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THE HEAT EQUATION ON A CR MANIFOLD

RICHARD BEALS, PETER C. GREINER
& NANCY K. STANTON

0. Introduction

The trace of the heat semigroup for the Laplacian on a compact oriented
Riemannian manifold has an asymptotic expansion in powers of the time t for
small positive t whose coefficients are integrals of local geometric invariants
(see [1], [6], [11] and their references). This expansion and its generalizations to
other elliptic operators have been powerful tools in the study of the relation-
ship between analysis and geometry on the manifold (see the surveys in [4], [12]
and [16]).

In this paper we prove analogous results for the sublaplacian D 6 o n a
compact CR manifold. The classical pseudodifferential calculus is not ade-
quate for this purpose because Πh is not elliptic, so we develop an appropriate
pseudodifferential calculus here. To motivate a description of our methods and
results we begin with a sketch of a proof of the Riemannian result along
similar lines (see [7] for details). We then point out the differences due to
difficulties in carrying the program over to the nonelliptic case.

Let M be a compact oriented Riemannian manifold and let Δ = d*d denote
the Laplace-Beltrami operator on functions. In local coordinates

(0.1) Δ = _ Σ 1 » /y^ »
Λ 7 y/g dxι dxJ

where the metric tensor is given by the matrix (g/y) which has inverse glJ and
g = det(g/y). Let P = d/dt + Δ operating on functions on M X R. We seek to
construct a parametrix for P, i.e. a pseudodifferential operator Q such that
PQ = QP = I modulo smoothing operators. If Q is a parametrix it is given by
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integration against a kernel k which differs from the kernel of the heat

semigroup e~tA by a kernel which vanishes to infinite order at t = 0. Thus k

contains all the asymptotic information. The construction of the symbol q of Q

can be localized, and k is the partial inverse Fourier transform of q. Now q has

an asymptotic expansion

(0.2) q~ Σq-j, q-j = q-MΛ,τ)
7 = 2

Here x denotes local coordinates on M with dual coordinates ξ on T*M and r

is the variable dual to /. The symbol q_j is homogeneous of degree -j with

respect to anisotropic dilations in the dual variables:

(0.3) λ (£,τ) = (λ£,λ 2 τ), λ€Ξ R \ 0 .

The heat operator P has symbol/? = p2 + pλ + p0, where p. is homogeneous of

degree j. The principal symbol p2 is

(0-4) p2(x, ξ, T) = Σg'J(x)titj + ^r.

The calculus of symbols with this type of expansion is entirely analogous to the

Kohn-Nirenberg calculus for symbols with ordinary homogeneity [9]. In partic-

ular, the symbol of a composition PQ has asymptotic expansion

(0.5) p°q~ Σ ^pj(x,ξ,'r)Dx

aqk(X,ξ,r).
a, j , k

Thus to have PQ = / we need p ° q ~ 1. Looking at the term of degree 0 in

(0.5) we find from (0.4) that

(0.6) q_2(x, ξ, r) = [ΣgiJ(x)titj + fΛτ\-\

One way to obtain the remaining terms is to take Q_2 to have symbol q_2 and

note that PQ_2 = I — R, where R has symbol beginning with a term of degree

- 1 . (R is smoothing of order 1 in x and order 1/2 in t.) Then one should have

(0.7) Q - Q_2(I + R + R2 + R3 + ),

and the terms q_y may be computed recursively. Note that Q_2R
k has terms

only of degree < -2 - k. It can easily be verified that each term q_j is a finite

sum of terms of the form

(0-8) r ( k

where r(x, •) is a polynomial of degree 2k - j whose coefficients are poly-

nomials in g" 1 / 2 and in the derivatives of the gtj.
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The kernel k of Q is related to the symbol by

(0.9) k(x9t\y9s)^{2π)~n

and the kernel of e~tΔ> is essentially kt(x, y) = k(x, /; y,0). Corresponding to

the expansion (0.2) is an expansion

(o.io) k~ ΣV-2.

where kj_n_2 is related to q_j by (0.9). Of course (0.9) must be interpreted in

the sense of distributions and we need a distribution which agrees with

q_j(x, •) for (ξ, T) Φ 0. Now (0.8) implies that q_j has an extension to a

function holomorphic in r, T e C_. A consequence is that the corresponding

distribution may be taken to be homogeneous with respect to the dilations

(0.3). Then the inverse Fourier transform also has a homogeneity property and,

in particular,

(0.11) km(x9/; *,0) = tm^km(x)9 t > 0.

Taking λ = -1 we see that q_j(x, •) is an odd function of £ when j is odd, so

km(x) = 0 when m + n is odd. In summary,

(0.12) kt(x,x)-Γ^2ΣtJk2j-n(x).
7 = 0

The functions km{x) are independent of our choice of coordinates. We use

Riemannian normal coordinates centered at JC, so that gtj{x) = 8iJ9 and take

the form (0.6) into account. Then km{x) is a polynomial in the derivatives of

the metric at JC, hence a polynomial in the curvature and its covariant

derivatives.

Now let M be a compact oriented CR manifold of dimension In + 1

equipped with a Hermitian metric, and suppose the Levi form satisfies condi-

tion Y(q)\ e.g. suppose M is strictly pseudoconvex and 0 < q < n. Let Ubq

denote the 9^-Laplacian acting on (/?, q) forms. There is a corresponding heat

semigroup exp(-iD^); (see [15]). We construct a parametrix Q for the

corresponding heat operator 9/3/ + Πbq by constructing the asymptotic ex-

pansion (0.2) with q_j in an appropriate symbol class. This class is a modifica-

tion of the class considered in [3] which provides a parametrix construction for

Πh q itself. We take into account the natural weighting of the problem, so that

the dual variable in the direction orthogonal to the maximal complex tangent

space of M is a symbol of order 2, as is the dual to 8/9/.

The principal symbol p2 of 3/9/ + Πbq is not algebraically invertible and

the asymptotic expansion (0.5) is no longer valid in our class of symbols. As in
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[3], however, there is an analogous asymptotic expansion in which the point-
wise products of (0.5) are replaced by a more complicated composition which
amounts to considering the composition of corresponding homogeneous left-
invariant operators on a two-step nilpotent group. As in the Riemannian case,
one sees that all terms q_j can be computed in principle once one has found
q_2. Again the q_j will, because of holomorphy, correspond to homogeneous
distributions. Thus the trace of the heat kernel will have an expansion exactly
analogous to (0.12).

We develop the necessary pseudodifferential calculus in §3 and show in §4
how to obtain the full asymptotic expansion of a parametrix once one has the
principal term. As in the Riemannian case one must consider homogeneous
functions as distributions. In the Riemannian case, in effect, one approximates
an operator pointwise by a translation-invariant operator, by freezing the
coefficients. Here we must approximate by operators which are left-invariant
in a nilpotent Lie group structure which varies from point to point. We have to
make sense of the convolution of homogeneous functions in order to calculate
the symbol of the compositions of homogeneous left-invariant operators. The
necessary technical tools are developed in §§1 and 2. In §5 we show how to
obtain the principal symbol of the parametrix for second order operators
d/dt + D, where D is an operator on M satisfying a certain criterion of
hypoellipticity, and we relate the parametrix to the heat semigroup. We
specialize to Πhq in §6 and show that the results of §5 apply when M satisfies
condition Y(q), so that we have a formula for q_2.

Our symbols q_j no longer have the simple form (0.8) and for an arbitrary
Hermitian metric we cannot say anything special about them. If the Levi form
is nondegenerate and the metric is a Levi metric, then there is an analogue of
(0.8). We introduce the appropriate notion, that of a uniform symbol, at the
end of §4. At the end of §5 we derive a sufficient condition for the parametrix
of an operator 3/3/ + • to have a uniform symbol. For Πb, this condition is
that the metric be a Levi metric. Thus in Theorem 6.35 we can give a more
complete description of the coefficients of the asymptotic expansion of
tvexp(-tΠh q) for a Levi metric. In §7 we show that in the strictly pseudocon-
vex case with a Levi metric these coefficients have a geometric interpretation:
they are integrals of polynomials in the covariant derivatives of the curvature
and torsion of the Webster-C. Stanton connection [14], [19]. Thus we have for
this case a complete analogue of the Riemannian result. We conclude in §8 by
using scaling and U( n )-invariance to give a more precise description of the
first and second coefficients in the asymptotic expansion.

In the case of a strictly pseudoconvex CR manifold with a Levi metric,
Stanton & Tartakoff [17] obtained an exact formula for the kernel of
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Qxp(-tΠhg), 0 < q < n, using successive approximations to solve an integral

equation. They used this to give a new proof of the asymptotic expansion in

this case. M. Taylor, using a different pseudodifferential calculus, obtained a

somewhat less precise expansion in the case of a nondegenerate Levi form (see

[18]). In the appendix we show that the formal Neumann series for the

parametrix of d/dt + Πhq converges suitably to the exact heat kernel, thereby

giving a new proof of the result of Stanton and Tartakoff.

This research was done in part while the third author was a visitor at the

Institut des Hautes Etudes Scientifiques and the Max-Planck-Institut fur

Mathematik. She wishes to thank these institutions for their hospitality.

1. Homogeneous functions and distributions

We shall consider functions and distributions homogeneous with respect to a

certain family of nonisotropic dilations on R2n+2 = R2« + 1 X R The generic

points of R2" + 2 and its dual (also denoted R 2 " + 2 ) will be denoted by

respectively. The dilations are defined for λ e R \ 0 by

(1.1) λ z = ( λ V \ λx', λ2t), λ ? = ( λ 2 ξ 0 , λ | ' , λ 2 τ ) .

Note that we allow λ < 0. For a function « o n R 2 " + 2 \ 0 , let

(1.2) uλ(z) = u(λ-z), λ e R \ 0 .

This action is extended to distributions by the formula

(1.3) <gλ,«> = λ-2"-4<g,M1/λ>, J ^ ' ^ e i

We choose homogeneous norms

(1.4) ||z||

where | | denotes the euclidean norm in R2". Then

(1.5) ||λ z|| = |λ|||z||, ||λ f|| = |λ|| |ί | |, λ e R \ 0 .

A function or distribution / is said to be homogeneous of degree m e Z (with

respect to the dilations (1.1)) if

(1.6) Λ = λm/, a l l λ e R \ 0 .

(1.7) Definition. &m is the subspace of C°°(R2/7+2\0) consisting of func-

tions which are homogeneous of degree m.
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We have tacitly considered functions either of the variable z or of the dual

variable ζ. In the next definition we consider functions of ζ = (£, T). Let C_ be

the half-plane (Imτ < 0} with closure C_= {Imτ < 0}.

(1.8) Definition. &mh is the subspace of J ^ consisting of functions/(£, r)

which extend to (R2n + 1 X C_)\(0) in such a way as to be C00 in all variables

and holomorphic with respect to T, T e C_.

The extension is unique and will also be denoted by /; it will continue to be

homogeneous with respect to the dilations (1.1), which act on R2n + ι x C_.

(1.9) Proposition. If f belongs to ϊFm Λ, then there is a distribution g such that

g is homogeneous of degree m and g agrees with f on R2" + 2 \ 0.

