# ON THE THEORY OF NORMAL VARIATIONS 

BANG-YEN CHEN \& KENTARO YANO

## 1. Introduction

Let $M^{n}$ be an $n$-dimensional submanifold of a Riemannian manifold $M^{m}$. An infinitesimal deformation of $M^{n}$ in $M^{m}$ along a normal vector field $\xi$ is called a normal variation. In this paper we shall study some fundamental properties of nomal variations.

In § 3 we shall prove that the submanifold $M^{n}$ is totally geodesic (respectively, totally umbilical or minimal) if and only if every normal variation of $M^{n}$ is isometric (respectively, conformal or volume-preserving). In $\S 4$ we shall prove that the normal variation given by $\xi$ is affine if and only if the second fundamental tensor with respect to $\xi$ is parallel. In $\S 5$ we shall show that the normal variation given by $\xi$ carries a totally geodesic (respectively, totally umbilical or minimal) submanifold into a totally geodesic (respectively, totally umbilical or minimal) submanifold when and only when $\xi$ satisfies certain second order differential equations. In the last section, we shall study $H$-variations and $H$-stable submanifolds, and obtain a characterization of $H$ stable submanifolds with some applications; for example, we prove that an H stable submanifold of a positively curved manifold has parallel mean curvature vector if and only if the submanifold is minimal.

## 2. Preliminaries, [1]

Let $M^{m}$ be an $m$-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$, and denote by $g_{j i}, \Gamma_{j i}^{h}, V_{j}, K_{k j i}{ }^{h}, K_{j i}$ and $K$ the metric tensor, the Christoffel symbols formed with $g_{j i}$, the operator of covariant differentiation with respect to $\Gamma_{j i}^{h}$, the curvature tensor, the Ricci tensor and the scalar curvature of $M^{m}$ respectively, where and in the sequel, the indices $h, i, j, k, \cdots$ run over the range $\{\overline{1}, \overline{2}, \cdots, \bar{m}\}$.

Let $M^{n}$ be an $n$-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{V ; y^{a}\right\}$, and denote by $g_{c b}, \Gamma_{c b}^{a}, \nabla_{c}, K_{d c b}{ }^{a}, K_{c b}$ and $K^{\prime}$ the corresponding quantities of $M^{n}$, where and in the sequel the indices $a, b, c, d, \cdots$ run over the range $\{1,2, \cdots, n\}$.

Suppose that $M^{n}$ is isometrically immersed in $M^{m}$ by the immersion $i: M^{n} \rightarrow$ $M^{m}$, and identify $i\left(M^{n}\right)$ with $M^{n}$. Represent the immersion by
(1)

$$
x^{h}=x^{h}\left(y^{a}\right),
$$

and put

$$
\begin{equation*}
B_{b}{ }^{h}=\partial_{b} x^{h} \tag{2}
\end{equation*}
$$

where $\partial_{b}=\partial / \partial y^{b}$. Then we have

$$
\begin{equation*}
g_{c b}=B_{c b}^{j i} g_{j i} \tag{3}
\end{equation*}
$$

where $B_{c b}^{j i}=B_{c}{ }^{j} B_{b}{ }^{i}$. We denote $m-n$ mutually orthogonal unit normals to $M^{n}$ by $C_{x}{ }^{h}$, where and in the sequel the indices $x, y, z$ run over the range $\{n+1, \cdots, m\}$. Then the metric tensor of the normal bundle of $M^{n}$ is given by

$$
\begin{equation*}
g_{z y}=C_{z}{ }^{j} C_{y}{ }^{i} g_{j i} \tag{4}
\end{equation*}
$$

The equations of Gauss and those of Weingarten are respectively

$$
\begin{gather*}
\nabla_{c} B_{b}{ }^{h}=h_{c b}{ }^{x} C_{x}{ }^{h},  \tag{5}\\
\nabla_{c} C_{y}{ }^{h}=-h_{c}{ }^{a}{ }_{y} B_{a}{ }^{h} \tag{6}
\end{gather*}
$$

where $\nabla_{c} B_{b}{ }^{h}$ and $\nabla_{c} C_{y}{ }^{h}$ denote the van der Waerden-Bortolotti covariant derivatives of $B_{b}{ }^{h}$ and $C_{y}{ }^{h}$ respectively along the submanifold $M^{n}$, that is,

$$
\begin{equation*}
\nabla_{c} B_{b}{ }^{h}=\partial_{c} B_{b}{ }^{h}+\Gamma_{j i}^{h} B_{c b}^{j i}-\Gamma_{c b}^{a} B_{a}{ }^{h}, \tag{7}
\end{equation*}
$$

$\Gamma_{c y}^{x}$ being the components of the connection induced in the normal bundle. We note that $\Gamma_{c y}^{x}$ are skew-symmetric in $x$ and $y$.

