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1. Notation, definitions and basic facts

I. Satake has introduced the concept of quasi-symmetric domains. They

occur as fibers in certain fiberings of symmetric domains over their boundary

components, and they are contained in the larger class of spaces called

homogeneous Siegel domains. The homogeneous bounded domains are biho-

lomorphically equivalent to the homogeneous Siegel domains, and the sym-

metric bounded domains are equivalent to those quasi-symmetric domains

that satisfy a certain additional identity, by a theorem of Satake. The

quasi-symmetric domains have some convenient algebraic properties, and

Satake has classified them algebraically. We work out the basic differential

geometric properties of these spaces, such as Bergman metric, Bergman

connection, curvature tensor, and holomorphic (bi)-sectional curvature. We

also give a differential geometric proof of Satake's symmetry condition, given

that the space is quasi-symmetric. The author is very indebted to his thesis

adviser, Professor S. Kobayashi.

Let <Φ(Ω, F) = {(z, u) E Cn X Cm|Im z - F(u, U) 6 Ω } be a Siegel do-

main (of the second kind), defined by the cone Ω in Rπ, (Ω open, convex, not

containing a whole straight line), and the Ω-hermitian form F with values in

C"-(F is C-linear in first variable, F(uv u2) = F(u2, ux) and F(w, ύ) G

(closure of Ω) - {0} if u φ 0). Identifying Cn+m with C X Cm, and denoting

the affine transformations of Cn+m by Aff(Cn+m), we let

4//(Ω, F ) : = { g £ AMC+m)\g^(Q9 F) = <*D(Q, F)},

G7(Ω, F) := 4#(Ω, F) n Gi(n + m, C).

We also let
G(Ω) := {A E Gl(n, R)\AQ = Ω}.

As is well-known [5], [7], we have

Ajftβ, F) = {(A, A, a, b) e G(Ω) X Gl(m, C ) x R " X Cm|

AF(vv v2) = F{Avv Av2)\fvl9 v2 G C"1},
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with action 

(A, A", a, b)(z, u) = (Az + a + 2i~(A"u, b) + iF(b, b), + 6). 

The group multiplication in Aff(52, F )  is 

(1) (A, A", a, b)(B, B", c ,  d)  = (AB, A"B", a + Ac + 2 Im F(b, i d ) ,  b + i d ) ,  

and (I, I,  0, 0) is the unit element. One calculates the Lie algebra to be 

c Aff(52, F){(X, 2 ,  a, b) E g(O) X d(m,  C) X R" X CrnIXF(u,, v2) 

= ~ ( z v , ,  u,) + F(v,, ~v , )vv , ,  v, E Cm), 

where g(52) is the Lie algebra of G(52). The bracket product is 

[(x, 2 ,  a, b), ( Y, f ,  c, d) ]  

(2) = ([x, Y], [x, f ] ,  xc - Ya + 4 ~ r n  ~ ( b ,  d), 2 d  - fb) .  

Now Aff(52, F) c Hol(52, F )  := group of holomorphic automorphisms of 
9 (52, F), and if ~(52, F )  is the Lie algebra of Hol(52, F),'then we have an 
anti-isomorphism of g(52, F )  with the Lie algebra of complete holomorphic 
vector fields on 9 (52, F). The vector field corresponding to Z E g(52, F )  has 
the value 

at (z, u), where T(,,,, is the real tangent space at (z, u). More precisely, its 
value is the vector if,,,) E T(,,,)9(52, F )  such that i!(,,,, = ;(z(,,,, - iJZ(,,,,), 
where T9(52, F )  is the holomorphic tangent bundle and J is the complex 
structure. Let now a, = a/& = (a/azl,. . , a/azn) = (a,,, . . . , a,.), and 
for a E R" let a 3, := 2 aia,,. Use similar notation for u. Then one calcu- 
lates that 

(x ,  X, a, b); ,,,, = a . a, + (2iF(u, b) - a, + b a,) 
(3) + (XZ . a, + 2~ a,). 

In general, we have a grading 

where g, is the A-eigenspace for ad(z . a, + f u . a,). We have 

a n d a . a , € g - , ,  2 i F ( u , b ) ~ ~ , + b ~ a , ~ g ~ , , , , X z ~ a , + ~ u ~ a , ~ g , .  From 
now on, let 52 be self-dual with respect to a positive-definite inner product 
( , ) on R", in the sense that 52 = 52* := { t  E Rnl(y, y') > 0 Vy' E closure 
52 - (0)) and G(52) acts transitively on 52. Then 

Fact 1. [8]. G(52) is an open subgroup of a reductive real algebraic group 
and the isotropy subgroup K, of G(52) at any point a E !d is a maximal 
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compact subgroup. There exists an element e 6 Ω such that Ke = {A G

G(ίϊ)\A' = A~1}, where the prime is the adjoint with respect to < , >. The

Cartan involution of g(Ω) at e is X H» -X\ and the Cartan decomposition is

therefore g(Ω) = ϊe + pe where

ϊe= {X G g(Ω)|A" = -X) = { I G g(Ω), ΛΓe = 0},

pe= {X 6 g ( Ω ) | Γ = I } .

We fix the base point e G Ω. Observing that g(Ω) c g/(«, R) consists of

certain endomorphisms of RΛ, one makes the

Definition 1 [8]. It is easily seen that there is a unique element Ta E pe

such that Tae = a for any given α E R". In particular, Te = idR«.

The mapping Rn 3 a H> Ta G pe is a linear isomorphism, and one sees

easily that under the isomorphism pe —» Γe(Ω) given by X f->

^ / ^ | / = 0 { ( e x P tX)e), we have Γα h-» Λ θ ,̂ where Γe(Ω) is the tangent space at

e, and>^ is the standard coordinate on RΛ.

Definition 2 [8]. Let ax ° a2 = Γαi(α2) for α p α2 G Rn. It is known [8] that

under this product Rn becomes a (commutative) formally real Jordan algebra

with unit e. We also need

(4) a o χe = Xa for X G t>e.

In fact a° Xe= TaXe = [Γβ, ΛΓ]e + XTae = Xa, since [Ta, X] G fβ.

Definition 3 [8]. Given a Siegel domain <>D(Ω, F), we say that A G

g/(w, C) is associated to Λ G g(Ω) if

(5) ^^(ϋi , t)2) = F(Aυl9 v2) + F(ϋ!, Av2) Vvv v2 G C1.

Definition 4 [8]. Extending ( , ) to a C-bilinear symmetric form on

Cn X CΛ, we put, for a G Rrt,

We have that Fa is a hermitian form on Cm, and that it is positive-definite if

α E Ω*, by virtue of the definition of Ω*. So if Ω is self-dual, then Fe is a

positive-definite hermitian form on Cm.

Definition 5 [8]. If Ω is self-dual, for a G R" let Ra G g/(m, C) be given by

i.e.,

<α, F(t?,, ϋ2)> = 2 <e, F ( ϋ l 9 Rav2)).

If 3C(/;) are the Fe-selfadjoint transformations of Cm, and 9(Fe) is the set

(cone) of the positive definite subsets of %(Fe), then Ra G %{Fe\ and

Λα G ^(/'JfOΓέl GΩ.

Remark. Satake uses an F which is conjugate to ours, but this does not

affect the definition of Rn.
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We also let R denote the map Rn 3 aπ> Ra e %{Fe) and also the C-linear

extension Cn ι-> Ql(m, C) of this, [8]. The relation (5) can be written, [8],

(6) RA.a = A*Ra + RaA for a G Rπ.

