CURVATURE OF QUASI-SYMMETRIC SIEGEL DOMAINS

R. ZELOW LUNDQUIST

1. Notation, definitions and basic facts

I. Satake has introduced the concept of quasi-symmetric domains. They occur as fibers in certain fiberings of symmetric domains over their boundary components, and they are contained in the larger class of spaces called homogeneous Siegel domains. The homogeneous bounded domains are biholomorphically equivalent to the homogeneous Siegel domains, and the symmetric bounded domains are equivalent to those quasi-symmetric domains that satisfy a certain additional identity, by a theorem of Satake. The quasi-symmetric domains have some convenient algebraic properties, and Satake has classified them algebraically. We work out the basic differential geometric properties of these spaces, such as Bergman metric, Bergman connection, curvature tensor, and holomorphic (bi)-sectional curvature. We also give a differential geometric proof of Satake's symmetry condition, given that the space is quasi-symmetric. The author is very indebted to his thesis adviser, Professor S. Kobayashi.

Let $\mathcal{D}(\Omega, F)=\left\{(z, u) \in \mathbf{C}^{n} \times \mathbf{C}^{m} \mid \operatorname{Im} z-F(u, u) \in \Omega\right\}$ be a Siegel domain (of the second kind), defined by the cone Ω in \mathbf{R}^{n}, (Ω open, convex, not containing a whole straight line), and the Ω-hermitian form F with values in $\mathbf{C}^{m}-\left(F\right.$ is C-linear in first variable, $\overline{F\left(u_{1}, u_{2}\right)}=F\left(u_{2}, u_{1}\right)$ and $F(u, u) \in$ (closure of Ω) - \{0\} if $u \neq 0$). Identifying \mathbf{C}^{n+m} with $\mathbf{C}^{n} \times \mathbf{C}^{m}$, and denoting the affine transformations of \mathbf{C}^{n+m} by $A f f\left(\mathbf{C}^{n+m}\right)$, we let

$$
\begin{aligned}
A f f(\Omega, F) & :=\left\{g \in \operatorname{Aff}\left(\mathbf{C}^{n+m}\right) \mid g \mathscr{D}(\Omega, F)=\mathscr{D}(\Omega, F)\right\}, \\
G l(\Omega, F) & :=\operatorname{Aff}(\Omega, F) \cap \operatorname{Gl}(n+m, \mathbf{C}) .
\end{aligned}
$$

We also let

$$
G(\Omega):=\{A \in G l(n, \mathbf{R}) \mid A \Omega=\Omega\}
$$

As is well-known [5], [7], we have

$$
\begin{gathered}
A f f(\Omega, F)=\left\{(A, \tilde{A}, a, b) \in G(\Omega) \times G l(m, \mathbf{C}) \times \mathbf{R}^{n} \times \mathbf{C}^{m} \mid\right. \\
\left.A F\left(v_{1}, v_{2}\right)=F\left(\tilde{A} v_{1}, \tilde{A} v_{2}\right) \forall v_{1}, v_{2} \in \mathbf{C}^{m}\right\},
\end{gathered}
$$

with action

$$
(A, \tilde{A}, a, b)(z, u)=(A z+a+2 i F(\tilde{A} u, b)+i F(b, b), \tilde{A} u+b)
$$

The group multiplication in $\operatorname{Aff}(\Omega, F)$ is
(1) $(A, \tilde{A}, a, b)(B, \tilde{B}, c, d)=(A B, \tilde{A} \tilde{B}, a+A c+2 \operatorname{Im} F(b, \tilde{A} d), b+\tilde{A} d)$,
and $(I, I, 0,0)$ is the unit element. One calculates the Lie algebra to be

$$
\begin{aligned}
\mathcal{E} A f f(\Omega, F)\{(X, \tilde{X}, a, b) & \in \mathrm{g}(\Omega) \times \mathrm{g} l(m, \mathbf{C}) \times \mathbf{R}^{n} \times \mathbf{C}^{m} \mid X F\left(v_{1}, v_{2}\right) \\
& \left.=F\left(\tilde{X} v_{1}, v_{2}\right)+F\left(v_{1}, \tilde{X} v_{2}\right) \forall v_{1}, v_{2} \in \mathbf{C}^{m}\right\},
\end{aligned}
$$

where $g(\Omega)$ is the Lie algebra of $G(\Omega)$. The bracket product is

$$
\begin{align*}
& {[(X, \tilde{X}, a, b),(Y, \tilde{Y}, c, d)]} \\
& \quad=([X, Y],[\tilde{X}, \tilde{Y}], X c-Y a+4 \operatorname{Im} F(b, d), \tilde{X} d-\tilde{Y} b) \tag{2}
\end{align*}
$$

Now $A f f(\Omega, F) \subset \operatorname{Hol}(\Omega, F):=$ group of holomorphic automorphisms of $\mathscr{D}(\Omega, F)$, and if $g(\Omega, F)$ is the Lie algebra of $\operatorname{Hol}(\Omega, F)$, then we have an anti-isomorphism of $g(\Omega, F)$ with the Lie algebra of complete holomorphic vector fields on $\mathscr{D}(\Omega, F)$. The vector field corresponding to $Z \in g(\Omega, F)$ has the value

$$
Z_{(z, u)}:=\left.\frac{d}{d t}\right|_{t=0}\{(\exp t Z)(z, u)\} \in T_{(z, u)} \mathscr{D}(\Omega, F)
$$

at (z, u), where $T_{(z, u)}$ is the real tangent space at (z, u). More precisely, its value is the vector $\check{Z}_{(z, u)} \in \mathscr{T}_{(z, u)} \mathscr{D}(\Omega, F)$ such that $\check{Z}_{(z, u)}=\frac{1}{2}\left(Z_{(z, u)}-i J Z_{(z, u)}\right)$, where $\mathscr{T} \mathscr{D}(\Omega, F)$ is the holomorphic tangent bundle and J is the complex structure. Let now $\partial_{z}=\partial / \partial z=\left(\partial / \partial z^{1}, \cdots, \partial / \partial z^{n}\right)=\left(\partial_{z^{1}}, \cdots, \partial_{z^{n}}\right)$, and for $a \in \mathbf{R}^{n}$ let $a \cdot \partial_{z}:=\Sigma a^{i} \partial_{z^{i}}$. Use similar notation for u. Then one calculates that

$$
\begin{align*}
(X, \tilde{X}, a, b)_{(z, u)}^{\check{c}}= & a \cdot \partial_{z}+\left(2 i F(u, b) \cdot \partial_{z}+b \cdot \partial_{u}\right) \\
& +\left(X z \cdot \partial_{z}+\tilde{X} u \cdot \partial_{u}\right) . \tag{3}
\end{align*}
$$

In general, we have a grading

$$
\mathrm{g}(\Omega, F)=\mathrm{g}_{-1} \oplus \mathrm{~g}_{-1 / 2} \oplus \mathrm{~g}_{0} \oplus \mathrm{~g}_{1 / 2} \oplus \mathrm{~g}_{1}
$$

where g_{λ} is the λ-eigenspace for $\operatorname{ad}\left(z \cdot \partial_{z}+\frac{1}{2} u \cdot \partial_{u}\right)$. We have

$$
\mathfrak{¿} A f f(\Omega, F)=g_{-1} \oplus g_{-1 / 2} \oplus g_{0}
$$

and $a \cdot \partial_{z} \in g_{-1}, 2 i F(u, b) \cdot \partial_{z}+b \cdot \partial_{u} \in g_{-1 / 2}, X z \cdot \partial_{z}+\tilde{X} u \cdot \partial_{u} \in g_{0}$. From now on, let Ω be self-dual with respect to a positive-definite inner product \langle,$\rangle on \mathbf{R}^{n}$, in the sense that $\Omega=\Omega^{*}:=\left\{t \in \mathbf{R}^{n} \mid\left\langle y, y^{\prime}\right\rangle>0 \forall y^{\prime} \in\right.$ closure $\Omega-\{0\}\}$ and $G(\Omega)$ acts transitively on Ω. Then

Fact 1. [8]. $G(\Omega)$ is an open subgroup of a reductive real algebraic group and the isotropy subgroup K_{a} of $G(\Omega)$ at any point $a \in \Omega$ is a maximal
compact subgroup. There exists an element $e \in \Omega$ such that $K_{e}=\{A \in$ $\left.G(\Omega) \mid A^{\prime}=A^{-1}\right\}$, where the prime is the adjoint with respect to \langle,$\rangle . The$ Cartan involution of $g(\Omega)$ at e is $X \mapsto-X^{\prime}$, and the Cartan decomposition is therefore $g(\Omega)=\mathfrak{f}_{e}+p_{e}$ where

$$
\begin{aligned}
\mathfrak{f}_{e} & =\left\{X \in \mathfrak{g}(\Omega) \mid X^{\prime}=-X\right\}=\{X \in \mathfrak{g}(\Omega), X e=0\} \\
\mathfrak{p}_{e} & =\left\{X \in \mathfrak{g}(\Omega) \mid X^{\prime}=X\right\} .
\end{aligned}
$$

We fix the base point $e \in \Omega$. Observing that $g(\Omega) \subset g l(n, \mathbf{R})$ consists of certain endomorphisms of \mathbf{R}^{n}, one makes the

Definition 1 [8]. It is easily seen that there is a unique element $T_{a} \in \mathfrak{p}_{e}$ such that $T_{a} e=a$ for any given $a \in \mathbf{R}^{n}$. In particular, $T_{e}=\mathrm{id}_{\mathbf{R}^{n}}$.

The mapping $\mathbf{R}^{n} \ni a \mapsto T_{a} \in \mathfrak{p}_{e}$ is a linear isomorphism, and one sees easily that under the isomorphism $\mathfrak{p}_{e} \rightarrow T_{e}(\Omega)$ given by $X \mapsto$ $d /\left.d t\right|_{t=0}\{(\exp t X) e\}$, we have $T_{a} \mapsto a \cdot \partial_{y}$, where $T_{e}(\Omega)$ is the tangent space at e, and y is the standard coordinate on \mathbf{R}^{n}.

Definition 2 [8]. Let $a_{1} \circ a_{2}=T_{a_{1}}\left(a_{2}\right)$ for $a_{1}, a_{2} \in \mathbf{R}^{n}$. It is known [8] that under this product \mathbf{R}^{n} becomes a (commutative) formally real Jordan algebra with unit e. We also need

$$
\begin{equation*}
a \circ X e=X a \text { for } X \in \mathfrak{p}_{e} . \tag{4}
\end{equation*}
$$

In fact $a \circ X e=T_{a} X e=\left[T_{a}, X\right] e+X T_{a} e=X a$, since $\left[T_{a}, X\right] \in \mathfrak{f}_{e}$.
Definition 3 [8]. Given a Siegel domain $\mathscr{D}(\Omega, F)$, we say that $\tilde{A} \in$ $\mathrm{gl}(m, \mathbf{C})$ is associated to $A \in \mathrm{~g}(\Omega)$ if

$$
\begin{equation*}
A F\left(v_{1}, v_{2}\right)=F\left(\tilde{A} v_{1}, v_{2}\right)+F\left(v_{1}, \tilde{A} v_{2}\right) \forall v_{1}, v_{2} \in \mathbf{C}^{m} \tag{5}
\end{equation*}
$$

Definition 4 [8]. Extending \langle,$\rangle to a \mathbf{C}$-bilinear symmetric form on $\mathbf{C}^{n} \times \mathbf{C}^{n}$, we put, for $a \in \mathbf{R}^{n}$,

$$
F_{a}\left(v_{1}, v_{2}\right)=\left\langle a, F\left(v_{1}, v_{2}\right)\right\rangle
$$

We have that F_{a} is a hermitian form on \mathbf{C}^{m}, and that it is positive-definite if $a \in \Omega^{*}$, by virtue of the definition of Ω^{*}. So if Ω is self-dual, then F_{e} is a positive-definite hermitian form on \mathbf{C}^{m}.

Definition 5 [8]. If Ω is self-dual, for $a \in \mathbf{R}^{n}$ let $R_{a} \in \mathfrak{g l}(m, \mathbf{C})$ be given by

$$
F_{a}\left(v_{1}, v_{2}\right)=2 F_{e}\left(v_{1}, R_{a} v_{2}\right)
$$

i.e.,

$$
\left\langle a, F\left(v_{1}, v_{2}\right)\right\rangle=2\left\langle e, F\left(v_{1}, R_{a} v_{2}\right)\right\rangle .
$$

If $\mathscr{H}\left(F_{e}\right)$ are the F_{e}-selfadjoint transformations of \mathbf{C}^{m}, and $\mathscr{P}\left(F_{e}\right)$ is the set (cone) of the positive definite subsets of $\mathscr{H}\left(F_{e}\right)$, then $R_{a} \in \mathscr{H}\left(F_{e}\right)$, and $R_{a} \in \mathscr{P}\left(F_{e}\right)$ for $a \in \Omega$.

Remark. Satake uses an F which is conjugate to ours, but this does not affect the definition of R_{a}.

We also let R denote the map $\mathbf{R}^{n} \ni a \mapsto R_{a} \in \mathscr{H}\left(F_{e}\right)$ and also the \mathbf{C}-linear extension $\mathbf{C}^{n} \mapsto \mathrm{gl}(m, \mathbf{C})$ of this, [8]. The relation (5) can be written, [8],

$$
\begin{equation*}
R_{A^{\prime} a}=\tilde{A}^{*} R_{a}+R_{a} \tilde{A} \quad \text { for } a \in \mathbf{R}^{n} \tag{6}
\end{equation*}
$$

From [8] we quote
Fact 2. If $\mathscr{D}(\Omega, F)$ is a Siegel domain with Ω self-dual, then the following conditions are equivalent:
(i) For every $a \in \mathbf{R}^{n}, R_{a}$ is associated to T_{a}.
(ii) The map $R: a \mapsto R_{a}$ of \mathbf{R}^{n} into $\mathscr{H}\left(F_{e}\right)$ satisfies

$$
R_{a_{1} \circ a_{2}}=R_{a_{1}} R_{a_{2}}+R_{a_{2}} R_{a_{1}}
$$

(iii) There exists a (unique) Lie algebra homomorphism $\beta: \mathrm{g}(\Omega) \rightarrow$ $\mathrm{g} l^{0}(m, \mathbf{C}):=\{X \in \mathrm{~g} l(m, \mathbf{C}) \mid$ trace $X \in \mathbf{R}\}$ such that

$$
\begin{equation*}
\beta(X) \text { is associated to } X, \tag{7}
\end{equation*}
$$

i.e.,

$$
\begin{gather*}
R_{X^{\prime} a}=\beta(X)^{*} R_{a}+R_{a} \beta(X) \forall a \in \mathbf{R}^{n}, \\
\beta\left(X^{\prime}\right)=\beta(X)^{*} . \tag{8}
\end{gather*}
$$

(iv) The projection map $\mathrm{g}_{0} \ni(X, \tilde{X}) \mapsto X \in \mathrm{~g}(\Omega)$ is surjective. (g_{0} is a term in the decomposition

$$
\left.\mathrm{g}(\Omega, F)=\mathrm{g}_{-1}+\mathrm{g}_{-1 / 2}+\mathrm{g}_{0}+\mathrm{g}_{1 / 2}+\mathrm{g}_{1} .\right)
$$

Now finally we can define the spaces which we want to study.
Definition $6[8]$. A Siegel domain $\mathscr{D}(\Omega, F)$ with self-dual Ω is said to be quasi-symmetric if the equivalent conditions in Fact 2 are satisfied.