The mean curvature vector $H^{h}$ is given by $H^{h}=(1 / n) g^{c b} \nabla_{c} B_{b}{ }^{h}$. If $C^{h}$ is a unit normal vector parallel to $H^{h}$, then $H^{h}=\alpha C^{h}$ for some function $\alpha . \alpha$ is called the mean curvature of $M^{n}$. If $\alpha$ vanishes identically, $M^{n}$ is said to be minimal. If $\alpha$ is nowhere zero, and the second fundamental tensor in the direction of $H^{h}$ is proportional to the metric tensor, then $M^{n}$ is said to be pseudoumbilical.

A normal vector field $C^{h}=\xi^{x} C_{x}{ }^{h}$ is said to be parallel if $\nabla_{c} \xi^{x}=0$ identically, and to be concurrent if there exists a function $\gamma$ such that $\nabla_{c} C^{h}=\gamma B_{c}{ }^{h}$, [6].

## 3. Isometric, conformal and volume-preserving normal variations

We consider a normal variation of $M^{n}$ in $M^{m}$ given by

$$
\begin{equation*}
\bar{x}^{h}=x^{h}\left(y^{a}\right)+\xi^{h}\left(y^{a}\right) \varepsilon, \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi^{h}=\xi^{x} C_{x}{ }^{h}, \tag{10}
\end{equation*}
$$

and $\varepsilon$ is an infinitesimal. From (9) we have

$$
\begin{equation*}
\bar{B}_{b}{ }^{h}=B_{b}{ }^{h}+\left(\partial_{b} \xi^{h}\right) \varepsilon, \tag{11}
\end{equation*}
$$

where $\bar{B}_{b}{ }^{h}=\partial_{b} \bar{x}^{h}$.
If we displace the vectors $B_{b}{ }^{h}$ parallelly from the point $\left(x^{h}\right)$ to $\left(\bar{x}^{h}\right)$, we obtain

$$
\begin{equation*}
\tilde{\boldsymbol{B}}_{b}{ }^{h}=B_{b}{ }^{h}-\Gamma_{j i}^{h} \xi^{j} B_{b}{ }^{i} \varepsilon . \tag{12}
\end{equation*}
$$

Thus putting

$$
\begin{equation*}
\delta B_{b}{ }^{h}=\bar{B}_{b}{ }^{h}-\tilde{B}_{b}{ }^{h}, \tag{13}
\end{equation*}
$$

we find

$$
\begin{equation*}
\delta B_{b}{ }^{h}=\nabla_{b} \xi^{h} \varepsilon, \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla_{b} \xi^{h}=\partial_{b} \xi^{h}+\Gamma_{j i}^{h} B_{b}{ }^{j} \xi^{i} \tag{15}
\end{equation*}
$$

From (6), (10) and (15), it follows that

$$
\begin{equation*}
\nabla_{b} \xi^{h}=-h_{b}{ }^{a}{ }_{x} \xi^{x} B_{a}{ }^{h}+\left(\nabla_{b} \xi^{x}\right) C_{x}{ }^{h} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla_{b} \xi^{x}=\partial_{b} \xi^{x}+\Gamma_{b y}^{x} \xi^{y} \tag{17}
\end{equation*}
$$

Now a computation of the metric tensor $\bar{g}_{c b}=\bar{B}_{c}{ }^{j} \bar{B}_{b}{ }^{i} g_{j i}(\bar{x})$ of the deformed submanifold gives

$$
\bar{g}_{c b}=g_{c b}-2 h_{c b x} \xi^{x} \varepsilon
$$

Thus putting $\delta g_{c b}=\bar{g}_{c b}-g_{c b}$, we have

$$
\begin{equation*}
\delta g_{c b}=-2 h_{c b x} \xi^{x} \varepsilon \tag{18}
\end{equation*}
$$

from which we can easily obtain

$$
\begin{equation*}
\delta g^{b a}=2 h^{b a}{ }_{x} \xi^{x} \varepsilon, \tag{19}
\end{equation*}
$$

where $h^{b a}{ }_{x}=g^{b e} g^{a d} h_{e d x}$. A normal variation (9) is said to be isometric (respectively, conformal) if $\delta g_{c b}=0$ (respectively, $\delta g_{c b}=\alpha g_{c b}$ for some function $\alpha$ ). From (18) we thus reach

Proposition 1. A normal variation (9) is isometric if and only if $h_{c b x} \xi^{x}=0$,
that is, if and only if the submanifold is geodesic with respect to the direction of the normal variation.
Proposition 2. A normal variation (9) is conformal if and only if $h_{c b x} \xi^{x}=$ $\alpha g_{c b}, \alpha$ being a certain function, that is, if and only if the submanifold is umbilical with respect to the direction of the normal variation.
If we denote the determinant $\left|g_{c b}\right|$ by $g$, then the volume element of the submanifold $M^{n}$ is given by

$$
\begin{equation*}
d V=\sqrt{g} d y^{1} \wedge d y^{2} \wedge \cdots d y^{n} \tag{20}
\end{equation*}
$$

