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AN ANALOGUE OF DEMAILLY'S INEQUALITY
FOR STRICTLY PSEUDOCONVEX CR MANIFOLDS

EZRA GETZLER

Recently, Bismut has reformulated Demailly's results on the asymptotic
dimension of the d-cohomology of a line bundle Lm, where m —> oo [2], [3].
His main result is the following:

mlimj2τr/m)nTr IΩO^M L ™ ) ^ 7 ™ = jm j / ) I Ω ^ M L ) j det

In this formula, n is the complex dimension of the compact complex manifold
M, F is the curvature of the holomorphic line bundle L on M, and Δ is the
Laplacian (d + d )2 acting on the space Ω°'9(M; Lm). Using the bound

dimHq{M;Lm) = dimkerΔΩo,g(M;L-) < Ή|n°.«(Λf;L")e"tΔ/m,

we obtain Demailly's original inequality from Bismut's formula:

dim H"(M;Lm) < ( ^ " m i : £ d e t ^-JL—^j Tr \Ao,qτ.Me~tF+ o(mn)

n
TOX ' det(F)+ o(mn).

has q negative eigenvalues}

In particular, if F is positive semideίinite, combining this inequality with the
Hirzebruch-Riemann-Roch theorem, we see that

o(mn) if g > 0.

For the applications of this inequality, see Demailly's original paper [3].
Bismut proved this formula (and a similar one for the Dirac operator) using

much the same proof as he had earlier given of the index theorem for Dirac
operators. One of the goals of this paper is to show how these sorts of results
may be proved using the symbol calculus technique of our earlier paper [6]. We
will apply this method to study an analogue of Demailly's asymptotic result
for the D& operator on strictly pseudoconvex CR manifolds (which we shall
refer to as Heisenberg manifolds, in the interest of brevity of terminology).
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This problem is a simple version of the sort of formulas that one should try to
prove for more general CR manifolds, and also for the d-Neumann problem.
However, we have not been able to find any simplification for the coefficient
of the leading order of dimkerD6|no,<j(M;Lm) m the special case in which the
curvature F of L is positive semidefinite.

It is a pleasure to thank Alan Nadel for proposing this problem.

1. Heisenberg manifolds

Roughly speaking, a Heisenberg manifold is a manifold modeled on the
Heisenberg group—recall that this is the 2n + 1-dimensional nilpotent group

Hn = C n x R

with the multiplication

(αo? So) (fli, 5χ) = (αo + fti, 5 o H~ 5 i H~ 4 I m α o fli).

This group has the Lie algebra ί)n with underlying vector space C n 0 R and
Lie bracket

[(αo? so) > (αi? si)] = (0,4Imαo &i).

In fact, the Lie algebra element (α, a) corresponds to the left invariant vector
field on Hn:

(α, a) •-» X(α) + sT

where X(α) = Z(α) + Z(α), and the vector fields Z, Z and T are defined by
the formulas

ι = l

T=dt'

The exponentiation map is a diffeomorphism between the two spaces ί)n and
Hn.

The unitary group U(n) acts by automorphisms on both Hn and gn by the
formula

Definition 1.1. An almost Heisenberg manifold M is a 2n-hl-dimensional
manifold with a U(n)-principal bundle P -^ M and an isomorphism of the
tangent bundle of M with the associated bundle P Xu(n) *)n
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In other words, a point p E P corresponds to an isomorphism from ί)n to
Tπ(p)M, and the collection of all such frames are related one to another by
an element of U(n).

Since the complexification of \)n naturally splits into three subspaces,
spanned respectively by {Zi\l < i < n}, {Zi\l < i < n} and T, and this
splitting is preserved by the action of U(n) on ϊ)n, the same holds for the
complexification of TM.

TCM = Tι>°M Θ T0ΛM 0 CT.

Definition 1.2. A Heisenberg manifold M is an integrable almost-
Heisenberg manifold, that is, such that the sub-bundle Tlj0M is involutive:

[T1>0Af,T1>0M]=T1>°M.

The most important example of a Heisenberg manifold is a strictly pseudo-
convex hypersurface in C n + 1 . Such a hypersurface does not have a canonical
Heisenberg structure, but obtains one after the choice of a strictly plurisub-
harmonic defining function φ such that M is the manifold φ = 0. Then the
1-form θ obtained by restricting dφ to TM satisfies:

1. θ is a contact form, that is, θ Λ (dθ)n is a volume form, and

2. the Levi form on ker θ defined by L(X, Y) = dθ(X, Y) is positive definite.

