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SPECTRUM OF THE LAPLACIAN ON
A MANIFOLD OF NEGATIVE CURVATURE. II

MARK A. PINSKY

0. Introduction

In the previous paper we determined upper and lower bounds for the

quantity

x 1 ω ,
the infimum of the L2-spectrum of the Laplacian on a class of Riemannian
manifolds which includes all simply connected complete two-dimensional
manifolds of non positive curvature. This problem has been discussed by
several authors [2]-[8]. In this paper we investigate the nature of the gener-
alized eigenf unctions.

It is well known that in the classical case of the Lobaschevsky space of
constant negative curvature (= -k2), the generalized eigenf unctions can be
computed explicitly. For example, the differential equation for rotationally
invariant eigenfunctions is

+ λ/ = 0 fλ > ̂ - ί/ " + k coth krf

The solution of this equation which remains regular at r — 0 is the Legendre
function

/ = i>,(cosh kr) L = - I + / y]\/k2 - 1/4 \

\ cm

= — I (cosh kr + sinh kr cos φ)P dφ.

When r -> oo, Pv has the asymptotic behavior

which implies that / is not square integrable with respect to the Riemannian

volume element sinh kr dr. Hence the Laplacian has a purely continuous

spectrum.
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When we pass to a manifold of variable negative curvature, the following
quantity plays a role:

λ* = τ i n f lim \K(r,θ)\,
4 θ '•—•oo

where K(r, θ) is the Gaussian curvature in geodesic polar coordinates. The
main theorem states that, if the above limit is attained with sufficient rapidity,
then for λ > λf there are no square integrable eigenfunctions. From this
theorem we obtain the result that if r->\K(r,θ)\ is monotone decreasing,
then the spectrum is purely continuous (Recent work of Ben-Artzi shows that
in many cases this can be strengthened to absolutely continuous). Examples
show that if the monotonicity condition is violated, then there may exist an
(arbitrarily large) finite number of square-integrable eigenfunctions.

It is a pleasure to acknowledge helpful conversations with J. Rauch and M.
Ben-Artzi.

1. Statement of the problem

The metric in geodesic polar coordinates has the form

ds2 = dr2 + G(r, θf dθ\

where

Gr(O+,θ)=l,

and the subscripts denote partial derivatives. From the initial conditions, it is
clear that (Gr/G)~l/r when r->0. The curvature function K(r, θ) is
assumed piecewise continuous. The Laplacian has the form

-Δ/ = /„ + GxGJr + G-% - G

Δ is a symmetric, nonnegative operator in the Hubert space L2(M), where the
inner product is defined by

Γ Γ'fiWMr* O)G(T> ») dr dθ.= Γ
We say that λ is an eigenvalue of Δ if there exists / e L2(M) satisfying the
equation Δ/ = λf in the classical sense. The bound of the ZΛspectrum is
defined by

A, = mi
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where the infimum is taken over all/ E L2 with piecewise smooth derivatives.
Clearly any eigenvalue λ satisfies the inequality λ > Xx. Let us define μ > 0
as the pointwise infimum

M- inf £ .
r>0 O

O<0<2τr

It was shown in [8] that \λ > μ2/4. Therefore any eigenvalue must satisfy
λ > μ2/4.

Theorem 1. μ2/4 is not an eigenvalue o/Δ.
Proof. Let A(r, θ) = Gr - μG > 0. Thus for any/

μ Γ°°/2G «fr + Γh(r9 θ)f2 dr = ΓGJ2 dr.

By Schwarz's inequality,

JΛOO /.OO / r oo \l/2/ z oo \l/2

Γ Grfdr = -lί Gffrdr<2( G fdr) (f G />) .
Dividing the resulting inequality by (/£° f2G dr)ι/2, we have

O r00

 Λ \V2 / z oo \l/2

where

X
oo / / /.oo \ l / 2

h(r,θ)f2dr/ (J /2G^j >0.
Squaring the result gives

/ 2 + 2μl( Γf2Gdr\/2 + /x2 Γ°°/2^ dr < 4 Γ°°/r

2G Λ .

Integrating this on [0, 2ττ] and adding in the angular term, we obtain

j Γ 2 1

Now let / be an eigenfunction with eigenvalue = μ2/4. Then the right-hand
side of (1.1) = μ 2 /£• / ^ f2G rf/ ̂ , and thus"

Hence 7 = 0 which means that h = 0 and hence GΓ = μG, which contradicts

G r/G — \/r when r ^ 0.
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2. The rotationally symmetric case

Let G(r) be the density of the metric tensor in a system of geodesic polar
coordinates. We make the following hypotheses:

(2.1) G(0) = 0, G'(0) = l , G " ( r ) > 0 ,

(2.2) ¥- = k2 + e(r) (r > r0),

where

(2.3) ε(r) > 0, f°°ε(r)dr < oo.

