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SPLIT RANK AND SEMISIMPLE
AUTOMORPHISM

GROUPS OF G-STRUCTURES

ROBERT J. ZIMMER

1. Introduction

This paper is a continuation of the investigation begun in [1], [3], [4]

concerning the semisimple automorphism groups of G-structures on compact

manifolds. In those papers we were concerned with semisimple groups that

preserve a structure which is algebraic and which defines a volume density, i.e.

where the structure group G is an algebraic subgroup of SL'(«, R), the matrices

with |det| = 1. (For higher order structures we assumed that G is an algebraic

subgroup of SL'(«, R) Π GL(«, U)(k\ the latter being the group of λ -jets at 0

of diffeomorphisms of R n fixing the origin.) One of the basic conclusions in

the above papers is that for any simple noncompact Lie group H preserving

such a G-structure, we must have that H locally embeds in G. (In fact a

stronger assertion is proven. See the above papers and Theorem 2 below.) The

main goal of the present paper is to consider the situation in which H is no

longer assumed to define a volume density. In this case natural examples easily

show that one cannot expect a local embedding of H in G. However, our main

result asserts that a basic structural invariant of H must be visible in G. More

precisely, we prove:

Theorem 1. Let H be a semisimple Lie group with finite center and suppose

that H acts smoothly on a compact manifold M so as to preserve a G-structure on

M, where G is a real algebraic group. Then R-rank(if) < R-rank(G).

We recall that the R-rank, or split rank, of a real algebraic group is the

maximal dimension of an algebraic torus that is diagonalizable over R. For a

semisimple Lie group if, Ad(H) will be the connected component of the

identity of a real algebraic group, and the R-rank, or split rank, of H is

defined to be the split rank of this real algebraic group. We shall also clear up
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a point that was left open in [1], [3] concerning the case in which G defines a

volume density. Namely, the general results in [3] were established for noncom-

pact simple groups, not for semisimple groups. In [3], a special argument was

given that clarified the semisimple situation for the case of Lorentz structures.

Here we observe that a simple argument enables us to extend the results of [3]

to the semisimple case in general, at least in the case of finite center.

Theorem 2 (cf. [1], [3], [4]). Let H be a connected semisimple Lie group with

finite center and no compact factors, and suppose that H acts on a compact

n-manifold preserving a G-structure, where G is algebraic and defines a volume

density. Then there is an embedding of Lie algebras f) —> Q. Furthermore, the

representation ί) -> g —> %l(n,M) contains ad^ as a direct summand.

Part of this work was done while the author was a visitor at Harvard

University. We would like to thank the members of that department for their

hospitality.

2. Preliminaries

We establish here some preliminary information we shall need for the proofs

of Theorems 1 and 2.

Proposition 3. Let H be a connected semisimple Lie group with finite center,

acting smoothly on a connected manifold M, and assume p e M is a fixed point.

Let π: H -» GL(TMp) be the corresponding representation at p. If π is trivial,

then H acts trivially on M.

Proof. Let K c H be a maximal compact subgroup. It suffices to see that

K acts trivially. For a compact group, any smooth action can be linearized

around fixed points, so the set of invariant frames for the tangent bundle is

both open and closed.

Proposition 4. Suppose H is a connected semisimple Lie group with finite

center, acting smoothly on a connected manifold M. If the set of fixed points has

positive measure, then H acts trivially.

Proof. If the set of fixed points, F, has positive measure, choose a density

point p for F in the sense of Lebesgue. Then any small ball around p

intersects F in a set of positive measure. The action of the maximal compact

subgroup K c H can be linearized around p, which implies that K leaves a set

of vectors in TMp invariant which has positive measure in TMp. It follows that

this linear representation of K is trivial, and the proof of Proposition 3

completes the proof.

If a Lie group H acts smoothly on a manifold M, and m e M, we let Hm be

the stabilizer of m in H, and ί)m c ί) the Lie algebra of Hm. If V is a vector

space we let GvdV) be the Grassman variety of ^/-dimensional linear subspaces.
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For a Lie group L, we let L° be the identity component. If a Lie group L is

the identity component of an algebraically connected real algebraic group, by a

rational homomorphism of L into a real algebraic group we mean the

restriction of (a necessarily unique) rational homomorphism of the ambient

algebraic group. The following is standard.

Lemma 5. Suppose H is a Lie group acting smoothly on a manifold M. Let d

be the minimal dimension of an H-orbit in M. Then Mλ = { m e M \ άim(Gm) =

d } is closed, and the map m -> ί)m defines a continuous map φ: Mλ -> Gr^(ί)),

where q = dim(//) — d. Further, φ is an H-map, where H acts on Gr^(ί)) via

We recall briefly the notion of the algebraic hull of a cocycle defined for an

ergodic group action (see [4] or [2] for an elaboration). Suppose that H is a

locally compact group acting ergodically on a standard measure space (M,μ).

Suppose that G is a real algebraic group and that α: i/ X M -> G is a cocycle,

i.e., the following identity is satisfied (for each hx,h2^ H, and almost all

m e M): a{hλh2, m) = a(hv h2m)a(h2, m). We recall that two cocycles a,β
are called equivalent if there is a measurable φ: M -> G such that for each h

and almost all m, β(h, m) = φ(hm)~ιa(h, m)φ(m).

Lemma 6 ([2], [4], [5]). There is an algebraic subgroup L c G with the

following properties:

(i) a is equivalent to a cocycle taking all its values in L.

(ii) For any proper algebraic subgroup V c L, a is not equivalent to a cocycle

taking all its values in L'.

(iii) Up to conjugacy in G, L is the unique algebraic subgroup satisfying (i), (ii).