Proof. If m > -2n — 4, then/is locally integrable and defines a homoge-

neous distribution. If m < -2n — 4, then/(ξ, T) = O(|τ |" 2 ) as τ —> oo, so the

integral fι(ζ,τ) = ij^ /(£, σ) dσ exists and is independent of the path of

integration in C_. One sees that fλ is homogeneous of degree m 4- 2 by

choosing the path to be a ray. This process can be repeated until we reach fj9

homogeneous of degree m + 2j > -In - 4. Then f. defines a homogeneous

distribution gJm We may take g = Djgβ it agrees with/on R2" + 2 \ 0 and as a

derivative of a homogeneous distribution it is homogeneous.

(1.10) Remark. We extend the last remark. Suppose a = (α 0, α l 9 ,

2ll

(1.11) (a) = 2α0 + ( t t l + a2 + • • + a2n) + 2α

If/is a smooth function or a distribution which is homogeneous of degree m,

then the derivative Daf is homogeneous of degree m — (a).

We normalize the Fourier and inverse Fourier transforms between the

Schwartz spacesό?= S?(R2n + 2) as follows:

(1.12) fi(£)= / e-iz'*u(z)dz\

(1.13) v(z) = (2τry2"

As usual, these operations are extended by duality to tempered distributions

using the formulas

(1.14) (f,v)=(2π)2" + 2(f,(δY),

(1-15) (g,«)=(2 W )- 2 ' " 2 (g,(ϋ)"),

where ΰ = υ(-ξ) and u(z) = u(-z).

One checks the relation between dilations and the Fourier transform:

(1.16) ( g λ Γ = λ - 2 " - 4 ( g ) 1 / λ , λ G R \ 0 .
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In particular, a tempered distribution is homogeneous of degree m if and only

if its Fourier transform is homogeneous of degree r = r(m) = -m — 2n — 4.

We now characterize the distributions of Proposition 1.9 in terms of their

inverse Fourier transforms.

(1.17) Proposition. Suppose g is a tempered distribution which is homoge-

neous of degree m. Then the restriction of g to R2w + 2 \ 0 is smooth if and only if

the restriction of k = g to R2n + 2\0 is smooth. If k also vanishes for t < 0, then

the restriction of g belongs to !Fmh. Conversely, if f belongs to !Fmh, then the

distribution g of Proposition 1.9 can be chosen so that k = g vanishes for t < 0.

Proof. Suppose the restriction of g is smooth. Given a multi-order α,

homogeneity implies that Dβ{ζag) is integrable at oo if (β) > (a) — r, where

r = -m - In - 4. Then Dβ(ξag) is the sum of a compactly supported distri-

bution and an integrable function, so zβDak is continuous. It follows that k is

smooth away from the origin. The same argument proves the converse.

If k vanishes for / < 0, then the Paley-Wiener-Schwartz theorem implies that

g = k extends holomorphically to I m τ < 0, and the preceding argument

adapts to show that the extension is smooth. Conversely, suppose/is in !Fm h

and let g be constructed as in the proof of Proposition 1.9. It is enough to show

that gj has support in {t ^ 0}, so we may assume that m > -2n — 4 and/is

locally integrable. Choose N > 0 large enough that

is integrable for every ε > 0. Then/ε -• / = g in the topology of 9", so//-* k

in S'. Classically,// has support in {t ^ 0), so k does also.

2. Homogeneous functions and convolutions

Suppose G = R 2 n + 1 X R has the composition law

(2.1) ( * , s) .(y, t) = (x0 + y0 + a(x\ / ) , x' + y\ s + t),

where a: R2" X R2" -* R is bilinear. Then G is a Lie group, which is abelian if

the form a is symmetric and otherwise is a 2-step nilpotent group. Group

translation is an affine map with Jacobian 1, so Lebesgue measure is transla-

tion-invariant and convolution is defined by

(2.2) (u*υ)(z) = f u(w~ιz)υ(w) dw = ί u(w)v(zw~ι) dw.

The dilations (1.1) are automorphisms of G and

(2.3) (u* v)λ = X2" + 4uλ*vλ, λ e R \ 0 .



350 RICHARD BEALS, P. C. GREINER & N. K. STANTON

Convolution is associative and satisfies

(2.4) (u*υ)(z)=(u9(v)z)9

(2.5) ( u x * u2, v ) = ( w 2 , ύ ι * υ ) = ( u ι , υ * u 2 ) ,

where

(2.6) (u, υ) = j uυ, ΰ(z) = v(z~l), υz(w) = v{w

Formulas (2.4) and (2.5) allow one to extend convolution to various pairing of

distributions. In particular it is not difficult to check:

(2.7) $' + Sf is an algebra under convolution, and 6f is an ideal.

(As usual, $' is the space of compactly supported distributions.)

Any g e r defines a left-invariant operator K: S?(G) -> <f (G) by

(2.8) Ku = g*u.

We wish to define a composition of functions fj e ^ , . i Λ which would corre-

spond to the composition of the operators associated, by (2.8), to the homoge-

neous distributions gj which extend the fj. Because of the associativity of

convolution, the formal prescription is

(2.9) Γ 0(Λ,/ 2) = restriction of (gλ* g2Y toR 2 w + 2 \ 0 .

The difficulty lies in defining the convolution of two distributions which may

grow at oo. We avoid the difficulty by a trick.

(2.10) Definition. A function g ε (^0C(R2n + 2) is said to be almost homoge-

neous of degree m e Z i f for each λ e R \ 0 ,

(2.11) λ " w g λ - g belongs to^ 7 .

The function g is said to have homogeneous part / e J ^ if for each N > 0 and

each α,

(2.12) lim ||f||V[g(O-/α)]=0.

If so, we write

(2.13) /=hom(g).

(2.14) Proposition. // g is almost homogeneous of degree m, then it has a

unique homogeneous part.

Proof. Uniqueness is an immediate consequence of homogeneity and (2.12);

indeed we remark for later use that one needs (2.12) only for a = 0 and some

fixed TV > 0. To prove existence we set

(2-15) f r ( S ) = 2~rmg(2' ξ ) , ξΦO.
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Note that for λ, μ Φ 0, N > 0 and ξ Φ 0, (2.11) gives

(2.16)

Taking λ = 2r, μ = 2 and iV ̂  -m 4- 1 we obtain

(2.17) \fr+ι(n-fr(n\<C(2,N)2-^U\\-N.

There fore the/ , , converge uniformly on c o m p a c t subsets of R 2 w + 2 \ 0 a n d the

l i m i t / s a t i s f i e s

(2.18) \f(ζ)-fr(n\<C(2,N)2^r\\ξfN.

Taking λ = 2r in (2.16), with μ fixed, we obtain homogeneity of / by letting

r -> oo. The estimates (2.12) with a = 0 follow from (2.18), and the same

argument applies to derivatives.

(2.19) Proposition. Suppose gy is almost homogeneous of degree m^j = 1,2.

Then the inverse Fourier transform kj belongs to $' 4- Sf. The function g =

(kλ*k2) is almost homogeneous of degree mx + m2. The homogeneous part

f = hom(g) is uniquely determined by fj = hom(gy ),/ = 1,2.

Proof. Let r- = -rrij — 2n — 4 and r = -mλ — m2 — 2n — 4. Since g7 is

smooth, the growth estimates (2.12) imply that Dβ(ξagj) is integrable when

(β) — (a) > -rj, so zβDakj is bounded and continuous. Thus k} is in £" + y .

It follows that A: = kx * &2 is in $' + ̂  so g = k is smooth. By our hypotheses

(2.20) λ" r>{kj) χ- kj belongs toSf.

Now (2.20) and (2.7) imply

(2.21) λ-rkλ - k = (λ~rιkιλ)*(λ-r2k2λ) - k belongs t o ^ .

Therefore g = k is almost homogeneous of degree m = mλ 4- m2. Finally,

suppose gj is almost homogeneous with hom(gj) = hom(g7). Then g'j - gj is

in ^ , so (2.7) implies that the corresponding function g' differs from g by an

element of Sf. Thus hom(g') = hom(g).

We shall be interested in a slight modification of (2.8) and, consequently, in

Proposition 2.19. Set

(2.22) ψ ( z ) = - ( z " 1 ) , g # = g o ψ , ^^ = (Λ°ψ- 1 ) A .

Since ψ commutes with the dilations (1.1), it is easy to check that Proposition

2.19 remains valid if we take

(2.23) kj = gf, g=(k1*k2)
b.

Note that any / e J ^ is the homogeneous part of an almost homogeneous g;

indeed one may take g = χ/, where χ G C°° is = 0 near 0 and = 1 near oo.

Therefore the following construction is well defined.
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(2.24) Definition. Suppose/y belongs to &mjJ = 1,2. Then T(fλ, /2) is the
element of J ^ , m = rax 4 ra2, which is defined by

(2.25) T(f1,f2) = hom([g?*g*]b),

where the gy are almost homogeneous with hom(gy) = fj.
The structure of G is implicit in (2.25) through the convolution and also the

map ψ of (2.22). We may make G explicit by writing T(fl9 /2; G).
(2.26) Remark. It is important for the proof which follows to note that the

development starting with Definition 2.10 can be carried through with partial
smoothness of finitely many derivatives to given order in (2.11) and (2.12). One
then obtains a corresponding amount of regularity for the homogeneous part
andforΓ(Λ,/ 2).

(2.27) Proposition. Suppose fj belongs to &m h, j = 1,2. Then f = T(fl9 f2)
belongs to^m h, m = mλ 4 m2.

Proof. Choose φ e ^(R 2 w + 1 ) such that φ = l near the origin. Given
M G Z + , set

X Λ / ( £ , T) = 1 - φ ( θ [ l - ( i τ ) " ( l 4 I T ) " " ] " , ξ e R2" + 1, r e C_.

Let gMj = x Mfj and let gy be an almost homogeneous smooth function with
hom(gy) = fj. Given any assigned degree of regularity and of agreement at oo,
the gM j will be that regular and agree with gy to that degree when M is large.
Therefore for M large, hM= [gZ,i * gZ,2]b w m * t>e w e ^ defined and will agree
to a prescribed degree at oo with h = [g* * gf]b. Consequently, hom(hM) =
T(fλ, f2) for M large. Now convolution preserves the condition of having
support in {t > 0), so the Paley-Wiener-Schwartz Theorem implies that hM

has a holomorphic extension in T which belongs to Cm(R2" + 1 X C_), where
m = m{M) -> oo as M —> oo. The construction of hom(/iΛ/) above exhibits
(|£|2 + iτ)Nhom{hM) as a uniform limit on compact subsets of R2w + 2 of
(|£|2 4- iτ)NhMr = Hr, where N > max(0,1 - m). Because Hr extends holo-
moφhically to (R2 r t + 1 X C_)\0, [(|ξ|2 4- iτ)Nhom(hM)] = lim(^ r)

v has sup-
port in {/ > 0}. Thus (|£|2 4 iτ)NhM and hM = T(fl9 f2) both have holomor-
phic extensions to (R2w + 1 X C_)\0. The same argument applies to derivatives,
so Γ(/x, f2) is smooth.

3. A class of pseudodifferential operators

Suppose U c n2n + ι is open and suppose { Xy. 0 < j < In} are vector fields
which are a frame for the tangent bundle TU. We adapt a family of group
structures on R 2 n + 1 X R and a family of pseudodifferential operators on
U X R to this frame.
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G i v e n y e U there is a unique set of affine coordinates (x° , JC1,- -,x2n) on

R 2 " + 1 such that j> is the origin and

(3.1) Y

9Λ

We refer to these, and to the corresponding coordinates (x° , -,x2n, 0 on

R2 / 7 + 1 X R, as the y-coordinates. In the jμ-coordinates

(3.2) *, = ^- M A M
9x7

 9JT

Set

(3.3) cjk = cjk(y) = ̂ * y o ( O ) , 1 < . / , * < 2*.

