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PSEUDO-HERMITIAN STRUCTURES ON A REAL
HYPERSURFACE

S. M. WEBSTER

Introduction

The invariance properties of a real hypersurface M (of real dimension 2z + 1)
in complex (n + 1) space C"*! with respectt o the infinite pseudo-group of bi-
holomorphic transformations are the object of study in pseudo-conformal geo-
metry. The systematic study of such properties for hypersurfaces with nondege-
nerate Levi form was first made by Cartan [2] in 1932. More recently, the study
of invariants for such M was taken up by S. S. Chern and J. Moser [6]. A main

aspect of the theory is the existence of a complete system of local differential
invariants.

In this paper we take a somewhat different point of view. Such a manifold
M has an integrable, nondegenerate, Cauchy-Riemann structure. In particular,
there is a subbundle H (M) of the tangent bundle T'(M) each fiber of which has
the structure of a complex n-dimensional vector space. We single out a real
nonvanishing one-form 4 annihilating H(M) and consider invariants of the pair
(M, 6). (M, 6) will be called a pseudo-hermitian manifold.

In § 1 we apply the Cartan method of equivalence [3] to find a compete
system of invariants. This results in a connection and curvature forms on the
coframe bundle of M. These are not, in general, pseudo-conformal invariants;
they depend on the choice of . In § 3 we consider the relation between these
two systems of invariants. (3.8) gives a formula for the fourth order curvature
tensor of Chern and Moser. A similar formula was given by Bochner [1] as a
formal analogue of the conformal curvature tensor for a Kahler manifold. Here
a geometric interpretation of the formula is given. In § 4 we apply the theory
to some examples. It is shown that an ellipsoid is not, in general, equivalent
to a sphere.

Also, the author wishes to remark that the theory developed here provides a
complete system of invariants for nondegenerate real hypersurfaces under vol-
ume-preserving biholomorphic transformations, when the ambient complex
space is equipped with a volume form.

We will follow the notation adopted in [6]. Small Greek indices run from 1
to n, and the summation convention is used. The Levi form g,; and its inverse
g? are used to lower and raise indices, e.g.,
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0, = 8.s0° A%y = g% A, .

Thus the vertical as well as the horizontal position of an index carries infor-
mation. Also, complex conjugation will be reflected in the indices, e.g.,

F =0, U =Us", Ay =Ap.

The work presented in this paper was submitted as part of the author’s thesis
at the University of California at Berkeley in June of 1975.
1. The equivalence problem

Let (M, 6) denote a (2n + 1)-dimensional pseudo-hermitian manifold. 4 is a
fixed real one-form, and locally we can choose n complex one-forms §¢, so that
(0, 6=, 6%) form a basis of complex covectors. They are determined up to

(L.1) 0=0, 0°=0%U,+ v, 6°=0%U" + 6v°.
We require our structure to be integrable in the sense that

(1.2) dd =do~=0, mod 4, 67 .

Because § = 6, we must have

(1.3) do = ig,0° N\ 67 + 6 N\ (.0° + 7.6 ,

where 3, = 7,, and g,; is hermitian:

(1.4) 8ep = 8oz = &pa -

Under the change (1.1) we have

1.5 8= U8 U .

We will also assume that (M, ) is nondegenerate in the sense that the ma-
trix (1.4) is nonsingular at each point. It will have a signature, say p negative
and ¢ positive eigenvalues, p + g = n, which we will speak of as the signa-
ture of (M, 0). If g,; is negative definite, (M, §) will be said to be strongly pseudo-
convex. In the computations to follow g,; and its inverse g#* will be used to
lower and raise indices.

In other words, we have a nondegenerate, integrable G-structure on M, G
being the group of matrices

1 v* Ve
(1.6) 0 Us 0], veC, (UHeGL(n,C).
0 0 Ug
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To study the equivalence problem we begin by reducing the group (1.6). Sub-
stituting (1.1) with U,* = 9, into (1.3), we get
d0 = ig ;0 N\ 6% + 0 N\ (o 0 + 7.0 ,
where
N = Na — 18V .

