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COMPONENTS OF MAXIMAL DIMENSION
IN THE NOETHER-LEFSCHETZ LOCUS

MARK L. GREEN

We will work over C. Let

Y = {algebraic surfaces of degree d in P 3 },

Σd = {S GY \ S smooth and Pic(S') is not generated

by the hyperplane bundle}.

We will call Σ^ the Noether-Lefschetz locus. Some things that are known
about Σd are:

(1) Σd has countably many irreducible components,

(2) For any irreducible component Σ of Σ^,

d - 3 < CodimΣ 5

The upper bound on codimΣd is elementary, as this is just h2>°(S) (see
[2]). The lower bound is more subtle and depends on fairly delicate algebraic
considerations (see [4], [5]). One cannot do better for any d > 3, since the
family Σ^ of surfaces of degree d containing a line has codimension exactly
d — 3 in Y. For d = 4, the upper and lower bounds given in (2) coincide, so
that every irreducible component of Σ^ has codimension one. For higher d,
the following result was conjectured in [2]:

Theorem 1. For d > 5, the only irreducible component of Σd having

codimension d — S is the family of surfaces of degree d containing a line.

It should be noted that Theorem 1 was obtained independently by Claire
Voisin [7].

Let Σ be an irreducible component of Σ</ having codimension d — 3. As
shown in [5], if S = {F = 0} belongs to Σ, and Jk(F) is the degree k piece of
the Jacobi ideal of F, generated by the first partials Fo,Fι,F2,F3 of F, then:
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There exists a codimension (d — 3) linear subspace W C H°(0P3(d)) such

that

W D Jd(F),

and

(4) The multiplication map W® H°{0P3 (d-4)) -> H°{0P3 {2d- 4))

is not surjective.

(5) The projection ofW into H°(OP3(d))/Jd(F) is the Zariski

tangent space to Σ at S.

We now introduce some notation. Given a linear subspace W C H°(OPr (d))

we let μk denote the multiplication map

W ® H°{OPr(k)) Q H°{OPr{d + fc)),

and cjς = codim(imμfc). We need the following algebraic result.

T h e o r e m 2. Let W C H°(OPr(d)) be a base-point free linear subspace

of codimension c. If c < d and cc_i φ 0, then

(6) for 0 < k < c, Ck = c — k;

(7)ifr>2andd>c> 2, then W D Id(L) for some ί C F .

Proof of Theorem 2. It was known to Macaulay (see [3], also [1], [6]) that

for any W C H°(OPr (d)) of codimension c, if we write c uniquely in the form

where by convention ( ^ ) = 0 for m > n, then the image of the multiplication

map W ® H°(OPr(l)) ίU H°(OPr(d+l)) has codim(im/i!) < c < d ) , where

(Q\ , (kd + l\ ,(kd-i +1\, ,(ki + Λ
( 9 ) CW = \ d + l ) + { d ) + ' " + { 2 )•
Furthermore, it was shown by Gotzmann [3] that if equality holds, then

codim(im/ifc) = ( ((c(d>)<d+i>) • )<d+fc-i>

If c < d, then

kd = d, kd-λ = d - 1, , fcd_c+1 = d - c + 1,

kd-c = d — c — 1, , fed = 1, fci = 0 .

Thus
d + l
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By Gotzmann's result, if equality holds, then the image of

W ® H°{Opr{k)) ^ H°{Opr{d+k))

always has codimension c. However, if W is base-point free, then μ^ is

surjective for fc sufficiently large. Proceeding inductively, if we let c& =

codim(imμfc), then c > c\ > C2 > for W base-point free and c < d.

Since by hypothesis cc-i ψ 0, the only possibility is

Ck = c — fc, for 0 < fc < c,

proving (6).

To prove (7), assume d > c > 2 and r > 2. We first notice that it is enough

to prove that W D Id{H) for some hyperplane H. For if so, letting

k,H be the multiplication map

and

Ck,H = codim(im/i fc5//),

we have the following commutative diagram with exact rows and columns:

0 0 0

1 I I
(10) 0 -f Wnld(H) -> W — WH - * 0

I I I
0 - , Id(H) - H°(Oτ>r(d)) -4 H°(OH(d)) -+0

If W D Id(H), then CH = c, and similarly Ck,H = Ck for all fc > 0. If

r = 2, we are already done. If not, then by induction on r, WH contains the

ideal of some line L C H. Then W D Id{L). Thus we are reduced to showing

W D Id{H) for some hyperplane H.