Define the associated potential function by the formula

Lemma 2.1. | G ' / G - Λ| < ε^r) wΛere εx(r) > 0, / * ε^r) dr < oo.
/V00/. Let H = G'/G. Then // satisfies the differential equation

H' + H2 = k2 + ε(r) (r > r 0).

By a previous result [7] we know that lim,.^^ //(r) = k. We consider two
cases.

Case 1. //(/*,) > A: for some rx > r0.
In this case let Hx be the solution of H[ -I- H2 = A:2, Hx(rλ) = ^(r j) . Then

(H - Hx)
f + (7/ - # , ) ( # + #j) = ε(r) > 0 (r > r,),

(// - JΪ1)('Ί) = 0.

Therefore

(H - Hx)(r) = Jrε(^)exp{ J \ H + ^ ) ( " ) <*"} <*s > 0.

But //j can be explicitly computed:

Thus ^(/ ) > k for all r > /-,. Since ε - H' = H2 - k2 > 0,we have

2A:2

Define ε,(r) = (ε - H')/(2k). Thenε,(r) > 0 and /~ ε^r) dr < oo. Therefore
we have proved that k < H{r) < k + ε,(/ ), as required.
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Case 2. H(r) < k for all r > r0.

In this case, we have H' — ε = k2 — H2 > 0. As before

2k2

In this case we set ε^r) = (H' - ε)/(2/c). Then ελ(r) > 0 and /£ ε,(r) dr <

oo. Therefore we have proved that k — ε}(r) < H < k as required.

Lemma 2.2. | F(r) - A:2/4| < ε2(r) where ε2(r) > 0, / * ε2(r) dr < oo.

FAΌO/. Using hypothesis (2.2) and definition (2.4) with G'/G = k +

(G'/G - A:), we obtain

But Lemma (2.2) states that | G ' / G - k\ < ε,(r). Therefore each of the three

terms is integrable on [r0, oo), hence the result.

Let/be an eigenf unction satisfying the differential equation

(2.5) / " +-^/+λ/=0.

Lemma 2.3. F = G l//2f satisfies the differential equation

(2.6) F" + λF - KF = 0.

/V00/. Write/ = F' G~ι/2. Then

/ ' = F'G~ 1 / 2 -\G~3/2G'F,

f» = /r^σ-i/2 _ G*ί2G'F' + F { | G " 3 / 2 ( G 0 2 - J

Therefore

/ + ^ / FG F

from which the equation follows.

Lemma 2.4. If F ^ L2(r0, 00), ί/je?« F ' G L2(r0, 00).

Froo/. From the differential equation (2.6), we see that F " E L2(r0, 00).

To obtain the stated conclusion extend F to (-00, 00) so that F G C 2 n £ 2 ( -

00, 00) and F(r) = 0 for r < - 1 . Then F" E L2(-oo, 00). In the domain of

Fourier transforms, we now have

\ξp(θ\2 < (1 + IΠ)|A£)I2.
By construction, the right-hand member of the above equation is integrable

by Parseval's theorem. Therefore ξF(ξ) E L2(-oo, 00), which proves that

F' E L2(-oo, 00).

Lemma 2.5. Let f be a solution of (2.5) with λ > Λ;2/4, /5°/(r)2G(r) dr <

00. Thenf = 0.
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Proof. Let / be not identically zero, and let A(r) = F\r)2 + v2F(f)2,

where v1 = λ - k2/4 and F = Gι/2f. Then A(r) > 0 for all r and, in conse-

quence of (2.6),

A'{r) =2FF'{V- k2/4).

Hence

A'{r) IFF' ^

where we have used Lemma (2.2) and the inequality {a2 + b2)/(a2 + p

min(l, v~2) = C{v). Integrating the inequality from r0 to r, we have that

log A(r) - log A(r0) > -C(v) Γ ε2(s) ds > -C{v) Γ φ) ds,

so that

A{r) > ̂ (

Thus we have proved that

(2.7) F\r)2 + v2F{r)2 > C3.

But Lemma (2.4) states that / * .FXr)2 dr < oo. Therefore /^[F

v2F(r)2] dr < oo. This contradicts the inequality (2.7), and hence/ is identi-

cally zero.

