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NONTRIVIAL COBORDISMS WITH GEOMETRICALLY
FINITE HYPERBOLIC STRUCTURES

B. N. APANASOV k A. V. TETENOV

Abstract

This paper establishes a new four-dimensional phenomenon: there ex-
ist nontrivial (but homologically trivial) four-dimensional cobordisms
which are hyperbolic manifolds with geometrically finite structure, i.e.
those obtained by identifying the sides of a finite-sided convex polyhe-
dron in the hyperbolic space Hn. In the three-dimensional case analo-
gous cobordisms are trivial: they coincide with the product Sg x [0,1].
The present construction is based on the investigation of geometrically
finite Kleinian groups in space, and on the construction of the above
groups with a wild sphere as the limit set.

1. Formulation of the problem

It is well known (Marden [11]) that a three-dimensional manifold M(G) =
(H3Uθ(G))/G uniformized by a geometrically finite Kleinian group G with an
invariant contractible component OQ of the discontinuity set O(G) is organized
as follows:

(i) if the manifold M(G) is compact, then it is a surface layer, i.e., the
product So x [0,1] where a surface So = Oo/G;

(ii) if M(G) is noncompact, then it is obtained from the surface layer SO x
[0,1] by attaching a finite number of collars homeomorphic to S 1 x [0,1] x [0,1).
In this case the surface So = Oo/G may be obtained from a compact surface
by a finite number of punctures.

A question arises: To what extent holds the analogy with the surface layer
for the manifold M(G) in higher dimensions, at least in compact case?

We can consider analogies of the (n + l)-dimensional layer (n > 3) with
various degrees of generality:

(a) the product of an n-manifold Mo = Oo/G by the segment;

(b) a manifold M whose boundary bd M consists of two components JV0

and Nι and such that the triple (M\NQ,NI) is an /ι-cobordism;
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(c) the manifold M with the boundary components No and Nι which is a
homologically trivial cobordism:

In all these cases the answer to the above question may be as follows: the
manifold M{G) = ( i / n + 1 U O(G))/G is a "surface layer"

(1) in the sense of (a) if the group G C M6bn is a quasiconformal conjuga-
tion of some Fuchsian group in JRn = bdfΓ n + 1;

(2) in the sense of (b) if the group G C Mόbn has two invariant contractible
components O0,Oi C (G) C ~Rn (Theorem 3.4);

(3) in the sense of (c) if the group G C Mobn has an invariant contractible
component O0 C O(G) (Theorem 3.2 and Corollary 3.3).

Moreover, and this is the main result of the present paper (Theorem 5.1),
there exist four-dimensional manifolds M(G) (whose interior H4/G has geo-
metrically finite hyperbolic structure) which are homologically trivial cobor-
disms (realizing (3)) but without the properties of ft-cobordism, i.e. not sat-
isfying (b).

To prove this, in §4 we construct a geometrically finite Kleinian group G
in R3 whose limit set L(G) is a sphere wildly imbedded into Rs sphere which
divides the discontinuity set O(G) into two invariant components OQ and Oχ,
one of them being contractible.

Note the following question which is a special case of S. P. Novikov's con-
jecture on /ι-cobordisms of the type K(π, 1), and still is open (see also Remark
5.3):

Is the Λ-cobordism {M(G); OQ/G, Oχ/G) trivial if it corresponds to case (2),
i.e. to the group G C Mobn with two G-invariant contractible components
O 0 , θ ! cO(G)?

We would like to thank O. Ya. Viro for a helpful conversation concerning
the present work.

2. Preliminaries

Let Mδbn be the group of all Mόbius transformations (preserving orienta-
tion) in the space Rn = Rn U {oo}, and let G be its Kleinian subgroup, i.e.
the discrete group whose limit set L(G) does not coincide with Rn (the dis-
continuity set O(G) = Rn — L(G) Φ 0) . The group Mόbn acts isometrically
in the hyperbolic (n + l)-space Hn+1 which is # £ + 1 = (x e # n + 1 : z n +i > 0)
with the metric ds2 = \dx\2/x^+ι.

A fundamental polyhedron P C i 7 n + 1 of a discrete group G C Mόbn is a
polyhedron whose images G{P) yield a locally finite covering of Hn+ι such
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that ^(intP) Π i n t P = 0 for every g G G, g ψ id. A group G C Mob n is

geometrically finite iff a finite-sided fundamental polyhedron P c i / n + 1 exists

for it.