A quasi-symmetric domain is homogeneous, since Ω and therefore also $\mathscr{D}(\Omega, F)$ are homogeneous [5].

To have the situation as simply as possible, we have the
Definition 7. A cone $\Omega \subset \mathbf{R}^{n}$ is said to be decomposable if there exist nonzero linear subspaces U_{1}, U_{2} of \mathbf{R}^{n}, and cones $\Omega_{1} \subset U_{1}, \Omega_{2} \subset U_{2}$ such that $\mathbf{R}^{n}=U_{1} \oplus U_{2}$ and $\Omega=\Omega_{1} \times \Omega_{2}$. If no such decomposition exists, the cone is said to be indecomposable.

Similarly we have
Definition 8. A complex manifold biholomorphic to a homogeneous bounded domain is said to be decomposable if it is biholomorphic to the product of two nontrivial homogeneous bounded domains. If no such decomposition exists, the manifold is said to be indecomposable.

It has been shown [2] that any homogeneous bounded domain is biholomorphic to the product of indecomposable homogeneous bounded domains, and also that a homogeneous Siegel domain $\mathscr{D}(\Omega, F)$ is indecomposable if and only if Ω is indecomposable. (See also [10].)

Because of the above, we restrict attention to (homogeneous) Siegel domains $\mathscr{D}(\Omega, F)$ with a self-dual and indecomposable cone Ω satisfying the condition of quasi-symmetry.

Up to isomorphism the self-dual indecomposable cones can be described as follows [10], [11].
I. Let $\mathbf{F}=\mathbf{R}, \mathbf{C}, \mathbf{H}$, the sets of real numbers, complex numbers, and quaternions respectively, and for each integer $m \geqslant 1$, let

$$
\mathscr{H}_{m}(\mathbf{F})=\left\{X \in \mathbf{M}_{m}(\mathbf{F}) \mid X^{*}=X\right\}
$$

where $\mathbf{M}_{m}(\mathbf{F})$ is the set of $m \times m$ matrices with coefficients in \mathbf{F}, and $X^{*}=\bar{X}^{\prime}$ is the conjugate transpose, using the standard conjugation on \mathbf{F}. Then the set $\mathscr{P}_{m}(\mathbf{F})=\left\{X \in \mathcal{F}_{m}(\mathbf{F}) \mid X\right.$ positive-definite $\}$ is an indecomposable cone which is self-dual with respect to the inner product

$$
\langle X, Y\rangle=\operatorname{trace}(X Y)
$$

on the real vector space $\mathscr{H}_{m}(\mathbf{F})$. We call these cones classical cones. The set $\Delta_{m}(\mathbf{F})$ of upper triangular matrices in $\mathbf{M}_{m}(\mathbf{F})$ with real positive diagonal entries acts simply transitively on $\mathscr{P}_{m}(\mathbf{F})$ by

$$
(t, X) \mapsto t X t^{*} \text { for } X \in \mathscr{P}_{m}(\mathbf{F}) \text { and } t \in \Delta_{m}(\mathbf{F})
$$

II. For $n \geqslant 3$ we define the quadratic form Q_{n} on \mathbf{R}^{n} by

$$
Q_{n}(x)=x_{1} x_{2}-x_{3}^{2}-\cdots-x_{n}^{2}
$$

We put $S_{n}=\left\{x \in \mathbf{R}^{n} \mid Q_{n}(x)>0, x_{1}>0\right\}$. Then S_{n} is an indecomposable cone which is self-dual with respect to the ordinary inner product on \mathbf{R}^{n}. We call these cones spherical cones. The connected component of the identity of the group of similitudes of Q_{n} acts transitively on S_{n}. (We modify the inner product slightly in §2.)
III. There is also an exceptional cone \mathscr{P}_{3} (Cayley) which we exclude here, since Satake has proved that a quasi-symmetric domain with this cone must be the tube domain defined by it, and we are mainly interested in Siegel domains of the second kind. (Reason for the exclusion is simply that this case, being symmetric, is already well understood.) So we agree to forget about this cone in all statements belows.

The key fact we need in order to establish a connection between the differential geometry of $\mathscr{D}(\Omega, F)$ and Satake's algebraic description is

Fact 3 [5]. Let $\mathscr{D}(\Omega, F)$ be a homogeneous Siegel domain. The Bergman kernel function is of the form $\mathcal{K}=\lambda \circ \Phi$, where λ is a positive function on Ω, and Φ is the map

$$
\Phi(z, u)=\operatorname{Im} z-F(u, u)
$$

of $\mathscr{Q}(\Omega, F)$ onto Ω. Moreover, if $(A, \tilde{A}) \in G l(\Omega, F)$, then

$$
\lambda(A x)=|\operatorname{det} A|^{-2}|\operatorname{det} \tilde{A}|^{-2} \lambda(x)
$$

for $x \in \Omega$.
Observe that the Bergman metric is defined, since $\mathscr{D}(\Omega, F)$ is biholomorphic to a bounded domain, [5], and hence we can transfer the metric from that domain just as in the case of the upper half-plane.

2. The Bergman metric

We need some lemmas. Recall (§1) that $\Delta_{p}(F)$ denotes the group of upper triangular matrices in $\mathbf{M}_{p}(\mathbf{F})$ with positive entries on the diagonal, where $\mathbf{F}=\mathbf{R}, \mathbf{C}, \mathbf{H}$. The image of $A \in \Delta_{p}(\mathbf{F})$ under the mapping $\Delta_{p}(\mathbf{F}) \rightarrow G\left(\mathscr{P}_{p}(\mathbf{F})\right)$ is denoted here by \check{A}. We have $\check{A} Y=A Y A^{*}$ for $Y \in \mathscr{P}_{p}(\mathbf{F})$. Now $\stackrel{A}{A} \in$ $G l\left(\mathcal{F}_{p}(\mathbf{F})\right)$, and $\mathscr{H}_{p}(\mathbf{F})$ is a real vector space of dimension $d=\frac{1}{2} p(p+1), p^{2}$, $2 p^{2}-p$ for $\mathbf{F}=\mathbf{R}, \mathbf{C}, \mathbf{H}$ respectively.
If

$$
A=\left(\begin{array}{ccc}
a_{1} & & * \\
& \ddots & \\
0 & & a_{p}
\end{array}\right)
$$

let $\operatorname{det} A=a_{1} \cdots a_{p}$ also in the quaternionic case. We have
Lemma 1. $\operatorname{det} \tilde{A}=(\operatorname{det} A)^{e}$ for $A \in \Delta_{p}(\mathbf{F})$, where $\varepsilon=p+1,2 p, 4 p-2$ for $\mathbf{F}=\mathbf{R}, \mathbf{C}, \mathbf{H}$ respectively.

Proof. If there is such an ε, we find it by replacing A by $s A$ with $s>0$. Then $(s A)^{\check{2}}=s^{2} \check{A}$, and $\operatorname{det} s^{2} \check{A}=s^{2 d} \operatorname{det} \check{A}=s^{2 d}(\operatorname{det} A)^{\varepsilon}$. On the other hand, $(\operatorname{det} s A)^{\varepsilon}=\left(s^{p} \operatorname{det} A\right)^{\varepsilon}=s^{p \varepsilon}(\operatorname{det} A)^{\varepsilon}$. So $\varepsilon=2 d / p$.

We have only to prove that $\operatorname{det} A=1 \Rightarrow \operatorname{det} \vec{A}=1$. Using the Lie algebra, we have to show that if

$$
X=\left(\begin{array}{ccc}
a_{1} & & * \\
& \ddots & \\
0 & & a_{p}
\end{array}\right) \in \mathcal{L} \Delta_{p}(\mathbf{F})
$$

has trace zero, then so has the endomorphism

$$
Y \mapsto X Y+Y X^{*}
$$

of $\mathscr{H}_{p}(\mathbf{F})$. Using a standard basis for $\mathscr{H}_{p}(\mathbf{F})$, we see that this is an elementary computation, which is omitted here. q.e.d.

We use $z=x+i y$ as (part of) coordinates on $\mathscr{D}(\Omega, F)$. In order not to have any confusion, we use a different name t for coordinates on $\Omega \subset \mathbf{R}^{n}$.

Also observe that we can take $e=\mathrm{id} \in \mathscr{P}_{p}(\mathbf{F})$ as the base point satisfying the conditions in §1 with respect to the metric introduced in that section.
Lemma 2. There is $a C^{\infty}$ solution $\check{A}(t) \in G\left(\mathscr{P}_{p}(\mathbf{F})\right)$ of the equation $t=\check{A}$. e for t near $e=\operatorname{id} \in \mathscr{P}_{p}(\mathbf{F})$, satisfying the condition: $(\operatorname{det} \check{A}(t))^{2}$ is a homogeneous polynomial of some degree l in $t \in \mathbf{R}^{d}$. (The basis for $\mathscr{H}_{p}(\mathbf{F}) \approx \mathbf{R}^{d}$ is inessential.)

Proof. Consider first the cases $\mathbf{F}=\mathbf{R}, \mathbf{C}$. By $\S 1$, there is $A \in \Delta_{p}(\mathbf{F})$ for given $t \in \mathscr{P}_{p}(\mathbf{F})$ such that $t=A A^{*}=\check{A} \cdot e$. By Lemma 1 we have $(\operatorname{det} t)^{e}=$ $\left(\operatorname{det} A \cdot \operatorname{det} A^{*}\right)^{\varepsilon}=(\operatorname{det} A)^{2 \varepsilon}=(\operatorname{det} \mathscr{A})^{2}$, since A is triangular and has real diagonal entries. The degree of the homogeneous polynomial (det $t)^{e}$ is p_{e}. Since (§1) $\Delta_{p}(\mathbf{F})$ is simply transitive on $\mathscr{P}_{p}(\mathbf{F})$, the rest is clear.

A similar computation works in the quaternionic case. Here we have to use Dieudonné's theory of noncommutative determinants, as can be found in [1, Chapter IV]. The determinants now take values in the semigroup obtained by adding 0 to the abelian group $\mathbf{H}^{*} /\left[\mathbf{H}^{*}, \mathbf{H}^{*}\right]$, where \mathbf{H}^{*} is the multiplicative group of nonzero quaternions, and $\left[\mathbf{H}^{*}, \mathbf{H}^{*}\right]$ is the commutator subgroup. The computation of a determinant in this semigroup is formally the same as in the ordinary case, and we can proceed as before. q.e.d.

We need these lemmas also for the spherical cone S_{n}. Since the proofs are analogous to the above ones, we sketch them.

First we write $t=\left(t_{1}, t_{2}, \cdots, t_{n}\right)$ as a symmetric "matrix":

$$
t=\left[\begin{array}{cc}
t_{1} & \tilde{t} \\
\tilde{t} & t_{2}
\end{array}\right]
$$

where $\tilde{t}=\left(t_{3}, \cdots, t_{n}\right) \in \mathbf{R}^{n-2}$. The form $Q(t)$ is like a determinant:

$$
Q(t)=t_{1} t_{2}-t_{3}^{2}-\cdots-t_{n}^{2}=t_{1} t_{2}-t^{2}=: \operatorname{det} t
$$

We let $\Delta=\left\{\left.\left(\begin{array}{cc}a & \tilde{v} \\ 0 & b\end{array}\right) \right\rvert\, a>0, b>0, \tilde{v} \in \mathbf{R}^{n-2}\right\}$ be the upper triangular group (with positive diagonal elements), with usual group operations:

$$
\left(\begin{array}{ll}
a & \tilde{v} \\
0 & b
\end{array}\right)\left(\begin{array}{ll}
c & \tilde{w} \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a c & a \tilde{w}+d \tilde{v} \\
0 & b d
\end{array}\right),\left(\begin{array}{ll}
a & \tilde{v} \\
0 & b
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a^{-1} & -a^{-1} b^{-1} \tilde{v} \\
0 & b^{-1}
\end{array}\right) .
$$

If $\tilde{t} \in \mathbf{R}^{n-2}$ and $r \in \mathbf{R}$, then Δ acts to the left on $\binom{\tilde{(})}{r}$-vectors and $\binom{r}{i}$-vectors by $\left(\begin{array}{ll}a & \tilde{v} \\ 0 & b\end{array}\right)\binom{\tilde{t}}{r}=\binom{a t+r \tilde{v}}{b r}$ and $\left(\begin{array}{ll}a & \tilde{v} \\ 0\end{array}\right)\binom{r}{\tilde{i}}=\binom{a \tilde{a}+\tilde{v} \cdot \tilde{t}}{b \bar{i}}$. Similarly the lower triangular group Δ^{\prime} acts to the right on $(\tilde{t}, r)-$ and (r, \tilde{t})-vectors, and one checks that products of the form

$$
\left(\begin{array}{ll}
a & \tilde{v} \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
t_{1} & \tilde{t} \\
\tilde{t} & t_{2}
\end{array}\right]\left(\begin{array}{ll}
a & 0 \\
\tilde{v} & b
\end{array}\right)=\left[\begin{array}{ll}
a^{2} t_{1}+2 a \tilde{v} \cdot \tilde{t}+t_{2} \tilde{v}^{2} & a b \tilde{t}+b t_{2} \tilde{v} \\
a b \tilde{t}+b t_{2} \tilde{v} & b^{2} t_{2}
\end{array}\right]
$$

are well-defined elements of S_{n} for $\left(\begin{array}{cc}t_{1}^{t} & i \\ 1 & t_{2}\end{array}\right) \in S_{n}$, with determinant $a^{2} b^{2} Q(t)>0$ and positive diagonal elements. (Enough to see that $b^{2} t_{2}>0$.)