We now consider eigenfunctions which depend on θ. Let

By ParsevaΓs theorem, ΣfJ/Λr)!2 = (l/2ττ )/^/(r, θ)2 dθ. Hence whenever

/ E L2(M) it follows that /<J° fn(r)2G(r) dr < oo. Furthermore, /n satisfies the

differential equation

and by a direct calculation

Now if /), E L2(r0, oo), the proof of Lemma (2.4) can be repeated to show

that F'n E L2(r0, oo). To finish the proof, we let

Λn{r) = Fϊ + ,2/;2.
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Then

The term n2/G2 is clearly integrable on (r0, oo). To see this, note from
Lemma (2.1) that G'/G > k/2 for r > r2. Then G(r) > G{r^ekr'2 hence

n

2/G2 = O(e~kr). Thus

An{r) >An(r0)C4(r > r0),

and again it follows that

f
which yields a contradiction. Hence we have prove the following theorem.

Theorem 2. Let G(r) define a rotationally invariant metric of nonpositive
curvature, satisfying (2.1)-(2.3). Let f G L2 be an eigenfunction of Δ with
λ > k2/4. Then f is identically zero.

Corollary. Assume in addition that (2.2) is satisfied for all r > 0, where ε(r)
satisfies (2.3). Then the Laplacian has a purely continuous spectrum.

Proof. In this case we know from McKean's result [5] that the spectrum of
Δ is contained in [A:2/4, oo]. By the above theorem, the open interval
(&2/4, oo) contains no eigenvalues. To show that A:2/4 is not an eigenvalue,
we will apply Theorem 1, for which we must show that infΓ>0(G'/G) = k. To
see this, recall [7] that G"/G > k2 everywhere implies that G'/G >k
coth kr > k. But (2.2) implies that l i m ^ ^ G ' / G ) = k. Therefore
infΓ > 0(G r/G) = k which was to be shown.

Example. The following example illustrates the possibility of eigenvalues
with λ < λf. Let the metric be defined by

G(r) = r, 0 < r < R,

= R cosh2 k ( r - r0) r > R

c o s h 2 k ( R - r0)

where 2kR > 1, and r0 is chosen so that 2k tanh k(R - r0) = \/R. This

ensures that G and G' are continuous on [0, oo). A short calculation shows

that

— = 2k tanh k(r - r0) (r > R),
G

-K = ^r = 4k2 tanh2 k(r - r0) + 2k2 sech2 k(r - r0) (r > R).
G
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The latter quantity is nonnegative and tends to 4k2 when r —» oo.
The eigenvalue equation takes the following form

/" + - / ' + λf = 0, r < R,

f" + 2k tanh k(r - ro)f + λf == 0, r > R.

The regular solution for r < R is / = J0(rVλ ). For r > R we rewrite the

equation in the form

[cosh k(r - ro)f]" + (λ + A:2)[cosh k(r - ro)f] = 0.

For λ < k2, the L2 solution is

f = cosh k i - r ^ ' ^

where r = VA: — λ . To satisfy the continuity of/and/', we must have

Vλ J^ίRVλ ) = [-cosh k(R - ro)τ exρ(-Λτ)

cosh2 k(R - r0)

-k sinh k(R - ro)exp(-Rτ)].

Dividing these and simplifying, we have

where we have set θ = R Vλ and used the fact that 2kR tanh k(R - r0) = 1.
This equation can be solved graphically in terms of the roots of Jo. Indeed, let
θx <θ2 < - - - be the positive roots of J0(θ) = 0. If we compare the graph of
θ -> ΘJ^(Θ)/JO(Θ) with the graph of θ -+\ + (R2k2 - Θ2)\ it is clear that if
θn < kR, the above transcendental equation has at least n roots. Hence there
exist n eigenfunctions with eigenvalues in the interval (0, λf).

3. Improvement of the condition (2.3)

We will show that the nonexistence of square integrable eigenfunctions can
be obtained under more general conditions. Then conditions are closely
related to some recent results of M. Ben-Artzi [1] on the spectrum of
Schrodinger's equation.

To express these conditions, we let
k2 n2

(3-1) q( i(/) = K ( / ) - 4 - + - £ - - ,
4 G2(t)



SPECTRUM OF THE LAPLACIAN 617

and require that

(3.2) q; e L\r0, oo),

(3.3.) qn G L'(r0, oo),

for some 0 <p < oo. Then we have the following result.