Such a hypersurface is a Heisenberg manifold: the admissible frames are
those which are an isometry from ker# with the Levi form to C n with its
standard inner product, and which send the vector field T dual to θ to 1 G R.
It is clear that the integrability of this Heisenberg structure follows from the
integrability of the complex structure of C n + 1 .

There is a certain canonical connection, called the Webster connection
(Webster [11]) on the principal bundle P of a Heisenberg manifold M. Using
this connection, we obtain a canonical set of n 2 -I- (2n +1) vector fields on the
principal bundle P which frame TP globally, identifying TPP with ί)n x u(n)
for each p. If (α,6, s) represents an element of ί)n <8>R C, where a and b are
in C n and s is in C, we will denote the corresponding vector field on P by
Z(α) + Z(6) + sT; if g is an element of U ( Π ) 0 R C = gl(n, C), the corresponding
vertical vector field on P is ad g.

To obtain the nontrivial commutation relations among these vector fields,
we make use of the integrability of the Heisenberg structure and the fact that
the relations must transform correctly under gl(n, C) to derive the following
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formulas:

[Z(α), ~Z{υ)} = -2ia bT + ad Λ(α, 6),

(1) [Z(a),Z(b)\ = ad(α(

[Z{a),T\=adW(a)

The torsion A and the curvatures R and W are tensors on M:

R e C°°(P; Hom(Cn ® (C n )*,u(n))) u ( n ) = Γ(A M M ® A M M ) ,

W e C°°(P; Hom(C n ,u(n))) u ( n ) s r(Ao aAf ® A1'1 M),

A G C°°(P; E n d ( C n ) ) u ( n ) = T{End{A°^M)).

If E1 is a Hermitian vector bundle on a Heisenberg manifold, there is a

notion of integrability of E analogous to that for a holomorphic vector bundle

on a complex manifold.

Definition 1.3. A Hermitian bundle is a Heisenberg bundle if its con-

nection V satisfies:

if X and Y are sections of TX^M, then [Vx, V y] = V[XtYy,

that is, the components of the curvature of the bundle in A2 ) 0M (and in

A°'2M, since the connection preserves the Hermitian structure of E) vanish.

As an example, there is the restriction of a holomorphic vector bundle with

Hermitian connection on C n + 1 to a strictly pseudoconvex hypersurface.

If E is a Heisenberg bundle on M, then its pullback π*E to the frame

bundle P of M has a connection V which satisfies the following commutation

relations, generalizing those of (1):

[VZ(α), ^z(b)] = ~i2a ' WT + ad Λ(α, b) + F(α, 6),

(2) [VZ(β), V z ( 6 )] = ad(α ® Λ(6) - 6 ®

[VZ(α), VΓ] =

Here, F and X are the curvatures of the bundle E lying respectively in

M 0 End(£)) and

2. The Cauchy-Riemann operator

If the bundle of antiholomorphic differential forms on a Heisenberg manifold

M is pulled back to its frame bundle P, it becomes canonically trivialized:

τr*(Λ 0 ' *M)^PxA 0 ' *C n .

From the viewpoint of this trivialization, antiholomorphic forms on M are

easily described.
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Proposition 2.1. There is a canonical isomorphism between the space
of antiholomorphic differential forms Ω°'*(M) = Γ(Λ°'*M) and the space of
\J(n)-equivariant maps from P to the exterior algebra Λ°'*Cn.

The endomorphism algebra of Λ°'*Cn is a Clifford algebra with generators
(annihilation and creation operators) αt and α*, 1 < i < n, adjoint to each
other and given by the formulas

a*dzi = dziun where / C 1, , n,

aidzi = dzi\{i}.

The Cauchy-Riemann operator 9:Ω°'«(Af) -• Ω°'«+1(Af) is a generaliza-
tion to the splitting of Heisenberg manifolds of the operator db on a strictly
pseudoconvex CR manifold. It is most easily denned on the principal bundle
P, making use of the representation of Proposition 2.1:

This operator satisfies the following properties:
1. (Leibniz's rule) d{aΛβ) = daΛβ + (-l) Qlα Λ d/?,

2. (integrability of M) d* = 0.
In fact, there is a generalization of the Cauchy-Riemann operator which

acts on Ω°'*(M;£) = Γ(Λ°'*M ® E), where E is a Heisenberg bundle. First
we have the following straightforward generalization of Proposition 2.1.