In this way we have a homomorphism

$$
h: \Delta \ni A \mapsto \check{A} \in G\left(S_{n}\right),
$$

as $\check{A} \cdot t=A t A^{\prime}$. Then Δ is transitive on S_{n}, for the element

$$
A=\frac{1}{\sqrt{t_{2}}}\left(\begin{array}{cc}
\sqrt{Q(t)} & \tilde{t} \\
0 & t_{2}
\end{array}\right)
$$

sends $e:=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in S_{n}$ to t.
The stability group is trivial, and we note that

$$
\begin{equation*}
(\operatorname{det} A)^{2}=Q(t)=\operatorname{det} t . \tag{1}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\operatorname{det} \check{A}=(\operatorname{det} A)^{n} \tag{2}
\end{equation*}
$$

To see that we replace A by $s A$ with $s>0$, as before. Then $\operatorname{det}(s A)^{-}=$ $\operatorname{det}\left(s^{2} \check{A}\right)=s^{2 n} \operatorname{det} \check{A}$, and on the other hand $(\operatorname{det} s A)^{n}=\left(s^{2} \operatorname{det} A\right)^{n}=$ $s^{2 n}(\operatorname{det} A)^{n}$. So we have only to check that $\operatorname{det} \check{A}=1$ if $\operatorname{det} A=1$. We compute that the Lie algebra of $\{A \in \Delta \mid \operatorname{det} A=1\}$ is $\left.\left\{\begin{array}{cc}a & \tilde{v} \\ 0 & -a\end{array}\right)\right\}$ with bracket

$$
\left[\left(\begin{array}{rr}
a & \tilde{v} \\
0 & -a
\end{array}\right),\left(\begin{array}{rr}
b & \tilde{w} \\
0 & -b
\end{array}\right)\right]=\left(\begin{array}{cc}
0 & 2 a \tilde{w}-2 b \tilde{v} \\
0 & 0
\end{array}\right)
$$

and that

$$
\exp s\left(\begin{array}{rr}
a & \tilde{v} \\
0 & -a
\end{array}\right)=\sum_{j=0}^{\infty} \frac{s^{j}}{j!}\left(\begin{array}{rr}
a & \tilde{v} \\
0 & -a
\end{array}\right)^{j}
$$

Doing the same for Δ^{\prime} and differentiating the equation

$$
h\left(\exp s\left(\begin{array}{rr}
a & \tilde{v} \\
0 & -a
\end{array}\right)\right) \cdot t=\left(\exp s\left(\begin{array}{rr}
a & \tilde{v} \\
0 & -a
\end{array}\right)\right) t\left(\exp s\left(\begin{array}{rr}
a & 0 \\
\tilde{v} & -a
\end{array}\right)\right)
$$

with respect to s, we find

$$
h\left(\begin{array}{rr}
a & \tilde{v} \\
0 & -a
\end{array}\right): t \mapsto\left(\begin{array}{rr}
a & \tilde{v} \\
0 & -a
\end{array}\right) t+t\left(\begin{array}{rr}
a & 0 \\
\tilde{v} & -a
\end{array}\right) .
$$

Putting $L:=h\left(\begin{array}{cc}a & \tilde{v} \\ 0 & -a\end{array}\right)$ and using the basis

$$
u_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad u_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad u_{j}=\left(\begin{array}{ll}
0 & e_{j} \\
e_{j} & 0
\end{array}\right), \quad j=3, \cdots, n
$$

for the space of symmetric "matrices" $\left\{\begin{array}{c}\left.t_{1}^{t_{1}} \begin{array}{c}i \\ t_{2} \\ t_{2}\end{array}\right)\end{array}\right\}$, where $\left\{e_{j}\right\}$ is the standard basis for $\mathbf{R}^{n-2}=\left\{\left(t_{3}, \cdots, t_{n}\right)\right\}$, we find $L u_{1}=2 a u_{1}, L u_{2}=-2 a u_{2}+$ $\sum_{j=3}^{n} v_{j} u_{j}, L u_{j}=2 c_{j} u_{1}, j=3, \cdots, n$, and hence trace $L=0$. So we get the lemmas as before:

Lemma 1'. $\quad \operatorname{det} \check{A}=(\operatorname{det} A)^{n}$ for $A=\left(\begin{array}{ll}a & \tilde{v} \\ 0 & b\end{array}\right) \in \Delta=\Delta_{n}$.

Lemma 2'. There is a C^{∞} solution $\check{A}(t) \in G\left(S_{n}\right)$ of the equation $t=\check{A} \cdot e$ for t near $e=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=(1,1,0, \cdots, 0) \in S_{n}$, satisfying the condition: $(\operatorname{det} \check{A}(t))^{2}$ is a homogeneous polynomial $\left((\operatorname{det} t)^{n}\right)$ of degree $l(=2 n)$ in $t \in \mathbf{R}^{n}$.

Now by Fact 1 we have $g(\Omega)=\mathscr{D} g(\Omega) \oplus \mathscr{Z} g(\Omega)$, where $\mathscr{D} g=[g, g]$, and $\mathscr{Z} \mathrm{g}$ is the center of g and $\Omega=\mathscr{P}_{p}(\mathbf{F})$ or S_{n}. We have $\operatorname{dim} \mathscr{Z} \mathrm{g}=1$ since Ω is indecomposable, (see [9]), and we let Z_{0} be a generator for $\mathscr{Z g}$. Then any element $X \in \mathrm{~g}(\Omega)$ can be written $X=Y+c Z_{0}$ with $Y \in \mathscr{D} g$ and $c \in \mathbf{R}$, and hence trace $X=c$ trace Z_{0}. This implies $\operatorname{det} \exp X=\exp \operatorname{trace} X=$ $\exp c$ trace Z_{0}. We cannot have trace $Z_{0}=0$, since then the determinant of any element in $G(\Omega)^{0}$, the identity component of $G(\Omega)$, would be 1 , in contradiction to Lemmas 1 and 1^{\prime}.

Consider now the homomorphism $\beta: \mathrm{g}(\Omega) \rightarrow \mathrm{g} l^{0}(m, \mathbf{C}) \subset \mathrm{g} l(m, \mathbf{C})$ given in Fact 2. We have $\beta X=\beta Y+c \beta Z_{0}$ for the above X, and here $\beta Y \in$ $\mathscr{D} g l(m, \mathbf{C})$. Therefore trace $\beta X=c$ trace βZ_{0}, which gives

$$
\begin{aligned}
\operatorname{det} \beta \exp X & =\left(\exp c \operatorname{trace} Z_{0}\right)^{\text {trace } \beta Z_{0} / \text { trace } Z_{0}} \\
& =(\operatorname{det} \exp X)^{r} \text { for all } X \in \mathrm{~g}(\Omega)
\end{aligned}
$$

where $r=\operatorname{trace} \beta Z_{0} /$ trace Z_{0}, by observng that β extends to a group homomorphism $G(\Omega)^{0} \rightarrow G l(m, C)$, [8], [9]. We thus have

Lemma 3. $\operatorname{det} \beta \check{A}=(\operatorname{det} \check{A})^{r}$ for any $\check{A} \in G(\Omega)^{0}$, the identity component of $G(\Omega)$, where $r \in \mathbf{R}$ is independent of \check{A}.

Here $(\check{A}, \beta \check{A}) \in G l(\Omega, F)$. (We still write \check{A} in order not to confuse with elements of $\Delta_{p}(\mathbf{F})$ or Δ.)

Using Lemmas 2 and 2^{\prime} and the notation there, and combining with Lemma 3, we have

Lemma 4. (det $\beta A(t))^{2}$ is a homogeneous function of degree Ir in t.
We now turn to the Bergman metric of a quasi-symmetric Siegel domain $\mathscr{D}(\Omega, F)$ with $\Omega \subset \mathbf{R}^{n}$ as above. Putting $Z^{n+k}:=u^{k}, k=1, \cdots, m$ for the moment, where $F: \mathbf{C}^{m} \times \mathbf{C}^{m} \rightarrow \mathbf{C}^{n}$, we have

$$
d s^{2}=d s_{\mathscr{D}(\Omega, F)}^{2}=2 \sum_{i, j=1}^{n+m} \frac{\partial^{2} \log \mathscr{K}}{\partial z^{i} \partial \bar{z}^{j}} d z^{i} d \bar{z}^{j}=: 2 \sum_{i, j=1}^{n+m} g_{i \bar{j}} d z^{i} d \bar{z}^{j},
$$

where $\mathscr{K}=\lambda \circ \Phi$ is as described in Fact 3, and so $\lambda(t)=\mathscr{K}(i t, 0)>0$. (We also write \langle,\rangle_{p} for this metrical product at the point p later on.) By Fact 3 and Lemma 3 we have for $\check{A} \in G(\Omega)^{0}$ that

$$
\lambda(\check{A} t)=|\operatorname{det} \check{A}|^{-2}|\operatorname{det} \beta \check{A}|^{-2} \lambda(t)=|\operatorname{det} \check{A}|^{-2(1+r)} \lambda(t)
$$

Hence $w(\check{A} t)=|\operatorname{det} \check{A}|^{-1} w(t)$, where $w:=\lambda^{1 /(2+2 r)}$, and so $w d t^{1} \wedge \cdots \wedge d t^{n}$ is a $G(\Omega)^{0}$-invariant volume form on Ω. (We cannot have $1+r=0$, since then λ and hence \mathscr{K} would be constant. But \mathscr{K} cannot be constant since $\mathscr{D}(\Omega, F)$ is (equivalent to) a bounded domain.)

The following is clear.
Lemma 5. For the $G(\Omega)^{0}$-invariant Riemannian metric

$$
d s_{\Omega}^{2}=\sum_{i, j=1}^{n} \frac{\partial^{2} \log w}{\partial t^{i} \partial t^{j}} d t^{i} d t^{j} \text { on } \Omega
$$

we have $d s_{\Omega}^{2}=d s_{\mathscr{D}(\Omega) \mid i \Omega}^{2}$, where $d s_{\mathscr{D}(\Omega)}^{2}$ is the Bergman metric on the tube domain $\mathscr{Q}(\Omega)=\mathbf{R}^{n}+i \Omega$.

With obvious indexing, slightly different from the above, and using the summation convention, we get from $\log \mathscr{K}=(\log \lambda) \circ \Phi$ and $t^{j}=\Phi^{j}(z, u)=$ $\operatorname{Im} z^{j}-F_{\alpha \bar{\beta}}^{j} u^{\alpha} \bar{u}^{\beta}$ that

$$
\frac{\partial^{2} \log \mathscr{K}}{\partial u^{\alpha} \partial \bar{u}^{\beta}}=\frac{\partial^{2} \log \lambda}{\partial t^{i} \partial t^{j}}(\Phi) \cdot \frac{\partial \Phi^{i}}{\partial u^{\alpha}} \cdot \frac{\partial \Phi^{j}}{\partial \bar{u}^{\beta}}+\frac{\partial \log \lambda}{\partial t^{j}}(\Phi) \cdot \frac{\partial^{2} \Phi^{j}}{\partial u^{\alpha} \partial \bar{u}^{\beta}} .
$$

Now $\partial \Phi^{i} / \partial u^{\alpha}=-F^{i}{ }_{\alpha \bar{\beta}} \bar{u}^{\beta}$ and $\partial^{2} \Phi^{j} / \partial u^{\alpha} \partial \bar{u}^{\beta}=-F^{j}{ }_{\alpha \bar{\beta}}$, so at $o=(i e, 0)$, which we choose as base point in $\mathscr{D}(\Omega, F)$,

$$
\begin{equation*}
g_{\alpha \bar{\beta} 0}=-F_{\alpha \bar{\beta}}^{j} \frac{\partial \log \lambda}{\partial t^{j}}(e) ; \quad \alpha, \beta=1, \cdots, m \tag{3}
\end{equation*}
$$

Similarly we have $\partial^{2} \log \mathcal{K} / \partial z^{i} \partial \bar{u}^{\beta}=0$ at o, since $\partial \Phi^{j} / \partial \bar{u}^{\beta}=-F_{\alpha \bar{\beta}}^{j} u^{\alpha}$ and $\partial^{2} \Phi^{j} / \partial z^{i} \partial \bar{u}^{\beta} \equiv 0$. So

$$
\begin{equation*}
g_{i \bar{\beta} o}=0 ; \quad i=1, \cdots, n ; \beta=1, \cdots, m \tag{4}
\end{equation*}
$$

Further

$$
\begin{equation*}
g_{i j}=\frac{1}{4} \frac{\partial^{2} \log \lambda}{\partial t^{i} \partial t^{j}} \circ \Phi \tag{5}
\end{equation*}
$$

since $\partial \Phi^{k} / \partial z^{i}=-\frac{1}{2} \sqrt{-1} \delta_{i}^{k}$, where δ_{i}^{k} is the Kronecker symbol. This gives, at any point of $\mathscr{D}(\Omega, F)$,

$$
\begin{equation*}
g\left(\partial_{x^{i}}, \partial_{y^{\prime}}\right)=2 \operatorname{Im} g_{i j}=0 \tag{6}
\end{equation*}
$$

Definition 1. For any point $p \in \mathscr{D}(\Omega, f)$, we let $\widetilde{V}_{p} \subset T_{p} \mathscr{D}(\Omega, F)$ denote the vertical space at p, i.e., the tangent space to the fiber of $\Phi: \mathscr{D}(\Omega, F) \rightarrow \Omega$ through p. Similarly we let $\mathscr{F}_{p} \subset T_{p} \mathscr{D}(\Omega, F)$ denote the horizontal space at p, i.e., the orthogonal complement to \widetilde{V}_{p} with respect to $d s^{2}$.

Looking at $t^{j}=\Phi^{j}(z, u)=y^{j}-F^{j}(u, u)$ and using (4), (5), (6), we get
Lemma 6. $\mathscr{V}_{0}=\left\{a \cdot \partial_{x}\right\} \oplus\left\{b \cdot \partial_{u}+\bar{b} \cdot \partial_{\bar{u}}\right\}$ and $\mathscr{H}_{0}=\left\{a \cdot \partial_{y}\right\}$, where \oplus is the orthogonal sum and $a \in \mathbf{R}^{n}, b \in \mathbf{C}^{m}$.

Letting $\pi: A f f(\Omega, F) \rightarrow G(\Omega)$ be the homomorphism $\pi(\check{A}, \tilde{A}, a, b) \mapsto \check{A}$, we easily have
Lemma 7. The mapping $\Phi: \mathscr{D}(\Omega, F) \rightarrow \Omega$ is π-equivariant, i.e., $\Phi(g p)=$ $\pi(g) \Phi(p)$ for $g \in \operatorname{Aff}(\Omega, F)$ and $p \in \mathscr{D}(\Omega, F)$.