From [8] we quote

Fact 2. If ^(Ω, F) is a Siegel domain with Ω self-dual, then the following

conditions are equivalent:

(i) For every a G Rn, Ra is associated to Ta.

(ii) The map R: a H> Ra of R" into %{Fe) satisfies

Raλ o a2

 = RaRa2 + Ra2

Rax'

(iii) There exists a (unique) Lie algebra homomorphism β: g(Ω)—»

Ql°(m, C) := (X G g/(m, C)|trace Z e R } such that

(7) β(X) is associated to X,

i.e.,

(8) β{x') = β{xy.

(iv) The projection map Q0 3 (X, X)\-^ X G g(Ω) is surjective.

(g0 is a term in the decomposition

β(Ω, F) = Q_! + Q_ 1 / 2 + g0 + Q 1 / 2 + Qp)

Now finally we can define the spaces which we want to study.

Definition 6 [8]. A Siegel domain <>D(Ω, F) with self-dual Ω is said to be

quasi-symmetric if the equivalent conditions in Fact 2 are satisfied.

A quasi-symmetric domain is homogeneous, since Ω and therefore also

^(Ω, F) are homogeneous [5].

To have the situation as simply as possible, we have the

Definition 7. A cone Ω c R " is said to be decomposable if there exist

nonzero linear subspaces Uλ, U2 of R", and cones Ω,ι c Ux, Ω2 c U2 such that

R" = (/, θ U2 and Ω = Ω, X Ω2. If no such decomposition exists, the cone is

said to be indecomposable.

Similarly we have

Definition 8. A complex manifold biholomorphic to a homogeneous

bounded domain is said to be decomposable if it is biholomorphic to the

product of two nontrivial homogeneous bounded domains. If no such decom-

position exists, the manifold is said to be indecomposable.

It has been shown [2] that any homogeneous bounded domain is biholo-

morphic to the product of indecomposable homogeneous bounded domains,

and also that a homogeneous Siegel domain Φ (Ω, F) is indecomposable if

and only if Ω is indecomposable. (See also [10].)
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Because of the above, we restrict attention to (homogeneous) Siegel do-
mains fy (Ω, F) with a self-dual and indecomposable cone Ω satisfying the
condition of quasi-symmetry.

Up to isomorphism the self-dual indecomposable cones can be described as
follows [10], [11].

I. Let F = R, C, H, the sets of real numbers, complex numbers, and
quaternions respectively, and for each integer m > 1, let

where Mm(F) is the set of m X m matrices with coefficients in F, and
X* = X' is the conjugate transpose, using the standard conjugation on F.
Then the set 9m(F) = {X E %m(F)\X positive-definite} is an indecompos-
able cone which is self-dual with respect to the inner product

(X, y> = trace(AΎ)

on the real vector space 9Cm(F). We call these cones classical cones. The set
Δm(F) of upper triangular matrices in Mm(F) with real positive diagonal
entries acts simply transitively on 9m(F) by

(/, X) H> tXt* for X e <3>m(F) and / <Ξ Δm(F).

II. For n > 3 we define the quadratic form Qn on RΛ by

Qn{x) = xλx2 - x\- -xl

We put Sn = {x G Rn\Qn(x) > 0, xλ > 0}. Then Sn is an indecomposable
cone which is self-dual with respect to the ordinary inner product on Rn. We
call these cones spherical cones. The connected component of the identity of
the group of similitudes of Qn acts transitively on Sn. (We modify the inner
product slightly in §2.)

III. There is also an exceptional cone 93 (Cayley) which we exclude here,
since Satake has proved that a quasi-symmetric domain with this cone must
be the tube domain defined by it, and we are mainly interested in Siegel
domains of the second kind. (Reason for the exclusion is simply that this case,
being symmetric, is already well understood.) So we agree to forget about this
cone in all statements belows.

The key fact we need in order to establish a connection between the
differential geometry of D̂ (Ω, F) and Satake's algebraic description is

Fact 3 [5]. Let D̂ (Ω, F) be a homogeneous Siegel domain. The Bergman
kernel function is of the form % = λ ° Φ, where λ is a positive function on Ω,
and Φ is the map

Φ(z, u) — Im z — F(u, u)
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of Φ(Ω, F) onto Ω. Moreover, if (A, A) EL G/(Ω, F\ then

λ(Ax) = |det A|"2|det A\-2λ(x)

for Λ: e Ω.

Observe that the Bergman metric is defined, since D̂ (Ω, F) is biholomor-
phic to a bounded domain, [5], and hence we can transfer the metric from
that domain just as in the case of the upper half-plane.

2. The Bergman metric

We need some lemmas. Recall (§1) that Δp(F) denotes the group of upper
triangular matrices in Mp(¥) with positive entries on the diagonal, where
F = R, C, H. The image of A e Δ̂ ,(F) under the mapping Δp(F) -> G{9pψ))
is denoted here by A. We have AY = AY A* for y e %(¥). Now A G
Gl(%p(F))9 and %p(F) is a real vector space of dimension d =\p(p + I),/?2,
2/72 - p for F = R, C, H respectively.

If

0 c

let det A = ax ap also in the quaternionic case. We have
Lemma 1. det A = (det A)ε for A G Ap(F), where ε = p + 1, 2p, 4p - 2

for F = R, C, H respectively.
Proof. If there is such an ε, we find it by replacing A by sA with s > 0.

Then (sAy= s2A, and det s2λ = sld det A = s2d(det A)ε. On the other hand,
(det sA)ε = (sp det A)ε = ̂ e(det A)ε. So ε = 2̂ ///?.

We have only to prove that det A = 1 =Φ det A = 1. Using the Lie algebra,
we have to show that if

X =

0

has trace zero, then so has the endomorphism

Y\^>XY+ YX*

of ^ ( F ) . Using a standard basis for %p(F), we see that this is an elementary
computation, which is omitted here, q.e.d.

We use z = x + iy as (part of) coordinates on D̂ (Ω, F). In order not to
have any confusion, we use a different name / for coordinates on Ω c R".
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Also observe that we can take e = id G ^ ( F ) as the base point satisfying the
conditions in § 1 with respect to the metric introduced in that section.

Lemma 2. There is a C0 0 solution A(t) G G(^?p(F)) of the equation t = A-
e for t near e = id G ^ ( F ) , satisfying the condition: (det A(t))2 is a homoge-
neous polynomial of some degree I in t G R .̂ {The basis for %p(F) « Rd is
inessential.)

Proof Consider first the cases F = R, C. By §1, there is A G Ap(F) for
given / G Φp(F) such that / = A A* = A e. By Lemma 1 we have (det t)e =
(det A detΛ*)6 = (detA)2ε = (detΛ)2, since A is triangular and has real
diagonal entries. The degree of the homogeneous polynomial (det t)ε is pε.
Since (§1) Δp(F) is simply transitive on ^ ( F ) , the rest is clear.

A similar computation works in the quaternionic case. Here we have to use
Dieudonne's theory of noncommutative determinants, as can be found in [1,
Chapter IV]. The determinants now take values in the semigroup obtained by
adding 0 to the abelian group H*/[H*, H*], where H* is the multiplicative
group of nonzero quaternions, and [H*, H*] is the commutator subgroup. The
computation of a determinant in this semigroup is formally the same as in the
ordinary case, and we can proceed as before, q.e.d.