Since g,; is nondegenerate we can choose v7 so that 7/, = 0, and if 5, = 7/, =0,
then v* = 0.
Hence by requiring

(W) do = ig,,0° N\ 6%,

we can reduce our group (1.6) to GL(n, C), that is, to changes
(1.8) 6 = 0*U, 6 = 0"FU" .

By also requiring

(1.9) 8.5 = const. = £, ,

we can reduce our group further to U(p, q), the unitary group with signature
(p, ). The conditions (1.7) and (1.9) are invariant under maps preserving our
structure.

For a geometric interpretation of (1.7) let us consider the dual frame

(1.10) X=X, X,, X,=2X,
to (0, 6°, 6%). The transformation (1.1) gives
(1.11) X =X+ vX, +vX,, X,=USfX,, X,=U'X,.

The condition (1.7) then singles out a unique transversal X to H(M).

Our admissible coframes are now those (6, 6%, 6*) for which (1.7) holds. We
allow g,; to be variable. Let P be the bundle of such coframes with structure
group GL(n, C). On P we have globally defined functions g,; given locally by
(1.5) and globally defined complex one-forms 67, §* defined by (1.8), where now
the U,* are independent fibre coordinates on P. We also have the real one-form
0 pulled up to P and can view (1.7) as an equation on P. Since the real dimen-
sion of P is 2n* 4+ 2n 4+ 1, we must find 2n* more independent, intrinsically
defined one-forms on P.

We first differentiate (1.8) and see that locally

(1.12) d6= = 6¢ N\ (—U~7dU") + d0*U,* .

Because of the integrability condition (1.2) for 4, ’«, we have
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(1.13) doPU; = 0P N &~ + 0 N &
for some one-forms &, & satisfying
(1.14) Er=8=0, mod 6, 67, 6" .

It follows from (1.12), (1.13) ,(1.14), and Cartan’s lemma that the most general
such expression of type (1.12) is

(1.15) dg- = N o~ + 0 N\ 7=,
where w,* and ¢* are one-forms satisfying

(1.16) 0,

11l

—U~dUus mod 4, 6,6 ,
(1.17) =0, mod 4, 6", 6" .

From the form of (1.15) we see that we may require
(1.18) =0, mod 4" .
Now the w,* are determined up to a transformation of the form
(1.19) 0 =0, + Cf0 Cr,=C5,
and the z* are completely determined. The condition (1.18) allows us to put
(1.20) T, = A0 .

Now we differentiate (1.7), using (1.15), to get
(1.21) 0 =i(dg.; — 085 — &aws) N\ O N\ 0P + i0 N\ (t, \ 6° + 6 N\ z,) .
With (1.20) substituted into (1.21), we see that
(1.22) Ag,; — Wop — Wz, = A" + Byl ,
where

Augy = Appe 5 B, = Bz

and that
(1.23) ., NO*=0, or 4, = 4,, .

The hermitian condition (1.4) implies
Baﬁf = Aﬁaf .

It therefore follows that the change
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(1.23a) Wpg — g + Apg 07
is of the form (1.19) and reduces (1.22) to
(1.24) dgaﬁ — (Gargrﬁ — gafa)ﬁf =0.

The condition (1.24) for both w,* and @,* implies that C,*, = 0 in (1.19), so
that the w,* are uniquely determined. We have derived the following theorem.

Theorem (1.1). Let (M, ) be a nondegenerate, integrable pseudohermitian
manifold. Then in the bundle P over M described above there is an intrinsic
basis of one-forms

{03 0a9 0«!’ wpn: wﬁd} 5

one-forms t*, and functions g,; satisfying (1.7), (1.15), (1.18), and (1.24). We also
have the relations (1.20) and (1.23).

Now that the one-forms w, are determined, we want to compute their ex-

terior derivatives. If we differentiate (1.15) and make use of (1.7) and (1.15) itself,
we get

(1.25) 0=0° N {do,” — 0y N\ o, —i0; \ °} + 0 N\ {de* — ? N\ w,°}.
Next, we differentiate (1.24) to get
(1.26) 0 = (do — o N\ 0,85 + gildog — off N\ o)) .
Therefore, if we put
(1.27) Q7 =do, — o7 N\ o — i, \ t* + it; N\ 0,
(1.28) Q=de* — o N\ o,
then we get from (1.25), noting (1.23),
(1.29) O=0"NQ2s 4+ 0N 02.
From (1.26) it follows that
(1.30) 0=0/g,+ 82, = 24 + 2,5 .
For future use we can, via (1.24), write (1.28) as
(1.31) Q,=dr,—of Nz, .
(1.29) implies that