Therefore the distributions $\left\{\mathcal{H}_{p}\right\}_{p \in \mathscr{D}(\Omega, F)}$ and $\left\{\mathscr{V}_{p}\right\}_{p \in \mathscr{D}(\Omega, F)}$ are $\operatorname{Aff}(\Omega, F)$ invariant, and we have

Lemma 8. $\mathcal{V}_{(z, u)}=\left\{a \cdot \partial_{x}\right\}+\left\{b \cdot \partial_{u}+F(b, u) \cdot \partial_{y}+\right.$ conj $\}$ and $\mathcal{H}_{(z, u)}=$ $\left\{a \cdot \partial_{y}\right\}$, where $a \in \mathbf{R}^{n}, b \in \mathbf{C}^{m}$. Also the summands in \mathfrak{V} are orthogonal if $u=0$.
Proof. Assume first that $(z, u)=(i t, 0)$, and choose $g=(\hat{A}, \tilde{A}) \in$ $G l(\Omega, F)$ such that $\check{A} t=e$. Then $g:(z, u) \mapsto(\check{A} z, \tilde{A} u)$, whence (summation convention) $g_{*} \partial_{z^{i}}=\check{A}_{j i} \partial_{z^{j}}, g_{*} \partial_{u^{\alpha}}=\tilde{A}_{\beta \alpha} \partial_{u^{\beta}}$, or $g_{*}\left(a \cdot \partial_{z}\right)=(\check{A} a) \cdot \partial_{z}, g_{*}\left(b \cdot \partial_{u}\right)$ $=(\tilde{A} b) \cdot \partial_{u}$. Since $g(i t, 0)=o$, we see $\mathscr{V}_{(i t, 0)}=\left\{a \cdot \partial_{x}\right\} \oplus\left\{b \cdot \partial_{u}+\bar{b} \cdot \partial_{\bar{u}}\right\}$ and $\mathscr{H}_{(i t, 0)}=\left\{a \cdot \partial_{y}\right\}$, by Lemma 6.
Now let $\left(z_{0}, u_{0}\right)$ be any point, and observe that

$$
g\left(z_{0}, u_{0}\right)=\left(i \Phi\left(z_{0}, u_{0}\right), 0\right)
$$

where now $g=\left(I, I,-\operatorname{Re} z_{0},-u_{0}\right) \in \operatorname{Aff}(\Omega, F)$, and that

$$
g(z, u)=\left(z-\operatorname{Re} z_{0}-2 i F\left(u, u_{0}\right)+i F\left(u_{0}, u_{0}\right), u-u_{0}\right) .
$$

Then $g_{*}\left(a \cdot \partial_{z}\right)=a \cdot \partial_{z}$ and $g_{*}\left(b \cdot \partial_{u}\right)=-2 i F\left(b, u_{0}\right) \cdot \partial_{z}+b \cdot \partial_{u}$, and hence also $g_{*}\left(b \cdot \partial_{u}+F\left(b, u_{0}\right) \cdot \partial_{y}\right)=-i F\left(b, u_{0}\right) \cdot \partial_{x}+b \cdot \partial_{u}$. The rest then follows from the first part. q.e.d.

Since $\Phi_{*}\left(a \cdot \partial_{y}\right)=a \cdot \partial_{t}$, and

$$
\left\langle\partial_{y^{i}}, \partial_{y^{j}}\right\rangle_{p}=2 \operatorname{Re} g_{i j p}=\frac{1}{2} \frac{\partial^{2} \log \lambda}{\partial t^{i} \partial t^{j}} \circ \Phi(p)
$$

by (5), and since $w=\lambda^{1 /(2+2 r)}$, Lemmas 5 and 8 give
Corollary 1. With r as in Lemma 3, we have

$$
(1+r) d s_{\Omega}^{2}\left(\Phi_{*} Y, \Phi_{*} Y\right)=d s_{\mathscr{D}(\Omega, F)}^{2}(Y, Y)
$$

for any $Y \in \mathcal{H}_{(z, u)}$, and so the mapping

$$
\Phi: \mathscr{D}(\Omega, F) \rightarrow \Omega
$$

is a Riemannian submersion [6] when we give Ω the metric $(1+r) d s_{\Omega}^{2}$.
Remark. We see that $1+r>0$.
We now have to connect the metric with the algebra in [8]. First we shall identify the inner product in \mathscr{H}_{0} with the given inner product \langle,$\rangle on \mathbf{R}^{n}$. By Corollary 1 this means that we must identify $g_{\Omega, e}$ with \langle,$\rangle . As in Lemmas 2$ and 2^{\prime}, we write $t=\check{A}(t) \cdot e=A(t) e A(t)^{*}$ for t near $e \in \Omega$, where $\check{A}(t)$ comes from an element $A(t) \in \Delta_{p}(\mathbf{F})$ or Δ_{n}, according as Ω is classical or spherical. For

$$
d s_{\Omega}^{2}=\sum \frac{\partial^{2} \log w}{\partial t^{i} \partial t^{j}} d t^{i} d t^{j}
$$

we have $w(t)=w(\check{A}(t) \cdot e)=(\operatorname{det} \check{A}(t))^{-1} w(e)=(\operatorname{det} A(t))^{-\varepsilon} w(e)$, by Lemmas 1 and 1^{\prime}. We saw further in the proofs of Lemmas 2 and 2^{\prime} that $\operatorname{det} t=$ $(\operatorname{det} A)^{2}$, and therefore

$$
\log w(t)=-\frac{\varepsilon}{2} \log \operatorname{det} t+\log w(e)
$$

Thus

$$
d s_{\Omega}^{2}=\frac{\varepsilon}{2} \sum\left\{\frac{1}{(\operatorname{det} t)^{2}} \cdot \frac{\partial \operatorname{det} t}{\partial t^{i}} \cdot \frac{\partial \operatorname{det} t}{\partial t^{j}}-\frac{1}{\operatorname{det} t} \cdot \frac{\partial^{2} \operatorname{det} t}{\partial t^{i} \partial t^{j}}\right\} d t^{i} d t^{j}
$$

Since $\operatorname{det} e=1$, we see

$$
d s_{\Omega, e}^{2}=\frac{\varepsilon}{2} \sum\left\{\frac{\partial \operatorname{det} t}{\partial t^{i}} \cdot \frac{\partial \operatorname{det} t}{\partial t^{j}}-\frac{\partial^{2} \operatorname{det} t}{\partial t^{i} \partial t^{j}}\right\}_{e} d t^{i} d t^{j}
$$

Consider first the classical cones $\mathscr{P}_{p}(\mathbf{F})$, and change the indexing so that for instance for $\mathscr{P}_{2}(\mathbf{C})$ we have

$$
t=\left(\begin{array}{cc}
t_{11} & t_{12}^{\prime}+i t_{12}^{\prime \prime} \\
t_{12}^{\prime}-i t_{12}^{\prime \prime} & t_{22}
\end{array}\right) .
$$

Then det $t=t_{11} t_{22}-\left(t_{12}^{\prime}\right)^{2}-\left(t_{12}^{\prime \prime}\right)^{2}$, and one verifies that

$$
\begin{aligned}
& \left\langle\partial_{t_{11}}, \partial_{t_{11}}\right\rangle_{\Omega, e}=1, \quad\left\langle\partial_{t_{11},} \partial_{t_{12}^{\prime}}\right\rangle_{\Omega, e}=0, \quad\left\langle\partial_{t_{11}}, \partial_{t_{12}^{\prime \prime}}\right\rangle_{\Omega, e}=0, \\
& \left\langle\partial_{t_{11},} \partial_{t_{22}}\right\rangle_{\Omega, e}=0, \quad\left\langle\partial_{t_{12},} \partial_{t_{12}^{\prime}}\right\rangle_{\Omega, e}=2, \quad\left\langle\partial_{t_{12}^{\prime},} \partial_{t_{12}^{\prime \prime}}\right\rangle_{\Omega, e}=0
\end{aligned}
$$

etc., except for the factor $\varepsilon / 2$. This works in the other cases too, and we have (except for $\varepsilon / 2$): The $\partial_{t_{i j}}$'s are orthogonal to each other, those on the diagonal have length 1 , the others have length $\sqrt{2}$. On the other hand, if

$$
E_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad E_{12}^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad E_{12}^{\prime \prime}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)
$$

form a (real) basis for $\mathscr{H}_{2}(\mathbf{C})$, then $\left\langle E_{11}, E_{11}\right\rangle=\operatorname{trace}\left(E_{11}^{2}\right)=1$, and $\left\langle E_{11}, E_{12}^{\prime}\right\rangle=0,\left\langle E_{11}, E_{12}^{\prime \prime}\right\rangle=0,\left\langle E_{11}, E_{22}\right\rangle=0,\left\langle E_{12}^{\prime}, E_{12}^{\prime}\right\rangle=2,\left\langle E_{12}^{\prime}, E_{12}^{\prime \prime}\right\rangle$ $=0$, etc., and again this holds in general. So we have

$$
\begin{equation*}
\left\langle a_{1} \cdot \partial_{t}, a_{2} \cdot \partial_{t}\right\rangle_{\Omega, e}=\frac{\varepsilon}{2}\left\langle a_{1}, a_{2}\right\rangle \tag{7}
\end{equation*}
$$

for $a_{1}, a_{2} \in \mathbf{R}^{n}$ ($=$ space in which Ω lies).
Consider then the spherical cone S_{n}. As quoted in §1, the reference [10] uses the ordinary inner product on \mathbf{R}^{n} for this cone. Since we treat S_{n} as a set of symmetric "matrices", we change the product slightly: If

$$
X=\left(\begin{array}{cc}
x_{1} & \tilde{x} \\
\tilde{x} & x_{2}
\end{array}\right), \quad Y=\left(\begin{array}{cc}
y_{1} & \tilde{y} \\
\tilde{y} & y_{2}
\end{array}\right) \in \mathbf{R}^{n}
$$

then

$$
X Y=\left(\begin{array}{cc}
x_{1} y_{1}+\tilde{x} \cdot \tilde{y} & x_{1} \tilde{y}+y_{2} \tilde{x} \\
y_{1} \tilde{x}+x_{2} \tilde{y} & x_{2} y_{2}+\tilde{x} \cdot \tilde{y}
\end{array}\right)
$$

is well-defined, and has "trace" $x_{1} y_{1}+x_{2} y_{2}+2 \tilde{x} \cdot \tilde{y}$. So we define $\langle X, Y\rangle:=\operatorname{trace}(X Y)$, as in the case of $\mathscr{P}_{p}(\mathbf{F})$. It is easy to verify that S_{n} is self-dual with respect to this \langle,$\rangle and that e=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)=(1,1,0, \cdots, 0) \in \mathbf{R}^{n}$ satisfies the condition in Fact 1. Then the calculation goes just as before, and again we have (7), (with $\varepsilon=n$). Since $\Phi_{*}\left(a \cdot \partial_{y}\right)=a \cdot \partial_{t}$, using Corollary 1 we get

Lemma 9. For $a_{1} \cdot \partial_{y}, a_{2} \cdot \partial_{y} \in \mathscr{H}_{0}$, we have

$$
\left\langle a_{1} \cdot \partial_{y}, a_{2} \cdot \partial_{y}\right\rangle_{0}=C\left\langle a_{1}, a_{2}\right\rangle,
$$

where $C=\frac{1}{2}(1+r) \varepsilon$, and \langle,$\rangle is the inner product given on \mathbf{R}^{n}$, where Ω lies.
Next we want to determine $g_{\alpha \bar{\beta} 0}=\left\langle\partial_{u^{\alpha}}, \partial_{\bar{u}^{\beta}}\right\rangle_{0}$, since by (4), (5) and (6) we then know the metric. By (3) we have to calculate the gradient of $\log \lambda$ at e. Using Fact 3 and Lemmas $2,2^{\prime}$ and 4 , we have, for t near e,

$$
\lambda(t)=(\operatorname{det} \check{A}(t))^{-2}(\operatorname{det} \beta \check{A}(t))^{-2} \lambda(e)
$$

with $(\operatorname{det} \check{A}(t))^{2}$ and $(\operatorname{det} \beta \check{A}(t))^{2}$ homogeneous functions in t of degrees l and lr respectively. Using Euler's lemma on homogeneous functions and summation convention, from

$$
\log \lambda(t)=-\log (\operatorname{det} \check{A}(t))^{2}-\log (\operatorname{det} \beta \check{A}(t))^{2}+\log \lambda(e)
$$

we get that

$$
\begin{aligned}
\frac{\partial \log \lambda}{\partial t^{j}} \cdot t^{j}=- & \left\{(\operatorname{det} \check{A}(t))^{-2} \cdot l \cdot(\operatorname{det} \check{A}(t))^{2}\right. \\
& \left.+(\operatorname{det} \beta \check{A}(t))^{-2} \cdot l r \cdot(\operatorname{det} \beta \check{A}(t))^{2}\right\}=-l(1+r)
\end{aligned}
$$

Differentiation once more gives

$$
\frac{\partial^{2} \log \lambda}{\partial t^{i} \partial t^{j}} \cdot t^{j}+\frac{\partial \log \lambda}{\partial t^{i}}=0
$$

By (3) we then get, with summation convention,

$$
\begin{equation*}
g_{\alpha \bar{\beta} 0}=\left.F_{\alpha \bar{\beta}}^{i} \cdot \frac{\partial^{2} \log \lambda}{\partial t^{i} \partial t^{j}}\right|_{e} \cdot e^{j} \tag{8}
\end{equation*}
$$

By (5) we have also

$$
\left\langle\partial_{y i}, \partial_{y j}\right\rangle_{0}=2 \operatorname{Re} g_{i j 0}=\left.\frac{1}{2} \frac{\partial^{2} \log \lambda}{\partial t^{i} \partial t^{j}}\right|_{e},
$$

and so

$$
\begin{aligned}
\left\langle b_{1} \cdot \partial_{u}, \overline{b_{2} \cdot \partial_{u}}\right\rangle_{0} & =\left.F_{\alpha \bar{\beta}}^{i} b_{1}^{\alpha} \overline{b_{2}^{\beta}} \cdot \frac{\partial^{2} \log \lambda}{\partial t^{i} \partial t^{j}}\right|_{e} \cdot e^{j}=2 F^{i}\left(b_{1}, b_{2}\right)\left\langle\partial_{y i}, \partial_{y j}\right\rangle_{0} e^{j} \\
& =2\left\langle F\left(b_{1}, b_{2}\right) \cdot \partial_{y}, e \cdot \partial_{y}\right\rangle_{0}
\end{aligned}
$$

By Lemma 9 this equals $2 C\left\langle F\left(b_{1}, b_{2}\right), e\right\rangle=2 C\left\langle e, F\left(b_{1}, b_{2}\right)\right\rangle$. In the notation of Definition 4 of $\S 1$ we thus have

Lemma 10. For the vectors $b_{1} \cdot \partial_{u}+$ conj, $b_{2} \cdot \partial_{u}+$ conj $\in \mathbb{V}_{0}$, we have

$$
\left\langle b_{1} \cdot \partial_{u}, \overline{b_{2} \cdot \partial_{u}}\right\rangle_{0}=2 C\left\langle e, F\left(b_{1}, b_{2}\right)\right\rangle=2 C F_{e}\left(b_{1}, b_{2}\right),
$$

where $C=\frac{1}{2}(1+r) \varepsilon$.
This completes the determination of the metric, since our space $\mathscr{D}(\Omega, F)$ is homogeneous.

3. The Bergman connection

In this section we calculate the Riemannian connection induced by the Bergman metric (the Bergman connection) on the quasi-symmetric domain $\mathscr{D}(\Omega, F)$. Since $\mathscr{D}(\Omega, F)$ is affinely homogeneous, and the metric is invariant under $A f f(\Omega, F)$ (and under $\operatorname{Hol}(\Omega, F)$ too, of course), we will use the terminology of [4], to which we refer for general details.