We need these lemmas also for the spherical cone Sn. Since the proofs are
analogous to the above ones, we sketch them.

First we write t = (tv t2, - , tn) as a symmetric "matrix":

where / = (t3, , /„) 6 R" . The form Q(t) is like a determinant:

Q(t) = txt2 - t\ t2

n = txt2 -?=: det /.

We let Δ = {(g f)\a > 0, b > 0, v G Rπ~2} be the upper triangular group
(with positive diagonal elements), with usual group operations:

(a v\(c
lθ b)\0 0

aw + dv
bd

\ ( a v\~ι

 = ( a~ι -a'ιb-ιv\
MO b) \ 0 b~λ I

If t G RΛ~2 and r G R, then Δ acts to the left on ('̂ -vectors and (^-vectors by

(o Ϊ)O = <?t") a n d (o Ϊ)Q = <?bf')' Similarly the lower triangular group Δr

acts to the right on (t, r)- and (r, /)-vectors, and one checks that products of

the form

(a ϋ\ Ί ί (a 0\
VO b) 7 t \v b)

a2tλ + 2av -t + t2v
2 abt + bt2ϋ

abt + bt2ϋ
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are well-defined elements of Sn for Q [) G Sn, with determinant a2b2Q(ί) > 0
and positive diagonal elements. (Enough to see that b2t2 > 0.)

In this way we have a homomorphism

= AtA'. Then Δ is transitive on Sn, for the element

1

h,

sends e := (Q ?) G Sn to f.
The stability group is trivial, and we note that

(1) (detΛ)2 = Q(ή = det t.

Furthermore, we have

(2) d e t i = (detΛ)".

To see that we replace A by sA with s > 0, as before. Then det(sAy =
det(ΛΪ) = s2n det A, and on the other hand (det sA)n = (s2 det A)n =
5 2 / l(det^)Λ. So we have only to check that det A = 1 if det A = 1. We
compute that the Lie algebra of {A G Δ|det A = 1} is {(g _" )} with bracket

and that

F V0 -α/ jZ0β\0 -a

Doing the same for Δ' and differentiating the equation

with respect to ̂ , we find

l ) : t » { ) t + t {
O -a/ VO -α/ Vϋ -a

Putting L := Λ(g _£) and using the basis

for the space of symmetric "matrices" {(-,' J2)}, where {ej} is the standard
basis for R"~2 = {(ί3, , tn)}, we find Luλ = 2auv Lu2 = -2au2 +
2y«3 ϋyMy, Luj = 2cjUl9j = 3, , Λ, and hence trace L = 0. So we get the
lemmas as before:

Lemma V. det i = (det A)n for A = (g J) e Δ = ΔΛ.
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Lemma 2'. There is a C°° solution A(t) G G(Sn) of the equation t = A e
for t near e = Qo ?) = (1, 1, 0, , 0) G Sn, satisfying the condition:
(det A(t))2 is a homogeneous polynomial ((det /)") of degree /(= 2ή) in t G RΛ.

Now by Fact 1 we have g(Ω) = <Φg(Ω) θ 2g(Ω), where <ϊ>g = [g, g], and
Zg is the center of g and Ω = 9p(F) or Sn. We have dim 2g = 1 since Ω is
indecomposable, (see [9]), and we let Zo be a generator for Zg. Then any
element X G g(Ω) can be written X = Y + cZ0 with Y G D̂g and c G R ,
and hence trace X = c trace Zo. This implies det exp X = exp trace X =
exp c trace Zo. We cannot have trace Zo = 0, since then the determinant of
any element in G(Ω)°, the identity component of G(Ω), would be 1, in
contradiction to Lemmas 1 and Γ.

Consider now the homomorphism β: g(Ω) —» g/°(m, C) c Ql(m, Q given in
Fact 2. We have βX = βY + cβZ0 for the above X, and here j β r e
D̂ Ql(m, C). Therefore trace Λ̂" = c trace βZ0, which gives

det β exp * = (exp c trace Zff
mpZo/tnecZ^

= (det exp * ) Γ for all X G g(Ω),

where r = trace βZ 0 / trace Zo, by observng that 8̂ extends to a group homo-
morphism G(Ω)° -> Gl(m, C), [8], [9]. We thus have

Lemma 3. det βA = (det A)r for any A G G(Ω)°, the identity component of
G(Ω), where r GRw independent of A.

Here ( i , )8i) G G/(Ω, F). (We still write A in order not to confuse with
elements of Δp(F) or Δ.)

Using Lemmas 2 and 2' and the notation there, and combining with
Lemma 3, we have

Lemma 4. (det βA(t))2 is a homogeneous function of degree Ir in t.
We now turn to the Bergman metric of a quasi-symmetric Siegel domain

<3)(Ω, F) with Ω c R" as above. Putting Z Λ + * := uk, k = 1, , m for the
moment, where F: C m x Γ ^ C1, we have

n + m -\2 i π σ ctr n + m

ds2 . ̂  = 2 Σ I J ^ l Λ V S / =: 2 2 W Λ ' ^

where 5C = λ ° Φ is as described in Fact 3, and so λ(0 = %(it, 0) > 0. (We
also write < , ) p for this metrical product at the point p later on.) By Fact 3
and Lemma 3 we have for A G G(Ω)° that

n

λ(Aή = |det i |- 2 |detβi |- 2 λ(0

Hence w(Aή = |det i | "V(0, where w := λ1 / ( 2 + 2 r ), and s o w ^ Λ /\dt
is a G(Ω)0-invariant volume form on Ω. (We cannot have 1 + r = 0, since
then λ and hence % would be constant. But % cannot be constant since
Φ (Ω, F) is (equivalent to) a bounded domain.)
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The following is clear.

Lemma 5. For the G(Ω)°- invariant Riemannian metric

ij=\ dt'dtJ

we have ds^ = d^ ( Ω ) | l Ω, where ds%^ is the Bergman metric on the tube domain

With obvious indexing, slightly different from the above, and using the

summation convention, we get from log % = (log λ) ° Φ and tJ = Φ*(z, ύ) =

Im zJ - FiβUaUβ that

92logλ W_ _3Φ̂_ + aiogλ 3 V
j 9 w α * 3 ^ dtJ+

duadΰβ dtldtj 9 w α 3 M ^ dtJ duadΰβ'

Now ΘΦ'/θw" = -F^βΠP and 92Φ^/duadΰβ = -Fj

φ so at o = (ie, 0), which

we choose as base point in D̂ (Ω, F),

(3) gaβo = -Hβ^^(e); α ^ - l , - . - , ^

Similarly we have d2 log %/dzidΰβ = 0 at 0, since d&/dΰβ = -FJ

aβUa and

dΰβ Ξ O . S O

(4) g ^ = 0; 1 = 1, , n; β = 1, , m.

Further

1 d ' logλ _
(5) e- = — ° Φ,

since dΦ^/dz' = -\ΛΓA 8^ where δf is the Kronecker symbol. This gives ,

at any point of <>D(Ω, F),

(6)

Definition 1. For any point/? E ^(Ω,/), we let Ύp c ^ ^ ( Ω , F) denote

the vertical space at/?, i.e., the tangent space to the fiber of Φ: ^(Ω, F) —» Ω

through p. Similarly we let %p c ^ ^ ( Ω , F) denote the horizontal space at/7,

i.e., the orthogonal complement to Ύp with respect to ds2.