(1.32) Qua = Ysap N 0° + 23g A O
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for certain one-forms y,,, and 2,,, which we may assume contain no terms in
6. From (1.30) and (1.32) we have

0 = Yoo N\ O° + Xaps N O + (Aga + 2ep) N O,
which implies

Xpao = Bﬁﬁﬁrer - Rﬁdﬁoi ’

where
BﬁNPT - Bﬂdrn ’
(1.33) Ripss = Ressy = Rypsy
and furthermore
(1.34) g + 255 = 0.
Thus we have
(1.35) Qpp = Rupsl0® N\ 07 + 255 \ 0,
which, substituted into (1.29), gives
(1.36) Rizps = Roaps >

0=0N (@O N 2,5+ 2.
This last condition implies that
(1.37) Q= - NS+ N0,

in which x4 is some one-form, which we assume to have no ¢-term.
Now we differentiate (1.23) using (1.31) and (1.15). It follows that

(1.38) O=02 N0, +O0NT"N<,.
Putting (1.37) into (1.38) gives
(1.39) 0=2 NPNE+ONE N1, — ptta \ ).
Since 2,, was chosen to have no §-term, (1.39) implies that
Apa = W0 + Npgil'
where
(1.40) Woay = Wiag »
and, because of (1.34),
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Nﬁm’ = - Waﬁf s
We can now put
(1.41) R, =R, ,0° N\ + Wy ,0° N0 — We.0° N0,

and the exterior derivatives dw,* are determined.
(1.39) and the expression (1.20) for ¢, also imply

0=0A6 N (A + p,) 5

so that
= —Aut + Byl
where
(1.42) B, —B,.
Finally, (1.37) becomes
(1.43) Q= W00 N0 — A" N0+ B0° N0,

and we have also determined the derivatives dz°.

We sum these results up in the following:

Theorem (1.1a). The exterior derivatives of the forms w,* and = of Theorem
(1.1) are given by (1.27) and (1.28), respectively, where 2, and Q° are given by
(1.41) and (1.43), respectively. The coefficients satisfy (1.33), (1.36), (1.40), and
(1.42).

The existence of the invariant forms w,* on the bundle P with structure group
reduced to U(p, q) gives the following.

Theorem (1.2). The group PsH(M, 0) of all pseudo-hermitian transformations
of the pseudo-hermitian space (M, 0) of dimension 2n + 1 is a Lie transformation
group of dimension not exceeding (n + 1)%, with isotropy subgroups of dimension
not exceeding n’. If M is strongly pseudo-covex, then the isotropy groups are
compact, and PsH(M, 6) is compact for compact M.

2. Geometric interpretation

We shall interpret the w,* of Theorem (1.1) as connection forms of a con-
nection on the complex vector bundle H(M). If we choose local forms 6 on
M, then according to (1.8) and (1.16) we can put

2.1) Ujw" + dUs = o'jUS~ ,
where

o'y =0, mod @, 6%, 6% .
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In the usual manner [3] we see that the coefficients of the ;" are independ-
ent of U,” by differentiating (2.1). Using (2.1) to eliminate dU,* we get

(2.2) Uar(dwrﬂ — wrp A wpﬁ) — (dw'a’ _ w/ap A a)/,,r)Urﬂ .

By (1.27) and (1.41) we see that the left hand side of (2.2) is a two-form in
0, 6%, 6%, therefore so is do’,’, and so o’,” is a one-form on M.

Now we consider 6%, as well as 6’°, as local one-forms on M and (1.8) as a
change of coframe. Let (X, X,, X,) be the dual frame to (6, 6%, 6%), and let V =
U~1; then

2.3) X, =V X,

Define an operator D locally by

2.9 DX, = 0fX, , D:I'HM)) - I['(T*(M) ® H(M)) .
Under the change (2.3) we get from (2.1)

(2.5 w Ve =dVy + Vio'

hence, (2.4) defines a connection on H(M).
We can define an hermitian metric (, ) in the fibres of H(M) by

(2.6) X Xp) = 8 -

The condition (1.24) yields that D is a metric connection. z= in (1.15) can be
viewed as a kind of torsion. The condition (1.18) on z* is analogous to the re-
quirement in hermitian geometry that the torsion form be of a given type (i.e.,

of type (2, 0)) [5].