We have
Lemma 1. The stability subgroup of $A f f(\Omega, F)$ at $o=(i e, 0)$ is

$$
\{(A, \tilde{A}, 0,0) \in A f f(\Omega, F) \mid A e=e\} \subset G l(\Omega, F)
$$

where e is the base point of Ω.
Proof. Trivial.
However, it is a little bit inconvenient to work with $\operatorname{Aff}(\Omega, F)$ since the element \tilde{A} is not uniquely determined by A. (We still have the freedom of the "unitary group of $F^{\prime \prime}$.) But since $\mathscr{D}(\Omega, F)$ is quasi-symmetric, we have the homomorphism $\beta: G(\Omega)^{0} \rightarrow G l(m, \mathbf{C})$ such that $(A, \beta A) \in G l(\Omega, F)$ for $A \in$ $G(\Omega)^{0}$, where $G(\Omega)^{0}$ is the identity component of $G(\Omega)$. We can then consider the connected subgroup

$$
\begin{equation*}
G:=\left\{(A, \beta A, a, b) \mid A \in G(\Omega)^{0}, a \in \mathbf{R}^{n}, b \in \mathbf{C}^{m}\right\} \tag{1}
\end{equation*}
$$

of $\operatorname{Aff}(\Omega, F)$. (See (1) of $\S 1$ for group operations.) We also write (A, a, b) for the element $(A, \beta A, a, b)$.

Lemma 2. G is transitive on $\mathscr{D}(\Omega, F)$.
Proof. This follows from the fact that since $G(\Omega)$ is transitive on Ω, so is $G(\Omega)^{0}$, and from the fact that the subgroup $\{(a, b)\}=\{(I, a, b)\}$ of G is transitive on Φ-fibers. Recall that Φ is π-equivariant, where $\pi: G \ni(A, a, b)$ $\mapsto A \in G(\Omega)^{0}$.

Lemma 3. The stability subgroup of G at $o=(i e, 0)$ is the group

$$
K=\{(A, 0,0) \mid A e=e\} \subset G \cap G l(\Omega, F)
$$

Proof. See Lemma 1. q.e.d.
Writing $K_{e}=\left\{A \in G(\Omega)^{0} \mid A e=e\right\}$ for the stability subgroup of $G(\Omega)^{0}$ at e, \mathfrak{f}_{e} for its Lie algebra and \mathfrak{f} for the Lie algebra of K, from the above we have

$$
\begin{equation*}
\mathfrak{f}=\left\{(X, 0,0) \mid X \in \mathfrak{f}_{e}\right\}=\mathfrak{f}_{e} . \tag{2}
\end{equation*}
$$

Now let $g(\Omega)=f_{e}+\mathfrak{p}_{e}$ be the Cartan decomposition of $g(\Omega)$ at e, as in Fact $1, \S 1$, and let

$$
\begin{equation*}
\mathfrak{m}=\left\{(X, a, b) \mid X \in \mathfrak{p}_{e}, a \in \mathbf{R}^{n}, b \in \mathbf{C}^{m}\right\} \tag{3}
\end{equation*}
$$

Then letting g be the Lie algebra of G we have, in the terminology of [4],
Lemma 4. $\mathscr{D}(\Omega, F)=G / K$ is a reductive homogeneous space with respect to the decomposition

$$
\mathfrak{g}=\mathfrak{f}+\mathrm{m} .
$$

Proof. That $\mathfrak{f} \cap \mathfrak{m}=\{0\}$ is clear. Since

$$
\begin{aligned}
{[\mathfrak{f}, \mathfrak{m}] } & \subset\left\{([X, Y], a, b) \mid X \in \mathfrak{f}_{e}, Y \in \mathfrak{p}_{e}, a \in \mathbf{R}^{n}, b \in \mathbf{C}^{m}\right\} \\
& \subset\left\{(Z, a, b) \mid Z \in \mathfrak{p}_{e}, a \in \mathbf{R}^{n}, b \in \mathbf{C}^{m}\right\}=\mathfrak{m},
\end{aligned}
$$

the rest is clear. (Use the homotopy sequence for $G \rightarrow G / K$ together with the fact that $\mathscr{D}(\Omega, F)$ is simply connected, to see that K is connected, and then we only need $[f, m] \subset m$.) q.e.d.

By [4] the Bergman connection, being G-invariant, can be expressed by a certain linear mapping $\Lambda_{\mathfrak{m}}: \mathfrak{m} \rightarrow g l(2 n+2 m, \mathbf{R})$, where $2 n+2 m$ is the real dimension $\mathscr{D}(\Omega, F)$.

Now choose u_{0} in the linear frame bundle of $\mathscr{D}(\Omega, F)$, over the point o.
As in [4], it is more convenient to make the identifications

$$
\mathfrak{m}=T_{0}(\mathscr{D}(\Omega, F))=\mathbf{R}^{2 n+2 m} ;
$$

the first "by exp", i.e., by value of induced field at o, and the second by u_{0}. Then $\Lambda_{\mathrm{m}}(X): \mathfrak{m} \rightarrow \mathfrak{m}$ is a linear map, and we write both $\Lambda_{\mathrm{m}}(X) Y$ and $\Lambda_{\mathrm{m}}(X, Y)$ for its action on Y. Then using these identifications we have

$$
\begin{equation*}
\nabla_{Y_{0}} X=\Lambda_{\mathrm{m}}(X, Y) \quad \text { for } X, Y \in \mathfrak{m}, \tag{4}
\end{equation*}
$$

where again X is the field induced on $\mathscr{D}(\Omega, F)$ by $X \in \mathfrak{m}$.
Now the metric gives us a symmetric bilinear form on \mathfrak{m}, as $\langle X, Y\rangle:=\langle X, Y\rangle_{0}$, using the identification. There is then in [4] the following formula for the connection Λ_{m} induced by the metric.

$$
\begin{equation*}
\Lambda_{\mathfrak{m}}(X, Y)=\frac{1}{2}[X, Y]_{\mathfrak{m}}+U(X, Y) \quad \text { for } X, Y \in \mathfrak{m} \tag{5}
\end{equation*}
$$

where $U: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ is the symmetric, bilinear mapping defined by

$$
\begin{equation*}
2\langle U(X, Y), Z\rangle=\left\langle X,[Z, Y]_{\mathfrak{m}}\right\rangle+\left\langle[Z, X]_{\mathfrak{m}}, Y\right\rangle \tag{6}
\end{equation*}
$$

for $X, Y, Z \in \mathfrak{m}$, where $[X, Y]_{\mathfrak{m}}$ means the \mathfrak{m}-component of $[X, Y]$, etc.

When we apply this to our special case, we again have to write (X, a, b) instead of X, of course. Specifically, we have first (see §1)

$$
\begin{align*}
& {[(X, a, b),(Y, c, d)]_{\mathrm{m}}} \\
& \quad=(0, X c-Y a+4 \operatorname{Im} F(b, d), \beta(X) d-\beta(Y) b) \quad \text { for } X, Y \in \mathfrak{p}_{e} \tag{7}
\end{align*}
$$

since $\left[\mathfrak{p}_{e}, \mathfrak{p}_{e}\right] \subset \mathfrak{f}_{e}(\subset \mathfrak{g}(\Omega))$. Further, by (3) of $\S 1$ we get

$$
\begin{equation*}
(X, a, b)_{0}=X e \cdot \partial_{y}+a \cdot \partial_{x}+\left(b \cdot \partial_{u}+\bar{b} \cdot \partial_{\bar{u}}\right) \tag{8}
\end{equation*}
$$

We then calculate, for $(X, a, b),(Y, c, d),(Z, f, h) \in \mathfrak{m}$,

$$
\begin{aligned}
\left\langle[(Z, f, h),(X, a, b)]_{\mathrm{m}},\right. & (Y, c, d)\rangle \\
= & \left\langle\{Z a-X f+4 \operatorname{Im} F(h, b)\} \cdot \partial_{x}, c \cdot \partial_{x}\right\rangle_{0} \\
& +\left(\left\langle\{\beta(Z) b-\beta(X) h\} \cdot \partial_{u}, \bar{d} \cdot \partial_{\bar{u}}\right\rangle_{0}+\mathrm{conj}\right),
\end{aligned}
$$

where we have used the orthogonality properties in §2, Lemma 8 , and also the fact that since the metric is hermitian, $\left\langle d_{1} \cdot \partial_{u}, d_{2} \cdot \partial_{u}\right\rangle=0$, etc. We get then, by interchanging (X, a, b) and (Y, c, d), and adding

$$
\begin{aligned}
&\langle 2 U(X, a, b \mid Y, c, d),(Z, f, h)\rangle \\
&=\left\langle\{Z a-X f+4 \operatorname{Im} F(h, b)\} \cdot \partial_{x}, c \cdot \partial_{x}\right\rangle_{0} \\
&+\left\langle\{Z c-Y f+4 \operatorname{Im} F(h, d)\} \cdot \partial_{x}, a \cdot \partial_{x}\right\rangle_{0} \\
&+\left(\left\langle\{\beta(Z) b-\beta(X) h\} \cdot \partial_{u}, \bar{d} \cdot \partial_{\bar{u}}\right\rangle_{0}+\text { conj }\right) \\
&+\left(\left\langle\{\beta(Z) d-\beta(Y) h\} \cdot \partial_{u}, \bar{b} \cdot \partial_{\bar{u}}\right\rangle_{0}=\text { conj }\right) .
\end{aligned}
$$

It is more convenient now to look at cases. Then (9) tells us:

$$
\text { I. }\langle 2 U(X, 0,0 \mid Y, 0,0),(Z, f, h)\rangle=0 .
$$

By definiteness of \langle, \rangle, we get

$$
U(X, 0,0 \mid Y, 0,0)=0
$$

II. $\langle 2 U(X, 0,0 \mid 0, c, 0),(Z, f, h)\rangle=-\left\langle X f \cdot \partial_{x}, c \cdot \partial_{x}\right\rangle_{0}$.

By Lemma 8 of $\S 2$ and (8) we can then write $U(X, 0,0 \mid 0, c, 0)=A(X \mid c) \cdot \partial_{x}$ with

$$
\left\langle A(X \mid c) \cdot \partial_{x}, f \cdot \partial_{x}\right\rangle_{0}=-\frac{1}{2}\left\langle X f \cdot \partial_{x}, c \cdot \partial_{x}\right\rangle_{0}=-\frac{1}{2}\left\langle X f \cdot \partial_{y}, c \cdot \partial_{y}\right\rangle_{0}
$$

where the last equality follows from the fact that \langle,$\rangle is a hermitian metric.$ This is further equal to $-\frac{1}{2} C\langle X f, c\rangle$ by $\S 2$. Now $X \in \mathfrak{p}_{e}$, and by Fact 1 of $\S 1$, X is symmetric with respect to the product \langle,$\rangle on \mathbf{R}^{n}$. So $-\frac{1}{2} C\langle X f, c\rangle=-$ $\frac{1}{2} C\langle f, X c\rangle$, and by Lemma 9 of $\S 2$, this finally gives us $\left\langle A(X \mid c) \cdot \partial_{x}, f \cdot \partial_{x}\right\rangle_{0}$ $=-\frac{1}{2}\left\langle X c \cdot \partial_{x}, f \cdot \partial_{x}\right\rangle_{0}$. Hence

$$
U(X, 0,0 \mid 0, c, 0)=-\frac{1}{2} X c \cdot \partial_{x}=\left(0,-\frac{1}{2} X c, 0\right)
$$

Proceeding similarly in the other cases, using the information in $\S \S 1$ and 2 about $\circ, \mathfrak{p}_{e}, T: \mathbf{R}^{n} \xrightarrow{\approx} \mathfrak{p}_{e}, R: \mathbf{R}^{n} \rightarrow \mathscr{H}\left(F_{e}\right), \beta: g(\Omega) \rightarrow \mathfrak{g} l^{0}(m, \mathbf{C})$, and the Bergman metric, we easily find:
III. $U(X, 0,0 \mid 0,0, d)$,

$$
=-\frac{1}{2} \beta(X) d \cdot \partial_{u}-\frac{1}{2} \overline{\beta(X) d} \cdot \partial_{\bar{u}}=\left(0,0,-\frac{1}{2} \beta(X) d\right) .
$$

IV. $U(0, a, 0 \mid 0, c, 0)=(a \circ c) \cdot \partial_{y}=\left(T_{a \circ c}, 0,0\right)$.
V. $U(0, a, 0 \mid 0, d)=i R_{a} d \cdot \partial_{u}+\operatorname{conj}=\left(0,0, i R_{a} d\right)$.
VI. $U(0,0, b \mid 0,0, d)=2 \operatorname{Re} F(b, d) \cdot \partial_{y}=\left(T_{2 \operatorname{Re} F(b, d)}, 0,0\right)$.

Using I, •. , VI we express all terms in the expansion of $\Lambda_{\mathrm{m}}(X, a, b)(Y, c, d)$ arising from the symmetric mapping U, put these terms and (7) into formula (5), and obtain

Proposition 1. With respect to the decomposition $\mathrm{g}=\mathrm{f}+\mathfrak{m}$ in Lemma 4 for the indecomposable, quasi-symmetric domain $\mathscr{D}(\Omega, F)=G / K$, the Bergman connection is given by

$$
\begin{aligned}
& \Lambda_{\mathrm{m}}(X, a, b)(Y, c, d) \\
& \quad=\left(T_{a \circ c+2 \operatorname{Re} F(b, d)},-Y a+2 \operatorname{Im} F(b, d),-\beta(Y) b+\sqrt{-1}\left(R_{a} d+R_{c} b\right)\right)
\end{aligned}
$$

In order to simplify the appearance and handling of this formula, we introduce "a more complex notation". For already the component b in (X, a, b) stand for (at o) the vector $b \cdot \partial_{u}+\bar{b} \cdot \partial_{\bar{u}}$, while X stands for $X e \cdot \partial_{y}$ and a stands for $a \cdot \partial_{x}$. Since $\mathfrak{p}_{e} \ni X \mapsto X e \in T_{0}(\mathscr{D}(\Omega, F))$ is a linear isomorphism, we can write $X e$ instead of X, and further, we write $a=a^{\prime}+i a^{\prime \prime}$ for $a^{\prime} \cdot \partial_{x}+a^{\prime \prime} \cdot \partial_{y}=a \cdot \partial_{z}+\bar{a} \cdot \partial_{\bar{z}}$ at o, with $a^{\prime}, a^{\prime \prime} \in \mathbf{R}^{n}$, just as we write b for $b \cdot \partial_{u}+\bar{b} \cdot \partial_{\bar{u}}$ at o. Denoting by $\mathrm{m}_{\mathbf{c}}$ the space $\mathbf{C}^{n} \times \mathbf{C}^{m}$, we have therefore an isomorphism

$$
\mathfrak{m}_{\mathbf{C}} \ni(a, b) \mapsto a \cdot \partial_{z}+\bar{a} \cdot \partial_{\bar{z}}+b \cdot \partial_{u}+\bar{b} \cdot \partial_{\bar{u}} \in T_{o}(\mathscr{D}(\Omega, F))
$$

of complex vector spaces, where of course the complex structure on T_{0} is "the one given by the manifold". With the isomorphism $\mathfrak{m} \ni\left(X, a^{\prime}, b\right) \mapsto\left(a^{\prime}+\right.$ $i X e, b) \in \mathfrak{m}_{\mathbf{C}}$ with inverse $\left(a^{\prime}+i a^{\prime \prime}, b\right) \rightarrow\left(T_{a^{\prime \prime}}, a^{\prime}, b\right)$, the identifications between $\mathfrak{m}, \mathfrak{m}_{\mathbf{C}}$ and $T_{0}(\mathscr{D}(\Omega, F))$ are compatible.