The determining properties of geometrically finite Mόbius groups may be

formulated as follows (for n > 3 see [4], [5]):

Theorem 2.1. For a discrete torsion-free group G C Mδb n the following

properties are equivalent:

(1) G is geometrically finite;

(2) the limit set L(G) consists of approximation points and parabolic cusps;

(3) for some (any) r > 0 the r-neighborhood Ur(MG) C M(G) of the min-

imal convex retract MQ C Hn+1/G of the manifold M(G) has finite volume;

(4) the submanifold (Mc)[r,oo) obtained from MQ by cutting off its r-thin

parts is compact.

Note that the above-mentioned minimal convex retract MQ of the manifold

M(G) may be characterized as the minimal convex submanifold MQ of the

hyperbolic manifold HnJrl/G = int M(G) for which the imbedding MQ C

M(G) induces the isomorphism of fundamental groups.

An isomorphism i: G —• G' of two discrete Mόbius groups G and G' is

said to be type-preserving if it carries parabolic elements of G bijectively

onto parabolic elements of G1. If A, A' C Rn U HnJrl are some invariant sets

corresponding to groups G and G', we say that a map f: A -+ A' induces

i if f(g{x)) = i(g)(f(x)) for every g G G and x E A; we say also that / is

G-compatible (or, if G = G' and i = id, / is said to be a G-equivariant map).

We formulate the properties of isomorphisms of geometrically finite groups

in Rn which are necessary below in the following statement, which is a partial

case of more general statements of P. Tukia (see [15, Theorem 3.3 and Lemma

3.7]):

Theorem 2.2. Let G and G' be geometrically finite Mδbius groups in Rn

and let i: G —» G' be a type-preserving isomorphism. Then:

(1) there is a homeomorphism /^: L(G) —> L(G') of the limit sets (the

unique one if G is a nonelementary group), inducing the isomorphism i;

(2) if A C O(G) is a G-invariant set with the compact factor A/G and if

f: A —> O(G') is a continuous map inducing i, then f and the map f{ define

together a continuous map f: L(G) U A —• Rn which is an imbedding if f is.

Let M be some compact (n + l)-dimensional manifold whose boundary

b d M consists of two disjoint connected closed n-manifolds No and 7VΊ, N0Π

Nι = 0 . Then the triple (M;7V0, Nι) is called a homologically trivial cobor-

dism if all the relative homology groups are trivial:

(2.1) H.{M,N0) = H*(M,NX) = 0.
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The triple (M',NQ,NI) of compact manifolds with boundaries is called a ho-
mologically trivial cobordism with boundary if No,Ni C bd M, NoΓ\Nχ = 0,
and for the boundary dM = bdM — (No U JVΊ) the equality

(2.2) H*{M,N0) = H*(M,NX) = iϊ*(dM, bd7V0) = #* (dM, bd TVi) - 0

is valid. (If in these definitions equalities (2.1) and (2.2) are replaced by
the requirement of triviality of relative homotopic groups, then the triple
(M;ΛΓ0,iVi) is said to be an ft-cobordism or /ι-cobordism with boundary.)

3. Invariant components of Kleinian groups and cobordisms

It is well known that geometrically finite nonelementary Kleinian groups
on the plane whose discontinuity set O(G) contains a contractible G-invariant
component Oo may be one of the following two kinds (see [1], [2]):

They are either quasi-Fuchsian groups whose discontinuity set consists of
two invariant contractible components, or nondegenerate B-groups whose dis-
continuity set, besides the above component Oo, contains an infinite number
of components 0*. All these additional components are noninvariant, but
form a finite number of classes of G-equivalent components.

In both cases the three-manifold M(G) = (H3 U O(G))/G uniformized by
such groups has the following structure (see Marden [11]):

In the former case M(G) is homeomorphic to the product of the surface
No = Oo/G by the closed segment / = [0,1]. In the latter case the manifold
M(G) also, in a certain sense, looks like the product No by /. Namely, there
exists the compactification M of the manifold M(G) which is homeomorphic
to the product No by / (where 7VΌ is the compactification of the surface
No = Oo/G preserving the fundamental group πi(iVo) = τri(iVo)) and the
difference M — M(G) is the union of the finite number of cylinders S1 x /.