Proposition 2.2. There is a canonical isomorphism between
Ώ°'*(M;E) and the space of\J(n)-equivariant sections of the bundle Λ°'*Cn®
π*E on P.

The Cauchy-Riemann operator on Ω°'*(M; E) is defined on P as before as

t = l

This satisfies Leibniz's rule, and dE = 0, since E is a Heisenberg bundle.
Consider the Laplacian of the complex (all operators are to be understood

as operating on E-valued forms),

There is a Bochner-type formula for D, generalizing the well-known formula
for D& on a strictly pseudoconvex CR manifold [5].

Theorem 2.3. Let V*V be the composition of

V: Γ(Λ°'*M (8) E) -> Γ(Λ°'*M <g> E ® T*M)



236 EZRA GETZLER

with its adjoint. Then we have the formula

• = V*V - ί(n - 2q)Vτ +

Proo/. This calculation is most easily performed upstairs on P. The ad-
joint of d is given by the formula

(since [α*, V^.] = 0), and we obtain

+ (aid* - a*ai){VZiV-z. - VΊjVZi)}

= V*V - i(n - 2q)Vτ + . . . .

Here, we have used the commutation relations (2) for Vz{ and V^., and the

following formula for the action of u(n) on A°'*Cn:

ad g - a = ^ gija*aj. q.e.d.

Unlike on a complex manifold, the d-complex is not elliptic on a Heisenberg
manifold, since its symbol is not invertible when evaluated on the contact form
of M. However, it is subelliptic on Ω°'g(M;i£), at least if 0 < q < n, as was
shown by Kohn [8] (see also Folland and Stein [5]); we will see that this follows
from the pseudodifferential symbol calculus on Heisenberg manifolds in the
next section.

3. Symbol calculus on Heisenberg manifolds

Just as on a Riemannian manifold, the psuedodifferential symbol calculus
is modeled on the algebra of Fourier multipliers on Rn, so the calculus of
pseudodifferential operators on a Heisenberg manifold is modeled on the al-
gebra of left-invariant operators on the Heisenberg group Hn. This insight,
due to Stein [9], has proved to be very useful in understanding the Laplacian
on Heisenberg manifolds, although the symbol calculus has only been fully
developed quite recently (Dynin [4], Taylor [10], Beals et al. [1]). Because
of this, and also because we will require an extension of their calculus, we
present here a brief summary of the main theorems involved.

We start with left-invariant pseudodifferential operators on the Heisenberg
group. (In what follows, we will denote a typical point in f)n by (α, s), where
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a G C n and s G R; likewise, elements of f)* will be written (f, σ).) These may
be written in the form

(3) p(D) = p π ) - " - 1 / p(α, s) exp(X(a) + *Γ),

where p is the Fourier transform of the symbol p, which is a function on the
vector space ϊ)*. Thus, if p is a polynomial function, then the corresponding
operator is a differential operator—all elements of the enveloping algebra of
f)n are describable in this way.

Our first task is to find a nice class of symbols suitably generalizing the
polynomials, such that the corresponding operators form an algebra. The
usual choice is the following.

Definition 3.1. A smooth function on the space ί)*, less the origin, is
homogeneous of degree m if

The symbol class <9Pm(l)^ι) is now defined as the space of smooth functions
on f)* having an asymptotic expansion in homogeneous functions of degree
less than or equal to m:

p ~ Σ^Pm-ii where pm-i is homogeneous of degree m — i.
i>0

In this definition, the asymptotic sum has the following sense: for each N > 0,

where i?(f, σ) = (1 +1£|2 4- M) 1 / 2 . For example, the symbol of a left-invariant
differential operator da on f)n lies in ̂ m ( ί )n) ί where m is the positive integer
obtained by adding 1 for each X in the expression for dα, and 2 for each
power of T. (This integer will be denoted by ||α||.)

Define a product on the space S^00^) = U m € Z ^m(K) by the following
formula:

(p*q)(D)=p(D)q(D).