When we talk about the field generated on $\mathscr{D}(\Omega, F)$ by $(a, b) \in \mathfrak{m}_{\mathbf{c}}$, we mean of course, as before, the field generated by ($T_{a^{\prime \prime}}, a^{\prime}, b$), which agrees with the field $a \cdot \partial_{z}+\bar{a} \cdot \partial_{\bar{z}}+b \cdot \partial_{u}+\bar{b} \cdot \partial_{\bar{u}}$ only at the origin o, in general. For simplicity we continue to write Λ_{m}. Then we translate

$$
\begin{aligned}
\Lambda_{\mathrm{m}}\left(a^{\prime}+i a^{\prime \prime}\right. & , b)\left(c^{\prime}+i c^{\prime \prime}, d\right) \\
& =\Lambda_{\mathrm{m}}\left(T_{a^{\prime \prime}}, a^{\prime}, b\right)\left(T_{c^{\prime \prime}}, c^{\prime}, d\right) \\
& =i\left(a^{\prime} \circ\left(c^{\prime}+i c^{\prime \prime}\right)+2 F(d, b), R_{a^{\prime}} d+R_{c^{\prime}+i c^{\prime \prime}} b\right)
\end{aligned}
$$

Here we have used the definition of T, the fact that $\operatorname{Im} F(b, d)=-$ Im $F(d, b)$, the commutativity of \circ, and we have extended \circ bilinearly to a product $\circ: \mathbf{C}^{n} \times \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$. We have also used

$$
\begin{equation*}
\beta\left(T_{a}\right)=R_{a} \text { for } a \in \mathbf{R}^{n} \tag{10}
\end{equation*}
$$

which follows easily from Fact 2 of $\S 1$.
We then have the following reformulation of Λ_{m}.
Proposition 1'. With respect to the decomposition $\mathfrak{g}=\mathfrak{f}+\mathfrak{m}$ in Lemma 4 for the indecomposable quasi-symmetric domain $\mathscr{D}(\Omega, F)=G / K$, the Bergman connection is given by $\lambda_{m}: \mathfrak{m}_{\mathbf{C}} \times \mathfrak{m}_{\mathbf{C}} \rightarrow \mathfrak{m}_{\mathbf{C}}$ as follows:

$$
\Lambda_{\mathrm{m}}(a, b)(c, d)=\sqrt{-1}\left(a^{\prime} \circ c+2 F(d, b), R_{a^{\prime}} d+R_{c} b\right)
$$

where $a, c \in \mathbf{C}^{n}, b, d \in \mathbf{C}^{m}$ and $a^{\prime}=\operatorname{Re} a$.
We also want to obtain an explicit expression for the covariant derivative ∇.

Proposition 2. For the indecomposable quasi-symmetric domain $\mathscr{D}(\Omega, F)$ the Bergman connection is given by

$$
\begin{array}{r}
\nabla_{\left(c \cdot \partial_{z}+d \cdot \partial_{u}\right)_{0}}\left(a \cdot \partial_{z}+b \cdot \partial_{u}\right)=\sqrt{-1}\left\{(a \circ c) \cdot \partial_{z}+\left(R_{a} d+R_{c} b\right) \cdot \partial_{u}\right\} \\
\in \mathscr{T}_{0}(\mathscr{D}(\Omega, F)),
\end{array}
$$

where $a, c \in \mathbf{C}^{n} ; b, d \in \mathbf{C}^{m} ; \mathscr{T}$ is the holomorphic tangent bundle.
Proof. Use the ordinary and Kählerian properties of ∇, and observe ((3) of $\S 1)$ that $(a, b)=\left(T_{a^{\prime \prime}}, a^{\prime}, b\right)$ represents the field $(a, b)_{(z, u)}=\left\{a^{\prime} \cdot \partial_{z}+2 i F(u, b) \cdot \partial_{z}+b \cdot \partial_{u}+T_{a^{\prime \prime}} z \cdot \partial_{z}+R_{a^{\prime \prime}} u \cdot \partial_{u}\right\}+$ conj (see also (10)). Then the result follows by combining (4) with Proposition 1^{\prime}.

Example. The formula in Proposition 2 generalizes the expression for the Poincaré-Bergman connection on the upper half-plane \mathscr{H}. For here the cone is $\Omega=\{t \in \mathbf{R} \mid t>0\}$ with $e=1$, and $G(\Omega)=\{A \in \mathbf{R} \mid A>0\}$ with $\mathrm{g}(\Omega)=\mathbf{R}$ $=p_{e}$, since $K_{e}=\{1\}$. For $a \in \mathbf{R}$ we have $T_{a}=a$, since $a=T_{a} e=T_{a} 1$ $=a \cdot 1$. Thus $a \circ c=T_{a}=a c$ is ordinary multiplication, and hence $\nabla_{\left(\partial_{z}\right)_{0}} \partial_{z}$ $=\sqrt{-1} \partial_{z}$, which is the correct expression.

In case $\mathscr{D}(\Omega, F)$ is symmetric, we can derive a relation between Λ_{m} and the symmetry σ of $g(\Omega, F)$, the Lie algebra of $\operatorname{Hol}(\mathscr{D}(\Omega, F))$. Let \mathcal{H} be the stability subgroup of $\operatorname{Hol}(\mathscr{Q}(\Omega, F))$ at o, and $g(\Omega, F)=\mathfrak{h}+\mathfrak{p}$ the Cartan decomposition at o. It is clear that we have

$$
\begin{equation*}
\mathfrak{p}=\frac{1-\sigma}{2} \mathfrak{m} \tag{11}
\end{equation*}
$$

since any vector $X \in \mathfrak{m}$ decomposes as $X=\frac{1}{2}(1+\sigma) X+\frac{1}{2}(1-\sigma) X \in \mathfrak{h}+$ \mathfrak{p}, and vectors in \mathfrak{h} do not give any tangent vectors at o. Since we have to obtain all tangent vectors, (11) must hold. This also follows from [8], where it
is stated that in the decomposition $g(\Omega, F)=g_{-1}+g_{-1 / 2}+g_{0}+g_{1 / 2}+g_{1}$ in $\S 1$, the involution σ reverses gradation, i.e., $\sigma\left(g_{\nu}\right)=\mathfrak{g}_{-\nu}$. So if $Z \in \mathfrak{p}$, then with $Z_{-\nu} \in g_{-\nu}, \nu=0,1 / 2,1$, and $\sigma Z_{0}=-Z_{0}$ we can write $Z=Z_{-1}+Z_{-1 / 2}$ $+2 Z_{0}-\sigma Z_{-1 / 2}-\sigma Z_{-1}$. But $Z_{-1}+Z_{-1 / 2}+Z_{0} \in \mathfrak{m}$, and $Z=\left(Z_{-1}+Z_{-1 / 2}\right.$ $\left.+Z_{0}\right)-\sigma\left(Z_{-1}+Z_{-1 / 2}+Z_{0}\right)$. We now have

Proposition 3. If the indecomposable quasi-symmetric domain $\mathscr{Q}(\Omega, F)$ is symmetric, then the above $\Lambda_{\mathfrak{m}}$ satisfies

$$
\frac{1-\sigma}{2} \Lambda_{\mathfrak{m}}(X, Y)=\left[\frac{1+\sigma}{2} X, \frac{1-\sigma}{2} Y\right] \text { for } X, Y \in \mathfrak{m}
$$

where σ is the involution on the Lie algebra of $\operatorname{Hol}(\mathscr{T}(\Omega, F))$.
Proof. Let $X, Y \in \mathfrak{m}$, and $\bar{X}:=\frac{1}{2}(1-\sigma) X, \check{Y}:=\frac{1}{2}(1-\sigma) Y \in \mathfrak{p}$. Then $\Lambda_{\mathrm{m}}(X) Y=\nabla_{Y_{0}} X$. We can also express ∇ by a $\Lambda_{\mathfrak{p}}$ with respect to the decomposition $\mathfrak{g}(\Omega, F)=\mathfrak{h}+\mathfrak{p}$, but this $\Lambda_{\mathfrak{p}}$ is zero in the symmetric case. (The Bergman metric induces the canonical connection on a symmetric space, [4], and this is given by $\Lambda_{\mathfrak{p}}=0$.) So

$$
\begin{aligned}
0 & =\left(\Lambda_{\mathfrak{p}}(\check{X}) \check{Y}\right)_{0}=\nabla_{\check{Y}_{0}} \check{X}=\nabla_{Y_{0}} \check{X}=\nabla_{\check{X}_{0}} Y+[Y, \check{X}]_{0}=\nabla_{X_{0}} Y+[Y, \check{X}]_{0} \\
& =\nabla_{Y_{0}} X+[X, Y]_{0}+[Y, \check{X}]_{0}=\left(\Lambda_{\mathrm{m}}(X) Y\right)_{0}+[X-\check{X}, Y]_{0} \\
& =\left(\Lambda_{\mathrm{m}}(X) Y\right)_{0}+\left[\frac{1+\sigma}{2} X, Y\right]_{0}
\end{aligned}
$$

where the brackets are field brackets. Now the mapping $g \rightarrow\{$ vector fields $\}$ is an antihomomorphism, and so

$$
\left(\Lambda_{\mathrm{m}}(X) Y\right)_{0}=\left[\frac{1+\sigma}{2} X, Y\right]_{0}
$$

where the bracket now is an algebra bracket. Since these tangent vectors are equal, so are the \mathfrak{p}-components of the indicated algebra elements, i.e.,

$$
\frac{1-\sigma}{2} \Lambda_{\mathrm{m}}(X, Y)=\frac{1-\sigma}{2}\left[\frac{1+\sigma}{2} X, Y\right]=\left[\frac{1+\sigma}{2} X, \frac{1-\sigma}{2} Y\right] .
$$

4. Curvature

In [4] there is the following formula for the Riemannian curvature:

$$
R(X, Y)_{0}=\left[\Lambda_{\mathfrak{m}}(X), \Lambda_{\mathrm{m}}(Y)\right]-\Lambda_{\mathfrak{m}}\left([X, Y]_{\mathfrak{m}}\right)-\lambda\left([X, Y]_{\mathfrak{q}}\right)
$$

as a mapping from \mathfrak{m} to \mathfrak{m}, where $X, Y \in \mathfrak{m}$ and λ is, in this section, the linear isotropy representation (and $[,]_{\mathfrak{m}}$ and $[,]_{\mathfrak{f}}$ mean \mathfrak{m} - and \mathfrak{f}-components of brackets, of course). One checks easily that via the identification $\mathfrak{m}=$ $T_{0}\left(\mathscr{D}(\Omega, F)\right.$), the linear isotropy representation is $\left.A \mapsto(\operatorname{ad} A)\right|_{\mathrm{m}}$ for $A=$ $(A, 0,0) \in K$. We use our $\mathfrak{m}_{\mathbf{c}}$ instead, and recall the identification $\mathfrak{m}=\mathfrak{m}_{\mathbf{C}}$ of
§3: $\mathfrak{m} \ni\left(X, a^{\prime}, b\right) \mapsto\left(a^{\prime}+i X e, b\right) \in \mathfrak{m}_{\mathbf{c}}$ with inverse $\left(a^{\prime}+i a^{\prime \prime}, b\right) \mapsto$ ($T_{a^{\prime \prime}}, a^{\prime}, b$). Now we calculate the three terms separately in the curvature expression:
$R(a, b \mid c, d)(f, h)=\left[\Lambda_{\mathrm{m}}(a, b), \Lambda_{\mathrm{m}}(c, d)\right](f, h)$

$$
-\Lambda_{\mathrm{m}}\left([(a, b),(c, d)]_{\mathrm{m}_{\mathrm{c}}}\right)(f, h)-\lambda\left([(a, b),(c, d)]_{\mathrm{f}}\right)(f, h)
$$

where $a, c, f \in \mathbf{C}^{n}, b, d, h \in \mathbf{C}^{m}$. First we get

$$
\begin{align*}
{[(a, b),(c, d)]_{\mathrm{m}_{\mathrm{c}}} } & =\left[\left(T_{a^{\prime \prime}}, a^{\prime}, b\right),\left(T_{c^{\prime \prime}}, c^{\prime}, d\right)\right]_{\mathfrak{m}} \\
& =\left(T_{a^{\prime \prime}} c^{\prime}-T_{c^{\prime \prime}} a^{\prime}+4 \operatorname{Im} F(b, d), R_{a^{\prime \prime}} d-R_{c^{\prime \prime}} b\right), \tag{1}
\end{align*}
$$

and similarly

$$
\begin{equation*}
[(a, b),(c, d)]_{\mathrm{f}}=\left(\left[T_{a^{\prime \prime}}, T_{c^{\prime \prime}}\right], 0,0\right) \tag{2}
\end{equation*}
$$

By a straightforward calculation, we now find
)
(3)

$$
\begin{align*}
& {\left[\Lambda_{\mathrm{m}}(a, b), \Lambda_{\mathrm{m}}(c, d)\right](f, h)} \\
& \quad=\left(\left[T_{c^{\prime}}, T_{a^{\prime}}\right] f+2 F\left(h, R_{c^{\prime}} b-R_{a^{\prime}} d\right)+2 F\left(R_{f} b, d\right)-2 F\left(R_{f} d, b\right)\right. \\
& \left.\quad\left[R_{c^{\prime}}, R_{a^{\prime}}\right] h-R_{f} R_{c^{\prime}} b+R_{f} R_{a^{\prime}} d+R_{2 F(h, b)} d-R_{2 F(h, d)} b\right) \\
& \quad \begin{array}{c}
\Lambda_{\mathrm{m}}\left([(a, b),(c, d)]_{\mathrm{m}_{\mathrm{c}}}\right)(f, h) \\
\quad= \\
\quad-i\left(\left(a^{\prime \prime} \circ c^{\prime}\right) \circ f-\left(c^{\prime \prime} \circ a^{\prime}\right) \circ f\right. \\
\quad+f \circ \operatorname{Im} F(b, d)+2 F\left(h, R_{a^{\prime \prime}} d-R_{c^{\prime \prime}} b\right) \\
\left.\quad R_{a^{\prime \prime} \circ c^{\prime}-c^{\prime \prime} \circ a^{\prime}+4 \operatorname{Im} F(b, d)} h+R_{f}\left(R_{a^{\prime \prime}} d-R_{c^{\prime \prime}} b\right)\right) \\
\quad-\lambda\left([(a, b),(c, d)]_{\mathfrak{F}}\right)(f, h)=-\left(\left[T_{a^{\prime \prime}}, T_{c^{\prime \prime}}\right] f,\left[R_{a^{\prime \prime}}, R_{c^{\prime \prime}}\right] h\right) .
\end{array}
\end{align*}
$$

Using $f \circ F(b, d)=F\left(R_{f} b, d\right)+F\left(b, R_{f}^{F} d\right)$ in (4), and then putting (3), (4) and (5) together, we obtain
Proposition 1. For the indecomposable quasi-symmetric domain $\mathscr{D}(\Omega, F)$ we have the curvature expression

$$
\begin{aligned}
R_{0}(a, b \mid c, d)(f, h)= & \left(-\left(\left[T_{a^{\prime}}, T_{c^{\prime}}\right]+\left[T_{a^{\prime \prime}}, T_{c^{\prime \prime}}\right]\right) f\right. \\
& -i\left(a^{\prime \prime} \circ c^{\prime}-a^{\prime} \circ c^{\prime \prime}\right) \circ f+2 F\left(d, R_{\bar{f}} b\right) \\
& -2 F\left(b, R_{\bar{f}} d\right)+2 F\left(h, R_{\bar{c}} b-R_{\bar{a}} d\right), \\
& -\left(\left[R_{a^{\prime}}, R_{c^{\prime}}\right]+\left[R_{a^{\prime \prime}}, R_{c^{\prime \prime}}\right]\right) h \\
& -i R_{a^{\prime \prime} \circ c^{\prime}-a^{\prime} \circ c^{\prime \prime}} h-i R_{4 \operatorname{Im} F(b, d)} h+R_{2 F(h, b)} d \\
& \left.-R_{2 F(h, d)} b-R_{f}\left(R_{\bar{c}} b-R_{\bar{a}} d\right)\right) \in \mathrm{m}_{\mathbf{C}},
\end{aligned}
$$

where $(a, b) \in \mathfrak{m}_{\mathbf{C}}=\mathbf{C}^{n} \times \mathbf{C}^{m}$ with $a^{\prime}=\operatorname{Re} a, a^{\prime \prime}=\operatorname{Im} a$, etc.