We make R2 w + 1 a group by defining composition in the ̂ -coordinates as
In

(3.4) y , ϊ l i 7"
(JC z ) y = JC7 + zJ, 1 < y < 2/2.

Let Gv denote the direct product R 2 w + 1 x R where R2n + 1 has the composition

(3.4). Then Gv has the form considered in §2. We provide it with the dilations

(1.1).

By y-inυaήant we mean "invariant with respect to the left translations of

G/\ The ̂ -invariant vector fields determined by the ̂ -coordinate directions at

the origin are

(3.5) + Σ k

These provide good approximations to the Xj aty, as we make precise below.

Suppose q = q{x, ξ) is in C°°(ί/ X R 2 M + 2 ) , and suppose each derivative of q

has at most polynomial growth at ξ = oo. Then q is the symbol of a pseudo-

differential operator

Q = Op(q):@(U X R) -> ^(1/ X R),

( 3 ' 6 ) βnίjc, 0 = (2v)-2"-2f e'l' t^qix, ξ)u(ξ) dζ.

When the symbol is independent of τ we shall write q(x, £). In particular the

imaginary vector fields -iX. and -iXJ have symbols σy and of in the y-coordi-

nates:

(3-7) oJ{xΛ) = iJ + ΣbJk{χ)ίk;

In

(3.8) σj(x, ξ) = ξo; σ/(x, ξ) = ξJ + Σ cJkx%, j > 0.
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Then, because of the choice of the cJk, we have for |x| < δ = δ(y)

Oj — σf = ΣaJk(x)σk w i t n ajk(Q) = 0 f°r ally, k\ and

( 3 ' 9 ) \ajM\ < C(^)||x||2 = C(y)((x°Ϋ + \x'\4f/2 ϊorj > 0.

The group structure has been chosen precisely so that the Xj can be approxi-

mated closely at y, in the sense of (3.9), by left-invariant fields.

An affine homeomorphism φ: R2n+1 -> R2« + 1 induces a map φ*: @(φ(U)

X R) ^ 9(JJ X R),

(3.10) φ*fi(*>0 = « ( φ ( * ) , 0 .

If ρ = Op(^), set

(3.π) Qφ = (ψ*YιQφ*.

Then ρ φ = Op(^φ), where

(3.12) qφ(x,ζ) = q{φ-ι(x)Λdφ)'t,r).

Since the XJ are ̂ -invariant and the symbols σf(x, •) give coordinates on

R2w + 1, it follows that an operator Q = Op(q) with symbol defined onR 2 " + 1 X

R2" + 2 is ̂ -invariant if and only if q has the form

(3.13) q(x9 ί, T) = f(Oy(x, 0 , T) , σ> = (σrf', ,σ>J.

If so, then ρ is a convolution in Gv:

(3.14) Qu = k*u,

where (in the ̂ -coordinates) the distribution k is formally

(3.15) k(z-')=f(-z).

Any symbol q <= C°°(U X R2w + 2 ) can be written in the form

(3.16) q(x9 ξ, T) = / ( x , σ(x, ξ), r ) , / e C°°(ί/ X R2'ί + 2 ) .

Given _y G ί/ we approximate ρ = Op(^r) at y by the j-invariant operator

Qy = Op(qv\ where

(3.17) qy(x,ζ,τ)=f(y,σy(x,ξ)9τ).

This is the nonabelian analogue of "freezing the coefficients". Since σv(y, £)

= σ(y, £), we have

(3.18) Qyu{y) = Qu(y), U<E$(UXR).

Classical symbols have asymptotic expansions with terms which are homoge-

neous with respect to the dual variables. We introduce here an analogous class

with nonisotropic homogeneity using the form (3.16). Thus we begin with

classes of functions/.
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(3.19) Definition. For m e Z, let ^mΛ(U) be the subspace of C°°(U X
[(R2'7 + 1 X C_)\0]) consisting of functions which are holomorphic on C_ with
respect to the last variable and which are homogeneous of degree m with
respect to the dilations (1.1) in the last In + 2 variables.

(3.20) Definition. &h

m(U) is the subspace of C°°(ί/ X R2" + 2) consisting of
functions/which have an asymptotic expansion

(3.21) f~Σ fm-j> fm-j^&m-j*-

Here (3.21) means that for any multi-orders α, β and any N ^ 0,

"- Σ L-j
(3.22) +N

where CaβN is a locally bounded function on U. Here again (β) = 2β0 + (βλ

+ •• + i82J + 2i82lI+1.
(3.23) Definition. Sm Λ(ί/ X R) is the subspace of

C°°(ί/x[(R2λl + 1 X C_)\θ])

consisting of functions of the form (3.16), where/belongs to^Fm h(U).
(3.24) Definition. S^(U X R) is the subspace of C°°(U X R2w + 2) consisting

of functions of the form (3.16), where/belongs to^h

m(U).
(We write S^(U X R) rather than Sm(U) because the corresponding opera-

tors are taken to act on functions on U X R.)
There is an asymptotic expansion for symbols in S™(U X R) corresponding

to (3.21), which we write as

00

(3.25) q - Σ qm-j, qm-j e Sm_M(U X R).

Note that the terms in (3.21) and (3.25) are unique.
(3.26) Remarks. Similar symbol classes were introduced in [3], though the

variable τ was missing and homogeneity was assumed only for λ > 0. As in [3]
the corresponding class of operators depends only on the sub-bundle of the
tangent bundle TU which is generated by the Xj for j > 0. In particular, the
operator class is independent of the affine structure of U and of the choice of
frame for the sub-bundle. This and various assertions to follow can be proved
with small modifications in the arguments of [3].
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Given a sequence qm_j e Sm_jh(U X R), j e Z + , there is a symbol q e

S™(U X R) with asymptotic expansion (3.25). This symbol is unique modulo

the usual equivalence relation

q ~ q' if for each α, β, TV,

( 3 2 7 ) lim \\ξ\\ND?Df(q - q') = 0 uniformly on compact subsets of U.
l?|-*°o

Easy estimates on derivatives establish inclusion relations between

S£\U X R) and certain Hόrmander classes [8]:

Z ^ C Λ SΓίt/xRjcSf^^ίt/xR)
(3.2o)

with/? = m if m > 0 and/? = ^m if ra < 0.

Given any q ̂  S™(U X R), there is a symbol g' e S™(U X R) such that

, . q ~ q' and β ' = Op(^r) is properly supported, i.e. <2r maps

^ * ^ ^(£7 X R) to itself and extends to map δψ X R) to itself.

Our goal is to show that the properly supported operators with symbols in

UmS™(U X R) are an algebra, and to describe the terms in the asymptotic

expansion of a composition. To begin, we compose top-order terms by

adapting the composition (2.25) to the present situation. Suppose

(3.30) q.(χ9 €, T) = fj(x, σ(x, £), T ) , j = 1,2,

where/), is in ^.^(U). Choose χ G C°°(R 2 W + 2 ) with χ = 0 near 0 and χ = 1

near oo. Set

(3.31) qj(x9 €, T) = fj(y, σ^(x, £), τ)χ(σ^(x, ξ), r ) ,

and let QJ be the ^-invariant operator Op(qJ). In the ^-coordinates the

functions qj(y, •) are almost homogeneous. In view of (3.15) we find that the

homogeneous part of the symbol of Q{Q{ at y is obtained from

(3.32) f(y,') = τ{fι(y,-)J2(y, );Gv).

Therefore we define

(3.33) qλ #q2 = q, where q(y, ξ, r) = f(y, σ(y, ξ), r).

Now / depends smoothly on y, so / is in ^m^h{U), m = mx + m2. We have

proved

(3.34) # : SWiiA(ί/ X R) X 5^^(17 X R) - Smι + m^h(U X R).

(3.35) Definition. If, in a given coordinate system, q(x, ξ, T) =

f(x, σ(x, ξ), T), then

(3.36)

(3.37) q



THE HEAT EQUATION ON A CR MANIFOLD 357

(3.38) Theorem. Suppose Q} = Op(gy), y = 1,2, where q^ belongs to

S™j(U X R). Suppose one or both of Qj is properly supported, so that Q = QλQ2

is well defined. Then Q = Op(q) where q belongs to S™(U X R), m = mλ + m2.

If q. s G Ss h(U X R) are the terms in the asymptotic expansion of the q^ then

the term of order r in the asymptotic expansion of q has the form

(3-39) £ haβySq[S)#qψp\

(3.40) r = s + t-(δ)-(β) + (y), <«> > |«| + \β\ + (γ> - (β).

The functions haβγδ are polynomials in the derivatives of the coefficients of the

vector fields Xj.

Proof. A slightly less precise version of this theorem is proved for the

analogous class of operators in [3]. The present version follows the same lines,

so we sketch it briefly. It is enough to consider the case when each of ql9 q2 has

a single term in its asymptotic expansion. Suppose

(3.41) q2(x,ξ,τ) = g(x9σ(x9ξ)9τ).

Fix a point y G. U. For convenience we work in the ^-coordinates, so we

identify^ with 0 e R2"+ 1. Consider the Taylor expansion of (3.41) around the

point (0,σ°(Λ,ί),τ):

(3.42) q2(x, ξ,r)~Σ ^ giaβ)(θ, o°(x, ξ), r)x"{σ - o°)β

Here a\β\haβy(x) = xacβy(x), where

(3.43) [ a ( x , ξ ) - σ ° ( x , ξ ) ] β = Σ c β y ( x ) o ° ( x , ξ ) y .

We want to compose Qx with the operator which corresponds to a single

term in the second sum in (3.42), and to consider the symbol of the composi-

tion at x = 0. For this purpose we may replace Qλ by Q{, y = 0, and we

compose Q{ first with the operation of multiplication by haβy. This last

composition involves an operator of type (1/2, 1/2) with a classical operator

of type (1,0), so the standard asymptotic expansion is valid for the symbol:

(3-44) Σ Jj3*9ί(0,{,τ)Z)>β/lγ(0).

We take δ\haβyS = D^haβy and obtain the formal expansion (3.39). To show

that only finitely many terms of given degree occur we want the limitation in

(3.40),

(3.45)
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Now (3.9) implies

(3.46) | ty γ (x) | < cβy\\x\\ +Ύ when |γ| = |j8|= 1.

Taking products gives (3.46) for all |γ| = |/?|, so

/*» Λ^\ li / \l ^ ii I I M + I 0 I + < Y > - < 0 >

\ J H/ ) \naβy\Λ )\ ^ ^aβy\\Λ\\

It follows that the derivatives of haβy in (3.44) vanish at x = 0 except for δ

satisfying (3.45).

To complete the proof we must estimate the error term which arises from

truncating the Taylor expansion a t | α + β| = N - l i n (3.42). The remainder

term is the sum over \a + β\ = TV of

j- Z*1 /-• _ \/V-l (a,β)( a \ aί _ 0\β J

(3.48) (N -1)\JQ

σ°= (l - a)σ° + aσ.