This product p * q is bounded from S?k(\fn) x S"ιQfc) to S*k+ι(t>*n). It is
not so hard to demonstrate the following formula for p * q (Hόrmander [7, p.
374]):

(p*q)(ζ,σ) = (4πσ)-2

In particular, if p is a polynomial symbol, then there is a more explicit formula:

(p*q)(ξ,σ) =exp4iσ(dηdτ-dζdw) p{ς,σ){η,σ)\ξ=ς=η.
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Having defined the model for our pseudodifferential calculus, we will now
define the pseudodifferential operator algebra of a Heisenberg manifold, keep-
ing things as similar as possible to the case of the Heisenberg group. It is
easiest to do this by working on the principal frame bundle P, where we
have the horizontal vector fields X(ά) and T which behave as a kind of ersatz
Heisenberg algebra. We say that p(x, ξ, σ) is a symbol, and write p G S^m{M)
if it is a U(n)-equivariant map from P to ,5^m(ϊ)*). We can now imitate the
definition; we gave for the Heisenberg group in formula (3):

(4) p(x, D)f = ( 2 π ) " 2 n - 1 / p(z, α, s) exp(X(α) + sT)*f.

Here, of course, the Fourier transform is only with respect to the ϊ)* variable
of p.

This definition is explicitly invariant under the action of U(n), so that the
operator p(x, D) descends to an operator on M. The collection of all opera-
tors on M spanned by these operators and the infinitely smoothing operators
is called Φ m . We let Φ~°° denote the algebra of smoothing operators on M,
while ^~°° denotes Π m G z ^ m ( W e w i n w r i t e ^ m instead of ^ m ( M ) . )
The following theorem summarizes the main properties of this class of oper-
ators, and a proof may be found in [1].

Theorem 3.2. 1. The map which sends a symbol p(x,ξ,σ) to its quan-
tization p(x,D) induces an isomorphism between the spaces S?m/S^~°° and
φ m /φ-°°. The inverse of this isomorphism is called the symbol map.

2. Composition defines a bounded map from Φfc x Φz to φ f c + ί , and thus
from^k/S^-°° xS*1/&-<*> to S*k+ι/S*-°°, which we will denote bypoq.

3. There is an asymptotic expansion for p o q, of the form

where φi is a bilinear map of the form

Φi(p,Q)= Σ c(<
\\<*\\ + \\β\\=i

the coefficients c(α, β) being universal polynomials in the curvatures R, W
and A, and their derivatives.

4. The trace of an operator p(x, D), p € <9*k where k < -2(n + 1), is given
by the following formula:

Trp(z, D) = ( 2 π ) " ( 2 n + 1 ) f p{x, ξ, σ) dx dξ dσ.
JT*M

5. The space Φ " 1 is contained in Hόrmander's class OpS~,l/^,2; it follows

that operators in Φ " 1 are compact on L2(M) if the manifold M is compact.
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This theorem has an obvious generalization to operators on a bundle E on
M—the symbol is now an element of <9?m(E) = S*m(M) <8>C°°(M) End(£),
and the asymptotic expansion for the composition of symbols involves the
curvatures of the bundle E and their derivatives as well.

We say that a symbol p G S*m(E) is elliptic if there is a symbol h G
Sί?~πι(E) such that poh and hop equal 1 plus an element oiS^~ι{E). From
the compactness of elements of ^t~ι(E) on the Hubert space L2(E), it follows
that if the manifold M is compact, then a pseudodifferential operator p(x, D)
with elliptic symbol is Fredholm.

We shall close this section by showing how this theory applies to the Lapla-
cian on a Heisenberg manifold.

Proposition 3.3. The symbol of the Laplacian Ώq on Ω0)<?(M; E) is equal
to

\ζ\2 + (n - 2q)τ + Σ^ca ~ α*αi) ( Σ β ^ α £ α ' + R
ij V ki

Proof. The most elementary way to prove this from Bochner's formula is to
use the fact that the Heisenberg connection vanishes at the origin in a normal
coordinate system, just as for a Riemannian manifold. It follows immediately
from this that the symbol of V*V is |f|2.

We will now show that if 0 < q < n, the symbol of Ώq is elliptic, and thus,
D g is Fredholm. To do this, we use the fact that the solution to the initial
value problem

(5) (d/dt + |f 12 + (n - 2g)σ) * p t = 0

with initial condition po = 1 is given by the function

Pt(ζ,σ) =

It follows that the function
rOO

Jo Jo

which is a well-defined element of <9*~1(A°'qM <g> £7) if 0 < q < n, is a
parametrix for D9, showing that for this range of q, the operator Ώq is Fred-
holm if M is compact.

