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COMPLEX ANALYTIC PROJECTIVE
CONNECTIONS

ALEXANDRU MIHAI

Let M be a complex analytic manifold of dimension n > 2. 4 complex
analytic projective connection on M is defined with respect to a coordinate
covering (U, z*°) of M by its components (U, I‘j".k), which are complex analytic
functions satisfying the compatibility relations
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whenever U N U’ # &, where A = det(0z” /3z’), [2,p. 99].
The left side determines a class (M) € H'(M, T* @ T ® T*), where T and
T* denote the sheaves of germs of cross sections of the tangent bundle 7 and
the cotangent bundle 7* of M this is the obstruction to the existence of
complex analytic projective connections on M.

One has
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where a(T) € H\(M, T* @ T ® T*), a(A"T) € H'(M, T*) are the Atiyah
classes [1, p. 188], and 7 € H(M, T*® T), I* € HY (M, T ® T*) are the
identity endomorphisms, and “U” denotes the cup product.

The corresponding class in the differential case is always zero. The same is
true if M is a Stein manifold. ‘

If M is a compact Kéhler manifold, a(7T') generates under the operation of
the invariant polynomials of GL,(C), the characteristic cohomology ring of M
(with complex coefficients) [1, Theorem 3]. Similarly, A(M) will generate a
ring which we will call the projective characteristic ring of M.
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Theorem. Let M be a compact Kdihler manifold of dimension n > 2. Then
the projective characteristic ring of M is generated by the following classes:
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where ch(M) are the components of the Chern character of M.
Proof. Let T}, be the components of the canonical linear connection of
the tangcnt bundle T associated to the hermitian structure of M. The forms
i dz¥ N\ &2, Ry, dz* N\ dZ', where R’ = o’ /dz', and R, = R, rep-
resent the Atiyah classes a(7) and a(A"T) by the Serre-Dolbeault isomor-
phism. Also
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represents the class A(M).

It is well-known that the ring of invariant polynomials of GL,(C) is
generated by (1/,!) tr(4”). Consequently, the projective characteristic ring of
M is generated by the classes h,(M) represented by the forms
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We recall that in the Kahlerian case R';; = R',;. Then the formulas (+)
follows by standard calculations, since the form
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represents the j-the component of the Chern character of M.

Corollary. If M admits a complex analytic projective connection, then
h(M)=0,2<j<n
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For example, there is not such a connection on the product P'C
X « - - XP!'C of n > 2 projective lines.
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