With these interpretations we can restate Theorem (1.1) as

Theorem (2.1). Let (M, 6) be a nondegenerate, integrable pseudo-hermitian
manifold. Then there are a unique hermitian metric (2.6) determined by the Levi
form and a unique metric connection D on H(M) with torsion form satisfying

=0, mod 67 .
Under the change (1.8) (or (2.3)) we have
@7 0y = Uyb. ,
2.8) U =", vy = Uysc, .
By (2.2) the curvature matrix of w,%,
2.9 I =dos — o/ N\ o =02+ i0, N\t —irt, \ 6,

transforms by
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(2.10) U/ =1'7Ur .
We also have
(2.11) U2 =0 7UF.

The two curvature matrices are equal when the torsion z* vanishes.
The vanishing of the torsion has a more geometric interpretation. Let Ly be
Lie derivation by the transversal X to H(M). By the standard formula

EX = (Xod + dolx Py
(1.7) and (1.15) imply
(2.12) L6 =0, Lyb* = —¢,"(X)6? — z°(X)0 + == .

So if z* = 0, then X is an infinitesimal pseudo-conformal transformation.
Conversely, given a transverse infinitesimal pseudo-conformal transformation
X, complete it to a basis by choosing X,. On the dual coframe we have

(2.13) Ly0 = ub, Ly6" = 0°U,* + Gv .
From (1.3) it follows that
Lz0 = 9,0 + 0,0° ;

hence 7, = u = 0, and we have an admissible coframe with respect to §. From
(2.12) we see that = = 0.

Hence we have shown

Proposition (2.2). The torsion t* vanishes if and only if the transversal X de-
termined by 0 is an infinitesimal pseudo-conformal transformation.

Proposition 2.2 gives the condition required by Tanaka in [9].

Using the curvature tensor R,,,; in (1.41), we can define a kind of curvature
for holomorphic plane sections in H(M) as follows: if

(2.14) Z =e&x, ,
then
(2.15) K(Z) = —3(Rpa,sf"6%6°87) [ (8,56 EP) .

The coefficient —4 makes the unit hypersphere in C*** have constant curvature
+1 (see § 4). We also define the Ricci tensor

(2.16) R, =Rc

a pd

and the scalar curvature
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.17 R=g"R,, .
Finally, we can define a Riemannian metric on T(M) by
ds* = 0 ® 0 — Re (g,,0° Q 6*
@.18) (e )
=0Q0 — $(g. 0" Q0 + g0 R0 .

This metric is invariant under a pseudo-hermitian transformation.

3. Relation to pseudo-conformal invariants

The object of this section is to derive pseudo-conformal invariants from the
curvature tensors introducted in part one. To do this we start with a local co-
frame field

3.1 w=0, o*=6, o =§6°

adapted to the particular choice of §. We then try to find local forms ¢,%, ¢°,
and + which will satisfy the structure equations [6, (A.1)-(A.6), p. 269] and [6,
(4.21), p. 253]. Note that with our normalization

3.2) ¢6=0.
Because of (3.2), (1.15), (1.23), and (1.24) the choice
¢ﬁa=wﬂa, ¢a:z_a, '\I/‘=0

satisfies [6, (A.1), (A.2), (A.3), and (4.21)]. The transformation [6, (4.35)] indi-
cates that we should try

3.3) ¢ =0+ D0, ¢*=2"+DG, +=0,
where
(3.4 Dy, + D,y =0.