Let P r * be the dual projective space and J C P r x P r * the incidence

correspondence

J = {(P,H)\PeH}.

Let
J

V N̂
pr pr

be the projections. On P r x P r *, we have the exact sequence

(11) 0 -» / Ό p r ( - l ) <S> g'Opr' (-1) - O P r x p r -• Oj -* 0.
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On P r , the evaluation map

W®Opr ->Opr(d)-^0

is surjective because W is base-point free. Its kernel is therefore a vector
bundle M fitting into an exact sequence

0 -» M -> W <8> Opr -> Opr(d) -> 0.

One readily sees that for fc > 0,

Tensoring the sequence (11) with f*M(c — 1), we obtain the exact sequence

0 -> /*Aί(c - 2) 0 g*0j>r* (-1) -> /*M(c - 1) -> Oj (8) /*M(c - 1) -• 0.

Pushing down by g, we get a long exact sequence

> H1 {M{c - 2)) 0 O p r* (-1) -^ i/1 {M{c - 1)) Θ O p r*

If ft G P r * and ϋί C P r is the corresponding hyperplane, then

g*Oh®Oj~OH

and thus
^ ς (^O h 0θj0/*M(c-l))=O for<?>2,

and

H\g*Oh ®Oj® f*M{c - 1)) = 0

<-• the multiplication map W 0 H°(OH{C — 1))

-• H°(OH{d + c - 1)) is surjective.

Thus if CC-I,H = 0 for every hyperplane # , then we obtain a surjective map
of sheaves

i/ 1(M(c-2))(8)Op r*(-l) -> iί 1(M(c-l))(8)Opr* -^ 0

0

which is impossible for r > 2. Thus for some hyperplane # , CC-I^H Φ 0.
However, by the result on codimensions, this implies c# > c. Moreover, by
the diagram (10),

c = cH + codim(W Π
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We conclude that

codim{W Πld(H),

so W D Id{H). This completes the inductive step and thus the proof of
Theorem 2.

Remark. In [5], it was shown that for W base-point free and of codimen-
sion c, the map μc is surjective. However, this result was used only in the case
c = d — 3, where it may be deduced from Gotzmann's result. Gotzmann's the-
orem is quite strong and ought to have other interesting applications. More
generally, the standard monomial techniques of Macaulay, Gotzmann, Bayer,
and Stillman seem likely to be widely useful in a variety of questions of this
kind.

Returning to the proof of Theorem 1, let Σ, S, W, F be as before. For d > 5,
c = d — 3, we know by Theorem 2 that W D Id{L) for some line L. If L\^L2

are two distinct lines in P 3 , then

W i ) | L 2 = H°(0L2(d)) if Li ΠL2 = φ,

Id(Li)\L2= H°(OLM® IP) if IΊ Π L2 = P,

and thus if W D 7d(Li) 4- h(L2), then c < 1. So for each S e Σ there is a
unique line Lς such that W 2 ^(L^). We thus have a natural map

^ ) , S->LS.

For each L e G(2,4), let Σ L = π " 1 (L). If Σ L is nonempty, then codim(ΣL, Σ)
< 4. Choose an L with Σ L φ 0. Let WL C W be the pullback of TS(ΣL) to
H0(Op3 (d)). Choose S to be a general point of any component of Σ^, so that
codim(WL, W) < 4 and codim(W/χ/ Π /<*(£), Λi(i)) < 4 are locally constant on
Σ L near S.

Since W 3 Jd{F)> t n e restriction of Jd(^) to L has codimension > d - 3
in H°(θL{d)). Since it is base-point free and

Jd(F)\L= im{Jd-ΛF)\L®H°(OL(ϊ)) - H°(OL(d)))

we conclude from Gotzmann's theorem that

codim(Jd_!(F)|L, H°(OL(d - 1))) > d - 2

and therefore
dim(J ( ί_1(F)|L) < 2.