As expected, for large n > 3 the situation proves to be more complicated.
This is shown by examples constructed by A. V. Tetenov (see [12], [10]) of in-
finitely generated Kleinian groups in i?n, n > 3, whose discontinuity set O(G)
can consist of any number of invariant components, even simply connected
ones. However, despite these examples the analogy with the two-dimensional
case (for geometrically finite groups) is strong enough. Namely, the following
statements (for proofs, see [13], [14]) are valid.

Theorem 3.1. Let G be a geometrically finite nonelementary Kleinian
group in Rn, n > 2, with a contractible invariant component Oo of the dis-
continuity set O(G). Then O(G) consists of either two invariant components
Oo and O\ or OQ and an infinite number of noninvariant components Oi.
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Theorem 3.2. Let G be a geometrically finite Kleinian torsion free group
in Rn, n > 2, having invariant contractible component OQ C O(G), and let
No = Oo/G. Then in the manifold M(G) = (ίfn + 1 U O(G))/G there exists a
compact (n + 1)-dimensional submanifold M' with the following properties:

(i) M is obtained from M1 by attaching an open collar dM' x [0,1) to the
boundary dM' — bdM' — bdM of the submanifold M' in M;

(ii) connected components of the collar dM1 x [0,1) are homeomorphic to
the cylinders

τn-k x jgfc x [o, i), i < k < n - 1

(here Bk is a closed k-dimensional ball, Tn~k = S1 x x S1);
(iii) the boundary bdM contains connected disjoint n-dimensional mani-

folds with boundary NQ and N[, such that

π*{M',Nβ=0 and H*{M',N[)=0

and the cobordism with boundary (M'; NQ,N[) is homologically trivial. In this
case,

N^NoΓi M', iVjDM'n (bdM - 7V0),

bdiV^ « bdN[, bdM' = N^ U N[ U (bdΛ^ x [0,1]).

Directly from this fact and from Theorem 2.1 we obtain
Corollary 3.3. Let a Kleinian group G from Theorem 3.2 have no para-

bolic elements. Then the compact manifold M(G) has two boundary compo-
nents No = Oo/G and Nx = {O{G) - O0)/G, and the triple (M(G); N0,Nχ)
is a homologically trivial cobordism.

This result may be strengthened if we neglect the condition of geometric
finiteness of the group G:

Theorem 3.4. Let G be a Kleinian group in Rn, n > 2, having two in-
variant contractible components Oo,Oi C O(G) with compact factor-
manifolds No = Oo/G and N\ = O\/G. Then the manifold M(G) is also
compact, the group G is geometrically finite, O(G) — Oo U O\, and the triple
(M(G);No,Nι) is an h-cobordism.

We shall briefly outline a direct proof of Corollary 3.3, since it is essential
for the proof of our main result in §5.

Proof of Corollary 3.3. The group G has no parabolic elements; therefore,
by Theorem 2.1, the minimal convex retract MQ of the manifold M(G) (and
hence, the manifold M(G)) is compact.

The manifold M(G) and the component ΛΓQ = Oo/G of its boundary are
both the spaces of type K(G, 1). The inclusion iVo C M(G) induces the
isomorphism of the fundamental group
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and thus it is a homotopy equivalence, which implies

(3.1) H*{M,No)=0.

Then, using Poincare duality, we obtain that

(3.2) i/*(M,bdM-7V0) = 0,

too.

Property (3.2) implies that H0(bdM - No) = Z, i.e. bdM - 7V0 consists

of only one component JVΊ, N\ = {O(G) — Oo)/G, where

(3.3) Jf«,(Af,Λi)=0.

By (3.1) and (3.3) the proof is complete.

4. Wild spheres as the limit sets
of geometrically finite groups

We base our construction of geometrically finite Kleinian groups G C

Mδbn, whose limit set L(G) is a wild sphere, on an idea of periodicity of

knotting used by the first author for the construction of the wildly knotted

curve L(G) [3], [10].