Looking at tj = Φ/(z, ύ) = yj - FJ(u, u) and using (4), (5), (6), we get

Lemma 6. % = {a dx) θ {b du + £• 3̂ } αnί/ 3Q, = {α θ^}, where θ

w /Λe orthogonal sum and a E RΛ, b E Cm.

Letting TΓ: Aff(2, F)-^ G(Ω) be the homomorphism π(A, A, a, b)\-+ A, we

easily have

Lemma 7. 77*e mapping Φ: ^(Ω, F)->Ω w π-equivariant, i.e., Φ(gp) =

, F) α«ί//7 E φ(Q, F).
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Therefore the distributions {%p}peq)(Ω,F) and {Ύp}pGq)(ΏF) are Aff(Ω9 F)-

invariant, and we have

Lemma 8. % , w ) = {a dx] + {b du + F(b, ύ) 9, + conj) and 3C(z>M) =

{0 9̂ ,}, where flER", 1)G C m . Λfoo /Λe summands in Ύ are orthogonal if

w = 0.

Proof. Assume first that (z, ύ) = (//, 0), and choose g = (A, A) E

G7(Ω, F) such that Λί = ^. Then g: (z, u)\->(Az,Au\ whence (summation

convention) g+3z, = i,,^,, g+θMα = i ^ θ ^ , or g+(α dz) = ( i α ) 3Z, g+(^ 3tt)

= (Ab) - du. Since g(/7, 0) = o, we see % , 0 ) = {α 9 }̂ θ {b 9M + b 9̂ }

and 3C(;v5o) = i a ' dγ], by Lemma 6.
Now let (z0, u0) be any point, and observe that

g(zo> uo) = 0'Φ(̂ o> uo\ 0)»

where now g = (/, /, -Re z0, -w0) G ̂ jfjΓ(Ω, F), and that

g(z, u) = (z - Re z 0 - 2LF(W, M0) + /F(M 0, M0), U - u0).

Then g^ία 9Z) = a dz and g^ί^ 9U) = -2iF(b, u0) 9Z + b 9tt, and hence

also g+(6 9M + /χ£, M0) 9̂ ) = -iF(b, u0) 9̂  + b 9tt. The rest then follows

from the first part, q.e.d.

Since Φ+(α - dy) = a- 9,, and

by (5), and since w = \ι/(2+2r\ Lemmas 5 and 8 give

Corollary 1. With r as in Lemma 3, we have

(l + ^ ( Φ . r , Φ,y) = <*4(Ω,F)(y, Y)

for any Y E 3C ( Z M ), and SO the mapping

Φ:

w α Riemannian submersion [6] w/zeλz we g/t>e Ω /Λe metric (1 +

Remark. We see that 1 + r > 0.

We now have to connect the metric with the algebra in [8]. First we shall

identify the inner product in OCQ with the given inner product < , > on Rπ. By

Corollary 1 this means that we must identify gΩe with < , >. As in Lemmas 2

and 2', we write t = A(t) e = A(t)eA(ή* for t near e E Ω, where A(t) comes

from an element A(t) E Δp(F) or ΔΛ, according as Ω is classical or spherical.

For
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we have w(t) = w(A(t) e) = (det A(ή)~ιw(e) = (det A(t))~*w(e), by Lemmas

1 and Γ. We saw further in the proofs of Lemmas 2 and 2' that det t =

(det A)2, and therefore

log w(t) = -— log det t + log w(e).

Thus

f 1 3 det/ 3 det/ 1 9 2 det/

t) 3/' dίJ d e t * dίιdtJ

S i n c e d e t e = 1, w e s e e

3 d e t / 3 d e t / 3 2 d e t / } , , , y

3/ 1 dtJ θ/'θ^ Je

Consider first the classical cones ^ ( F ) , and change the indexing so that for

instance for ?P2(C) we have

/ /„ t'X2+it"X2\

\t'X2-it"X2 t22 y

Then det / = / π / 2 2 - (/'12)
2 - (/J2)

2, and one verifies that

etc., except for the factor ε/2. This works in the other cases too, and we have

(except for ε/2): The 3,. 's are orthogonal to each other, those on the diagonal

have length 1, the others have length V2 . On the other hand, if

0 >

o i> £ l 2 " l i o> £ l 2 " U , oJ
form a (real) basis for X^C), then </sπ, Exx) = trace^ 2,) = 1, and

(EXX9 E'X2) = 0, (EXX9 E[2y = 0, (Exx, E22) = 0, <E'X2, E'X2> = 2, (E'X2, Efo

= 0, etc., and again this holds in general. So we have

for ax, a2 G Rπ (= space in which Ω lies).

Consider then the spherical cone Sn. As quoted in §1, the reference [10]

uses the ordinary inner product on RΛ for this cone. Since we treat Sn as a set

of symmetric "matrices", we change the product slightly: If

>y yii
then

χ γ = (*\y\ + χ y *ιf +yi* \
\ yxx +x2y x2y2 + x-y)
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is well-defined, and has "trace" xλyλ + x2y2 + 2x y. So we define
(X, Y) := trace(Xr), as in the case of %(¥). It is easy to verify that Sn is
self-dual with respect to this < , > and that e = (£ ?) = (1, 1, 0, , 0) e R"
satisfies the condition in Fact 1. Then the calculation goes just as before, and
again we have (7), (with ε = ή). Since Φ+(a dy) = a- 8,, using Corollary 1 we
get

Lemma 9. For aι θ̂ , a2- dy £ %Q, we have

<α, dy,a2- dy\= C(av α2>,

where C = \{\ + r)ε, α«ί/ < , > is the inner product given on RΛ, where Ω //^.

Next we want to determine gaβ0 = <3M*, 9̂ /9)0, since by (4), (5) and (6) we
then know the metric. By (3) we have to calculate the gradient of log λ at e.
Using Fact 3 and Lemmas 2, 2' and 4, we have, for / near e,

λ(t) = (deti(O)"2(d

with (det A(t))2 and (det βA(t))2 homogeneous functions in / of degrees / and
Ir respectively. Using Euler's lemma on homogeneous functions and summa-
tion convention, from

log λ(/) = -log(det A{t))2 - log(det βA(t))2 + log λ(e)

we get that

^ £ Λ . tJ = _ {(deti(ί)Γ2 /• (deti(ί))2

dtJ

+ (det βA(t))~2 • Ir- (det βA(t))2} = -1(1 + r).

Differentiation once more gives

8Mogλ fl [ 3 1 o g λ _ 0

dt'W dt'

By (3) we then get, with summation convention,

(8)

By (5) we have also

and so

• e>'- 2F'(bv Z>2)<9,, dyj}oeJ
e

= 2(F(bvb2)-dy,e-dyy0.
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By Lemma 9 this equals 2C(F(bλ, b2), e) = 2C(e, F(bv b2)}. In the notation

of Definition 4 of § 1 we thus have

Lemma 10. For the vectors bx du + conj, b2 9M + conj G % , we

<*i * *u> *>2 9M >o = 2C<e, F ^ , , b2))

where C =\(\ + r)ε.

This completes the determination of the metric, since our space ^ (Ω, F) is

homogeneous.