Also for the curvature do we want to obtain a more direct expression, in terms of $\partial_{z}, \partial_{u}$, etc. The calculation here is quite straightforward, but somewhat lengthy. The main point is to use

$$
(a, b)_{0}=a^{\prime} \cdot \partial_{x}+a^{\prime \prime} \cdot \partial_{y}+b \cdot \partial_{u}+\bar{b} \cdot \partial_{\bar{u}}=a \cdot \partial_{z}+b \cdot \partial_{u}+\text { conj }
$$

and the Kähler conditions on the curvature, namely: Only

$$
R\left(a \cdot \partial_{z}+b \cdot \partial_{u} \mid c \cdot \partial_{z}+d \cdot \partial_{u}\right) \text { and } R\left(a \cdot \partial_{z}+b \cdot \partial_{u} \mid c \cdot \partial_{z}+d \cdot \partial_{u}\right)
$$

can be different from zero, and each sends (1.0)-vectors to (1,0)-vectors, and $(0,1)$-vectors to $(0,1)$-vectors. We find

Proposition 2. For the indecomposable quasi-symmetric domain $\mathscr{D}(\Omega, F)$ we have

$$
\begin{aligned}
& R_{0}\left(a \cdot \partial_{z}+b \cdot \partial_{u} \mid \overline{c \cdot \partial_{z}+d \cdot \partial_{u}}\right)\left(f \cdot \partial_{z}+h \cdot \partial_{u}\right) \\
&=-\left\{\frac{1}{2}\left[T_{a}, T_{\bar{c}}\right] f+\frac{1}{2}(a \circ \bar{c}) \circ f+2 F\left(b, R_{\bar{f}} d\right)+2 F\left(h, R_{\bar{a}} d\right)\right\} \cdot \partial_{z} \\
&-\left\{R_{a} R_{\bar{c}} h+R_{f} R_{\bar{c}} b+R_{2 F(b, d)} h+R_{2 F(h, d)} b\right\} \cdot \partial_{u}
\end{aligned}
$$

where $a, c, f \in \mathbf{C}^{n}, b, d, h \in \mathbf{C}^{m}$, and also T has been extended linearly to a $\operatorname{map} \mathbf{C}^{n} \rightarrow \mathrm{gl}(n, \mathbf{C})$.

Example. For the upper half-plane again, we get (see the example in §3)

$$
R_{0}\left(\partial_{z} \mid \overline{\partial_{z}}\right) \partial_{z}=-\frac{1}{2} \partial_{z},
$$

where the origin o is the point i. This is of course the well-known expression for the curvature.

Finally we calculate the holomorphic sectional curvature, or, being no more complicated, the bisectional curvature.

For two vectors Z, W of type $(1,0)$ at o with $\langle Z, \bar{Z}\rangle_{0}=\langle W, \bar{W}\rangle_{0}=1$, the bisectional curvature determined by the complex lines Z and W is

$$
K(Z, W)=\langle R(Z, \bar{Z}) W, \bar{W}\rangle_{0}=K(W, Z) \in \mathbf{R}
$$

Using Lemmas $8,9,10$ of $\S 2$ and Proposition 2 we calculate

$$
\begin{align*}
\left\langleR \left(a \cdot \partial_{z}+\right.\right. & \left.\left.b \cdot \partial_{u} \mid \overline{a \cdot \partial_{z}+b \cdot \partial_{u}}\right)\left(f \cdot \partial_{z}+h \cdot \partial_{u}\right), \overline{f \cdot \partial_{z}+h \cdot \partial_{u}}\right\rangle_{0} \\
= & -\left\langle\left\{\frac{1}{2}\left[T_{a}, T_{\bar{a}}\right] f+\frac{1}{2}(a \circ \bar{a}) \circ f+2 F\left(b, R_{f} b\right)\right\rangle\right. \\
& \left.\left.+2 F\left(h, R_{\bar{a}} b\right)\right\} \cdot \partial_{z}, \overline{f \cdot \partial_{z}}\right\rangle_{0} \tag{6}\\
& \quad\left\langle\left\{R_{a} R_{\bar{a}} h+R_{f} R_{\bar{a}} b+R_{2 F(b, b)} h+R_{2 F(h, b)} b\right\} \cdot \partial_{u}, \overline{h \cdot \partial_{u}}\right\rangle_{0} .
\end{align*}
$$

We get

$$
\begin{aligned}
\left\langle a_{1} \cdot \partial_{z}, a_{2} \cdot \partial_{\bar{z}}\right\rangle_{0} & =\frac{1}{4}\left\{\left\langle a_{1} \cdot \partial_{x}, a_{2} \cdot \partial_{x}\right\rangle_{0}+\left\langle a_{1} \cdot \partial_{y}, a_{2} \cdot \partial_{y}\right\rangle_{0}\right\} \\
& =\frac{1}{2} C\left\langle a_{1}, a_{2}\right\rangle
\end{aligned}
$$

by using Lemma 8, 9. Also

$$
\langle a \circ(\bar{a} \circ f), \bar{f}\rangle=\left\langle T_{a}(\bar{a} \circ f), \bar{f}\right\rangle=\left\langle\bar{a} \circ f, T_{a}^{\prime} \bar{f}\right\rangle=\langle\bar{a} \circ f, a \circ \bar{f}\rangle,
$$

etc., and

$$
\left\langle v, F\left(u_{1}, u_{2}\right)\right\rangle=2\left\langle e, F\left(R_{v} u_{1}, u_{2}\right)\right\rangle=2\left\langle e, F\left(u_{1}, R_{\bar{v}} u_{2}\right)\right\rangle
$$

for $v \in \mathbf{C}^{n}, u_{1}, u_{2} \in \mathbf{C}^{m}$. Thus (6) implies, in consequence of Lemma 10 ,
Proposition 3. For the indecomposable quasi-symmetric domain $\mathscr{D}(\Omega, F)$ the holomorphic bisectional curvature determined by the vectors $Z=a \cdot \partial_{z}+b \cdot \partial_{u}$, $W=f \cdot \partial_{z}+h \cdot \partial_{u}$ at o with $\langle Z, \bar{Z}\rangle_{0}=\langle W, \bar{W}\rangle_{0}=1$ is

$$
\begin{aligned}
K(Z, W)=-C\{ & \frac{1}{4}[\langle a \circ \bar{f}, \bar{a} \circ f\rangle+\langle a \circ \bar{a}, f \circ \bar{f}\rangle-\langle a \circ f, \bar{a} \circ \bar{f}\rangle] \\
& +4 \operatorname{Re}\left\langle e, F\left(R_{\bar{a}} b, R_{f} h\right)\right\rangle \\
& +2\left\langle e, F\left(R_{\bar{a}} h, R_{\bar{a}} h\right)\right\rangle+2\left\langle e, F\left(R_{f} b, R_{\bar{f}} b\right)\right\rangle \\
& +2\langle F(b, b), F(h, h)\rangle+2\langle F(b, h), F(h, b)\rangle\}
\end{aligned}
$$

where C is the constant in Lemmas 9, 10 of $\S 2$.
In particular, we get
Corollary 1. For the indecomposable quasi-symmetric domain $\mathcal{D}(\Omega, F)$ the holomorphic sectional curvature determined by the vector $Z=a \cdot \partial_{z}+$ $b \cdot \partial_{u}$ at o with $\langle Z, \bar{Z}\rangle_{0}=1$ is

$$
\begin{aligned}
& K(Z)=-C\left\{\frac{1}{4}[2\langle a \circ \bar{a}, a \circ \bar{a}\rangle-\langle a \circ a, \bar{a} \circ \bar{a}\rangle]\right. \\
& +8\left\langle e, F\left(R_{\bar{a}} b, R_{\bar{a}} b\right)\right\rangle \\
& \quad+4\langle F(b, b), F(b, b)\rangle\} \leqslant 0 .
\end{aligned}
$$

Proof. We only have to prove the last statement. Inside $\}$ the last term is positive for $b \neq 0$ since $F(b, b) \in \bar{\Omega} \subset \mathbf{R}^{n}$, and the middle term is nonnegative since $e, F\left(R_{\bar{a}} b, R_{\bar{a}} b\right) \in \bar{\Omega}$ and the cone is self-dual. To calculate the first term, we put here $a=\alpha+i \beta$ with α, β real (rather than $a^{\prime}, a^{\prime \prime}$, in order to avoid too many primes), and $\alpha \beta=\beta \alpha$ instead of $\alpha \circ \beta=\beta \circ \alpha$, etc. Then

$$
\begin{aligned}
\left(\left\langle\alpha^{2}+\beta^{2}, \alpha^{2}+\beta^{2}\right\rangle-\langle \right. & \left.\left.\alpha^{2}-\beta^{2}, \alpha^{2}-\beta^{2}\right\rangle\right) \\
& +\left(\left\langle\alpha^{2}+\beta^{2}, \alpha^{2}+\beta^{2}\right\rangle-\langle 2 \alpha \beta, 2 \alpha \beta\rangle\right) \\
= & 4\left\langle\alpha^{2}, \beta^{2}\right\rangle+\left\langle(\alpha+\beta)^{2},(\alpha-\beta)^{2}\right\rangle
\end{aligned}
$$

Now by [8], $\alpha^{2} \in \bar{\Omega}$ for any $\alpha \in \mathbf{R}^{n}$, so here $\alpha^{2}, \beta^{2},(\alpha+\beta)^{2},(\alpha-\beta)^{2} \in \bar{\Omega}$. Since Ω is self-dual, the inner products between these elements are nonnegative, and the corollary follows from the fact that $C>0$.

5. Symmetric domains

In this section we shall find necessary and sufficient conditions for an indecomposable quasi-symmetric domain to by symmetric. A Riemannian manifold is Riemannian locally symmetric if and only if $\nabla R=0$, and a complete simply connected Riemannian locally symmetric space is Riemannian symmetric [4]. Now a homogeneous Siegel domain is complete and contractible, and hence is symmetric if and only if $\nabla R=0$. So we have to calculate ∇R. For this purpose, it is practical to consider cases, i.e., we calculate $\left(\nabla_{W} R\right)(X, Y)$ where $W, X, Y \in T \circ(\mathscr{D}(\Omega, F))$ have components either "along ∂_{z} " or "along ∂_{u} ".

Now $(a, b) \in \mathfrak{m}_{\mathbf{c}}$ induces a field with value $a \cdot \partial_{z}+b \cdot \partial_{u}+\operatorname{conj}$ at o, and we write $\{a, b\}$ for the vector $a \cdot \partial_{z}+b \cdot \partial_{u}$ at o. By using the second Bianchi identity and the Kählerian properties of the curvature, it is then sufficient to calculate $\left(\nabla_{W} R\right)(X, \bar{Y}) Z$ with the vectors W, X, Y and Z as in the following table:

1	2	3	4	5	6	7	8	9	10	11	12
$W(s, 0)$	$(s, 0)$	$(0, w)$	$(0, w)$	$(0, w)$	(0,w)	(0,w)	$(0, w)$				
$X\{a, 0\}$	$\{a, 0\}$	$\{0, b\}$	$\{0, b\}$								
$\boldsymbol{Y}\{\mathrm{c}, 0\}$	$\{c, 0\}$	$\{0, d\}$									
$\boldsymbol{Z}\{f, 0\}$	$\{0, h\}$	$\{f, 0\}$	$\{\overline{f, 0}\}$	$\{0, h\}$	$\{\overline{0, h}\}$	$\{f, 0\}$	$\{\overline{f, 0}\}$	$\{0, h\}$	$\{\overline{0, h}\}$	$\{f, 0\}$	$\{0, h\}$

We use the following formula for ∇R :

$$
\begin{aligned}
\left(\nabla_{W_{0}} R\right)(X, Y) Z= & \nabla_{R_{0}(X, Y) Z} W-R_{0}(X, Y) \nabla_{Z} W \\
& -R_{0}\left(\nabla_{X} W, Y\right) Z-R_{0}\left(X, \nabla_{Y} W\right) Z,
\end{aligned}
$$

where $X, Y, Z \in T_{0}(\mathscr{D}(\Omega, F))$, and W is the vector field induced by $W \in \mathfrak{g}$. This formula follows from the one given in the Appendix by observing that $\Lambda_{\mathrm{m}}(W)=\nabla_{X_{0}}$ for zero torsion and $W \in \mathfrak{m}$, and that $\nabla_{X_{0}} W=\Lambda_{\mathrm{m}}(W) X=0$ for $W \in \mathfrak{f}$. The reason why this is a more convenient expression than

$$
\begin{aligned}
\left(\nabla_{W} R\right)(X, Y) Z= & \nabla_{W}\{R(X, Y) Z\}-R(X, Y) \nabla_{W} Z \\
& -R\left(\nabla_{W} X, Y\right) Z-R\left(X, \nabla_{W} Y\right) Z
\end{aligned}
$$

is that in the latter we would have to know how $R(X, Y) Z$ varies from point to point, and also to differentiate this field. To help the reader check the calculations, we collect here the necessary formulas, where X, Y, Z, W are as in the above table. (Observe that W is a real field, and hence $\nabla_{\bar{Y}} W=\bar{\nabla}_{Y} W$.) The first such formula is

$$
\begin{align*}
\left(\nabla_{W_{0}} R\right)(X, \bar{Y}) Z= & \nabla_{R_{0}(X, \bar{Y}) Z} W-R_{0}(X, \bar{Y}) \nabla_{Z} W \\
& -R_{0}\left(\nabla_{X} W, \bar{Y}\right) Z-R_{0}\left(X, \overline{\nabla_{Y} W}\right) Z . \tag{1}
\end{align*}
$$