FIGURE l

Let us consider the Fox-Artin arc d C R3 (knotted periodically; see [8])

with endpoints x and y (see Figure 1). By "periodically" we mean that

d is invariant for the action of some cyclic group, generated by a hyper-

bolic transformation ft G Mόb3, such that h(x) = x and h(y) = y. More-

over, if /(ft) = (x: \Dh(x)\ = 1) and /(ft"1) are the isometric spheres of

ft, ft(ext/(ft)) = int/tft-1), then /(ft) Πd = (x1,x2,X3) and /(ft"1) Πd =

{xΊiXfrXs) where h(x{) = x[ and these points Xi and x[ are placed on d in

the following order:

zi, #2, xz,x\, x'2,x'z.

The intersection dh of the arc d and ext /(ft) Π ext /(ft"1) consists of three

arcs (zi,z 2), (xs.x'i), (z2>
 x'z) a n d forms the period of d, shown in Figures 2

and 3.
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FIGURE 2

FIGURE 3

Now we take a neighborhood Uh of the three arcs of dh in ext J(ft) Π
ext/(/ι~1) consisting of three disjoint tubes shown in Figure 3. For our
further needs we can form this neighborhood of a finite number of conse-
quently overlapping balls Bi, in accordance with the established periodicity
of d, manifested here by the fact that if Xk E B{ Π I(h) and x'h € Bj Π I{h~x)
then h(Bi Π J(ft)) = Bj Π /(Λ"1).

It is easy to see that the closure of the union of spherical annuli

Xi=bdBi-

and their ftm-images, m G Z, is the boundary of the fattening U(d) =
\J{hm(Uh): m E Z) U {x,y} of the arc d, and is a wild sphere S* in Rs

(see Figure 4).
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y

'dU(d) = S*

FIGURE 4

Now we can form a finite family C of spheres Sj (contained in some regular
neighborhood of the boundary of the three tubes), possessing the following
properties:

1. The union of the annuli Xi is covered by interiors of Sj.
2. For each i,j either Sj Π Bi = 0 or Sj is orthogonal to bdi^; this also

holds for I(h) and I{h~x) taken instead of Bi.
3. If Si ΠSj φ0 then the dihedral angle between them is τr/ra, m € N.
4. If Sj Π Sk is nonempty then there is a common annulus Xi for which

Sj ΠXi φ 0 and Sk ΠXiφ 0.
5. There is one-to-one correspondence between spheres Sj G C crossing

I(h) and spheres SJ € C crossing /(ft"1) so that Λ φ ) = 5J .
In other words, we form a finite "bubble cover" of bd Uh with good angles

between the bubbles and right angles between the bubbles and bdS», and
respecting the periodicity. One can see easily that the freedom of choice of
the balls Bi (so as d and h) permits us to vary moduli of spherical annuli Xi
and thus obtain such a family C.

Indeed, taking into account the rigidity of circular coverings of a sphere
(which is connected with the rigidity of hyperbolic polyhedra and hyperbolic
space forms), we will, besides the above-mentioned arguments of existence,
give a construction of such a covering C for the chosen type of a wild knot.

Let us consider a right prism P in i?3 with height 13, whose base is a
polygon which is a union of 28 equal regular hexagons with unit sides. Here
the centers of the extremal hexagons are the vertices of a regular triangle with
side equal to 6\/3 (see Figure 5). Let us enumerate all the hexagons as shown
in the picture, so that the three extremal hexagons have the numbers 1, 7 and
28, and central one has the number 16.

Divide the prism P into (28 x 13) small hexagonal prisms P(fc, n) of unit
height enumerated by pairs (A:, n) where fc, 1 < fc < 13, is the "floor" of the
large prism P containing P(λ;, n) and n, 1 < n < 28, is the number of a small
hexagon which is a projection of P(k, n) to the base of P.