3. The Bergman connection

In this section we calculate the Riemannian connection induced by the

Bergman metric (the Bergman connection) on the quasi-symmetric domain

ty (Ω, F). Since D̂ (Ω, F) is affinely homogeneous, and the metric is invariant

under Aff(&, F) (and under Hol(Ω, F) too, of course), we will use the

terminology of [4], to which we refer for general details.

We have

Lemma 1. The stability subgroup ofAff(Ω, F) at o = (ie, 0) is

{(A, A, 0, 0) e Aff(Q, F)\Ae = e) c G/(Ω, F ) ,

where e is the base point o/Ω.

Proof. Trivial.

However, it is a little bit inconvenient to work with Aff(β9 F) since the

element A is not uniquely determined by A. (We still have the freedom of the

"unitary group of F".) But since ^(Ω, F) is quasi-symmetric, we have the

homomorphism β: G ( Ω ) 0 ^ Gl(m, C) such that (A, βA) G G/(Ω, F) for A G

G(Ω)°, where G(Ω)° is the identity component of G(Ω). We can then consider

the connected subgroup

(1) G := {(A, βA, a, b)\A G G(Ω)°, a G R", b G C m }

of Aff(Q9 F). (See (1) of §1 for group operations.) We also write (A, a, b) for

the element {A, βA, a, b).

Lemma 2. G is transitive on D̂ (Ω, F).

Proof. This follows from the fact that since G(Ω) is transitive on Ω, so is

G(Ω)°, and from the fact that the subgroup {(a, b)} = {(/, a, b)} of G is

transitive on Φ-fibers. Recall that Φ is ττ-equivariant, where π: G B (A, a, b)

Lemma 3. The stability subgroup of G at o = {ie, 0) is the group

K = {(A, 0, 0)\Ae = e) c G Π G/(Ω, F).
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Proof. See Lemma 1. q.e.d.

Writing Ke = {A G G(βf\Ae = e] for the stability subgroup of G(Ω)° at e,

ϊe for its Lie algebra and f for the Lie algebra of K, from the above we have

(2) ϊ = { ( * , 0 , 0 ) | * G Ϊ , } = f e .

Now let g(Ω) = ϊe + pe be the Cartan decomposition of Q(Ω) at e, as in
Fact 1, §1, and let

(3) m = {(X, a, b)\X 6 ^ ) f l G R", b G C m } .

Then letting Q be the Lie algebra of G we have, in the terminology of [4],

Lemma 4. ^ (Ω, F) = G/K is a reductive homogeneous space with respect

to the decomposition
Q = f + m.

Proof. That f Π m = {0} is clear. Since

[f, m] c {([X, Y], a, b)\X G ϊe, Y e *)e, fleR",ier}

C {(Z, α, ft)|Z e £e, α e RΛ, / ) G C m ) = m,

the rest is clear. (Use the homotopy sequence for G —» G/K together with the

fact that Φ (Ω, F) is simply connected, to see that K is connected, and then

we only need [f, m] c m.) q.e.d.

By [4] the Bergman connection, being G-invariant, can be expressed by a

certain linear mapping Λm: m —> Ql(2n + 2m, R), where 2n + 2m is the real

dimension ^(Ω, F).

Now choose u0 in the linear frame bundle of Φ (Ω, F), over the point o.

As in [4], it is more convenient to make the identifications

m = Γ0(Φ(Ω, F)) = R2»+2m;

the first "by exp", i.e., by value of induced field at o, and the second by w0.

Then Am(X): m—>m is a linear map, and we write both Am(X)Y and

Am(X, Y) for its action on Y. Then using these identifications we have

(4) VYX = Λ m (* , Y) forX, Y G m,

where again X is the field induced on D̂ (Ω, F) by X G m.

Now the metric gives us a symmetric bilinear form on m, as

(X> Y) := (X, Y)o, using the identification. There is then in [4] the follow-

ing formula for the connection Λm induced by the metric.

(5) Am(X9 Y) = \[X, Y]m + U(X, Y) forX9 Y G m,

where ί / : m X m ^ m i s the symmetric, bilinear mapping defined by

(6) 2(U(X, Y),Z) = (X, [Z, Y]J + <[Z, X]m, Y)

for X, Y, Z e m, where [X, 7 ] m means the m-component of [X, Y], etc.
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When we apply this to our special case, we again have to write (X, a, b)
instead of X, of course. Specifically, we have first (see §1)

[(X,a9b),(Y9c9d)]m

W = (o, Xc - Ya + 4 Im F(b9 d), β(X)d - β( Y)b) for I J 6 pe,

since [$e, $e] c f e(c β(Ω)). Further, by (3) of §1 we get

(8) (X, a, b)0 = Xe 3, + a 3, + (b 3tt + 6 3ff).

We then calculate, for (X, a, b), (Y, c, d), (ZJ, h) G m,

= ({Za - Xf+4 ImF(Λ, 6)} dχ9 c 3^0

+ (<{ i8(Z)ft - i8(JT)A} 3tt, J 3tt->0 + conj),

where we have used the orthogonality properties in §2, Lemma 8, and also the
fact that since the metric is hermitian, (dx 3M, d2 3M> = 0, etc. We get then,
by interchanging (X, a, b) and (Y, c, d), and adding

<2U(X,a,b\Y,c9d),(Z9f,h)>

= ({Za-Xf+4lm F(h, b)} dχ9 c dx}0

+ ({Zc - y/+ 4 ImF(A, rf)} 3X, α 3x>0

( 9 ) + (<{ β(Z)b - β(X)h) 3M, J 3tt->0 + conj)

+ (<{ β(Z)d - β(Y)h) 3M, 6 aff>0 = conj).

It is more convenient now to look at cases. Then (9) tells us:

By definiteness of < , >, we get

u(x9 o, o| y, o, o) = o.
II. (2U(X, 0, 0|0, c9 0), (ZJ, A)> = -<Jf/ 3,, c 3.V

By Lemma 8 of §2 and (8) we can then write U(X, 0, 0|0, c, 0) = Λ(X\c)
with

3,,/ 3x>0 = -|<Jf/ 3X, c 3x>0 - -\{Xf' dy9 c dy)0,

where the last equality follows from the fact that < , > is a hermitian metric.
This is further equal to -\ C(Xf, c) by §2. Now X E pe, and by Fact 1 of §1,
X is symmetric with respect to the product < , > on RΛ. So -\C(Xf, c> = -
£C</, *c>, and by Lemma 9 of §2, this finally gives us (A(X\c) dxj- dx)0

= -\{Xc 3 x,/ S^V Hence

U(X9 0, 0|0, c, 0) = - i Jfc 3, = (0, -\Xc, 0).
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Proceeding similarly in the other cases, using the information in §§1 and 2
about °, ίβ, T: Rn^>pe, R: Rn->%(Fe\ β: g(Ω) -> β/°(m, Q, and the
Bergman metric, we easily find:

III. U(X, 0, 0|0, 0, d),
= -\β(X)d du - \β(X)d 3fi = (0, 0, -\β(X)d).

IV. t/(0, α, 0|0, c, 0) = (α o c) 3, = (Ta β c, 0, 0).
V. £/(0, fl, 0|0, rf) = iRJ- du + conj = (0, 0, i/^rf).

VI. 1/(0, 0, 6|0, 0, rf) = 2 Re F(Z>, </) dy = ( Γ 2 R e F ( M ) , 0, 0).
Using I, , VI we express all terms in the expansion of
Am(X, a, b)(Y, c, d) arising from the symmetric mapping ί/, put these terms
and (7) into formula (5), and obtain

