the assumption on the volume
growth unless s < 2. In fact, if s = 2 then N must be a compact manifold
with nonnegative Ricci curvature.

3. Fast volume growth

In view of the above proposition, we may assume from here on that M has
fast volume growth, that is

ViB^/^dt <oo.

To normalize our nonconstant linear growth harmonic functions, we may as-
sume that they all vanish at a fixed point x G M. By the same argument
as in the Proposition, we know that the lengths of the gradient of these lin-
ear growth harmonic functions are bounded subharmonic functions. We will
utilize the following lemma concerning bounded subharmonic functions on
manifolds with nonnegative Ricci curvature, which was proved by the first
author in [2] (see Theorem 4).

Lemma. Let M be a complete manifold with nonnegative Ricci curvature.
If h is a bounded subharmonic function, then h satisfies

lim ViB^r))-1 ί h{y) dy = sup % ) .
1 ί

JBx(r)

Proof of Theorem. Let / be a linear growth harmonic on M. Applying the
above lemma to the function |V/|2 we see that

lim ViB^r))'1 f \X?f\2(y)dy = sup \Vff(y) = ||V/||2
oo
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Let us now define the inner product on the space of linear growth harmonic

functions which vanish at x by

= lim V{Bx{r))-1 f (Vf,Vg).
r^°° JBX(T)

The limit on the right-hand side always exists by the fact that both /, g and

f + g are linear growth harmonic functions and the polarization

One checks readily that this is indeed an inner product since

Let us now consider an s-dimensional subspace H of the space of linear growth

harmonic functions. Let {/J, 1 < i < s, be an orthonormal basis for H with

respect to this inner product, that is, ((V/i, Vfj)) = 6{j.

Consider the function

which is invariant under orthogonal change of basis. Taking the Laplacian of

F and integrating over the geodesic ball centered at x of radius r, we have

= ί -(rA

~ JdBx(r)

In order to estimate the integrand of the right-hand side at a point 2/0 > we

consider the subspace

H0 = {fe H 1/(2/0) = 0}.

Ho must be of at most codimension-1 in H since the linear map L from H to

R given by L(f) = f(yo) must have rank less than or equal to 1. Hence, by

an orthogonal change of basis for H, we can write

where φi{yo) = 0 for all i φ 1. This implies that t/o is a minimum point for

each of the functions φf(y) for i φ 1, so that
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However, since the φ^s are orthonormal, we conclude that

and therefore

\Φi(Vo)\<r(yo) and |VF|(|fo) < 2r(j/0),

where r is the Riemannian distance from x. This gives the estimate

where A(dBx(r)) denotes the area of the boundary of the geodesic ball of
radius r centered at x. Dividing both sides by V(Bx(r)) and using the fact
that

«V/<,VΛ» = 1 for all 1 < t < s,

we conclude that for any ε > 0, there exists R(ε) > 0 such that for r > R(ε)

s-ε A(dBx(r))
r ~ V(Bx(r))

Integrating this inequality from R = R(ε) to r, we have

y[BΛr)) > M l , - .

for all r > R. Since ε is arbitrary, this establishes the theorem.

References

[1] S. Y. Cheng & S. T. Yau, Differential equations on Riemannian manifolds and their
geometric applications, Comm. Pure Appl. Math. 28 (1975) 333-354.

[2] Peter Li, Large time behavior of the heat equation on complete manifolds with non-negative
Ricci curvature, Ann. of Math. (2) 124 (1986) 1-21.

[3] S. T. Yau, Harmonic functions on a complete Riemannian manifold, Comm. Pure Appl.
Math. 28 (1975) 201-228.

UNIVERSITY OF UTAH

CHINESE UNIVERSITY OF HONG KONG