Now we shall put in correspondence to the three tubes forming the neigh-

borhood Uh of the link dh = {xi, X2)V(xf2, x3)V{xs, z'ι)tnree disjoint domains
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FIGURE 5

D(xχ, X2), D(x'2,x$) and D(x$, x[), obtained as a union of a number of some
small prisms P(fc, n) with the numbers from the following sets of pairs:

(10,14), (10,15), (10,16), (10,17), (10,18)

(9,14)
(8,14)

(7,14)
(6,14)
(5,14)
(4,14), (4,8),

(1,10), (1,3), (1,2),

(13,10), (13,3)
(12,3)
(11,3)
(10,3)

(9,3)
(8,3)

(7,3)
(6,3)
(5,3)

(4

(3

(2

(1

,1)

,1)

,1)

,1)

(13,

(12,

(11,
(10,

28), (13,26),
28)

28)

28), (10,27),

(9,18)
(8,18)
(7,18)
(6,18)
(5,18)
(4,18)
(3,18)
(2,18)
(1,18), (1,17)

(13,23), (13,20)

(10,25)
(9,25)
(8,25)
(7,25)
(6,25)
(5,25)

(4,3), (4,10), (4,16), (4,21), (4,25)
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(13,17), (13,18), (13,13), (13,7)
(12,7)

(11,7)
(10,7)

(9,7)
(8,7)

(7,23), (7,20), (7,16), (7,11), (7,5), (7,6), (7,7)
(6,23)
(5,23)
(4,23)
(3,23)
(2,23)
(1,23), (1,20)

It is essential to remark that we distinguish three square sides on each of
the two prisms P(l, 16) and F(13,16) which are connected by the domains
D(xi,Xj) constructed above.

Now let Si be the spheres of radii \/3/3 with the centers in vertices of prisms
P(k,n) forming the domains D(xi,Xj). If such spheres Si and Sj intersect,
then their centers are the adjacent vertices of some prism P(fc, n) and their
angle of intersection if π/3.

Denote by B(fc, n) the ball with the center in the center of the prism P(fc, n)
and of radius yΊl/12. Its boundary sphere S(fc,n) is orthogonal to each
of the spheres S% whose centers are the vertices of P(k,ή). After that we
may regard the balls B{ whose union is the three components of Uh as the
balls B(k, n) corresponding to prisms P(k, n) from the domains /}(*, *). Here
the isometric spheres /(ft) and /(ft"1) are the spheres S(l, 16) and 5(13,16)
correspondingly and points X{ and x[, ft(x») = ^ 1 < * < 3, are the points on
these spheres which project along the radii to the centers of distinguished sides
of prisms P(l,16), P(13,16), i.e. (xi,x2) C D(xux2), {x^x's) C D{x'2,x'z),

The interiors of the spheres S% do not cover the whole boundary bd Uh, i.e.
do not cover all the spherical annuli Xi C S(k, n). Still uncovered are the
hexagonal and quadrangular domains on these annuli, corresponding to sides
of prisms P(k,ή). Each of these quadrangular domains on S(k,n) we shall
cover by the interiors of five spheres, orthogonal to the sphere S(k, n), four of
them being also orthogonal to the spheres 5 ,̂ having equal radii and crossing
each other at the angle π/3, and the fifth sphere will cross the previous four
orthogonally and will not cross the spheres Si (see Figure 6).

Each hexagonal domain on S(k,n) we shall, in its turn, cover by the inte-
riors of seven spheres, orthogonal to the sphere S(k,n). Six of them will be
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FIGURE 6

of equal radii, orthogonal to the spheres Si and cross each other at the angle
of π/3; the seventh sphere will cross the six others orthogonally and not cross
the spheres Si (see Figure 7).

FIGURE 7

The direct computation shows that the obtained covering of the boundary
of Uh by interiors of spheres has all the properties of the family C with the
only exception that the spheres S% whose centers are the vertices of disjoint
prisms

P(l, 10), P(l, 17), P(l, 20) and P(13,10), P(13,17), P(13,20)

cross each other instead of the fact that their interiors cover disjoint spherical
annuli Xi C bd Uh Nevertheless, we can subdivide our hexagonal prisms
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to the finer ones, keeping the prisms P(l, 16) and P(13,16) without change.
Then the covering, obtained for the corresponding (finer) domains Z)(*,*)
together with the spheres /(A) and /(A"1) (almost unchanged) will already
possess all of the properties 1-5.

We have to remark here that properties 2 and 4 (2 in the case Sj Γ\Bi φ 0
and Sj Π Bk φ 0 means Sj is orthogonal to bd(Bi) Π bd(Bk)) give us the
possibility of "bending" of cylinders bdUh and, hence, of the whole surface
S* along the circles which bound the annuli hm(Xi), i G /, m G Z, without
changing their moduli i, i.e. without changing the dihedral angles between
spheres Sj (and their Am-images).