By the procedure of [6, § 4] the D,, are determined by requiring that the
contraction of equation [6, (A.4)] be trivial, mod 4. Substituting (3.3) into this
contracted equation gives

o, =R, +iDg,, + (n + 2)D,,)0° N\ 6°

3.5) . -
=(R,, + i(Dg,, + (n + 2)D,,))6* N\ 6° , mod 4 ,

where
D=D,,

and we have made use of (1.23), (1.27), and (1.41).
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To make (3.5) vanish, mod 4. we choose

3.6 D,=__' R, — i R
(3.6) T 2 T 2t Dt 2

o7

Then the ¢,* in (3.3) is the intrinsic (pseudo-conformal) connection form.
The substitution of (3.3) and (3.6) into [6, (A.4)] gives

O, = 02, + i(Dy°g,; + D,°gss + 6,°D,, + 6,°Dy,)0° N\ 67

(3.7 i
=S,,550" N&, mod 6§ .

It now follows that Chern’s pseudo-conformal curvature tensor is given by

a a 1 a a a a
SﬂﬁﬁzRﬁﬁ_ n+2(Rﬂgpi+Rpgﬁﬁ+55Rp6+5ﬂRﬁﬁ)
R

Ry P s

(3.8)
(aﬂagpi + 5pagﬁ‘7) .

Formula (3.8) is similar to H. Weyl’s formula for the conformal curvature
tensor of a Riemannian manifold (see [7]). The trace of S with respect to 8 and
o is zero, so S vanishes identically when n = 1. When n > 1, S vanishes if and
only if M is locally equivalent to the real hypersphere in C**! (see [6] and [10]).
Formula (3.8) will be used to compute S for specific hypersurfaces in the next
section.

We could continue the procedure of [6] to determine further relations, how-
ever, when n > 1, the Bianchi identities [6] can be used to show that all higher
order invariants are obtained from S by covariant differentation with respect to
the pseudo-conformal connection [10]. It can then be shown, with the aid of
(3.2), (3.3), (3.6), and (3.8), that these invariants can be expressed in terms of
the curvatures of (M, ) and their covariant derivatives with respect to the con-
nection ,*. Such expressions will be valid only with respect to coframes satis-
fying (3.2).

As a system of local functions on M, S transforms tensorially (explicit details
are in [10]). Under the structure group (4.1) of [6] we have the changes

(B9  G=ub, ugy=8,.,UrUs, Sse =S8.UsUUTUS .
If we define the norm of S with respect to 6 by

(3.10) IS|l* = 8°°8*°8,8>Sup'eSps"s »

then (3.9) gives

(3.11) [ISlle = lul IS5 -
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If M is strongly pseudo-convex, for example, we can restrict to changes (3.9)
with z > 0. If, in addition, S does not vanish (3.11) shows that we can choose
a unique #* with respect to which S has norm one. This §* and all the invari-
ants of (M, 6*) are intrinsic to the C-R structure of M. In particular, the cor-
responding transversal X (1.10) and its integral curves are intrinsic to M. The
latter are called principal curves [2].

Let N be a Kihler manifold with Kidhler form y. Each point of N has a
neighborhood U, with holomorphic coordinate vector Z, on which there is a
positive function /4 satisfying

x = i0d log h .
On U X C define
r=nZ,Zyww —1, ZeU, weC,

and let M be the real hypersurface on which r vanishes. Then y is also the
Levi form of (M, § = idr). It is easily seen that the torsion z* vanishes, and
that Ry, is also the curvature tensor of the Kéhler metric associated to y. S,,%,
is then the same tensor defined by Bochner [1].

4. The curvature for real hypersurfaces in C**!, spaces of constant

curvature, & ellipsoids

In this section we will give a procedure for computing the torsion and cur-
vature tensors for a real hypersurface (M, 6) in C**! defined as the zero set of
a given real valued function r.

We have coordinates
Z:(zl,...,zn), w:z"'”,

and, for the applications we have in mind, will assume that the Z and w vari-
ables are separated in r, i.e.,

4.1 rZ,w,Z,Ww)=pZ,Z) + q(w, %) ,
p and g being real valued. We choose the one-form
“4.2) 0 = ior = i(pdz® + q,4aw) .
Throughout we shall use the abbreviations
p. = dploz=, q, = dq/ow , etc.
Then we have

(4.3) dO = idor = ig,sdz® N\ dzP + 9, dz* N\ 0 + n.dz® N\ 0 = ig, 0% N\ 6°

-
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where

4.4 8ep = —Pop — QPP s Q= Gu)(990) >
4.5) Ne=—0QP.» 7" =8,

(4.6) 0« = dz= + in0 .