4. The heat equation

One of the oldest applications of the pseudodifferential calculus of the last
section is to obtain an approximation for the heat kernel of the Laplacian.
The idea is very simple: as was shown in the last section, the leading symbol
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of the Laplacian equals \ξ\2 + (n - 2q)σ, so that the symbol kt of the heat
kernel e~tΠ should in some sense be well approximated by the solution pt to
the initial value problem (4) of §3.

Let us recall how this symbol calculation is made use of in Beals et al. [1]
to obtain an approximation to the heat kernel of the Laplacian. First, one
extends the pseudodifferential calculus to include the heat operator dt + D
on R+ x M. If the conjugate variable to t is called r, then we consider the
symbols of the form p(x, ζ, σ, r) holomorphic for r in the lower half-plane,
having an asymptotic expansion

where pm_i is homogeneous of degree m—i, it being understood that deg(£) =
1 and deg(σ) = deg(r) = 2. For example, the symbol of the heat operator is

α(z, f, σ, r) = iτ + |£| 2 + (n - 2q)σ + Σ(a*ai - a^*) ( ^ Rijklaϊ(n +
ij ^ klj kl

It is now fairly straightforward to extend the pseudodifferential operator cal-
culus of the last section to this setting; we obtain an algebra of pseudodiffer-
ential operators on R+ x M invariant under time translation, and a symbol
calculus satisfying the analogue of all of the properties listed in Theorem 3.2.
As an application of this calculus, we have the following result, proved in [1].

Theorem 4.1. IfM is a compact Heisenberg manifold, there is an asymp-
totic expansion for the trace of the heat kernel of the Laplacian acting on the
space Ω°'9(M; E), 0 < q < n, of the form

Γ dσ

In this expansion, the coefficients C{ are integrals over M of polynomials in

the curvatures of M and E and their derivatives.

Proof. We start by obtaining an asymptotic expansion for the symbol of
(dt + Ώq)~ι by the same method as is used to calculate the symbol of the
parametrix of an elliptic operator. To do this, we invert the leading symbol
of dt + Dq (which is equal to iτ + |£ | 2 + (2q — n)σ), by taking the Fourier
transform of pt(x, ζ, σ) in t:

= Π
Jo

h{x,ζ,σ,τ) = Π {coshtσ)-ne-(tΆΏhtσ^2/σ-(n-2qϊtσ-itτ dt.
J
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Note that this integral only converges for 0 < q < n. Actually, it will prove
more convenient to replace this symbol by another with the same leading
symbol but possessing better regularity properties at ξ = 0:

= ί
Jo

Note that h(x, £,0\τ) is holomorphic for r in the lower half-plane.

We define the symbol r(x, ξ,σ,r) G &-1(hPΛM 0 E) by the formula a o
h = 1 + r, where a(x, £,σ, r) is the full symbol of dt + D g, and the symbol
# € S*~2(A°'9M <g> 25), for AT some very large integer, by

We see that a o H and H o a lie in 1 + t9
?-N~ι(Λ°'« Af 0 £7); furthermore, the

symbol calculus shows that H has an asymptotic expansion whose coefficients
can in principle be calculated, and are polynomials in the curvatures and
torsion of M and E.

Taking the Fourier transform of the symbol H(x, £,σ, r) with respect t o r
gives the symbol i/t(z, f, σ) of a parametrix for the heat kernel of the Lapla-
cian, in the sense that the family of pseudodifferential operators Ht{x,D)
obtained by quantizing the family of symbols Ht(x, ξ,σ) satisfies the follow-
ing two properties:

1. The family Ht(x,D) vanishes for t < 0, and is bounded as a function
from t to c5^0(A°'9M 0 E), for small t—this uses the fact that H(x, £,σ,r)
can be chosen to be holomorphic as a function of r in the lower half-plane.

2. The family Rt{x,D) = (d/dt + Ώq) o Ht(x,D) is O{tk) as a function
from t to ^ - M ( Λ ° ^ M 0 £) for fc < N - M - n and small *.

Furthermore, the function TrHt(x,D) admits an asymptotic expansion of
the form that we are seeking for Tre~tΠ(i.