Let H be a Mόbius group generated by the hyperbolic transformation A and
by reflections Ij in spheres Sj G C. Property 3 of C leads to discreteness of the
group i/, while the finiteness of the family C proves its geometrical finiteness.
Let F\ denote the unbounded (in R3) component of spherical polyhedron

(4.1) ext/(A) Π ext/(A"1) Π (ext Sj: Sj G C).

Let the family C be divided into two subsets:

d = (Sj EC: SjΠBiφ0 for some B t , J3» Π (xi, x2) ^ 0),

Co = C — Ci.

Denote by Fo a spherical polyhedron bounded in R3, obtained by joining
the two bounded components of the polyhedron (4.1), having their sides on
spheres of the subfamily Co, with the A-image of the third bounded component
of the polyhedron (4.1) whose sides are placed on spheres of the subfamily C\.
It is clear that Fo is a connected polyhedron containing the segment (£3,2:3)
of the arc d. Its union with F\ gives a polyhedron F = F o U F\ which is a
fundamental (unconnected) polyhedron for the group H. As for any group
generated by reflections (see [3, Lemma 3.3]), the domains

Oo = \J(g(F0):geH) and O1 =\J(g(F1): g e H)

are the invariant components for the group H and, since F is a fundamental
polyhedron for H, O(H) = O0 U Oχ.

Let G be the group of finite index in H without elements of finite order and
consisting of orientation preserving transformations. For the Kleinian group
G C Mob3, clearly:

O{G) = O(H) and L{G) = L{H).

Theorem 4.1. The limit set L(G) of the constructed geometrically finite
Kleinian group G C Mob3 is a wild sphere in R3 dividing the discontinuity set
O(G) into two G-invariant components, one of them being a K-quasiconformal
ball
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Proof. For the proof of the theorem it is enough to construct a homeo-
morphism / : OQ = OQ U L(G) —• B of the closure of the component OQ onto
a closed ball B c i ί 3 , which is quasiconformal in OQ and compatible with the
group iJ, and therefore, with the group G C H.

We shall suppose from now that the family C of spheres is the union of
subfamilies Co and h(C\) where CQ and C\ were denned above. The (new)
family C, thus bounds (together with spheres I(h) and I(h~λ)) a connected
polyhedron Fo which is a fundamental one for the group H in the domain Oo

Let us take any pair of adjacent balls B% and Bj from those of which
we formed the neighborhood Uh, with Sij = bd Bi ΠbdBj. We define a
quasiconformal homeomorphism fa of Bi U Bj onto the ball J^, conformal
in a neighborhood of spherical disks (bd Bi — Bj) and (bd £7 — £ z ), in the
following way. Consider Bi and Bj as a pair of half-spaces whose boundary
planes contain the third coordinate axis (x E R3: x\ = £2 = 0) and let the
dihedral angle between them be w, 0 < w < π. Moreover, regard the plane
(x: £3 = 0) as a complex plane C = (z = x\ + 2x2: (^1^2) £ -R2) and fix a
number υ such that 0 < Ϊ ; < π / 2 , 0 < u > < π — 2v. Then the quasiconformal
homeomorphism fa is described by its projection on the plane C = i?2 where

, |arg2| > π - v ,

- exp(iw), I argz| < v,

exp(iiu(l - (arg(z) - υ)/(π - 2v))),

v < arg^ < π — v,

exp(itι;(l 4- (arg(2r) + v)/(π - 2v))),

v — π < arg2 < — v.

(4.2) /«(*) =

FIGURE 8

Taking the composition of all such quasiconformal homeomorphisms fa
(running over all the neighboring Bi and Bj, finite in their number), we obtain
a quasiconformal homeomorphism /o of the polyhedron FQ into a ball B, and
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sending the sides of Fo to the sides of some polyhedron FQ = /o(ίo) which
lay on spheres, orthogonal to the sphere bdB (if I{h) or I{h~λ) intersect
with some 5^, then it is orthogonal b d ^ ) . Since the homeomorphisms fa
are conformal in the neighborhoods of disks (bd B{ — Bj) and {bdB3 — Bi),
we obtain, taking into account properties 2 and 4 of the family C, that all
the corresponding dihedral angles W and fo(W) on the boundaries of Fo and
/o(ίo) are equal. This proves the following fact:

Let H' be a Mobius group generated by a hyperbolic transformation ft* =
/Q(Λ), which maps exterior of the sphere containing fo(I(h)) onto interior
of the sphere containing ^(/(/i" 1 )), and by reflections in spheres containing
the sides of the polyhedron /o(ίo) Then H' is a discrete group (see [6])
acting on a ball B with a compact factor B/H', and Hf is isomorphic to the
group H.