Since we see from (18) that

$$
\delta \sqrt{g}=-\sqrt{g} h_{t}{ }^{t} \xi^{x} \xi^{x} \varepsilon
$$

we have

$$
\begin{equation*}
\delta d V=-h_{t}{ }^{t} \xi^{x} d V \varepsilon . \tag{21}
\end{equation*}
$$

Hence
Proposition 3. A normal variation (9) is volume-preserving if and only if $h_{t}{ }^{t}{ }_{x} \xi^{x}=0$, that is, if and only if the submanifold is minimal with respevt to the direction of the normal variation.

From Propositions 1, 2 and 3 we obtain the following theorems.
Theorem 1. A submanifold is totally geodesic if and only if every normal variation of the submanifold is isometric.

Theorem 2. A submanifold is totally umbilical if and only if every normal variation of the submanifold is conformal.

Theorem 3. A submanifold is minimal if and only if every normal variation of the submanifold is volume-preserving.

## 4. Affine normal variations

We introduce the notation

$$
\begin{equation*}
B_{i}^{a}=g^{a b} B_{b}{ }^{j} g_{j i}, \quad C^{x}{ }_{i}=g^{x y} C_{y}{ }^{j} g_{j i} \tag{22}
\end{equation*}
$$

Then the relation between $\Gamma_{c b}^{a}$ and $\Gamma_{j i}^{h}$ can be written as

$$
\begin{equation*}
\Gamma_{c b}^{a}=\left(\partial_{c} B_{b}{ }^{h}+\Gamma_{j i}^{h} B_{c b}^{j i}\right) B^{a}{ }_{h}, \tag{23}
\end{equation*}
$$

and that between $\Gamma_{c y}^{x}$ and $\Gamma_{j i}^{h}$ as

$$
\begin{equation*}
\Gamma_{c y}^{x}=\left(\partial_{c} C_{y}{ }^{h}+\Gamma_{j i}^{h} B_{c}{ }^{j} C_{y}{ }^{i}\right) C^{x}{ }_{h} . \tag{24}
\end{equation*}
$$

We denote by $\bar{C}_{y}{ }^{h}, \bar{B}^{a}{ }_{i}$ and $\bar{C}^{x}{ }_{i}$ the values at the point $\left(\bar{x}^{h}\right)$ of $C_{y}{ }^{h}, B^{a}{ }_{i}$ and $C^{x}{ }_{i}$, and by $\tilde{C}_{y}{ }^{h}, \tilde{B}^{a}{ }_{i}$ and $\tilde{C}^{x}{ }_{i}$ the components of the vectors obtained
from $C_{y}{ }^{h}, B^{a}{ }_{i}$ and $C^{x}{ }_{i}$ by replacing them parallelly from the point ( $x^{h}$ ) to ( $\bar{x}^{h}$ ), respectively. We then have

$$
\begin{align*}
& \tilde{\boldsymbol{C}}_{y}{ }^{h}=C_{y}{ }^{h}-\Gamma_{j i}^{h} \xi^{j} C_{y}{ }^{i} \varepsilon, \\
& \tilde{B}^{a}{ }_{i}=B^{a}{ }_{i}+\Gamma_{j i}^{h}{ }^{\xi}{ }^{j} B^{a}{ }_{h} \varepsilon,  \tag{25}\\
& \tilde{C}^{x}{ }_{i}=C^{x}{ }_{i}+\Gamma_{j i}{ }_{j} \xi^{j} C^{x}{ }_{h} \varepsilon .
\end{align*}
$$

Put

$$
\begin{equation*}
\delta C_{y}{ }^{h}=\bar{C}_{y}{ }^{h}-\tilde{C}_{y}{ }^{h}, \quad \delta B^{a}{ }_{i}=\bar{B}^{a}{ }_{i}-\tilde{B}^{a}{ }_{i}, \quad \delta C^{x}{ }_{i}=\bar{C}^{x}{ }_{i}-\tilde{C}^{x}{ }_{i} . \tag{26}
\end{equation*}
$$

By assuming that $\delta C_{y}{ }^{h}$ is given by

$$
\begin{equation*}
\delta C_{y}{ }^{h}=\eta_{y}{ }^{h} \varepsilon=\left(\eta_{y}{ }^{a} B_{a}{ }^{h}+\eta_{y}{ }^{x} C_{x}{ }^{h}\right) \varepsilon, \tag{27}
\end{equation*}
$$

applying the operator $\delta$ to $B_{b}{ }^{j} C_{y}{ }^{i} g_{j i}=0$, and using $\delta g_{j i}=0$, we obtain

$$
\left(\nabla_{b} \xi^{j}\right) C_{y}{ }^{i} g_{j i}+B_{b}{ }^{j}\left(\eta_{y}{ }^{a} B_{a}{ }^{i}+\eta_{y}{ }^{x} C_{x}{ }^{i}\right) g_{j i}=0 .
$$