We estimate for fixed a e [0,1], then integrate. Write

(3.49) xα(σ-σY= £ ^ γ (αf ,

\Ύ\ = \β\

(*\ ^C\\ n(<*βy) — σ(
a'β)(nγ πa( Y £\ τ\\πa(γ ί M γ

We introduce weight functions

(3.51) Φa(x,ξ) = l+\\(σa(x,ξ),τ)\\, φa = (l +\(σa,τ)\)~lφa.

Dropping the subscript a, we work in the weighted pseudodifferential calculus

[2]. Then

(3.52) ?l!ίγ)€S5fφ,

I f0 1 ( jc ,€ ,τ)=/(x,σ(x,O,τ),set

(3.53)

Then

(3.54)

It follows that when δ satisfies (3.45), the symbol of the composition of the

operators with symbols (3.50) and (3.53) belongs to S£~N*°. Now

(3.55) ^ φ c S ί / 2

2

1 / 2 i f / < 0 .

Therefore if we argue as before and note that one obtains estimates uniform

with respect t o α G [0,1], we find that the error term has symbol in

when m — N < 0. Choosing iV large, we control the error as desired.
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4. Parametrices and kernels

In this section we complete the construction of the general machinery. Recall

that an operator R: @{U x R ) - > S(U X R) is said to be smoothing if it

extends to a continuous map from S\U X R) to S(U X R). This is true if and

only if R has symbol which is rapidly decreasing in f, together with all

derivatives, as ξ -> oo [8]. Equivalently, R has a smooth kernel:

Ru(x, t) = I r(jc, /, y, s)u(y, s) dyds,

r e C°°(U X R X [ / X R ) .

A parametrix for an operator P from 3)(JJ X R) to S(U X R) is a properly

supported operator Q such that QP — I and PQ — I are smoothing.

(4.1) Theorem. An operator P = Op(p) with p e S™(U X R) λαs a parame-

trix Q = Op(q) with q e S^m(U X R) // #«ί/ 0/7/y // //î re w « symbol q_m in

S_mh(U X R) such that

where pm is the first term in the asymptotic expansion of p.

Proof. Suppose P has such a parametrix Q with leading symbol q_m e
s-m,h(U x R ) T n e fi fS t t e r m m t n e asymptotic expansion of QP - I is

q-m#Pm ~ 1 a n ^ t n e remaining terms vanish at f = oc, so since QP — I is

smoothing we must have g_m # pm = 1 by homogeneity. Similarly, pm# q_m =

1.

Conversely, suppose (4.2) holds. Let Q_m be a properly supported operator

with symbol in S^m(U X R) having q_m as the unique term in its asymptotic

expansion. Then Theorem 3.38 implies that Q_mP = I — R, where R e

Op S^ι(U X R). We may assume that P is properly supported, so R is also.

Then

(/ + R + R2 + + Rk)Q_mP = I - Rk + ι

9 Rk + 1 e O p S ^ " 1 ^ X R).

The term q_m_j in the asymptotic expansion of ( / + / ? + •• + / ? / c ) ( ) _ m i s

independent of /c when k ^ j . Therefore we may choose q - Σq_m_j and

conclude that Q = Op(g), chosen to be properly supported, has the property

Thus ζλP — / is smoothing. In the same way we construct Q' so that PQ' — I

is smoothing. As usual this implies that Q - Qr = (QP - I)Q' - Q(PQ' - I)

is smoothing, so we may replace Qr by Q. This completes the proof.
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An operator Q with symbol q e S™(U X R) may be expressed symbolically

as an integral operator. Indeed the symbol q(x, •) has an inverse Fourier

transform kx e Sf" and

(4.3) Qu(x, t) = ί kx(x - y,t - s)u(y, s) dyds
JUXR

provided (4.3) is taken in the sense of distributions. The argument used to

prove Proposition 1.17 shows that kx( ) is smooth on R2" + 2 \ 0 ; indeed the

function

(4.4) K(x,y,t) = kx(x-y9t)

is smooth except on {x = y, t = 0}. Moreover, if m < -2n - 4, then q{x, •) is

integrable and K is continuous on U X U X R.

(4.5) Theorem. Suppose Q = Op(q), q e S^m(U X R). Modulo the addition

of a smoothing operator, the kernel (4.4) associated to Q vanishes for t < 0 and

has an asymptotic expansion for t > 0:

00

(4.6) K(x, JC, /) ~ t~r Σ tjKj(x), r = greatest integer < n + 2 - —.
7 = 0

Here (4.6) means that for any ] V e Z + ,

M

(4.7) K(x, x, t) - Γr Σ tjKj{x) e CN(U X [0, oo)) //M > M(N).
7 = 0

Proof. From the asymptotic expansion for g we may write

(4.8) kx~£ k-m-hx
7 = 0

with k_m_j x the inverse Fourier transform of q_m-j(x, •)• When expressed in

the ^-coordinates, the distribution k_m_j x is homogeneous of degree m + j -

In — 4 and it vanishes for ί ^ 0. For any N ^ Z+ the map

(4.9) x - kx - Σ k
,m_hx

is a C N map from U to C^(R2 π + 2 ) for M large. Therefore, modulo a smooth

kernel, K vanishes for / < 0. Since q_m_j(x, •) is homogeneous, it is an

odd function of the variables (ξ1?- ,£2*) Therefore k_m_j x(0, t) = 0 when

m + y is odd. When m +j is even, k_m_j x(0, t) is homogeneous of degree

^( w 4- j — In — 4) in /. This completes the proof.

We shall want to examine the terms of the asymptotic expansion (4.6) in

greater detail under some special assumptions, when Q is a parametrix for a
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differential operator P. If P has symbol in S™(U X R), then P has the form

(4.10) i> = Σ aaX\ flffleC»(ί/),

where we take

(4.11) X' = (XoΓW • • • (X2n+ιΓ"+\ X2n+1 = 1-

Conversely, if P has the form (4.10) then its symbol is in S™(U X R).

Our special assumption concerns the principal term of a parametrix for P.

To phrase it precisely, we take an enumeration {dk}°£=ι of all formal deriva-

tives of the coefficients of the Xj and of P. Given a coordinate chart on U,

these specialize to functions which we also denote by {dk}.

(4.12) Definition. A symbol q is uniform if for each j e ί / there is a

coordinate chart on U sending y to 0 e R2n + ι such that in these coordinates

each c-derivative has the form

(4.13) D?q(0, L T) = £ /.*K(0), Λ(0))gβ*(i, T).

Here the/αA: are polynomials (of which all but finitely many vanish, for fixed a)

and the gak are functions, and the/βA. and gαA. do not depend on^.

(4.14) Theorem. Suppose P has the form (4.10) and suppose P has a

parametrix Q. Suppose the principal term q_m of the symbol of Q is uniform.

Then each term Kj(y) in the asymptotic expansion (4.6) may be obtained by

evaluating at y a universal polynomial in derivatives of the coefficients of the

vector fields Xj and the coefficients aa in the special coordinate system of {A.12).

The polynomial may be chosen to depend only on n, m,j and the functions fak, gak

Proof. The properly supported pseudodifferential operators with symbols

belonging to US£(U X R) are an algebra. Consider the subset consisting of

operators with the property that each term in the asymptotic expansion of the

symbol is uniform, with the same choice of coordinates at each point y e U.

The proof of Theorem 3.38 shows that this subset is a subalgebra. The operator

P belongs to this subalgebra and we have assumed that Q_m does also.

Therefore the parametrix Q constructed in Theorem 4.1 also belongs to this

subalgebra. To complete the proof we need only note that the inverse Fourier

transform of a summand in (4.13), taken at x = 0 and t > 0, has the form

(4.15) cakfak(dM, Mθ))ta>

where cak depends on gak and a is an integer depending on n and the degree of

homogeneity of the symbol.
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5. The heat equation on a manifold

Suppose M is a compact smooth manifold of dimension 2n + 1 and suppose

i^d TM is a sub-bundle of rank In. On any sufficiently small coordinate

neighborhood ί / c M there is a frame Xo, , X2n for Γ£/ such that X1? , X2n

is a frame for y*.

(5.1) Definition. Op Sm(M X R, V) is the space of pseudodifferential op-

erators from ^ ( M x R ) to <f(M X R) which have, in each small coordinate

neighborhood U, a symbol belonging to the class S™(U X R) determined by

the frame { Xy} on U.

As noted earlier, the class of operators just defined is independent of the

local choices of the X. and the local coordinate charts. (It is also the case that

in the applications we make to the asymptotic expansion of the heat kernel,

this independence is not needed: everything may be done in local charts of

one's choice.)

Consider now a second order differential operator D: <?(M) -> <?(M). Then

D can be considered as mapping ^ ( M X R) to itself, and we assume

(5.2) D belongs to Op S2( MX R , ^ ) .

Then P = d/dt + D also belongs to Op S2(M X R, ΊΓ). We assume

(5.3) P = — + D has a parametrix Q e OpS~ 2 (M X R, Ϋ~).

Finally, we assume that M has a smooth density dx, and a corresponding

Hermitian inner product

(5.4) (u,υ) = ί u(x)υ{x)dx, U,Ό^£(M).

JM

We assume D is formally positive:

(5.5) ( D M , M ) > 0 , W € = < ? ( M ) .

(5.6) Theorem. Suppose (5.2), (5.3), and (5.5) are satisfied by D. Then the
following hold.

(a) D has a unique self-adjoint extension in L2(M) and the extension is
nonnegatiυe.

(b) D has eigenvalues 0 < λλ < λ 2 < (counting multiplicities) with λj —>

+ oo. The corresponding eigenfunctions {uj} belong to $(M) and their closed

span is L2(M).

(c) For each t > 0, the operator e~tu is a smoothing operator with trace

(5.7) tr(e-'D) = Σ>-'λΛ
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(d) The trace has an asymptotic expansion

00

(5.8) t r ( < Γ ' D ) ~ r " - 1 Σ kjtJ ast^O+.
7 = 0

(e) The constants kj in the expansion (5.8) have the form

(5.9) kj = j Kj(x)dx.

Kj(x) can be computed from the term of degree -2 — 2j in the asymptotic

expansion of the symbol of the parametrix Q in local coordinates.

Proof. D has at least one nonnegative self-adjoint extension, the Friedrichs

extension [20]; we denote it also by D. Uniqueness will follow from (b), which

implies that the closure of D in L2(M) is self-adjoint.

Let C+(R; L2(M)) denote the space of continuous functions u: R -* L2(M)

with the property that u(t) = 0 for t < tu. Let us define

ρ : C + ( R ; L 2 ( M ) ) - C + ( R ; L 2 ( M ) ) ,

( 5 1 0 ) Qu(t)= Γ e^s-t)Uu{s)ds.
- 0 0

Now e'tu is strongly differentiable and maps to the domain of D for t > 0, and

(5.11) jt(e-tπ) = -Πe~tπ; e~tuu -> u as / -> 0 + .

Therefore

( J + ̂ )QU = u = Q{4-(5.12) \dt Γ \dt

X R).