The coframe (@, 6°, 6%) is admissible for (M, §). Our computation will be valid
where g, # 0. The dual frame, characterized by

4.7 df = Xf0 + X.f0° + X, f6"
for any function f on M, is given by

X = —ip"(9/0z") + in*(9/0z*) — i(l — p,7")q.,)~'(0/dw)
+ l(l - ppvﬂ)(qw)_l(a/aw) b

4.9) X, = (0/0z%) — pg.,)'@low) , X, =X, .

(4.8)

We first compute the connection and torsion forms w,,, z,. Differentiating
(4.6) gives

dos = 6° N\ (=90, + iX°0) + 0 N\ (—iXp0) =0° N o', + 0 N\ =
Next, we compute
dgse — @'y — &gy = (X;80 + 1:8,)0" + (X382 + 7280
where the §-term vanishes by (1.22). Therefore the change (1.23a) yields
(4.10) Wy = By 7 4+ Coil + Egu0
where

(411) Bﬁar = Xrgﬁd + ”ﬁgar > Cﬂz‘i? = _77&gﬁf ’ Eﬁa = igarXﬁﬂT .

Also, the torsion form is

4.12) T, = A0,
where
4.13) A, =1g. X = iXy, — in°X, 8. .

To find the curvature tensor R,,,;, we substitute (4.10) and (4.12) into

Q4 =dwgy — 0z N\ 0 — 10, N\ 75 + ity N\ O,
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and compute mod . We need to consider only the 2 A 6°-term. The coefficient
of this term is

R,,

4.14) oo = —XoBgap + X,Cpos + By, Bors + By, G5

- Cﬁdfcﬁfp - CﬂriCdrp + iEﬁagpﬁ .
If we substitute (4.11) into (4.14) we get
Rﬁ«fﬁ = —_XEngﬁa + gTFngﬁﬁ'Xigﬂr + gﬁ”TXﬂgﬁr
(4'15) - gpa‘vargﬂa - gdeinﬁ - gﬁEvad - gpﬁXﬂ”a
— 1928z — 17 878 0a -

Examples. A. Spaces of constant curvature. We will consider here three ex-
amples in C"*! which are locally equivalent in the pseudo-conformal sense but
differ according to the choice (4.2) of 4.

4.16.1) O ro = hoyzz? + %(w — W =0.
(4.16.2) 0.(c): ry=huzZ?P + ww=c.
(4.16.3) 0._(c): ro=hyzz?P —ww= —c.

The constant c is positive, and A,; is a constant nonsingular hermitian matrix
with signature p positive and g negative eigenvalues, p + g = n.
The transformation

4.17) w=c/w, z% = cz/*w’

maps Q_(c) onto Q,(c) minus {w = 0}. A transformation mapping Q, onto
Q.(c) minus a point is given in [6]. However, these transformations do not

preserve the one-forms § = ior.
(1) Q,. Let G, be the group of (n + 1) X (n + 1) matrices

1 b b
(4.18) ( 0 B/ ba) ,
0o 0 1

where

(4.19) Bh By =h,, b,=2iBrhb, 0= -2’;(b — B) + hobeb? .

e

G, acts on C"*! by

(4.20) To=0b"+zBe, W=b+zh,+w,
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preserves the function r, defining Q,, and hence preserves § = ior.

The isotropy group of (0, 0) in Q, is the unitary group U(p, ¢q) of the her-
mitian form #4,;. It follows that Q, is homogeneous,

4.21) 0, = G/U(p, q) -

If we choose as our coframe
0,0 = dz*, 6 = dz*,
then
do = —ih0" N\ 6%,

and ;" = t* = 0 since df* = 0. The curvature and torsion of (Q,, f) vanish
identically.

) Q.(c). The function r, in (4.16.2) is an hermitian form of signature
(p + 1, g). The unitary group U(p + 1, g) acts transitively on Q,(c) and pre-
serves § = idr,. The isotropy group at (Z = 0, w = 4/ ¢ ) is U(p, q); hence

(4.22) 0.c)=U(p+ 1,9)/U(p,q) -

(3) Q_(c). The function r_ in (4.16.3) is an hermitian form of signature
(p,q + 1), 8 = idr is invariant under U(p, g + 1), and

(4.23) 0.(c)=U(p,q + D/U(p,q) .