From the above equation it follows that $\nabla_{b} \xi_{y}+\eta_{y b}=0$, where $\xi_{y}=\xi^{z} g_{z y}$ and $\eta_{y b}=\eta_{y}{ }^{c} g_{c b}$, and therefore that

$$
\begin{equation*}
\eta_{y}^{a}=-\nabla^{a} \xi_{y} \tag{28}
\end{equation*}
$$

where $\nabla^{a}=g^{a e} \nabla_{e}$.
Applying $\delta$ to $B_{b}{ }^{h} B^{a}{ }_{h}=\delta^{a}{ }_{b}$ and $C_{y}{ }^{h} B^{a}{ }_{h}=0$ gives respectively

$$
\left(\nabla_{b} \xi^{h}\right) B^{a}{ }_{h} \varepsilon+B_{b}{ }^{h}\left(\delta B^{a}{ }_{h}\right)=0, \quad \eta_{y}{ }^{a} \varepsilon+C_{y}{ }^{h}\left(\delta B^{a}{ }_{h}\right)=0,
$$

from which we have, taking account of (16) and (28),

$$
\begin{equation*}
\delta B^{a}{ }_{i}=\left[h_{c}{ }^{a}{ }_{x} \xi^{x} B^{c}{ }_{i}+\left(\nabla^{a} \xi_{x}\right) C^{x}{ }_{i}\right] \varepsilon . \tag{29}
\end{equation*}
$$

Applying $\delta$ to $B_{b}{ }^{h} C^{x}{ }_{h}=0$ and $C_{y}{ }^{h} C^{x}{ }_{h}=\delta^{x}{ }_{y}$ gives respectively

$$
\left(\nabla_{b} \xi^{h}\right) C^{x}{ }_{h} \varepsilon+B_{b}{ }^{h}\left(\delta C^{x}{ }_{h}\right)=0, \quad \eta_{y}{ }^{z} C_{z}{ }^{h} C^{x}{ }_{h}+C_{y}{ }^{h}\left(\delta C^{x}{ }_{h}\right)=0,
$$

from which we have, taking account of (16),

$$
\begin{equation*}
\delta C^{x}{ }_{i}=-\left[\left(\nabla_{c} \xi^{x}\right) B_{i}^{c}+\eta_{y}{ }^{x} C^{y}{ }_{i}\right] \varepsilon . \tag{30}
\end{equation*}
$$

Thus by (12), (13), (14), (25), (26), (27), (29) and (30) we obtain

$$
\begin{aligned}
& \bar{B}_{b}{ }^{h}=B_{b}{ }^{h}-\Gamma_{j i}^{h} \xi^{j} B_{b}{ }^{i} \varepsilon+\left(\nabla_{b} \xi^{h}\right) \varepsilon, \\
& \bar{C}_{y}{ }^{h}=C_{y}{ }^{h}-\Gamma_{j i}^{h} \xi^{j} C_{y}{ }_{y} \varepsilon+\eta_{y}{ }^{h} \varepsilon, \\
& \bar{B}^{a}{ }_{i}=B^{a}{ }_{i}+\Gamma_{j i}^{h} \xi^{j} B^{a}{ }_{h} \varepsilon+\left[h_{c}{ }_{c}{ }_{x} \xi^{x} B^{c}{ }_{i}+\left(\nabla^{a} \xi_{x}\right) C^{x}{ }_{i}\right] \varepsilon . \\
& \bar{C}^{x}{ }_{i}=C^{x}{ }_{i}+\Gamma_{j i}^{h} \xi^{j} C^{x}{ }_{h} \varepsilon-\left[\left(\nabla_{c} \xi^{x}\right) B^{c}{ }_{i}+\eta_{y}{ }^{x} C^{y}{ }_{i}\right] \varepsilon .
\end{aligned}
$$

Put

$$
\begin{gather*}
\bar{\Gamma}_{c b}^{a}=\left(\partial_{c} \overline{\boldsymbol{B}}_{b}{ }^{h}+\Gamma_{j i}^{h}(\bar{x}) \overline{\boldsymbol{B}}_{c}{ }^{j} \bar{B}_{b}{ }^{i}\right) \bar{B}^{a}{ }_{h},  \tag{31}\\
\delta \Gamma_{c b}^{a}=\bar{\Gamma}_{c b}^{a}-\Gamma_{c b}^{a} . \tag{32}
\end{gather*}
$$