Theorem 3. Let G(r) define a rotationally invariant metric of non-positive

curvature, when V(r) satisfies (3.1)—(3.3). Let f G L2 be an eigenfunction of Δ

with λ > k2 /A. Then f is identically zero.

Proof As before, let Fn(r) = Gι/2(r) f2π f(r, θ)e~inθ dθ. Then Fn satisfies

Fj{ + (λ — n2/G2 — V)Fn = 0. Introduce "polar coordinates" by the equa-

tions

(3.4) A.(r) = F.-(r)2 + ^ F . ( r ) 2 ( , ! - λ - ^

From the differential equation for eigenfunctions, we have

(3.6) A'm = 2FHFfrΛ9

(3.7) θ;-v-(qHsm2θH)/r.

Therefore^ = (2An sin θn cos θn)/p, \θ^ - v\ < v~l\qn\. Finally, define

(3.8) ΦH(t)=pΓάn2θn(s)ds.

Lemma. For each n = 1, 2, we have Mn = suρ ί > 0 |Φ n (/) | < oo.

Proof Define a new variable of integration by u = θn(s), valid for suffi-

ciently large s. Then du = v[\ — qn(ύ)] ds, where qn(u) = (qn(s) sin2 θn)/v2.

Choose t0 such that |^π(/)l ^ v2/2 for / > t0. Then we have

^ / \ ^ / \ f Λ M J Γ^(0 sin 2M
Φ n (0 - Φn(/0) = y / smθn(s) ds = / — — du

= Σ /* + /
A: = 0

where m is an integer larger than/? and

We must show that each of these terms remains bounded when t —» oo. For

this purpose, let Φk(t) = /O sin 2M sin2Λ u du, k < m. Then Ψ^ is bounded
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when / —> oo and

(° qn{sf sin2A« sin ludu = fW qn{sfd*k{u)
J

Γi ° / \Ί

By hypothesis (3.2), the final integral remains bounded when / —• oo. There-

fore Ik{t) remains bounded when / —> oo. To analyze IIm(t), we note that

which remains finite by hypothesis (3.3).

Proof of Theorem 3. From (3.6) we have

ΛO - log An(tJ = v-1 f sin 2θH(s)qH(s) ds

qn(s)dΦn(s) ds.

The final integral is integrated by parts. From hypothesis (3.2) and the

lemma, we see that the first terms remain bounded and the integral converges

when t —> oo. Therefore

lim log An(t) > -oo.

Hence An{t) > C > 0, from which the conclusion follows as in the previous

theorem.

4. The general case

We will show the nonexistence of eigenvalues for λ > k2/4, where k is any

limiting value of the curvature. For this purpose we can localize in a sector

a<θ<β9r0<r<oo. The main hypothesis is that for some sector the

metric is independent of θ; we make a Fourier sine expansion of the

eigenfunction, leading to a system of ordinary differential equations.

Let / b e an eigenfunction satisfying

Let

(4.2) Fn(r) = fβf(r, θ)G^(r, θ)sin

By Parseval's theorem, ΣΓ Fn(r)2 = (/£ f2G dθ)(β - a)/2.
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Then Fn satisfies the equation

(4.3) F; -

where

619

Now we assume specifically, that for some sector [r0, oo) X [a, β] we have

(4.6) G(r, θ) = G(r),

(4.7)

(4.8)

= k2 +

°°ε(r) > 0, f°° ε(r)dr < oo.

Theorem 4. Under conditions (4.6)-(4.8), any square integrable solution of

(4.1) with λ > A:2/4 AHM̂ / Z?e identically zero.

Proof. We proceed as in the rotationally invariant case. Defining v1 = λ

— A:2/4 we simplify (4.3) to

(4.9) v2Fn = ε(r)Fn

Defining An = (Ftf + v2F2, we have

(4.10) A'n = -2FXr)Fn - —

and therefore

G\β-af

2nV

(4.11) e(r) +
nV

C(v),
(β-a)2G(r)2

where C(ι>) = svφ{xλx2/x2 + v2x\) By hypotheses (4.7), (4.8) the quantity in

brackets in (4.11) is integrable on [Λ0, OO]. Thus

e(r)
(β-a)2G(r)2

dr

Therefore either An(r0) = 0 or / * ̂ ( r ) 2 Jr = oo, and we have proved the

theorem.

Added in Proof. Some extensions of these results have been obtained by

H. Donnelly, Eigenvalues embedded in the continuum for negatively curved

manifolds, Purdue University preprint.
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