(iv) // a is equivalent to a cocycle taking all its values in some closed subgroup

Lo c G, then some conjugate of Lo is contained in L.

L is then called the algebraic hull of α, and it is well defined up to conjugacy

in G. The following property is easily established.

Lemma 7. Suppose p: Gλ -> G2 is a rational homomorphism of real algebraic

groups. If a is a Gx-valued cocycle with algebraic hull Lv then the algebraic hull

of the G2-valued cocycle p ° a is the algebraic hull ofp(L1)(in which, we recall,

p(Lλ) is a subgroup of finite index).

3. Proof of Theorem 1

Let Mλ be as in Lemma 5. Since Mλ is a compact //-space, we can choose a

minimal //-space Mo c Mλ, i.e., a closed //-invariant subset in which every

orbit is dense. Then, letting ψ be as in Lemma 5 as well, we have that

φ ( M 0 ) c Gr^(i)) is minimal. However, the action of H on Gr^(ί)) is algebraic,

and hence every orbit is locally closed. It follows that φ(M 0 ) consists of a
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single compact //-orbit. Fix x e Mo, and let ί)x = ί)0. Then we can consider φ
as an //-map φ: Mo -> Ad(//)/#( ή0) c Gr^(ί)), where iV(ί)0) is the normal-
izer of ί)0 in Ad(//). In particular, the algebraic subgroup N(ϊ)0) is cocompact
in Ad(//), and therefore we can find a maximal U -split torus Γof Ad(//), with

Let n be the Lie algebra of N(ί)0), so that f)0 c n is an ideal. The adjoint
representation yields a rational (and in particular semisimple) representation
T -> GL(ί)/ί)o) L e t Toc T be the kernel, so that To is an R-split sub torus.
Since the representation of To on ί) is semisimple, we can write ί) = ί) 0 θ W,
where Wai) is a subspace and Γo acts trivially on JΓ. In particular, ί)0

contains all the root spaces of To acting via Ad^ on f) corresponding to
nontrivial roots. The algebra generated by the nontrivial root spaces for To is
an ideal, and hence f)0 contains an ideal of £), say ίjv containing all the
nontrivial root spaces for To. Thus we can write ί) as a sum of ideals,
ί} = ί)x θ ί)-2, where Γo acts trivially on £)2. Since ί)2 is semisimple, it follows
that t 0 c ί)1 c ί)0. Let i/x be the connected normal subgroup of H corre-
sponding to ί)v Then ί)l5 and hence Hv acts trivially on ί|/ί|0, and by
Proposition 3, Hx acts locally faithfully on T(M)x/T(Hx)x. In particular, To

acts rationally and locally faithfully on T(M)x/T(Hx)x. Let Tλ be a split
torus complementary to To in T. We then have that T = Γo X 7\, and 7\ acts
faithfully on ί)/ί)0.

Now let M2 c Mo be a minimal ^(^o) 0 space. Since (Hx)° is normal in
Λf(ί)0), it fixes all points of N(ϊ)0)x, and hence fixes all points in the closure of
this orbit, in particular all points in M2. Since the dimension of all stabilizers
in H of points in Mo are the same, we have £)m = ί)0 for all m e M2. Thus for
m e M2, we can identify the tangent space to the //-orbit through m with
ί)/£)0. The representation of Hλ on T(M)m/T(Hm)m will vary continuously
over w G M2, and since //x is semisimple and M2 is connected, all these
representations are equivalent. In particular, the representations of (Γo)° on
these spaces are all rational, and all equivalent.

Choose a probability measure on M2 which is invariant and ergodic under
T° [2, Chapter 4]. Let a: T° X M2-* GL(«, R) be a cocycle corresponding to
the action of T° on the tangent bundle of M over the space M2 (cf. [4]). Let L
be the algebraic hull of this cocycle. Since //, and in particular T°, leaves a
G-structure on M invariant, we have (up to conjugation) L c G. By our
observations above, we can measurably trivialize TM over M2 in such a way
that TM = M X Rw, Un = Vx θ V2, Vλ = ΐ>/ί)0, such that for * e Γo°, we have
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where π2 is a faithful rational representation, and for t e 7̂ °, we have

( \ / ΊTΛ 1 L I *

m,t) *

where ττλ{t) is Ad(ί) acting on ϊ)/ϊ)o> and> a s w e remarked above, is a faithful
rational representation. Let β be the projection of a in G L ^ ) X GL(V/Vλ).
To prove the theorem, it suffices to see that the split rank of L is at least as
large as dim(Γ), and by Lemma 7, to prove this it suffices to see that the split
rank of the algebraic hull of β is at least dim(Γ). Thus, we need only see that if
77- is a faithful rational representation of Γ°, then the algebraic hull of the
cocyle /?(ra, /) = π(t) (m e ΛΓ2) is locally isomorphic to T. Let T* be the
algebraic hull of the group τr(Γ°); then T* is a split torus, π(T°) c Γ* is of
finite index, and dim(Γ) = dim(Γ*). If β is equivalent to a cocycle into
Q c 71*, then there is a measurable Γ°-map φ: M2 -» T*/Q. Since there is a
finite Γ°-invariant measure on M2, there is one on T*/Q as well, and if Q is
algebraic, it is clear that dim(<2) = dim(Γ). This complete the proof.

4. Proof of Theorem 2

The argument of [1, Lemma 6], using the Borel density theorem, shows that
the Lie algebra of the stabilizer of almost every point is an ideal. By Proposi-
tion 4, it follows that almost every point has a discrete stabilizer. The proof
then follows as in the simple case, as in [3] or [4].
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