Because Q.(c) and Q_(c) are homogeneous, it suffices to compute their cur-
vature and torsion at a point where Z = 0. From (4.13), (4.5), and (4.9) we

see that A,, vanishes when Z = 0. Also, substituting (4.4) and (4.5) into (4.15),
we see that, when Z = 0,

Rﬂ&pi = _%(gﬂagpi + gpagﬂi) H

where e = +1 for Q,(c) and e = —1 for Q_(c¢). From the definition of sec-

tional curvature (2.15), we have K = 1/c¢ for Q,(c¢) and K = —1/c for Q_(¢).
Qo 0.(c), and Q_(c) each have a transformation group of dimension (n + 1)

It is easily seen from (3.8) that the tensor S;,,, vanishes identically in each case.

B. Ellipsoids. For a less trivial example we consider the general ellipsoid £
in C**! defined by

r=A4&Y + B + - + A" + B, ()

4249 - AGF + B@ —1=0,

where x* + iy* = z*, u + iv = w, and 4, 4,, B, B, are all positive constants.
We rewrite this as
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@4.25) r= i (a(z%)? + a(z%)? + b,z°z%) + aw® + W) + bww — 1 =0,

where

Z%(A_B)? aazi(Aa_Ba)’

(4.26)
b=¥A+B) >0, b, =34, +B)>0.

More generally, we take

(4.27) r=pZ,2Z) + qw, ),
where

4.27a) P = Q2°2° + G,52°2% + b2z,
(4.27b) qg = aw? 4+ aw® + bww — 1,

all the coefficients are constant, a,, is symmetric, b,; is positive definite her-
mitian, and b is positive.

We will compute the curvature tensor S,,,, for E along the curve E N (Z = 0)
by computing R,,,, and using (3.8). We let |, denote evaluation at Z = 0. We
have

palo_—'o’ qw'oi(),

(4.29)
paﬁ = baﬁ ’ par = Zaar .

This, together with the expressions (4.4) and (4.5), gives

X,8pa = g—"’p,,pppa — Opsb,e — 2Qa;,P: »
@) X h(X,8) = QByibe + 410,
X,(gsa) = 0, Xz 1o(ns) = — Qbys -

Substituting (4.29) into (4.15) gives

(4.30) Rszpslo = —Qbgab,s + boabs, — 4a;,a45)
where Q = Q|, # 0. Let b’* be the inverse matrix of b,,. Then
4.31) R,y = O((n + 1)b,, — 4b*a,,a;,) ,
4.32) R, = —O(n(n + 1) — 4b*°b%a,a,;) .

Now, if we put (4.30), (4.31), and (4.32) into (3.8) with the index « lowered,
we get, after simplification,
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Sﬁpﬁ[O = 4Qbﬂﬁbﬁaﬁsaﬁ(bﬁdbﬂﬁ + bpabpﬁ)

(4.33) + 4Qa;,a,, — n4+Q2 (6" a,5055b .
+ bﬂﬁa/‘paiabﬁﬁ + blmalxpawbﬁﬂ + bl‘ﬁaﬂﬁaﬁbxﬂﬁ) ‘

Now let us assume we have the form (4.25)-(4.26). Then

2
a’ .

J— 8Q < 2 2 2 n
( ) aaaﬁl ( 1)( 2) (;1 r/ T> a Q 2

It follows that if n = 1, Si;51), = 0, as expected. However, if n > 2, then S, ..o
vanishes for some « if and only if ¢, = .- = a, = 0. Since we can relable
our variables, say z' <> w, we see that E has nonflat points if a # 0, or if a, = 0
for some . Hence

Theorem (4.1). Let n > 2. The ellipsoid E given by (4.24) is equivalent to the
real hypersphere if and only if

A1=Bl,"':An:Bn’A:B'

In [8] Fefferman has shown that a biholomorphic map between two bounded
strongly pseudo-convex domains with smooth boundaries extends smoothly to
the boundaries. Theorem (4.1) then gives a necessary and sufficient condition
for an ellipsoidal domain to be equivalent to the unit ball.
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