Then a straightforward computation yields

$$
\begin{equation*}
\delta \Gamma_{c b}^{a}=\left[\left(\nabla_{c} \nabla_{b} \xi^{h}+K_{k j i}{ }^{h} \xi^{k} B_{c b}^{j i}\right) B^{a}{ }_{h}+h_{j i}{ }^{x} \nabla^{h} \xi_{x}\right] \varepsilon, \tag{33}
\end{equation*}
$$

from which together with $\xi^{h}=\xi^{x} C_{x}{ }^{h}$ and equation of Codazzi it follows that

$$
\begin{equation*}
\delta \Gamma_{c b}^{a}=-\left[\nabla_{c}\left(h_{b e x} \xi^{x}\right)+\nabla_{b}\left(h_{c e x} \xi^{x}\right)-\nabla_{e}\left(h_{c b x} \xi^{x}\right)\right] g^{e a} \varepsilon . \tag{34}
\end{equation*}
$$

Since we can easily see from (34) that $\delta \Gamma_{c b}^{a}=0$ and $\nabla_{c}\left(h_{b e x} \xi^{x}\right)=0$ are equivalent, we have
Theorem 4. The normal variation (9) is affine if and only if $h_{c b x} \xi^{x}$ is parallel.

## 5. Normal variations which carry umbilical submanifolds to umbilical submanifolds

By putting

$$
\begin{gather*}
\bar{\Gamma}_{c y}^{x}=\left(\partial_{c} \bar{C}_{y}{ }^{h}+\Gamma_{j i}^{h}(\bar{x}) \bar{B}_{c}{ }^{j} \bar{C}_{y}{ }^{i}\right) \bar{C}^{x}{ }_{h},  \tag{35}\\
\delta \Gamma_{c y}^{x}=\bar{\Gamma}_{c y}^{x}-\Gamma_{c y}^{x}, \tag{36}
\end{gather*}
$$

we obtain

$$
\begin{equation*}
\delta \Gamma_{c y}^{x}=\left[\left(\nabla_{c} \eta_{y}{ }^{h}+K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{j} C_{y}{ }^{i}\right) C^{x}{ }_{h}+h_{c}{ }^{a}{ }_{y} \nabla_{a} \xi^{x}\right] \varepsilon . \tag{37}
\end{equation*}
$$

Suppose that $v^{h}$ is a vector field of $M^{m}$ defined intrinsically along the submanifold $M^{n}$. When we displace the submanifold by $\bar{x}^{h}=x^{h}+\xi^{h} \varepsilon$ in the direction $\xi^{h}$ normal to it, we obtain a vector field $\bar{v}^{h}$ which is defined also intrinsically along the deformed submanifold. If we displace $v^{h}$ parallelly from the point ( $x^{h}$ ) to ( $\bar{x}^{h}$ ), we obtain $\tilde{v}^{h}=v^{h}-\Gamma_{j i}^{h} \xi^{j} v^{i} \varepsilon$ and hence forming $\delta v^{h}=\bar{v}^{h}-\tilde{v}^{h}$, so that

$$
\begin{equation*}
\delta v^{h}=\bar{v}^{h}-v^{h}+\Gamma_{j i}^{h} \xi^{j} v^{i} \varepsilon . \tag{38}
\end{equation*}
$$

Similarly, we have

$$
\delta \nabla_{c} v^{h}=\bar{\nabla}_{c} \bar{v}^{h}-\nabla_{c} v^{h}+\Gamma_{j i}^{h} \xi^{j} \nabla_{c} v^{i} \varepsilon,
$$

that is,

$$
\begin{align*}
\delta \nabla_{c} v^{h}= & \nabla_{c} \bar{v}^{h}-\nabla_{c} v^{h}+\left(\partial_{k} \Gamma_{j i}^{h}+\Gamma_{k t}^{h} \Gamma_{j i}^{t}\right) \xi^{k} B_{c}{ }^{j} v^{i} \varepsilon  \tag{39}\\
& +\left(\Gamma_{j i}^{h} \partial_{c} \xi^{j} v^{i}+\Gamma_{j i}^{h} \xi_{j} \partial_{c} v^{i}\right) \varepsilon .
\end{align*}
$$

On the other hand, from (38) it follows that

$$
\begin{align*}
\nabla_{c} \delta v^{h}= & \nabla_{c} \bar{v}^{h}-\nabla_{c} v^{h}+\left(\partial_{j} \Gamma_{k i}^{h}+\Gamma_{j i}^{h} \Gamma_{k i}^{t}\right) \xi^{k} B_{c}{ }^{j} v^{i} \varepsilon  \tag{40}\\
& +\left(\Gamma_{j i}^{h} \partial_{c} \xi^{j} v^{i}+\Gamma_{j i}^{h} \xi^{j} \partial_{c} v^{i}\right) \varepsilon .
\end{align*}
$$

Thus by (39) and (40) we find

$$
\begin{equation*}
\delta \nabla_{c} v^{h}-\nabla_{c} \delta v^{h}=K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{j} v^{i} \varepsilon . \tag{41}
\end{equation*}
$$