By assumption

(5.13)

where Rv R2 are smoothing. We assume that Q is properly supported, so Rx

and R 2 are also. Thus

(5.14) β

(5.15) β

Now (5.15) implies that Q maps 2{M X R) to £{M X R), which implies that

QRλ is smoothing. Thus, from (5.14), Q - Q is smoothing. In particular, Q
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belongs to Op S~2(M x R , f ) and has a distribution kernel

(5.16) [Qu](x, t)= ( K(x, y, t - s)u(y, s) dyds.
JMxR

Comparing (5.16) and (5.10) we see that K(x, y, t) = 0 for t < 0 and K(x, y, t)

is the distribution kernel of e~tu for t > 0. But we know from §4 that K is

smooth on M X M for / > 0, and this implies that e~tu is smoothing.

Parts (d) and (e) of Theorem 5.6 now follow from Theorem 4.5. To derive (b)

and (c) we note that e~π is positive and self-adjoint, since D is. Also, since e~a

is smoothing, it is compact. Therefore L2(M) has an orthonormal basis

consisting of eigenfunctions {uj} of e~π with eigenvalues μλ > μ2 > > 0,

μy -> 0. The eigenspace corresponding to a given eigenvalue μ is finite-dimen-

sional, contained in the domain of D and invariant for D since e~πΠ = Ue~π

on domD. Therefore D diagonalizes on this eigenspace and clearly each

eigenvalue is -log μ. Thus the u- are eigenvectors of D with eigenvalues

λj = -log/xy -> +oo.

Finally, the function Vj(x, t) = e~λj' Uj(x) is annihilated by d/dt + D, so

(5.13) gives Uj = R2Vj G <T(M X R), which implies Uj e ^ (M).

(5.17) Remark. Note that the entire preceding development applies equally

to systems. We may assume that the second order differential operator D acts

on smooth sections of a vector bundle over M. In local coordinates the kernels

will be matrix-valued and the functions K- of (5.9) will be matrix traces.

We turn now to the question of the existence of a parametrix for P = d/dt

+ D. In view of Theorem 4.1, one seeks the principal term q_2. Let ί/, {Xj}

and y~be as above. Let θ be the 1-form on U which is characterized by the

conditions

(5.18) Θ(XO) = 1; θ(Xj) = 0, 1 < ; < 2 « .

We assume that in U, D has the form

(5.19) D = - Σ Xf ~ < λ * 0 + i Σ HjXj + ^
7 = 1 7 = 1

where λ, μy and v are smooth functions. Note that formal self-adjointness

implies that these functions are real.

The matrix of smooth functions

(5.20) ajk = iθ([Xj9 Xk]), 1 <y, k < 2Λ,

is Hermitian and purely imaginary, so it has eigenvalues {aj(y)} which we

number so that

(5.21) aj(y) > 0, an+J(y) = -aj
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(5.22) Theorem. Suppose that for each y e M there is a coordinate neighbor-

hood U and a frame { Xj] for TU such that D has the form (5.19). Suppose also

that

(5.23) |λ(j,)|< Σaj(y),
7 = 1

where the a^ are the nonnegative eigenvalues of the matrix (5.20) at y. Then

P = d/dt + D has aparametrix Q which belongs to Op S^2(M X R , f ) .

Proof. Fix j> e M. In the associated ^-coordinates (3.1) we know that

(5.24) *<Γ-Λ; xf-jη+Σ <*** A . J>o.
όx όx

J

 k>0
 ax

From (3.2), (3.3), and (5.20) one obtains

(5.25) i<*
The matrix (cJk) may be brought to anti-symmetric form by a quadratic

coordinate transformation, in which the coordinate function x° is replaced by

(5.26) ( χ o y = χ o _ i £ iCkj + c.k)xjχkt

j,k>0

while the other coordinate functions are unchanged. Then in the new coordi-

nates, (5.24) holds with cjk replaced by the anti-symmetric part

(5-27) c'Jk = \iaJk{y).

Let us refer to these as the anti-symmetric y-coordinates. (They are uniquely

determined by the original coordinates on U and the choice of a frame.)

There is an orthogonal transformation which brings the matrix (c'Jk) to

normal form. This transformation allows us to replace {Xj}J>0 by linear

combinations and to make a corresponding orthogonal transformation of

coordinates so that now

χy~—- xy = — - -a xn+j—0 ~ o 0 ' J o / ? J o 0 '/. 0Qx dxϋ dxJ * dx°
\ ' 3 1 9

where a} = cij(y). We refer to these as normaly-coordinates. The form (5.19) is

preserved, though the coefficients μ7 and v may change.

In normal ^-coordinates the principal term of the symbol of Py, the

j -invariant approximation to P at y, is

(5.29) pi = iτ + Σ ( σ / ) 2 + λσ0Λ λ =
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Here

σ<r(*,€) = io; σ/(x9ξ) = ξJ-iajx
n+^09

°X+j{x> i) = tn+j ~ 2an+jxjξo, 1 <j < n.

We seek to determine the symbol ql2 so that the composition of the corre-
sponding operators satisfies

(5.31) PίQy-i = i=Qy-2Pl.

Now the symbol p{ is a polynomial in all variables, so the exact symbol of the
composition can be calculated; (5.31) becomes

(5.32) Σ jτ(W)(DM2) = l= Σ -τ(3tV2)(Z>;W).
|α|<2 |α|<2

Because of jμ-invariance, ql2 has the form

(5.33) qr2(x,ξ,τ)=fy(σy(x,ζ),τ).

Moreover, it is enough to have (5.32) hold at x = 0.
The normal form (5.29), (5.30) implies that P{ is invariant with respect to

rotations in the (xJ, x"+J) plane, 1 ̂ j^n. The same should be true of Qy_2,
which implies finally

Once (5.33) and (5.34) are taken into account, equation (5.32) at x = 0
becomes the single equation

(5.35)

This equation has a solution
/•OO

(5.36) / ( σ , τ ) = / e-' «- λ ^G(σ,j)A,

2 " i/9 / tanh(β,σ o j)

(5.37) G(σ, J ) = Π cosh(^σ05)~1/2exp -σ/ fl σ

(We take ft-^anhίte) = J if ft = 0.) The assumption (5.23) gives absolute
convergence of the integral (5.36) for Im τ < 0 and (σ, T) Φ 0, and one checks
that/v belongs to J ^ 2 h.

It remains to be shown that these pointwise symbols fit together smoothly.
Three changes must be considered: (i) the passage from normal ̂ -coordinates
to anti-symmetric ̂ -coordinates; (ii) the passage to the originals-coordinates;
(iii) the passage to the original fixed coordinates in U.
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For the transition (i) let A = A{y) be the linear transformation in TV*U

which has matrix (aJk(y)) in the anti-symmetric ^-coordinates. Thus in normal

coordinates A is diagonal and (5.37) takes the form

(5 38Ϊ G ^ σ ' ^ = [ d e t c o s h ( ^ σ o ^ ) ] / 2 e χ p ( - σ 0 " 1 ^ " 1 t a n h ( ^ σ 0 ^ ) σ ' σ'),

σ' = (σl9 -,σ2n).

The transition (i) is linear and we obtain (5.36), (5.38) as the expression in

anti-symmetric jy-coordinates.

For the transition (ii), suppose φ is a diffeomorphism of RN with Jacobian = 1

and with φ(0) = 0. Let us find at x = 0 the symbol qφ in terms of the symbol

q, where Qφu = [Q(u ° φ" 1)] 0 φ. (This notation is opposite to the convention

adopted in (3.11), but it is more convenient here.) Then

(5.39) Qφu(0) = cNf q(0, η) f e-^u{φ-ι{z)) dzdη, cN = (2τr)^.

Lety = ψ~ι(z) and express u(y) by the Fourier inversion formula to obtain

(5.40) qψ(09ξ) = cNf ^ - / ^ ) " + l> ^(0, i ϊ ) dydη.

We apply this in R 2"+ 2 with variables (x, t\ dual variables ( |, T), and a

quadratic transformation

(5.41) φ(x,/) = (x° + Bx' -x',x',t), xf = (JC1,- ,x 2 / ί),

where B is a symmetric linear transformation. Then one may integrate in the

first and last variables and dual variables in (5.40) to obtain

4 φ (0,ξ,τ)

= c2nf exp/[(€' - V) • / " W y']q(0, ξ0, ξ\ r) dif dy'.

In our case above

(5.43) q(0, ξ0, if, T) = Γ F(ξ0> T, S) cxp(-Tsη' • η') ds,

(5.44) F(ξQ,τ,s) = e- / T J- λ ί l > ί[detcosh(jί 0i4)]' 1 / 2,

(5.45) Ts = Ts^o = ξ'o'A-1 tanh(i{0>4).

Now

c2nj ^{-h'-y'-Tsi-i)di

= (4*Γ(detΓ,)-1/2exp[-i7;-y • / ] .
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Set z = \T-ι/2y' and ζ = 2Ts

1/2ξ'. Then (5.42), (5.43) and (5.45) give

(5.47) qφ(0, ξ, T) = n-f F(ξ0, r, s) exp(/z • ζ - Csz • z) dsdz,

where

(5.48) Cs = C,,{o = / + 4iξ0τy2BTy2.

The transformation C, can be diagonalized by an orthogonal transformation,

so analytic continuation from the case Cs > 0 gives

(5.49) π-f exp(/z • ζ - Csz z) dz = (det C,)- 1 / 2 exp(-iCΛ ' 0

But

(5.50) C,-1? • £ = 45 S | ' $', Ss = (Ts-
1 + 4iξ0B)-\

Thus our expression in the ̂ -coordinates is

(5.51) qφ(0,ξ,r) = jf°° F(ξ0, r, s)(det S,)1/2(det Γ ^ V ^ ' «'Λ.

The matrices of 5 and of L4 in the ^-coordinates are the symmetric and

anti-symmetric parts of the matrix (cJk), which itself consists of first partial

derivatives of coefficients of the {Xj}. Moreover, Ts is a function of A and ξ0.

Thus in the original ^-coordinates

(5.52) qy2(09 ξ, T) = f(y9 ί, T) , / e i ^ 2 f Λ ( t / ) .

Transforming back to the original coordinates in U by the appropriate affine

map one obtains

(5.53) q-2(yΛ^)=f(y,o{yΛ),τ)

with Oj the symbol of Xj in the original coordinates. Thus q_2 does belong to

To complete our general discussion, we turn to the question of the applica-

bility of Theorem 4.14 in the present case. Thus we need to consider when the

symbol q_2 is uniform (Definition 4.12).

Take as the special coordinate chart of Definition 4.12 the anti-symmetric

^-coordinates. The symbol q_2 itself will have the form (5.52) with/ indepen-

dent of y, provided that λ(j>) and the aj(y) are independent of y and all the

dj(y) are equal, 1 <y < w. Indeed, in this case

^ / f - ί τ ? - λ f n f 1 / > \-n I V ' U / l>/l~l j

as
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in the anti-symmetric ^-coordinates, where a is the common value of a-(y),

1 <y < Λ, λ = λ(y) and £' = (ξl9- , £ 2 J To s e e t n a t derivatives also have

the requisite form, note that in the anti-symmetric jμ-coordinates

(5.55) q_2(x, ξ, T) = h(dγ(x),. • ,</„(*), ί, T) ,

where d^ - -,dN are the coefficients of the Xj and their first derivatives, and

where we have shown that h and ^(^(0),- -,dN(0), £, T) do not depend on y.

6. The heat equation on a CR manifold

In this section we specialize to the Kohn Laplacian Dft on a compact

connected oriented CR manifold M with a Hermitian metric. The CR structure

is defined by a complex rank n sub-bundle T10 of the complexified tangent

bundle C ® TM, having the properties

(6.1) Γ l i0 Π ΓOtl = {0}, where T0Λ = flf0;

(6.2) if Z and J^are sections of T0Λ, so is [Z, JF].