Proposition 1. With respect to the decomposition g = ϊ -I- m in Lemma A for
the indecomposable, quasi-symmetric domain ^(Ω, F) — G/K, the Bergman
connection is given by

Y« + 2 Im F(b, d\ -β(Y)b +V^T (Rad + Λ

In order to simplify the appearance and handling of this formula, we
introduce "a more complex notation". For already the component b in
(X, a, b) stand for (at o) the vector b du + b 3̂ , while * stands for Xe 3̂
and a stands for a- dx. Since t)e 3 A' ι-> Xe E ^ ( ^ ( Ω , F)) is a linear isomor-
phism, we can write Xe instead of AT, and further, we write a = af + iα" for
α' 3X + a" - dy = a 3Z + ά 3- at o, with α', α" G RΛ, just as we write b for
b'du + b'dΰeito. Denoting by m c the space C" X Cm, we have therefore an
isomorphism

m c 3 (a, b) ι-> α 3Z + ά 3z- -hZ> 3tt + 6 3ff G

of complex vector spaces, where of course the complex structure on To is "the
one given by the manifold". With the isomorphism m 3 (X, α', b) H» (α' +
iXe, b) G mc with inverse (α' + ia"9 b) ̂  (Γα,, α', b), the identifications be-
tween m, mc and ^ ( ^ ( Ω , F)) are compatible.

When we talk about the field generated on Φ(Ω, F) by (a, b) e mc, we
mean of course, as before, the field generated by (Ta,,, a', b% which agrees
with the field a d2 + ά 3f + 6 3M + b 3̂  only at the origin 0, in general.
For simplicity we continue to write Λm. Then we translate

Λm(α' + w", b){c' + /c", rf)
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Here we have used the definition of T, the fact that Im F(b, d) = -

Im F(d, b), the commutativity of ° , and we have extended ° bilinearly to a

product ° : C X Cn -» C1. We have also used

(10) β(Ta) = Raϊoτa(ΞRn,

which follows easily from Fact 2 of § 1.

We then have the following reformulation of Λm.

Proposition 1'. With respect to the decomposition g = ϊ + m in Lemma 4

for the indecomposable quasi-symmetric domain ^(Ω, F) = G/K, the Bergman

connection is given by λm: m c X m c —> m c as follows:

Λm(α, b)(c9 d) = V ^ T (α' ° c + 2F(d, b), Ra,d + Rcb\

where a, c G C , b, d G Cm and a' = Re a.

We also want to obtain an explicit expression for the covariant derivative

V.

Proposition 2. For the indecomposable quasi-symmetric domain Φ (Ω, F) the

Bergman connection is given by

(tf 3, + * 3 J - V T {(α o C ) . a, + (Rad + *CZ>) du]

α, c e C ; M £ C"; ί w /Λe holomorphic tangent bundle.

Proof. Use the ordinary and Kahlerian properties of V, and observe ((3)

of §1) that (α, b) = (Ta,,, a\ b) represents the field

(Λ, %,«) = {αr θ, + 2IF(M, 6) 9Z + Z> du 4- Γβ.z 3Z + Ra»u 3tt} + conj

(see also (10)). Then the result follows by combining (4) with Proposition Γ.

Example. The formula in Proposition 2 generalizes the expression for the

Poincare-Bergman connection on the upper half-plane %. For here the cone

is Ω = {/ G R|/ > 0} with e = 1, and G(Ω) = {A G R\A > 0} with g(Ω) = R

= pe, since Ke = {1}. For a G R we have Γα = α, since a = Tae = Ta\

= a - 1. Thus α <> c = Ta = ac is ordinary multiplication, and hence V(Θ)QΘZ

= ΛΓ-\ ΘZ, which is the correct expression.

In case D̂ (Ω, F) is symmetric, we can derive a relation between Λm and the

symmetry σ of g(Ω, F), the Lie algebra of H o l ^ (Ω, F)). Let % be the

stability subgroup of H o l ^ Ω , F)) at o, and g(Ω, F) = ί) -h }3 the Cartan

decomposition at o. It is clear that we have

(Π) >~m,

since any vector X G m decomposes as X = ̂ (1 + σ)X + ^(1 - σ)Λ" Eί) +

p, and vectors in ί) do not give any tangent vectors at o. Since we have to

obtain all tangent vectors, (11) must hold. This also follows from [8], where it
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is stated that in the decomposition g(Ω, F) = Q_X + g_1/2 + Q0 + g 1 / 2 + QX in

§1, the involution σ reverses gradation, i.e., σ(g,,) = Q_P. SO if Z G £, then

with Z_v G g_,, v = 0, 1/2, 1, and σZ 0 = - Z o we can write Z = Z_x + Z_ 1 / 2

+ 2Z 0 - σZ_ 1 / 2 - σZ_,. But Z_1 + Z_ 1 / 2 + Z o G m, and Z = (Z_, + Z_ 1 / 2

+ Zo) — σ(Z_j + Z_ 1 / 2 + Zo). We now have

Proposition 3. If the indecomposable quasi-symmetric domain ty (Ω, F) is

symmetric, then the above Λm satisfies

m,

σ w the involution on the Lie algebra of H o l ^ (Ω, F)).

Proof. Let X, Y G m, and X := | ( 1 - σ)X, Ϋ := ^(1 - σ)Y G t). Then

Λm(Λ")y = VyoX. We can also express V by a Λp with respect to the

decomposition g(Ω, F) = ή + p, but this Λ^ is zero in the symmetric case.

(The Bergman metric induces the canonical connection on a symmetric space,

[4], and this is given by Λ^ = 0.) So

[X, Y]o + [ Y, X]o = (Am(X)Y)0 + [X-X, Y]o

where the brackets are field brackets. Now the mapping Q —> {vector fields} is

an antihomomorphism, and so

^ Jo

where the bracket now is an algebra bracket. Since these tangent vectors are

equal, so are the ^-components of the indicated algebra elements, i.e.,

4. Curvature

In [4] there is the following formula for the Riemannian curvature:

R(X, Y)o = [ Λ m ( n Λm(7)] - Am([X, Y]J - λ([X, Y]t)

as a mapping from m to m, where X, Y G m and λ is, in this section, the

linear isotropy representation (and [, ] m and [, ]f mean m- and f-components

of brackets, of course). One checks easily that via the identification m =

^ ( ^ ( Ω , F)% the linear isotropy representation is ΛH>(adΛ)| m for A =

(A, 0, 0) G K. We use our m c instead, and recall the identification m = m c of
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§3: m 3 (X, a\ b) H> (a' + iXe, b) G m c with inverse (a' + lYΓ, b) ι->

(Ta,,, a', b). Now we calculate the three terms separately in the curvature

expression:

R(a, b\c, d)(f, A) = [Λm(a, b\ Λm(c, d)](f, h)

-Λm([(α, b), (c, d)]J(f, A) - λ([(α, 6), (c, rf)]f)(/, A),

where a,c,fG C , b,d,h£ Cm. First we get

[(α, 6), (c, rf)]mc = [(Ta,,, a', b), {Tc,,, c', d)]m

( 1 ) = (Ta,,c
r - Tc,,a' + 4 Im F(b, d), Ra,,d - Rc,,b),

and similarly

(2) [(a,b),(cd)]t = ([Ta,,Tc,,],0,0).