Similarly, for a covector $w_{i}$ we have

$$
\begin{equation*}
\delta \nabla_{c} w_{i}-\nabla_{c} \delta w_{i}=-K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{j} w_{h} \varepsilon . \tag{42}
\end{equation*}
$$

For a tensor field carrying three kinds of indices, say, $T_{b y}{ }^{h}$, we have

$$
\begin{equation*}
\delta V_{c} T_{b y}{ }^{h}-\nabla_{c} \delta T_{b y}{ }^{h}=K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{j} T_{b y}{ }^{i}-\left(\delta \Gamma_{c b}^{a}\right) T_{a y}{ }^{h}-\left(\delta \Gamma_{c y}^{x}\right) T_{b x}{ }^{h} . \tag{43}
\end{equation*}
$$

Applying (43) to $B_{b}{ }^{h}$ gives

$$
\begin{gathered}
\delta V_{c} B_{b}{ }^{h}-\nabla_{c} \delta B_{b}{ }^{h}=K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{j} B_{b}{ }^{i} \varepsilon-B_{a}{ }^{h} \delta \Gamma_{c b}^{a}, \\
\delta\left(h_{c b}{ }^{x} C_{x}{ }^{h}\right)=\left(\nabla_{c} \nabla_{b} \xi^{h}+K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{j} B_{b}{ }^{i}\right) \varepsilon-B_{a}{ }^{h} \delta \Gamma_{c b}^{a},
\end{gathered}
$$

from which follows

$$
\begin{equation*}
\delta h_{c b}{ }^{x}=\left[h_{c b}{ }^{z} \eta_{z}{ }^{x}+\left(\nabla_{c} \nabla_{b} \xi^{h}+K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{j} B_{b}{ }^{i}\right) C^{x}{ }_{h}\right] \varepsilon . \tag{44}
\end{equation*}
$$

Substituting $\xi^{h}=\xi^{x} C_{x}{ }^{h}$ in (44) we find

$$
\begin{equation*}
\delta h_{c b}{ }^{x}=\left[h_{c b}{ }^{z} \eta_{z}{ }^{x}-h_{c e}{ }^{x} h_{b}{ }^{e}{ }_{y} \xi^{y}+\nabla_{c} \nabla_{b} \xi^{x}+K_{k j i}{ }^{h} C_{y}{ }^{k} B_{c}{ }^{j} B_{b}{ }^{i} C^{x}{ }_{h} \xi^{y}\right] \varepsilon . \tag{45}
\end{equation*}
$$

Thus we obtain the following theorems.
Theorem 5. The normal variation given by $\xi^{x} C_{x}{ }^{h}$ carries a totally geodesic submanifold into a totally geodesic submanifold if and only if

$$
\begin{equation*}
\nabla_{c} \nabla_{b} \xi^{x}+K_{k j i}{ }^{h} C_{y}{ }^{k} B_{c}{ }^{j} B_{b}{ }^{i} C^{x}{ }_{h} \xi^{y}=0 . \tag{46}
\end{equation*}
$$

Theorem 6. The normal variation given by $\xi^{x} C_{x}{ }^{h}$ carries a totally umbilical submanifold into a totally umbilical submanifold if and only if

$$
\begin{equation*}
\nabla_{c} \nabla_{b} \xi^{x}+K_{k j i}{ }^{h} C_{y}{ }^{k} B_{c}{ }^{j} B_{b}{ }^{i} C^{x}{ }_{h} \xi^{y}=g_{c b} \alpha^{x}, \tag{47}
\end{equation*}
$$

$\alpha^{x}$ being certain functions.
Theorem 7. The normal variation given by $\xi^{x} C_{x}{ }^{h}$ carries a minimal submanifold into a minimal submanifold if and only if

$$
\begin{equation*}
g^{c b} \nabla_{c} \nabla_{b} \xi^{x}+K_{k j i}{ }^{h} C_{y}{ }^{k} B^{j i} C^{x}{ }_{h} \xi^{y}-h^{t}{ }_{e}^{x} h_{t}{ }_{t}^{e}{ }_{y} \xi^{y}=0, \tag{48}
\end{equation*}
$$

where $B^{j i}=g^{c b} B_{c b}^{j i}$. In particular, the normal variation given by $\xi^{x} C_{x}{ }^{h}$ carries
a totally geodesic submanifold into a minimal submanifold if and only if $g^{c b} \nabla_{c} \nabla_{b} \xi^{x}$
$+K_{k j i}{ }^{h} C_{y}{ }^{k} B^{j i} C^{x}{ }_{h} \xi^{y}=0$.