Extending the map /o to the images H{FQ) of the polyhedron Fo, we
obtain an /f-compatible if-quasiconformal map f:Oo-+B which conjugates
the groups H and H'.

Now it remains to show that / extends continuously to a homeomorphism
/ of closed domains. We obtain that using Tukia's Theorem 2.2.

To finish the proof, we have to demonstrate that the topology sphere
L(G) = f~x(bdB) is a wild sphere. For that it suffices to show that the
fundamental group π\{O\) φ 0.

Consider a simple loop 1 in the component O\ C O(H) = O(G) shown in
Figures 3 and 1 and suppose that it is contractible in O\. Then by Dehn's
lemma (see, for example, [5, Theorem 8.4]), there is a disk D C O\ such that
bd D = 1. Since D is compact it is covered by a finite number of polyhedra
hi(Fι), hi G H. At the same time the nontriviality of 1 in the complement
R3 - d implies that D Π d ψ 0. Therefore, there is an hi G H such that
hi{F\) Π d φ 0. The obtained contradiction finishes the proof.

Remark 4.2. The set of points z G L(G), where the sphere L(G) is
wildly knotted, is a dense subset of L(G). It follows from the density in the
limit set L(G) of the group G of the G-orbit of the points x and y (the
endpoints of d, fixed by the hyperbolic transformation h G G): compare [5],
Lemma 3.16.

Remark 4.3. Our construction of a quasiconformal homeomorphism in
the proof of Theorem 4.1 and Remark 4.2 prove the existence of a quasicon-
formal embedding / of a ball B3 c* R3 into R3 which is extended up to an
embedding D Q R3 of no open domain D containing the ball B3 (see also
[7])



NONTRIVIAL COBORDISMS 421

5. The topology of the manifold M(G)

Now we state and prove the main result of this paper:
Theorem 5.1. There exist four-dimensional manifolds M(G) =

(H4Uθ(G))/G (with int M(G) provided by the geometrically finite hyperbolic
structure) which are homologically trivial cobordisms, but not h-cobordisms.

Proof. The proof of the theorem follows from our construction of geomet-
rically finite Kleinian groups G C Mόb3 in the previous section and from
Corollary 3.3.

Actually, the mentioned group G possesses the following properties:
(1) the manifold M(G) is compact (since the torsion free group G has no

parabolic elements);
(2) the boundary bd M(G) consists of two components 7V0 = Oo/G and

N1=O1/G;
(3) Oo is a contractible G-invariant component and O\ = O(G) — OQ is a

G-invariant component of O(G) with nontrivial fundamental group τri(Oi).
Therefore, using Corollary 3.3, we obtain that the triple (M(G)\ 7V0, N\) is

a homologically trivial cobordism:

H*(M(G),N0) = H4M{G),Nλ) = 0.

Indeed, since the component O\ is not simply-connected and πι(HA\Jθ\) =
0, the kernel of the homomorphism

induced by the inclusion N\ C M(G) is not zero. This gives the nontriviality
of π2(M(G),iV1), and completes the proof.

Remark 5.2. It follows from the construction of the group G that there
exists a Fuchsian group G' C Mόbβ isomorphic to G such that M(G') =
M 3 x [0,1]. This shows that supplementary conditions which may guarantee
the homotopical triviality of the cobordism (M(G);ΛΓo,iVΊ), or moreover its
triviality in the usual sense, must have nonalgebraic nature.

Remark 5.3. Moreover, from the isomorphism of TΓI (No) = TΓI (M) to the
fundamental group of a closed hyperbolic 3-manifold and from the Farrell-
Jones result [9] it follows that the Whitehead group WhG is trivial (so as
Wh2 G = 0, K0(ZG) = 0, K-m{ZG) = 0 for m > 0 and Whm G 0 Q = 0 for
all m).
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