M is equipped with a Riemannian metric which extends to a Hermitian metric

compatible with the CR structure:

(6.3) Tl0 _L Toι and complex conjugation is an isometry in C Θ TXM.

Then there is a unique (real) line bundle JV<Z TM such that

(6.4) C <S> TM = Tl0 Θ Toι Θ CJT.

The dh complex of Kohn and Rossi [10] may be realized as follows. The

bundle of covectors of type (1,0) is

(6.5) Λ10 = {annihilator of TQ λ Θ JT) c C ® T*M.

Similarly,

(6.6) Λ0 J = {annihilator of 7\ 0 Φ Jί) c C ® Γ*M.

The bundle of co vectors of type (/?, q) is

(6.7) Ap^= ( Λ ι γ Λ ( Λ ° Y c Λ ^ = Λ ^ ( C ^ Γ*M),

where the exponents refer to the iterated wedge product. The Hermitian form

induces by duality an inner product on each fiber of C Θ T*M and therefore

an inner product ( , ) on each fiber of Ap + q. Let πpq denote the orthogonal

projection

(6.8) W
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A (p,q) form is a section of Λ ^ ; the space of (/?, q) forms is denoted

From now on we fix p and set

(6.9) \q:g'-i^g"'"+\ 3 M = *,.,+! o r f '

where d is the exterior derivative. Then

(6.10) db:£
p = φ gp« -+gp

q

is a chain complex.

The metric induces an inner product in £p*q,

(6.H) /
JM

where dV is the volume form. Then dh q has a formal adjoint $h q. The

associated Laplacian is

(6-12) q M = * * . & . * + 5 * . , - A . , - i '

and it is this operator which plays the role of the operator D of §5.

Locally we may choose an orthonormal frame 01, Θ2, ,θn for Λ1'0; then

0\ 02, - ,θn is an orthonormal frame for Λ01. The 2«-form

(6.13) ω = inθι Λ θι Λ ••• Λ θn Λ 0 "

is real and is independent of the choice of the frame; thus ω can be considered

as a globally defined element of gn*n. Locally there is a real 1-form θ of length

1 which is orthogonal to Λ10 θ Λ01. Note that θ is unique up to sign and can

be specified uniquely by requiring that the map

(6.14)

define a positive measure on the domain U of θ. Therefore θ, so chosen, is a

uniquely determined global one-form and

(6.15) dV=θΛω

is the volume form on M. Note that θ annihilates Tl0 θ Tol.

(6.16) Definition. The Leυi form is the Hermitian function-valued form

defined on sections of Tl0,

(6.17) L(Z,W) = iθ([Z,W])9

where θ is the annihilator of Tx 0 θ Toι chosen above.

Note that

(6.18) L(Z, W) = -idθ(Z,W) if Z and Ware sections of 7\ 0 .

Therefore L induces (or is induced) pointwise by the form -id#x on the

Hermitian vector space (TlQ)x.
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(6.19) Definition. The eigenvalues of the Levi form at x e M are the

eigenvalues of the Hermitian form Lx = -id#x with respect to the inner

product ( , > on (Tl0)x.

(6.20) Definition. Given 0 < q < n, the Levi form L is said to satisfy

condition Y(q) at x e M if the set of eigenvalues of L at x cannot be converted

to a set of nonnegative reals by changing exactly q signs.

(6.21) Theorem. If the Levi form satisfies condition Y(q) at each point of M,

then 3/3/ + Uhq has a parametrix belonging to Op S~2(M X R, y ) , where Ϋ~is

the bundle Re(7\ 0 ) + Im(7\ 0 ) .

Proof. We simply want to calculate Πhq in local coordinates and apply a

matrix version of Theorem 5.22. Given y e M choose a coordinate neighbor-

hood U in which we can choose an orthonormal frame θ, θl9 ,θn, θv ,θn as

above. Let X0,Zl9'-,Zn, Zι,",Zn be the dual frame for C ® TU. For

functions/ e ^ ( ί / ) ,

#= Σ (Z/)*y + Σ {Zjf)V+(Xof)θ.

Therefore

(6-22) 9/,.o/=Σ(V)R

Given multi-indices / = (jv ,ŷ ) and AT = (kv- ,fc^), with | / | = p and

|AΓ| = qr, set

(6.23) ΘJK = ΘJ> A Λ ΘJP Λ ^ ^ Λ Λ θk*.

Restricting to /, K with entries in strictly increasing order, we obtain an

orthonormal frame foτS>p'q(U). Now

(6.24) Kq{βJ'K) = Σ {Zjf)8J A ΘJ'K + fr,

where r is a. (p, q + l)-form whose coefficients with respect to our orthonor-

mal frame are derivatives of the coefficients of {θk} and {θk}. It follows after

some calculation [5] that

(6.25) +

+ Σ (Zjf)rj + Σ {zjf)rJ+(Xof)ro+fs,

where ( Z / ) ^ = Σ(ZjfJK)rJJK, etc., and

(6.26) π , - -IΣ{ZJZJ + ZjZ;) + \ Σ [Zp Zj] - \ Σ [Zjt Zj\.
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The rj, ?j and s in (6.25) are (/?, q) forms whose coefficients are polynomials in

the derivatives of the coefficients of Xo, { AΓy.}, {Xj}, 0, {θk}, {θk}. (Deriva-

tives from the volume form occur, but in view of (6.13) and (6.15) these are

already accounted for.)

It is important to note that

(6.27) [Z,, Zk] = -iL(Zj9 Zk)X0 mod(Tl0 Θ Γo α).

Suppose that our frames have been chosen so that the Zy diagonalize LdXy.

(6.28)

Let Xj and Xn+j be the real and imaginary parts of Zy:

(6.29) Zj-Xj-iX,,^, ZJ = XJ + iXn+J,

Then since θ([Zp Z J ) = 0, (6.28) implies

(6.30) θ([x

(6.31) θ([Xj, Xn + k])y = - i λ δ,*, 1 <j,k < n.

Thus the principal part of D^ at y is

and the principal part of Πhq at y is diagonal, with the terms (6.32) on the

diagonal. The condition (5.23) of Theorem 5.22 becomes

(6.33) \^K

1JXJ~ Σ^iλ7 |<i έ N ,

since (6.30) and (6.31) imply that the set of eigenvalues {cij(y)} is precisely

{ ± jkj}. Clearly Y(q) is equivalent to the validity of (6.33) for every multi-

index K with \K\ = q. Thus Y{q) implies the existence of pointwise inverses for

the localized principal terms (8/3/ + Πh q){. As in the proof of Theorem 5.22

this provides a principal symbol qy_2

 a n <3 thus a parametrix.

We now specialize further.

(6.34) Definition. The Hermitian metric on M is a Leυi metric if L\ = I at

each point x e M.

Thus the eigenvalues of the Levi metric are all ± 1 . We have assumed M

connected, so there are integers n + and n_= n — n+ such that the multiplicity

of ± 1 as an eigenvalue is n+= n ±(L) at every point. In this case, condition

Y(q) reads simply q Φ n +.
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(6.35) Theorem. Suppose the metric on the CR manifold M is a Leυi metric.

If q Φ n ±(L) and 0 < q < n, then 3/9/ + Ubq has a parametrix Q e

Sfr2(M X R, Ϋ"). Each term in the asymptotic expansion (5.8) for the trace of

exp(-tΠh q) has the form (5.9), where each term Kj(x) may be obtained by

evaluating at x a universal polynomial in the derivatives of the coefficients of a

local frame θ, {θk}, {θk} in suitable coordinates at x.

Proof. Take vector fields X- as above and set ω° = θ, ωJ = 2 R e 0 y and

ωn+j _ 2Im0 7 ' . The frames {Xj), {ω 7} are dual, so in any coordinate system

if

it follows that (ak) is the inverse of (β£). In ̂ -coordinates or in anti-symmetric

^-coordinates, these matrices are the identity at y. Therefore the derivatives of

the a* at y are universal polynomials in the derivatives of the β{. For a Levi

metric we are in the situation discussed at the end of §5, in which Theorem

4.14 is applicable. Thus as special coordinates we may take the anti-symmetric

coordinates for a frame which diagonalizes the Levi form, and the conclusion

follows.

To obtain more information about the possible polynomials which can occur

in representing the terms of the asymptotic expansion (5.8), (5.9), it is useful to

consider the effect of a change of scale in the Levi metric. Note that a Levi

metric ( , ) is determined by its restriction to Γx 0 , together with the choice of

an orthocomplement ^Γfor T10 θ Γ0 1. In fact this restriction determines the

metric on Tl0 θ Toι and the requirement that the eigenvalues of the Levi form

be + 1 determines the 1-form θ up to sign. Then a section Xo of J^is uniquely

determined by the requirement θ(Xo) = 1. Since one wants (Xo, Xo) = 1, the

metric is then determined on Jf.

Given λ > 0 we change the scale of a given Levi metric ( , ) by setting

(6.36) (Z,W)λ = λ 2 ( Z , W) if Z, Ware sections of Tl0 θ Toι

and using the same orthocomplement. If 0, {θk}, {θk} is an orthonormal

frame as above with dual frame Λ^, { Zy }, { Z y}, then we may take

(6.37) 0 λ = λ20, θk = λθk, X0Λ = λ~2X0, ZM = λ-ιZj

to get an orthonormal frame for ( , ) λ . The corresponding volume form is then

(6.38) dVλ = λ2n+2dV.

The relation between the inner products in Ap'q is given by

(6.39) ( , ) λ = λ~2p-2q( , > i n Λ ^ .
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(6.40) Proposition. Db λ = λ" 2D b .

Proof. The projectors πpq are unchanged, so

(6.41) θft,λ = θfc.

We need to prove

(6.42) #, f λ = λ-2ΰh.

Suppose u is m<^p^+1 and v is in gP«, and let rf = In + 2 - 2/? - 2q. Then

(6.43) /

= λ ^ 2 ( W , dhv) = λd-2{ΰhu, v) = . = λ " 2 ( ^ W , v ) λ .

We take the A:er«e/ of exp(-t\Jhλ) on ̂ ^ to be the unique map o n M X M ,

(6.44) (x, y) * Gt,λ(x9 y)

such that

(6 45)

x e M, w <^gp'q,t > 0.

Because of (6.40) and (6.38) one has

(6.46) G,,λ(x,>0 = λ- 2 "- 2 G λ - 2 ,(*, j) ,

where Gt = G,α. As in §5 there is an asymptotic expansion

(6.47) Guϊίx9x)~r»-ιΣtJKjΛx)
7 = 0

The terms in this expansion are unique, so (6.46) and (6.47) imply

(6.48) KjΛ(x) = λ-VKj(x).

Thus for the expansion of the trace on Sp q we have

tr[exp(-ίD6,λ)] = / tr[G,,χ(x, x)] dVλ(x)

(6.49) oo
~r-'Σ kj,κ{x)dvλ{x)

7-0

with

(6.50) kjΛ(x) = trKjλ(x) = λ-2%(x).
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7. Geometry of Levi metrics

In this section we specialize to the case of compact strictly pseudoconvex CR

manifolds. Suppose M is a (2n + l)-dimensional compact CR manifold

equipped with a Levi metric and the corresponding real 1-form θ. Suppose

further that M is strictly pseudoconvex, i.e. that the Levi form is positive

definite.