## 6. $H$-variations

The mean curvature vector of $M^{n}$ in $M^{m}$ is given by

$$
H^{h}=\frac{1}{n} g^{c b} \nabla_{c} B_{b}{ }^{h} .
$$

For the normal variation (9), if the normal vector field $\xi^{x} C_{x}{ }^{h}$ is parallel to the mean curvature vector along $M^{n}$, then the normal variation (9) is called an $H$-variation. In this section, we shall choose the first unit normal vector $C_{n+1}{ }^{h}$ in the direction of the mean curvature vector. Thus

$$
\begin{equation*}
\frac{1}{n} g^{c b} \nabla_{c} B_{b}{ }^{h}=\alpha C_{n+1}{ }^{n}, \tag{49}
\end{equation*}
$$

where $\alpha$ is the mean curvature of $M^{n}$. From (5) it follows that

$$
\begin{equation*}
g^{c b} h_{c b}{ }^{x}=0, \quad(x=n+2, \cdots, m) . \tag{50}
\end{equation*}
$$

We consider an $H$-variation and hence

$$
\begin{equation*}
\xi^{n+1}=\phi, \quad \xi^{n+2}=\cdots=\xi^{m}=0 \tag{51}
\end{equation*}
$$

$\phi$ being the length of the variation vector.
Substituting (51) in (45) gives

$$
\begin{align*}
\delta h_{c b}{ }^{n+1}= & {\left[h_{c b}{ }^{x} \eta_{x}{ }^{n+1}-\phi h_{c e}{ }^{n+1} h_{b}{ }^{e}{ }_{n+1}+\phi \Gamma_{c}{ }^{n+1}{ }_{y} \Gamma_{b}{ }^{y}{ }_{n+1}\right.} \\
& \left.+\nabla_{c} \nabla_{b} \phi+K_{k j i h} C_{n+1}{ }^{k} B_{c b}^{j i} C_{n+1}{ }^{h}\right] \varepsilon, \tag{52}
\end{align*}
$$

from which, transvecting with $g^{c b}$ and using (15) and (19), we find

$$
\begin{equation*}
n \delta \alpha=\Delta \phi-\phi l^{2}+\phi h_{c b} h^{c b}+\phi K_{k j i n} C^{k} B^{j i} C^{h} \tag{53}
\end{equation*}
$$

where $\alpha$ is the mean curvature, and

$$
l^{2}=g^{c b}\left(\Gamma_{c}^{n+1}{ }_{y} \Gamma_{b}^{n+1} y\right), \quad h_{c b}=h_{c b}{ }^{n+1}, \quad C^{h}=C_{n+1}^{h}, \quad B^{j i}=B_{c b}^{j i} g^{c b} .
$$

For the normal variation of the integral $\int_{M} \alpha^{c} \alpha V, c$ being any nonegative number, we have

$$
\delta \int_{M} \alpha^{c} d V=\int_{M} c \alpha^{c-1} \delta \alpha d V+\int_{M} \alpha^{c} \delta d V
$$

and therefore, in consequence of (21) and (53),

$$
\begin{align*}
& \delta \int_{M} \alpha^{c} d V \\
& \quad=\int_{M}\left[\frac{c}{n} \alpha^{c-1}\left(\Delta \phi-\phi l^{2}+\phi h_{c b} h^{c b}+\phi K_{k j i h} C^{k} B^{j i} C^{h}\right)-n \alpha^{c+1} \phi\right] d V \tag{54}
\end{align*}
$$

We assume that the normal variation leaves the boundary $\partial M$ of $M$ strongly fixed in the sense that both $\phi$ and its gradient vanish on $\partial M$. Then

$$
\int_{M}\left(\alpha^{c-1} \Delta \phi\right) d V=\int_{M} \phi\left(\Delta \alpha^{c-1}\right) d V,
$$

which together with (54) implies that

$$
\begin{aligned}
\delta \int_{M} \alpha^{c} d V=\int_{M} \frac{c}{n} \phi & {\left[\Delta \alpha^{c-1}-\alpha^{c-1} l^{2}-\frac{n^{2}}{c} \alpha^{c+1}\right.} \\
& \left.\quad+\alpha^{c-1} h_{c b} h^{c b}+\alpha^{c-1} K_{k j i n} C^{k} B^{j i} C^{h}\right] d V
\end{aligned}
$$

From this we see that $\delta \int_{M} \alpha^{c} d V=0$ for all $H$-variations which leave the boundary strongly fixed if and only if

$$
\Delta \alpha^{c-1}=\alpha^{c-1}\left(l^{2}+\frac{n^{2}}{c} \alpha^{2}-h_{c b} h^{c b}-K_{k j i h} C^{k} B^{j i} C^{h}\right) .
$$

We say that a submanifold is $H$-stable if $\delta \int_{M} \alpha^{n} d V=0$ for all $H$-variations which leave the boundary strongly fixed. From the above equation, we have

Theorem 8. Let $M^{n}$ be an $n$-dimensional submanifold of an m-dimensional Riemannian manifold $M^{m}$. Then $M^{n}$ is $H$-stable if and only if

$$
\begin{equation*}
\Delta \alpha^{n-1}=\alpha^{n-1}\left(l^{2}+n \alpha^{2}-h_{c b} h^{c b}-K_{k j i n} C^{k} B^{j i} C^{h}\right) . \tag{55}
\end{equation*}
$$