Also writing $R\{a, b \mid \overline{c, d}\}\{f, h\}$ for $R\left(a \cdot \partial_{z}+b \cdot \partial_{u} \mid \overline{c \cdot \partial_{z}+d \cdot \partial_{u}}\right)\left(f \cdot \partial_{z}+\right.$ $h \cdot \partial_{u}$), we have (Proposition 2 of §4)

$$
\begin{align*}
& R_{0}\{a, b \mid \overline{c, d}\}\{f, h\} \\
& =- \tag{2}\\
& \quad\left\{\frac{1}{2}\left[T_{a}, T_{\bar{c}}\right] f+\frac{1}{2}(a \circ \bar{c}) \circ f+2 F\left(b, R_{\bar{f}} d\right)+2 F\left(h, R_{\bar{a}} d\right)\right. \\
& \left.\quad R_{a} R_{\bar{c}} h+R_{f} R_{\bar{c}} b+R_{2 F(b, d)} h+R_{2 F(h, d)} b\right\} .
\end{align*}
$$

Further

$$
\begin{array}{r}
\nabla_{\{a, b\}}(s, w)=\nabla_{\{a, b\}}(\{s, w\}+\{\overline{s, w}\})=\nabla_{\{a, b\}}\{s, w\} \\
=(1,0) \text {-component of } \nabla_{(a, b)}(s, w) .
\end{array}
$$

Since $\Lambda_{\mathrm{m}}(s, w)(a, b)=\nabla_{(a, b)}(s, w)$, by Proposition 1^{\prime} of $\S 3$ we then have

$$
\begin{align*}
\nabla_{\{a, b\}}(s, w) & =\sqrt{-1}\left\{a \circ s^{\prime}+2 F(b, w), R_{a} w+R_{s^{\prime}} b\right\} \tag{3}\\
& \nabla_{\{\overline{a, b}\}}(s, w)=\overline{\nabla_{\{a, b\}}(s, w)} \tag{4}
\end{align*}
$$

We also use

$$
\begin{gather*}
a \circ F(u, v)=F\left(R_{a} u, v\right)+F\left(u, R_{\bar{a} v} v\right), \tag{5}\\
R_{a_{1} \circ a_{2}}=R_{a_{1}} R_{a_{2}}+R_{a_{2}} R_{a_{1}} \tag{6}
\end{gather*}
$$

Finally, it is convenient to note that from (2) we have

$$
\begin{equation*}
R\{a, 0 \mid \overline{0, d}\}\{f, 0\}=0, \quad R\{0, b \mid \overline{c, 0}\}\{0, h\}=0 \tag{7}
\end{equation*}
$$

and that by the Kählerian properties of the curvature we have

$$
\begin{equation*}
R\{a, b \mid \overline{c, d}\}\{\overline{f, h}\}=-\overline{R\{c, d \mid \overline{a, b}\}\{f, h\}} \tag{8}
\end{equation*}
$$

In the table we do not have to calculate Case 1 . For then all vectors are " ∂_{z}-like", and all formulas used will be those which we have if there is no F, i.e., if we are dealing with the tube domain $\mathscr{D}(\Omega)$: Now $\mathscr{D}(\Omega)$ is symmetric, and hence $\nabla R=0$ in that case. For the other cases we have to apply the method of brutal force, but the calculation is quite straightforward. The result is that $\left(\nabla_{W} R\right)(X, Y) Z \equiv 0$ in all but the last four cases. We find:

Case 9.

$$
-2 i\left\{0,\left[R_{a} R_{F(h, d)}-R_{F\left(R_{a} h, d\right)}\right] w+\left[R_{a} R_{F(w, d)}-R_{F\left(R_{a} w, d\right)}\right] h\right\} .
$$

Case 12.

$$
\begin{aligned}
& -4 i\left\{\left(F\left(R_{F(b, d)} h, w\right)-F\left(b, R_{F(w, h)} d\right)\right)\right. \\
& \left.+\left(F\left(R_{F(h, d)} b, w\right)-F\left(h, R_{F(w, b)} d\right)\right), 0\right\}
\end{aligned}
$$

In the final stage of the calculation of Case 9 , we used the following identity:

$$
\begin{equation*}
R_{F(u, v)} R_{a}-R_{F\left(u, R_{a} v\right)}=-\left[R_{a} R_{F(u, v)}-R_{F\left(R_{a} u, v\right)}\right] \tag{9}
\end{equation*}
$$

for $a \in \mathbf{C}^{n}, u, v \in \mathbf{C}^{m}$, which we prove as follows:

$$
\begin{aligned}
R_{a} R_{F(u, v)}+R_{F(u, v)} R_{a} & =R_{a \circ F(u, v)}=R_{F\left(R_{a} u, v\right)+F\left(u, R_{a} v\right)} \\
& =R_{F\left(R_{a} u, v\right)}+R_{F\left(u, R_{a} v\right)} .
\end{aligned}
$$

Consider Case 9. The expression there is symmetric in w and h, and hence is identically zero if and only if

$$
\begin{equation*}
R_{a} R_{F(h, d)} h \equiv R_{F\left(R_{a} h, d\right)} h . \tag{10}
\end{equation*}
$$

Cases 10 and 11 give the same kind of condition.
In Case 12, the expression is symmetric in b and h, and hence is identically zero if and only if

$$
\begin{equation*}
F\left(R_{F(b, d)} b, w\right) \equiv F\left(b, R_{F(w, b)} d\right) \tag{11}
\end{equation*}
$$

We claim
Lemma 1. Conditions (10) and (11) are equivalent.
Proof. First recall that $\frac{1}{2}\langle a, F(u, v)\rangle=\left\langle e, F\left(R_{a} u, v\right)\right\rangle=\left\langle e, F\left(u, R_{\bar{a}} v\right)\right\rangle$ for $a \in \mathbf{C}^{n}, u, v \in \mathbf{C}^{m}$, where \langle,$\rangle is the \mathbf{C}$-bilinear extension of the inner product on \mathbf{R}^{n}. Now assume (10) holds. Then

$$
\begin{aligned}
\frac{1}{2}\left\langle a, F\left(R_{F(b, d)} b, w\right)\right\rangle & =\left\langle e, F\left(R_{a} R_{F(b, d)} b, w\right)\right\rangle \\
& =\left\langle e, F\left(R_{F\left(R_{a} b, d\right)} b, w\right)\right\rangle=\frac{1}{2}\left\langle F\left(R_{a} b, d\right), F(b, w)\right\rangle \\
& =\left\langle e, R\left(R_{a} b, R_{\overline{F(b, w)}} d\right)\right\rangle=\frac{1}{2}\left\langle a, F\left(b, R_{F(w, b)} d\right)\right\rangle
\end{aligned}
$$

for all a, b, d, w. Hence (11) holds.
Since $F_{e}(u, v)=\langle e, F(u, v)\rangle$ is definite, the converse calculation also works, showing that (11) implies (10). q.e.d.

Without loss of generality we can restrict a in (10) to be in \mathbf{R}^{n} and get
Theorem 1. An indecomposable quasi-symmetric domain $\mathscr{D}(\Omega, F)$ is symmetric if and only if the following equivalent conditions hold:
(i) $\quad R_{a} R_{F(b, d)} b=R_{F\left(R_{a} b, d\right)} b, \quad \forall a \in \mathbf{R}^{n}, \forall b, d \in \mathbf{C}^{m}$,
(ii) $\quad F\left(R_{F(b, d)} b, w\right)=F\left(b, R_{F(w, b)} d\right), \forall b, d, w \in \mathbf{C}^{m}$.

Remark. This theorem was proved algebraically by Satake (with condition (ii). Observe that his F is conjugate to our F. See [8]). His statement is somewhat stronger, since he does not suppose that $\mathcal{D}(\Omega, f)$ is indecomposable and quasi 2 symmetric. He states that symmetry \Leftrightarrow quasi-symmetry + condition (ii).

Appendix

We prove the formula for ∇R, or more generally, for $\nabla \alpha$, where α is any G-invariant tensor on G / K.

Proposition. Let $M=G / K$ be a reductive homogeneous space with respect to the decomposition $\mathfrak{f}+\mathfrak{m}$ of the Lie algebra of G, \mathfrak{f} being the Lie algebra of K, and let $\Lambda_{\mathfrak{m}}: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ be an invariant connection on M. If α is any G-invariant tensor on M of type (r, s), then

$$
\begin{aligned}
\left(\nabla_{W_{0}} \alpha\right)\left(X_{1}, \cdots, X_{s}\right)= & \Lambda_{\mathrm{m}}(W) \alpha\left(X_{1}, \cdots, X_{s}\right) \\
& -\sum_{j=1}^{s} \alpha\left(X_{1}, \cdots, \Lambda_{\mathrm{m}}(W) X_{j}, \cdots, X_{s}\right) \in \mathfrak{m}^{\otimes r}
\end{aligned}
$$

where o is the origin K of $M, W, X_{1}, \cdots, X_{s} \in \mathfrak{m} \cong T_{0} M, \alpha\left(X_{1}, \cdots, X_{s}\right) \in$ $\mathfrak{m}^{\otimes s}$, and $\Lambda_{\mathfrak{m}}(W) \in \operatorname{End}\left(\mathfrak{m}^{\otimes s}\right)$ is defined as $\Lambda_{\mathfrak{m}}(W) \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}$ $+\cdots+\mathrm{id} \otimes \cdots \otimes \mathrm{id} \otimes \Lambda_{\mathrm{m}}(W)$ for $s>0$ and as zero for $s=0$.
Proof. We prove this in the case $r=1$, the more general case being just notationally more complicated. Let W, X_{1}, \cdots, X_{s} also denote the fields generated by these elements of m. Then

$$
\begin{aligned}
\left(\nabla_{W_{0}} \alpha\right)\left(X_{1}, \cdots, X_{s}\right)= & \nabla_{W_{0}}\left\{\alpha\left(X_{1}, \cdots, X_{s}\right)\right\} \\
& -\sum_{j=1}^{s} \alpha_{0}\left(X_{1}, \cdots, \nabla_{W} X_{j}, \cdots, X_{s}\right)
\end{aligned}
$$

Now

$$
\nabla_{W_{0}} X_{j}=\nabla_{X_{j 0}} W+T_{0}\left(W, X_{j}\right)+\left[W, X_{j}\right]_{0}=\Lambda_{\mathrm{m}}(W) X_{j}+\left[W, X_{j}\right]_{0},
$$

where T is the torsion [4, pp. 188-191]. Similarly,

$$
\nabla_{W_{0}}\left\{\alpha\left(X_{1}, \cdots, X_{s}\right)\right\}=\Lambda_{\mathrm{m}}(W) \alpha\left(X_{1}, \cdots, X_{s}\right)+\left[W, \alpha\left(X_{1}, \cdots, X_{s}\right)\right]_{0}
$$

So we get the formula stated plus

$$
\left[W, \alpha\left(X_{1}, \cdots, X_{s}\right)\right]_{0}-\sum_{j=1}^{s} \alpha_{0}\left(X_{1}, \cdots,\left[W, X_{j}\right], \cdots, X_{s}\right)
$$

However, if L_{W} is the Lie derivative, then

$$
\begin{aligned}
{\left[W, \alpha\left(X_{1}, \cdots, X_{s}\right)\right]=} & L_{W}\left\{\alpha\left(X_{1}, \cdots, X_{s}\right)\right\} \\
= & \left(L_{W} \alpha\right)\left(X_{1}, \cdots, X_{s}\right) \\
& +\sum_{j=1}^{s} \alpha\left(X_{1}, \cdots, L_{W} X_{j}, \cdots, X_{s}\right) \\
= & \sum_{j=1}^{s} \alpha\left(X_{1}, \cdots,\left[W, X_{j}\right], \cdots, X_{s}\right)
\end{aligned}
$$

by the invariance of α.

Corollary. In the above situation, for the curvature R and the torsion T we have
(i) $\left(\nabla_{W_{0}} R\right)(X, Y)=\left[\Lambda_{\mathrm{m}}(W), R_{0}(X, Y)\right]-R_{0}\left(\Lambda_{\mathrm{m}}(W) X, Y\right)$

$$
-R_{0}\left(X, \Lambda_{\mathrm{m}}(W) Y\right) \in \text { End } \mathrm{m}
$$

(ii) $\left(\nabla_{W_{0}} T\right)(X, Y)=\Lambda_{\mathrm{m}}(W) T(X, Y)-T\left(\Lambda_{\mathrm{m}}(W) X, Y\right)$

$$
-T\left(X, \Lambda_{\mathfrak{m}}(W) Y\right) \in \mathfrak{m}
$$

Proof. Applying (i) to $Z \in \mathrm{~m}$, we have a term $R_{0}(X, Y) \Lambda_{\mathrm{m}}(W) Z$ in the above commutator, and this term comes from the sum in the proposition.

Bibliography

[1] E. Artin, Geometric algebra, Interscience, New York, 1957.
[2] S. Kaneyuki, On the automorphism groups of homogeneous bounded domains, J. Fac. Sci. Univ. Tokyo 14 (1967) 87-130.
[3] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
[4] , Foundations of differential geometry, Vol. II, Interscience, New York, 1969.
[5] S. Murakami, On automorphisms of Siegel domains, Lecture Notes in Math. Vol. 286, Springer, Berlin, 1972.
[6] B. O'Neill, the fundamental equations of a submersion, Michigan Math. J. 13 (1966) 459-469.
[7] I. I. Pyatetskii-Shapiro, Automorphic functions and the geometry of classical domains, Gordon and Breach, New York, 1969.
[8] I. Satake, On classification of quasi-symmetric domains, Nagoya Math. J. 62 (1976) 1-12.
[9] , Linear imbeddings of self-dual homogeneous cones, Nagoya Math. J. 46 (1972) 121-145.
[10] M. Takeuchi, Homogeneous Siegel domains, Publ. Study Group of Geometry, Vol. 7, Tokyo, 1973.
[11] È. B. Vinberg, Homogeneous cones, Dokl. Akad. Nauk SSSR 133 (1960) 9-12, Soviet Math. Dokl. 1 (1960) 787-790.
[12] È. B. Vinberg, S. G. Gindikin \& I. I. Pyatetskii-Shapiro, Classification and canonical realization of complex bounded homogeneous domains, Trudy Moskow Math. Obšč. 12 (1963) 359-388, Trans. Moscow Math. Soc. (1963) 404-437.

University of California, Berkeley