Now, choose homogeneous coordinates (ZQ, - ,2̂ 3) for P 3 so that L =
{20 = 0,*! =0} . Let

a = dimspan(F 0 |L,Fi |L)
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where Fi = dF/dzi. By choosing S generally on any component of Σ L , we
may assume a is locally constant near 5. We must deal separately with the
cases a = 0,1,2.

If a = 2, then by a linear change of coordinates preserving the fact L =
{ZQ = 0, z\ = 0}, we may arrange that F 2 | L = 0 and 2*3 | L = 0. Now

F\L=(zoFo\L+z1F1\L+z2F2\L+z3F3\L)/d = 0

so L C S and we are done, as now a general element of Σ contains a line.
If a = 0, then the equations F 0 | L = 0 and ί i | L = 0 hold identically on the

component of ΣL containing S. Thus for all G G WL,

G 0 | L = 0 , G i | L = 0 .

Since W D 7d(L), and cod\m{WL,W) < 4, we know that G = z0A + zλB
belongs to WL for a codimension< 4 subspace of

{(A,B)\A,B€H°(OPr(d-ί))}.

Now
Go\L=Λ\L=0, G! | L =B| L =0 iΐGGWL.

However,

{{A,B)\A,B€H°{Of>r{d-l)),A\L=0,B\L=Q}

has codimension 2d, so codim(W^L, W) > 2d. This is a contradiction for d > 3.
The last case is α = 1. We now have locally near S on Σ^ a family of

equations

as t varies over ΣL Differentiating in the direction corresponding to G G
at 5, we have

α o(0)Go|L+α 1(0)G 1 |L=-αί,(0)Fo|L-αi(0)F 1 |Lespaii(Fo|L, JF 1 |L)

where t = 0 is the point of ΣL corresponding to 5.
For G = 2o l̂ + 2i#, we have

if GeWL. Since α = 1,

dimspan(F 0 |L,Fi |L) = 1

and thus

) \ A,B e H°(OP3(d - l^.

has codimension d — 1. So

d - 1 < codim(H^L Π Id{L),Id(L)) < codim(WL,W) < 4

which is a contradiction if d > 6.
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This reduces us to the case d = 5 and codim(Wz, Π Id(L),I<ι(L)) = 4.
Let U = spai^G1, G 2 ,G 3 ,G 4 ) be a 4-dimensional subspace of WL such that
G1\L, - - , G 4 | L are linearly independent. By a change of homogeneous coor-
dinates on P 3 keeping L = {z0 = O,zχ = 0}, since a = 1, we may arrange
that FS\L = 0. This equation deforms to an equation

{θo(t)F0(t) + ••- + as(t)F3{t))\L= 0

for t e Σ L near S. lϊt = 0 corresponds to 5, (αo(0), • , α3(0)) = (0,0,0,1).
Differentiating in the direction corresponding to G € WL, we get

In particular, since dim(Jd_i(f1)|L) < 2, we may change the basis of U so
that G\\L = 0 and G\\L = 0. Since 22,23 are homogeneous coordinates on L,
we see that

Thus some linear combination of G1 and G2 restricts to zero on L, which
contradicts the assumption on U. This completes the proof of Theorem 1.

An interesting open problem concerns the case d = 5. Irreducible compo-
nents of Σ5 may have codimensions 2, 3, and 4. We have just shown that the
only component having codimension 2 consists of quintics containing a line.
One easily verifies that the quintics containing a plane conic gives a compo-
nent of Σ5 of codimension 3. Are there any others?* This relates to a problem
suggested by Joe Harris: although Σ^ has countably many components, there
should be only finitely many whose codimension is smaller than the maximum
value ( V ) .

I want to thank Joe Harris for some useful ideas, and for showing me his
joint work with Ciro Ciliberto, which gives an intriguing alternative approach
to proving Theorem 1 using a degeneration argument. I learned of the work
of Macaulay and Gotzmann through the generous aid of Dave Bayer, David
Eisenbud, and Tony Iarrobino.
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