We now assume that $M^{n}$ is $H$-stable and has parallel mean curvature vector. Then $V^{c}\left(\alpha C_{n+1}{ }^{h}\right)=0$, and therefore $\alpha$ is constant. If $\alpha \neq 0$, then $l^{2}=0$. Substituting this in (55) gives

$$
\begin{equation*}
\frac{1}{n} \sum_{b<a}\left(\lambda_{b}-\lambda_{a}\right)^{2}+K_{k j i n} C^{k} B^{j i} C^{h}=0 \tag{56}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are eigenvalues of $h_{c}{ }^{a}$.
Thus assuming that $K_{k j i n} C^{k} B^{j i} C^{h} \geq 0$, we have $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}$, that is, $M^{n}$ is pseudo-umbilical, and $K_{k j i h} C^{k} B^{j i} C^{h}=0$, from which we find

$$
\begin{equation*}
\nabla_{c} C^{h}=-\frac{1}{n} \alpha B_{c}{ }^{h}, \tag{59}
\end{equation*}
$$

that is, the mean curvature vector is concurrent along $M^{n}$. Conversely, if the mean curvature vector is concurrent, then it is parallel, $M^{n}$ is pseudo-umbilical, and $\alpha$ is constant. Thus $M^{n}$ is $H$-stable if and only if $K_{k j i h} C^{k} B^{j i} C^{h}=0$. Consequently, we have the following propositions.

Proposition 4. Let $M^{n}$ be an $H$-stable submanifold of $M^{n}$ with $K_{k j i n} C^{k} B^{j i} C^{h}$ $\geq 0$. Then $M^{n}$ has parallel mean curvature vector if and only if either $M^{n}$ is minimal or $K_{k j i h} C^{k} B^{j i} C^{h}=0$ and the mean curvature vector is concurrent.

Proposition 5. Let $M^{n}$ be a submanifold of $M^{m}$ with concurrent mean curvature vector. Then $M^{n}$ is $H$-stable if and only if $K_{k j i h} C^{k} B^{j i} C^{h}=0$.
Assume that $K_{k j i h} C^{k} B^{j i} C^{h} \leq 0$ and $M^{n}$ is pseudo-umbilical. If $M$ is compact and $H$-stable, then $\Delta \alpha^{n-1}$ does not change its sign. Hence, from Hopf's lemma, $\Delta \alpha^{n-1}=0, l^{2}=0$, and $K_{k j i h} C^{k} B^{j i} C^{k}=0$, so that the mean curvature vector is parallel and therefore concurrent. Consequently, we have

Proposition 6. Let $M^{n}$ be a compact $H$-stable submanifold of $M^{m}$ with $K_{k j i h} C^{k} B^{j i} C^{h} \leq 0$. If $M^{n}$ is pseudo-umbilical, then the mean curvature vector is concurrent and $K_{k j i h} C^{k} B^{j i} C^{h}=0$.

In particular, Propositions 4 and 6 give immediately the following.
Theorem 9. Let $M^{n}$ be an $H$-stable submanifold of a positively curved manifold $M^{m}$. Then $M^{n}$ has parallel mean curvature vector if and only if $M^{n}$ is minimal.

Theorem 10. Let $M^{n}$ be a compact pseudo-umbilical submanifold of a negatively curved manifold $M^{m}$. Then $M^{n}$ is not $H$-stable.

Theorem 11 (Chen and Houh [3]). Let $M^{n}$ be an H-stable submanifold of a euclidean space $E^{m}$. Then $M^{n}$ has parallel mean curvature vector if and only if either $M^{n}$ is minimal in $E^{m}$ or $M^{n}$ is a minimal submanifold of a hypersphere of $E^{m}$.

## Bibliography

[1] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
[2] On a variational problem on hypersurfaces, J. London Math. Soc. (2) 6 (1973) 321-325.
[3] B. Y. Chen \& C. S. Houh, On stable submanifolds with parallel mean curvature vector, Quart. J. Math. Oxford (3) 26 (1975) 229-236.
[ 4 ] J. L. Weiner, On a problem of Chen, Willmore, et al., Indiana Univ. Math. J. 27 (1978) 19-35.
[5] J. T. Willmore \& C. S. Jhaveri, An extension of a result of Bang-yen Chen, Quart. J. Math. Oxford (3) 23 (1972) 319-323.
[6] K. Yano, Sur le parallélisme et la concurance dans l'espace de Riemann, Proc. Imp. Acad. Tokyo 19 (1943) 189-197.
[7] -, Sur la théorie des déformations infinitésimales, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 6 (1949) 1-75.

Michigan State University
Tokyo Institute of Technology