As before, locally there is an orthonormal frame Z 1 ? , Zn for Tl0 such that

(7.1) L(Za, Zβ) = δaβ, H α j o

there is also a unique real vector field Xo orthogonal to Tl0 such that

(7.2) (θ,X0)=l.

Let 0X, , θn be the dual frame of (1,0)-forms. Then

(7.3) dθ = iθa Λ « α + « Λ τ .

(Here and below, repeated Greek indices are summed from 1 to n.) The 1-form

T is unique if we require

(7.4) τ = 0 mod{0 α ,0 α } .

Also,

(7.5) dθa = θβ A θβ

a + θ A τa 4- \θa A T.

The 1-forms θβ

a and τ α can be chosen uniquely, subject to the conditions

(7.6) θf + θβ* = 0;

(7.7) Jτ = 2Imf α Λ θa

(7.8) ifτα = mβ

aθβmod{θ9θ
β},thtnmβ

a = ϊnf.

This was proved for special Levi metrics by Webster [19] and for general Levi

metrics by C. Stanton [14]. They use the forms θa

β to introduce a connection D

on M, defined for the given local frame by

(7.9) DXo = 09 DZa = θa

βZβ, DZa = ΈZa.

This is a metric connection.

The forms T, τ α , fα play the role of the torsion forms of D. Indeed the

classical torsion forms for our local frame are

T° = dθ = iθa Λ f + « Λ τ ,

(7.10) Ta = dθa 4- θβ

a A θβ = θ A τa + \θa A T,

f« = θ A fα + hθa A T.
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The curvature forms are

(7.11) Π / = dθf + 0/ Λ θa\ Π / .

As usual, normal coordinates at a point x o e M a r e obtained from a frame at
JC0 by exponentiating along the geodesies of the connection. Given the frame
above, we take

(7.12) {* 0 ,ReZ α ,-ImZ α }

as a frame for Tx M and exponentiate to obtain coordinates in a neighborhood
of x0. The frames {Zα}, {θa} can be extended by parallel transport along
geodesies from JC0. We call the resulting frame a normal frame at x0. Because
the connection is a metric connection, by (7.9) the normal frame gives us
orthonormal frames for T10 and Λ10.

(7.13) Remark. Webster and C. Stanton also construct a canonical connec-
tion in the case of a Levi metric and a nondegenerate indefinite Levi form, but
this connection preserves the Levi form rather than the metric. Thus a normal
frame is no longer orthonormal. For this reason we have specialized to the
strictly pseudoconvex case.

Suppose we have chosen normal coordinates at x0 and the associated normal
frame {Zα}, {0α}, and let Xa = ReZα, Xn + a = -Im Zα, 1 < a < n. In these
coordinates let

1/2

(7.14) r =
2n

^ ^ 1

be the radial function and let

7 = 0

2n I r\

XJ θ(7.15) £-—= - ^

£o ' foe' r
be the corresponding radial vector field. Since rays are geodesies and since the
normal frame is obtained by parallel transport, we have

2n

(7.16) #= Σx%-
7 = 0

Therefore

(7.17) @AΘ = JC°, @jθa = \za, 1 < a ^ w,

where zα = xα + /xw+α. Since Z ) ^ α = 0, one has

(7.18)
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Given normal coordinates and a normal frame, by the components of the
frame, or of the curvature or torsion forms, we mean the components with
respect to the coordinate frames (3/3JC7} and {dxJ}, {dxJ A dxk\ j < k).
The following is the analogue of a classical Riemannian result (see the
appendix of [1]).

(7.19) Proposition. Let {xj} be normal coordinates at x0. Then for any
component of the normal frame Xo, {Zα}, 0, (0 α ), each Taylor coefficient at the
origin is a universal polynomial in the components of the covariant derivatives of
the curvature and torsion tensors of the Webster-Stanton connection.

Proof. Let ^denote the radial vector field (7.15) and also the Lie derivative
with respect to this vector field. If u is a form, let ύ(k) denote the term
homogeneous of degree k in the (component-wise) Taylor expansion of u at the
origin. Now (7.3), (7.17), and (7.18) give

0ϊθ = @Jdθ + d(^JΘ) = @j(iθa A θa + θ A T) + dx°

( 7 ' 2 0 ) = Uzaθ« - z«θ«) + x°τ -(3tJτ)θ + dx°.
2

Next, (7.5), (7.17), and (7.18) give

(7.21) = @j(θβ Λ ί / + ί Λ τ a + \θa A T) + \dza

= \zβθβ

a + x°τa -(@lτa)θ + \zai - \(@lτ)θa + \dza.

Note that for a function a, (31 a) A(k) = ka(k). Therefore

\@(a.dzJ)Y(k)= \(3lai)dxJ^aidxJY(k)
(7-22) . , _

Thus (7.21) and (7.22) give

(7.23) θa(0) = \dza,

while (7.20) and (7.22) give

(7.24) θ(0) = dx°,

(7.25) 9(1) = ί(zadza - zadza) + \x°τ(ύ) - K ^ J τ ) A ( l ) dx°.

Inductively, (7.20), (7.21), and (7.22) show that θ(k) and θa(k) are poly-
nomials in {τ(l\τa(l)Jβ

a(l\l<k}. Next,

a - θy

a A θβ

Ύ) =
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so θβ

a(l) is a polynomial in Πβ

a(l - 1) for / > 0, and

(7.27) &β"(0) = 0.

We have now proved the result for the 1-forms 0, {#α}, with ordinary

derivatives in place of covariant derivatives. To replace the ordinary derivatives

by covariant derivatives, we let A denote the matrix of the coframe {#, θa, θa)

in terms of the coframe {dx0,- -,dx2"}. Let θf = {θ-j} denote the connection

matrix with respect to the coframe {dx°, -,dx2n], and let θ denote the

connection matrix with respect to {0, θa, θa). Then

(7.28) θf = AιΘA - A~ιdA.

By (7.20), (7.21), (7.22), (7.26) and (7.27), we see that the components of θ'(k)

are polynomials in the real and imaginary parts of {tla

β(l — 1), f(/), fα(/),

/ < / : } . Thus, inductively, we may replace derivatives of components of the

torsion and curvature tensors by components of their covariant derivatives.

Finally, the result for the components of the vector fields follows, since these

components can be obtained by inverting the matrix A, and the determinant of

A at the origin is a constant depending only on n.

(7.29) Remark. As a consequence of (7.20), (7.21) and (7.22) we see that

ox \
0 otherwise.

Thus, normal coordinates at x0 are anti-symmetric x0-coordinates in the sense

of §5.

Combining Proposition 7.19 and Remark 7.29 with Theorem 6.35, we obtain

a geometric interpretation of the terms in the trace of the heat kernel for D^ for

a strictly pseudoconvex CR manifold with a Levi metric. We summarize our

main results from Theorems 5.6, 6.21, and 6.35, together with the remarks just

made.

(7.30) Theorem. Let M be a compact CR manifold of dimension 2n + 1, and

suppose the Levi form satisfies condition Y(q) at each point of M. Then
00

(7.31) tr(e-'π*') ~ t'"~l Σ * / y as t -> 0 + ,

where

(7.32) *,. = / tf,(x)</F(*);
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K • is a locally computable function on M and Πh q operates on Kp?q for some fixed

p, 0 < p < n. In the special case that M is strictly pseudoconvex (so Y(q) is

satisfied for 0 < q < n) and that the metric is a Leυi metric, the function Kj may

be calculated at x e M by evaluating a polynomial in the components of the

curvature and torsion of the Webster-C. Stanton connection, and their covariant

derivatives, computed in normal coordinates at x\ this polynomial depends only on

n, p, q, and j .

8. The terms Ko ( x ) and Kλ ( x ) in the expansion

As in §7, we assume that M is a compact oriented CR manifold of

dimension 2n + 1 with a positive definite Levi form and a Levi metric. We

seek more information about the terms in the asymptotic expansion of the

trace of the heat kernel for Uhq, 0 < q < n. For this purpose we use scale

changes, U(n) in variance and conjugation. The method gives additional infor-

mation about each term Kj(x), but the answer is already complicated for

Kλ(x) and we consider here only K0(x) and Kx(x). The main result, Theorem

8.31, follows from three lemmas.

Recall from the end of §6 that the scale change ( , ) λ = λ2( , ) on TlQ

leads to the changes in orthonormal frames:

(8.i) * 0 , λ = λ-2*0, zaΛ = λ-'za, θλ = λ2θ, ( r ) λ = λ r

It follows immediately from (7.3), (7.5), and (8.1) that

(8-2) τλ = τ, (T«)λ = λ-V, ( V ) λ = V

In particular, the connection is unchanged, and (7.11) implies that the curva-

ture form is also unchanged:

(8.3) ( Π / ) λ = Π / .

Since the connection is not changed, while the initial conditions for normal

coordinates scale by (8.1), it follows that normal coordinates {xJ} scale by

(8.4) {x{} = {λ2x°,λx\ ",λx2n}.

We shall denote components with respect to {dxJ} and {dxJ A dxk} by

(further) subscripts, so for example T = Σ(τ)jdxJ and Π ^ = ΣJ<k(ΐlβ

a)JkdxJ

Λ dxk. Using the same convention with respect to {dx{} and {dx{ Λ dxχ } for

τ λ and so on, we have

( 8 ' 5 )
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where

(8.6) <0> = 2, 0 ) = l if 1 <y < 2/i.

Note that, by (7.4), τ0 vanishes at x = 0; also

(8.7) -L = λ-ω-L.
dx{ dxJ

Let Dj denote covariant differentiation in the d/dxJ direction at x = 0. Then

(8.8) Djθ = 0 = Djθa.

Thus, at x = 0 we have

(8.9) DjtX = \-<»Dj.

Consider now the first two terms in the asymptotic expansion (7.31).

(8.10) Lemma. The term Ko in the expansion (7.31) is a constant depending

only on n, p, and q. The term Kλ is a linear combination of

( 8 . 1 1 ) ( τ ) , ( τ ) Λ , Djτk, ( τ « ) , , ( n β « ) j k , l ^ j , k ^ 2 n ,

and their complex conjugates.

Proof. The statement about Ko follows from the parametrix construction.

It may also be deduced from the form of the Kj as stated in Theorem 7.30,

together with the scaling results (6.48) and (8.5). Similarly, by (6.48) Kλ scales

by λ"2 and (8.5) shows that the only monomials in components of covariant

derivatives of curvature and torsion which scale by λ"2 are those of (8.11) and

their conjugates. (Note that the (τ) y are real, so there are no mixed quadratic

terms to consider).

Next we use U(n) in variance.

(8.12) Lemma. The term Kλ in the asymptotic expansion (7.31) has the form

(8.13) Kx = aRa

a

β

β 4- baaaa + cZaaa + dZaaa + ema\

where a, b, c, d, e are constants depending only on n, p, and q, m^ is given by

(7.8), while aa and Rj*f are defined by

T = aβa + ajj",
( 8 ' 1 4 ) Π / EE RffOi A θ8 mod{0 Λ(Λ 1 0 Θ Λ0-1), Λ2'0, Λ0'2}

and repeated Greek indices are summed from 1 ton.