By a straightforward calculation, we now find

[ Λ > , b), Λm(c, </)](/, A)

( 3 ) = ([ Γc,, Γα,]/ + 2F(Λ, Λc,ό - Λα,</) + 2^(7?^,./) - 2F{Rjd, b),

[Rc,, Ra,]h- RfRc,b + RfRa,d + R2nh,b)d - R2Hh,d)b).

-Am([(a,b),(cd)]J(f,h)

= -i((a" °c')°f- ( c " ° a') o f

( 4 ) + / o Im F(b, d) + 2F(h, Ra.d - Rc~b),

Ra .c-c'.a' + ΛlmKb^h + R ^ d - Rc..b)).

(5) -λ([(α, b), (c, rf)]f)(/, A) - -([Γ β . , Γc.]/, [Λa,,, ΛC,,]A).

Using / o F(b, d) = F(Rfb, d) + F(b, Rjd) in (4), and then putting (3), (4)

and (5) together, we obtain

Proposition 1. For the indecomposable quasi-symmetric domain ^ (Ω, F) we

have the curvature expression

R0(a, b\c, d)(f, A) = ( - ([ Ta,, Tc,] + [ Ta., Tc,,])f

- i(a" ° c' - a' ° c") ° / + 2F(d, Rjb)

-2F(b, Rjd) + 2F(h, Rc-b - Rad),

-{[Ra.,Rc.]+[Ra»,Rc,,])h

-'Ra" .c'-a>.c"h ~ >R4lm Hb J)h + R2F(h,b)d

-Rinκd)b - Rf{R-cb - R5d)) e n^,

where {a, b) e m c = C" X C" with a' = Re a, a" = Im a, etc.
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Also for the curvature do we want to obtain a more direct expression, in
terms of θz, 3M, etc. The calculation here is quite straightforward, but some-
what lengthy. The main point is to use

(a, b)0 = a' θx + a" dy + b 3tt + b 3ff = a 3Z + b 3M + conj,

and the Kahler conditions on the curvature, namely: Only
R(a 3Z + 6 3Jc 32 + rf 3W) and R(a θz + 6 3Jc 3Z + rf 3tt)

can be different from zero, and each sends (1.0)-vectors to (1, 0)-vectors, and
(0, l)-vectors to (0, l)-vectors. We find

Proposition 2. For the indecomposable quasi-symmetric domain D̂ (Ω, F) we
have

d, + b-du\c-d2 + d- a u )(/ 9Γ + h 3J

- { i [ Γa, 7>]/ + I(α - c) « / + 2F(6, / ^ ) + 2F(h, Rάd)}

- {RaRc-h + RfR-cb +

a, c, f G C", b, d, h E. Cm, α/irf α&o Γ Λαs 6een extended linearly to a
map C ^ β/(«, C).

Example. For the upper half-plane again, we get (see the example in §3)

where the origin o is the point /. This is of course the well-known expression
for the curvature.

Finally we calculate the holomorphic sectional curvature, or, being no
more complicated, the bisectional curvature.

For two vectors Z, W of type (1, 0) at o with <Z, Z >0 = < W, W\ = 1, the
bisectional curvature determined by the complex lines Z and W is

K(Z, W) = (R(Z, Z)W, W\ = K(W, Z) G R.

Using Lemmas 8, 9, 10 of §2 and Proposition 2 we calculate

α 3Z + Z> 3J *• 3Z + 6 3 M )(/ 3, + A 3 J , /• 3, + A 3M >0

-{{RaR-ah 4- tf^ + V f i ) *

We get

<*! 3Z, α 2 3z->0 = ̂  {<α, 3,,, a2 3 x> 0 + (ax
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by using Lemma 8, 9. Also

<a o (io/),/) = (Ta(dof)Jy = ̂  of, Tj} = <α o/, α o/>,

etc., and

<ϋ, F( W l , w2)> = 2<e, Fί/ζn,, w2)> = 2<e, F(W l, Rϋu2))

for t; E C1, ul9 u2 E Cm. Thus (6) implies, in consequence of Lemma 10,

Proposition 3. For the indecomposable quasi-symmetric domain D̂ (Ω, F) the

holomorphic bisectional curvature determined by the vectors Z = a 3Z + b 9M,

W = /• d2 + h - du at o with <Z, Z > 0 = < W, ΪV}0 = 1 w

, W) = -C{^[<« o/, ά o/> + <β o J,/o/> - <α o/, α

, F(Rah, Rδh)> + 2<

), F(h, A)> + 2<F(^, A),

C w the constant in Lemmas 9, 10 of §2.

In particular, we get

Corollary 1. For the indecomposable quasi-symmetric domain <$) (Ω, F) the

holomorphic sectional curvature determined by the vector Z = a d2 +

6 duat o with <Z, Z >0 = 1 w

)>} < 0.

Proof We only have to prove the last statement. Inside { } the last term is

positive for b ψ 0 since F(b, b) E. Ω c R", and the middle term is nonnega-

tive since e, F(Rab, Rab) E Ω and the cone is self-dual. To calculate the first

term, we put here a = a + iβ with α, /? real (rather than a\ a", in order to

avoid too many primes), and aβ = βa instead o f α ° / ? = / ? ° α , etc. Then

« α 2 + β\ a2 + β2} - <α2 - β2, a2 - β2})

+ « α 2 + β2, a2 + β2} - (2aβ, 2aβ»

= 4<«2, β2) + <(α + β)\ (« - β)2}.

Now by [8], α2 e Ω for any a e. R", so here a2, β2, (α + β)2, (a - β)2 ε Ω.

Since Ω is self-dual, the inner products between these elements are nonnega-

tive, and the corollary follows from the fact that C > 0.
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5. Symmetric domains

In this section we shall find necessary and sufficient conditions for an
indecomposable quasi-symmetric domain to by symmetric. A Riemannian
manifold is Riemannian locally symmetric if and only if VR = 0, and a
complete simply connected Riemannian locally symmetric space is Rieman-
nian symmetric [4]. Now a homogeneous Siegel domain is complete and
contractible, and hence is symmetric if and only if VR = 0. So we have to
calculate V R. For this purpose, it is practical to consider cases, i.e., we
calculate (VWR)(X, Y) where W, X, Y G Γ° (<φ(Ω, F)) have components
either "along θ z" or "along θu".