As is well known, the heat kernel of the operator Πq is given by the sum
of the Neumann series

) ί o ί n - d s n .
n = 0 / + 0 + + l

Kt = Y,(-l)n ί HSorSί...RSndso

n = 0 ./θ+0+ + s n = l

But by what we have seen above it follows that this sum converges abso-
lutely for small t if TV is chosen sufficiently large, and Kt — Ht is O(tk) in
Sp~M(A°'qM 0 E) for k < N - M - n. Thus, the asymptotic expansion for
Tre~ίD<ϊ is implied by the asymptotic expansion of Ht for small t. q.e.d.
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It is this scheme for calculating the asymptotic expansion of Tr e~tΠr that
we will imitate in the next section to prove an analogue of Demailly's inequal-
ity for Heisenberg manifolds.

5. Demailly's inequality

Consider a compact Heisenberg manifold M with a Heisenberg line bundle
L. By Bochner's formula, the Laplacian on the bundle Ω0 > 9(M;Lm) is given
by the formula

Π, = V* V - i{n - 2q)Vτ + £>;«< - α^) ( £ Rijkia^ + FΔ .
ij v ki 'ij v ki

In this section, we will obtain a formula for

lim 1

m—^o

The method that we use is based on a symbol calculus for pseudodifferential
operators on the line bundle 3* on R+ x M x TV, whose fiber over the set
R+ x M x m (m E N) is equal to L m ; this bundle carries a connection V°^,
obtained by piecing together the canonical connections on the line bundles
L m . Let ̂ m denote the class of symbols p(ζ, σ, r, m) on R x ()* x N, which
have asymptotic expansions in homogeneous functions as follows:

where Pm-% is homogeneous in the sense that

If p is a U(n)-equivariant map from P to ̂ m , then we define the cor-
responding pseudodifferential operator by the formula, analogous to formula
(4),

p(x,D,dum)ft(x,m)

= ( 2 π ) " 2 n " 1 / p(x, v, ί', m) exp(v V y ) J ί + ί / (a ; ,m
J

There is an asymptotic expansion for the symbol of the composition of two
pseudodifferential operators with symbols of the above form, but the leading
order of this expansion is more complicated than the corresponding expression
p*q of §3. This is seen by looking at the formula for the commutator of ^z(a)
and Vz(b) on M x N:

= ~2iVτ + mF(α,b) -hadR{a,b).
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On the right-hand side of this formula, the first two terms have degree equal
to 2, while the third, acting on equivariant sections, has degree equal to 0. In
some sense, the leading order symbol calculus on the bundle Sf is obtained
from that of §3 by replacing σ by σ + F in the formula for the leading symbol
of p o q.

With the change, the analogue of Theorem 3.2 holds for this class of pseu-
dodifferential operators on R x M x N . Thus, there is an asymptotic expansion
for the symbol of the operator p(z, Z), <9*, m) o q(χ, D, <9*, m), with leading or-
der given by the oscillatory integral

p*q = (4πσ)2n ίp(x, ζ+a, σ, r, m)q(x, ξ+β, σ, r, m)β Im^(σ+mFrιβ/2 da dβ.

We have the following formula for the trace of p(x, D, r, m), which is a function
of r £ R and m € N:

(6) ,Ar,m) = (2π)-<2n+1) f p{x,ζ,σ,τ,m)dxdζdσ.
Jτ*M

We can now prove our main result, an analogue of Demailly's asymptotic
formula (in Bismut's formulation) for Heisenberg manifolds.

Theorem 5.1. If M is an (2n+l)-dimensional Heisenberg manifold and
L is a Heisenberg line bundle on M, then

lim (4τrί/m)n+1 Tr |Ω°,*(M L-)e~ t C V m

Proof First, we must calculate the leading symbol of the heat operator
dt + Dq on R + x M x N. It is clear that this equals

The next step is to solve the equation for the leading symbol of the parametrix

UV + |^|2 + ^ ( α * α i - α i α * ) ( σ - h m F ^ )J * H{x, £, σ, r, m) = 1.

The solution to this equation is equal to
/•OO

/ det(cosh£(σ + rπF))'1

J—oo

The proof now proceeds in exactly the same way as that of Theorem 4.1,
using formula (6) to calculate the trace of p(x,Z>,r,m).
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