Proof. Fix x e M. The unitary group U(n) acts on normal frames at x. If

{ Xo, Z α , θ, θa) is a normal frame and U = (Ug) belongs to U(n% we take the

action to be

(8.15) θ ~ θ, θa~ U^", Xo - Xo, Za ~ {U-ι)β

aZβ.
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This corresponds to an action on normal coordinates and induces an action on

all tensors. Because Kx(x) is independent of the choice of normal frame, the

linear combination of Lemma 8.10 is invariant under the U(n) action. To

describe the action on the terms in (8.11) and their conjugates, we find it

convenient to use the metric to raise and lower indices and thereby eliminate

conjugates. Let Z α = Z α and θa = θa. Then, e.g.

(8.16) τ = ajla + aaθa, a« = aa, Uf = Rfy

δθ"Aθδ.

After we eliminate conjugates in this way, the U(n) action can be described by

saying that upper Greek indices transform by U and lower Greek indices

transform by (U~ι) as in (8.15).

Let V= C", with the standard basis {e1,- -,en}9 considered as a U(n)

module in the usual way. Let V* be the dual space, with dual basis { el9 ,e n },

considered as a U(n) module with respect to the inverse transpose action. Let

γr = v ® . . . 0 v & γ* $ . . . ® y*9

where there are r copies of Fand s copies of F*, with the induced U(n) action.

We can imbed the data of (8.11) and the conjugates in a direct sum E of copies

of the Vf. For example

(8 17) { ( T ) ; ( T ) * } ? * - I ^ a«aβe" ®eβ + flV« ® e β + a"aβe« Θ eβ

G V2° Θ V\ θ Fo

2.

This imbedding is compatible with the U(n) actions. Let v0 be the image of the

data (8.11) and the conjugates, for our chosen frame. Then Lemma 8.10 says

that there is a linear functional

(8.18) f' E^C

such that

(8.19) f(Uvo) = Kι(x); U^ U(n).

We may replace/by its average over U(n) and assume that/is U(n)-in variant.

The restriction to each summand is also U(n)-invariant. By classical invariant

theory [13], a U(n)-mvariant linear functional on Vs

r is zero unless r = s.

Checking the transformation laws of the various components in (8.11), one sees

that the only ones which imbed in some Vr

r are

(8.20) a«aβ, m/, Z«aβ, Zaa^ # / / , R«β\.

Moreover, any U( n )-invariant linear functional on Vr

r is a multiple of a

complete contraction [13]. Thus our functional/ is a linear combination of

/o T I \ „<*,- _- α 7 α Λ -/ «α n a β n β a not β nβ a

(δ.zl j a aa, ma , Z aa, Δaa , κa β , κa β , K a β, K a β.
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By (7.6) and (7.11), ( Π / ) is skew-symmetric, so

(8.22) Ra

a/ = Ra

a

β

β = R\β

β, R/β« = Rβ

a

a

β.

Finally, by the curvature identities in [14], Ra

a

β

β = Ra

β

β

a. Thus f\U(n)v0 is a

linear combination of the terms

(8.23) aaaa9 ma\ Z«aa, Zaa\ Ra«
β.

The lemma follows from (8.19).

To obtain more information, we use conjugation.

(8 .24) L e m m a . There are real constants a, b and c depending only on n,p and

q, such that

(8.25) Kλ{x) = aRa

a

β

β + baada + c(Zaaa + Zaaa).

Proof. We define a new CR structure 7\'o on M by Γ/o = T01. Let θ' = -θ.

The original metric is a Levi metric for the new structure and complex

conjugation is an isometry of the structures. The new sublaplacian Π'h is given

by

(8.26) π'bμ=(πbμy,

so the new eigenforms of Π'h on Np'q are the conjugates of the eigenforms of D^

on Ap*q, and the eigenvalues are the same. Therefore tr K((x, x) is (real and)

unchanged, so

(8.27) KJ(x) = Kj(x)9 ally and JC,

where { KJ} are the terms in the asymptotic expansion for Π'h.

If {θa} is an orthonormal frame for Λ10, the conjugates form an orthonor-

mal frame {θ'a} for (Λ')1'0. Set

These satisfy (7.3)-(7.8) for the new frame, and therefore give the connection

and torsion forms. The curvature satisfies Wa

β = Π / . By (8.27) and (8.13).

(8.28) = \a(R/β

β + Λ β

β /) χ + baaaa + \{c + d)(Zaάa + Zβαβ)

= α Λ β y + teβαβ + He + rf)(Zβflβ + Zβflβ).

Here we have used (8.22) and the fact that

(8.29) m': = -ma

a = - m /

by (7.8). Since AΓX is real, as are Ra

a

β

β, aada and Zada 4- Zα«α, we may replace

the constants α, b, and ^(c + J ) in (8.28) by their real parts to complete the

proof.
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(8.30) Definition. The scalar curvature is K = Ra

a

β

β. Thus K is a function on

M, independent of the choice of frame.

The next theorem is largely a summary of Lemmas 8.10, 8.12 and 8.24.

(8.31) Theorem, (i) The term Ko in the asymptotic expansion (7.31) is the

constant function

n\ln\ ι Γ e-ίn-iaU μ Vdιx

![<lJ2»7r»+ιJ-oc I sinhμ j d μ

(ii) The term Kλ in the asymptotic expansion (7.31) has the form

Kλ = aK + b(τ, T) + cRed£πoιτ,

where a, b and c are real constants depending only on n, p and q.

Proof. To prove (i) we examine the parametrix, using the forms θJJζ of

(6.23) to trivialize Ap-q in a neighborhood of JC. By (5.54) and (6.32), since each

λj = 1 we have

(cosh ±sξo)~nexp(-2\ξ'\2ξol tanh i€ o j ) ds J dξ dτ\l9X

where / is the (n

p)("q) identity matrix. We are working in normal coordinates

centered at JC, SO dV(x) = 2~ndx by (7.23) and (7.24). Hence (i) follows from

(8.33) r"-ιK0(x) dV(x) = tr/c_ 2 w_ 2, x(0, 0 dx

and evaluation of (8.32). To evaluate (8.32) we integrate first with respect to £',

then use the Fourier inversion formula to integrate with respect to s and T, and

finally set μ = jξot.

To prove (ii) we use (8.25). Because {θa} is an orthonormal frame for Λ10,

aaάa = {(τ, τ>. Furthermore, 7r01τ = daθ
a, so

(8.34) Sχ 1 τ--Z β δ f l -(β- 1 Z β f l ) f l β ,

where the volume element is dV = adx. To calculate Za(a) evaluated at x, we

write

θ = X>°</xy, e α = flgdx0 + aϊdzβ

θa = a"0

+adx°

for some constant d. By (7.23) and (7.24), 2a{(0) = δJ

k fory,

k Φ 0, and α^(0) = δ°. Thus since x is the center of the normal coordinates,

(a-ιZaa)(x) = (ZαΣέi/)(0), where αV is the first order part of the Taylor

expansion of aj about 0. By (7.23),

(8.36) Zα(0) = 2 g p .
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By (7.25) and (7.17),

(8.37) a'0° = - H ^ τ Γ ( l ) = -i( V + H'Λ

By (7.21M7.24),

(8.38) a'β
a = i{x°ία(0) + i z X - i ( α ^ + aβz>)}.

In (8.37)-(8.38) the functions aβ, aβ are evaluated at 0. Combining

(8.36)-(8.38), we obtain

(8.39) (zaΣay)(0) = ^ { - ( i . + \)(aβz* + ff,z')} = -(π + * ) * . .

Substituting (8.39) in (8.34), we see that

(8.40) a χ l T = -{zα«α -(« + i ) ^ α } = H« + i)<τ, τ> - zβάβ.

In view of (8.40) we have

(8.41) Kλ = a κ + bx(r9 τ> + C i R e ^ X ^ ) ,

where «, Z?x and cx are real. This completes the proof.

(8.42) Remark. The constant Ko was first calculated in [17]. The present

formula is slightly different because of different normalizations in the defini-

tion of Levi metric.

(8.43) Corollary. In the special case that τ = 0, there is a real constant a

depending only on p, q and n such that Kλ = aK.

(8.44) Remark. If M is a compact strictly pseudoconvex CR manifold, it is

always possible to give M a Levi metrics satisfying the hypothesis of the

corollary. In fact, each choice of θ determines a unique such Levi metric; these

are the metrics studied by Webster [19].

Appendix: The exact heat kernel

The machinery developed above makes possible a quick proof of the main

result of [17], that the exact heat kernel of D^ can be obtained by iteration. We

sketch the proof in the more general context of §5 for the scalar case.

As in §5, assume that P = 3/3/ 4- D has a parametrix Q with symbol in

Sfr2(M X R, y*). Let Qo correspond to the leading term, so that

(Al) PQ0 - I = R has symbol in S^ι(M X R, r).

Then Q has a formal expansion

(A2) Q~ Σ Q0R
k-
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We shall show that this series converges in a certain sense and gives the exact

heat kernel.

Let ak and bk be the distribution kernels of Q0R
k and of Rk, respectively.

Then

(A3) ak(x, t\ y, s) = ak t_s(x, y),

where ak , = 0 for t < 0 and ak t e £(M X M) for / > 0. The same is true for

Kr
(A4) Theorem. The series Σ£L0

 akj converges in C°°(M X M) to the kernel

Kt of e~tU for t > 0; moreover the convergence is uniform with respect to t in

bounded subsets of R+.

Proof. Let Ak(t) and Bk(t) be the operators in L2(M) with kernels ak t

and bk n t > 0. Then formally at least

(A5) AJ + k(t) = Aj * Bk{t) = ζAj(t - s)Bk(s) ds.

Given any integer m ^ 0, identify Cm(M X M) with a subalgebra of

^(L2(M)) by identifying kernels and operators. Then any admissible norm in

Cm{M X M) gives a norm in this subalgebra, such that

(A6) \AB\ < Cm\A\\B\.

The continuous functions on [0, oo) with values in Cm(M X M) form an

algebra with respect to the convolution composition (A5). For such functions

set

(A7) |S |r=

(A8) B(1) = B, B^k + l) = B*B(k).

Inductively one sees that

(A9) Λ!|β<* + 1 V < ( C I B Γ ) * ( | B | 7 )* + 1 .

Now choose v > 2n + 4 + m. Any operator with symbol in S^P(M X R, ir)

has kernel in Cm(M X R , M X R). In particular, for any integer N > 2v the

function A N ( ) satisfies

(A10) AN = Av+j*Bkv = Av+J*Bik\

where N = (k + \)v + j with 0 <7 < v. The estimates (A9) imply the conver-

gence of the series Σa/1 in Cm(M X M), uniformly for 0 < t < T. It remains

to show that the sum is Kr Let

(All) QN = Qo Σ Rj
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Then for u e C+(R; L2{M)\

(All) QNu(t)= Σ Γ Aj(t-s)u(s)ds.

The estimates (A9) imply that QNu converges in C+(R; L2(M)) as N ~> oo.

On the other hand, for u e ^ ( M X R) = 0(R; <?(M)),

(A13) Pg^w = u - RNu

and the estimates (A9) imply that RNu -» 0 in C+(R; L 2 (M)) as TV -> oo. Thus

for such functions w,

(A14) lim ρ^w = Qu,
TV—> oo

where Q is the inverse for P given by (5.10). It follows that the kernel Kt

associated to Q is indeed the sum ΣaJr
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