Now (a, b) G m c induces a field with value a θz + b 3M 4- conj at o, and
we write {a, b) for the vector a d2 + b ΘM at o. By using the second Bianchi
identity and the Kahlerian properties of the curvature, it is then sufficient to
calculate (V'WR)(X, Y)Z with the vectors W, X, Y and Z as in the following
table:

w
X
Y

z

1

(5,0)
{«.<>}

{c,0}

ί/.O}

2

(5 ,

{0,

0)
0}
0}

M

3

(5,0)

{a,0}
{0,<O

ί/0}

4

(5,0)
{β.0}
{0, </}

{TΓό}

5

(s,

{a,

{0,

{0,

0)
0}

d)
h)

6

(5,0)

{^,0}

{07i}

7

(0,w)

ί/.O}

8

(0,w)

{α, 0}

{0, d]

{/, 0 }

9

(0,w)

{«.<>}

{0,^}
{0,Λ}

10

(0,
{a,
{0,

{0,

w)

0}
d)

11

(0,w)
{0,6}

{0, d)

ί/.O}

12

(0,
{0,
{0,

{0,

w)

^}
d)

We use the following formula for VR:

(VWR)(X, Y)Z=VRo(X,Y)zW-R0(X, Y)VZW

-RO(VXW, Y)Z - R0(X, VYW)Z,

where X, Y, Z G ^(^D (Ω, F)), and ίT is the vector field induced by W E Q.
This formula follows from the one given in the Appendix by observing that
Am(W) = V ô for zero torsion and W G m, and that VXQW = Am(W)X
for W Eil. The reason why this is a more convenient expression than

0

(VWR)(X, Y)Z=VW{R(X, Y)Z) - R(X, Y)VWZ

-R(VWX, Y)Z - R(X, VWY)Z,

is that in the latter we would have to know how R(X, Y)Z varies from point

to point, and also to differentiate this field. To help the reader check the

calculations, we collect here the necessary formulas, where X, 7, Z, W are as

in the above table. (Observe that W is a real field, and hence VψW = VrW.)

The first such formula is

Ϋ)Z = W-R0(X, Ϋ)VZW

, Ϋ)Z - R0(X, Ty
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Also writing R {a, b\c, d){f, h) for R(a 3Z + 4 3Jc 3Z + </• 3M)(/ 3Z +
A 3M), we have (Proposition 2 of §4)

(2) = - U [ Γ f l , TΈ]f + \(a o c) o / + 2F(4, *

RfR-cb

Further

= (1, 0)-component of V(αtb)(s, w).

Since Am(s, w)(a, b) = V(β ft)(^, w), by Proposition Γ of §3 we then have

(3) V { β f 6 )(j, w) = λί^ϊ {a o y + 2/1(4, w), Λαw + Λy4},

W V { ^ } ( ^ , w) = V { β > Λ )(j, w) .

We also use

(5) a o F(iι, ©) = F(Λ f lW, ϋ) + F(w, Rδv\

(6) Raχoai = RaRai + RaRa.

Finally, it is convenient to note that from (2) we have

(7) *{α,0 |0^}{/,0} = 0 , *{0,4|7Γδ}{0,Λ} = 0,

and that by the Kahlerian properties of the curvature we have

(8) R {a, b\ c, d }{ /, h } = - Λ {c, </| α, 4 }{/, h) .

In the table we do not have to calculate Case 1. For then all vectors are
"3z-like", and all formulas used will be those which we have if there is no F,
i.e., if we are dealing with the tube domain ^(Ω): Now ^(Ω) is symmetric,
and hence VR = 0 in that case. For the other cases we have to apply the
method of brutal force, but the calculation is quite straightforward. The result
is that (VWR)(X, Y)Z = 0 in all but the last four cases. We find:

Case 9.

-2/{0, [RaRF(h,d) ~ RFXRah,d)]w +[RaRlX™,d) ~ RF(Raw,d)]h }•

Case 12.

-4i{(F(RHb,d)h, w) - F(4, RHw,h)d))

+ (F(RHh,d)b, w) - F(h, RnwJf)d))9 0).

In the final stage of the calculation of Case 9, we used the following
identity:

(9) RF(u,v)Ra ~ RF(u,Rδv) = ~[RaRF(u,v) ~ R ]
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for a G Cn,u,v G Cm, which we prove as follows:

R ^ + R R = = R = ^ v ) + F(u,Rsv)

Consider Case 9. The expression there is symmetric in w and Λ, and hence

is identically zero if and only if

0 ° ) RaRF{h,d)h = RF{Rahid)h.

Cases 10 and 11 give the same kind of condition.

In Case 12, the expression is symmetric in b and Λ, and hence is identically

zero if and only if

(Π) F{Rnb^b, w) = F(b, RF{w,b)d).

We claim

Lemma 1. Conditions (10) and (11) are equivalent.

Proof. First recall that ±<β, F(u, v)} = <e, F(Λαw, u)> = <>, F(w, J^ϋ)>

for a G C1, M, v G Cm, where < , ) is the C-bilinear extension of the inner

product on RΛ. Now assume (10) holds. Then

\ b, w))

\{ay F(b9 RF(w,b)d)}

for all a, b, d, w. Hence (11) holds.

Since Fe(u, v) = (e, F(u, v)} is definite, the converse calculation also

works, showing that (11) implies (10). q.e.d.

Without loss of generality we can restrict a in (10) to be in R" and get

Theorem 1. An indecomposable quasi-symmetric domain ^(Ω, F) is sym-

metric if and only if the following equivalent conditions hold:

(i) RaRF(b,d)b = RF(Rab>d)b, \/a G R", VZ>, </ G C ,

(ii) F(Rmd)b, w) = F(b, RF(w,b)d), V6, d, w G Cm.

Remark. This theorem was proved algebraically by Satake (with condition

(ii). Observe that his F is conjugate to our F. See [8]). His statement is

somewhat stronger, since he does not suppose that D̂ (Ω, f) is indecomposable

and quasi*symmetric. He states that symmetry <=» quasi-symmetry +

condition (ii).

Appendix

We prove the formula for VR, or more generally, for Vα, where a is any

G-invariant tensor on G/K.
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Proposition. Let M = G/K be a reductive homogeneous space with respect

to the decomposition Q = f + m of the Lie algebra of G, ϊ being the Lie algebra

of K, and let Λm: m X m-^m be an invariant connection on M. If a is any

G-invariant tensor on M of type (r, s), then

(Vwa)(Xv . . - , * , ) - Am(W)a(Xl9 ,.*,)

- Σ «(Xl9 , Am(W)Xj, , Xs) e m 0 ' ,
7=1

where o is the origin Kof M,W,XV , Xs e m = T0M, a(Xv - , Xs) e
m 0 ί , α ^ AniW) G Endίm®5) w rfe/iVierf as Λm(ίr) ® id ® ®id

•f -hid ® ®id ® Λm(PΓ)/or 5 > 0 and as zero for s = 0.

iVtftf/. We prove this in the case r = 1, the more general case being just

notationally more complicated. Let W, Xv , Xs also denote the fields

generated by these elements of m. Then

( V „ , « ) ( * „ • • • , * , ) -VWo{a(Xlt , A",)}

- Σ «o(^i. • ^

Now

where Γis the torsion [4, pp. 188-191]. Similarly,

VWo{a(Xv • • • , * , ) } - Am(W)a(Xι, • • • , X,) + [ W, « ( * „ , XS)]Q.

So we get the formula stated plus

[ W, a(Xlt , Λ,)] o - Σ*_, ao(Xv • • • , [ W, Xj], • • • , X,).

However, if Lw is the Lie derivative, then

[ W, a ( X v ••• , X S ) ] = L w { a { X x , ••• , X s ) }

= (Lwa}(Xι, • • • , X,)

S

+ 2 <*(xv > Lwxp ' > xs)

5

by the in variance of a.
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Corollary. In the above situation, for the curvature R and the torsion T we
have

(i) (VWR)(X, Y) =[Λm

-R0(X,Am(W)Y)(ΞEndτn,

(ii) (VWT)(X, Y) = Am{W)T{X, Y) - T(Am(W)X, Y)

Proof. Applying (i) to Z G m, we have a term R0(X, Y)Am(W)Z in the
above commutator, and this term comes from the sum in the proposition.
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