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ON THE THEORY OF NORMAL VARIATIONS

BANG-YEN CHEN & KENTARO YANO

1. Introduction

Let Mn be an ^-dimensional submanifold of a Riemannian manifold Mm.
An infinitesimal deformation of Mn in Mm along a normal vector field ξ is
called a normal variation. In this paper we shall study some fundamental
properties of nomal variations.

In § 3 we shall prove that the submanifold Mn is totally geodesic (respec-
tively, totally umbilical or minimal) if and only if every normal variation of
Mn is isometric (respectively, conformal or volume-preserving). In § 4 we
shall prove that the normal variation given by ξ is afnne if and only if the
second fundamental tensor with respect to ξ is parallel. In § 5 we shall show
that the normal variation given by ξ carries a totally geodesic (respectively,
totally umbilical or minimal) submanifold into a totally geodesic (respectively,
totally umbilical or minimal) submanifold when and only when ξ satisfies
certain second order differential equations. In the last section, we shall study
//-variations and //-stable submanifolds, and obtain a characterization of H-
stable submanifolds with some applications for example, we prove that an H-
stable submanifold of a positively curved manifold has parallel mean curvature
vector if and only if the submanifold is minimal.

2. Preliminaries, [1]

Let Mm be an m-dimensional Riemannian manifold covered by a system
of coordinate neighborhoods {£/; xh}, and denote by gji9 Γ%9 Fj9 Kkji

h, Kjt

and K the metric tensor, the Christoίfel symbols formed with gji9 the operator
of covariant differentiation with respect to Γh

μ, the curvature tensor, the Ricci
tensor and the scalar curvature of Mm respectively, where and in the sequel,
the indices h, i9j9 k, run over the range {T, 2, , in}.

Let Mn be an n-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {V; ya}, and denote by gcb, Γ"b, Fc, Kdcb

a, Kcb and
K' the corresponding quantities of Mn, where and in the sequel the indices
α, b, c, d, run over the range {1,2, •••,«}.

Suppose that Mn is isometrically immersed in Mm by the immersion /: Mn —>
Mm, and identify ί(Mn) with Mn. Represent the immersion by
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( 1) xh = xh(ya) ,

and put

( 2 ) Bb* = dbx\

where db = d/dyb. Then we have

( 3 ) gc> = Bίigji,

where B{\ = Bc

jBb

ι. We denote m — n mutually orthogonal unit normals to
Mn by Cx

h, where and in the sequel the indices x, y, z run over the range
{n + 1, , m). Then the metric tensor of the normal bundle of Mn is given by

( 4 ) g.v = C,'Cv*gji.

The equations of Gauss and those of Weingarten are respectively

( 5Ϊ F E h — h ,XC h

\ J ) * cnb — ncb ^ x ?

( βλ V C h — — h a B h

where FcBb

h and FcCv

h denote the van der Waerden-Bortolotti covariant de-
rivatives of Bb

h and Cy

h respectively along the submanifold Mn, that is,

( 7 ) FcBb

h = dcBb

h + Γ%Bί\ - ΓΐbBa* ,

( 8 ) FeCv* = dcCy* + Γ%BCJCV* - Γ*cyCx

h ,

Γcy being the components of the connection induced in the normal bundle. We
note that Γx

cy are skew-symmetric in x and y.
The mean curvature vector Hh is given by Hh = (l/n)gcΨcBb

h. If CΛ is a
unit normal vector parallel to Hh, then i P = aCh for some function or. a is
called the mean curvature of Mn. If α vanishes identically, Mn is said to be
minimal. If a is nowhere zero, and the second fundamental tensor in the di-
rection of Hh is proportional to the metric tensor, then Mn is said to be pseudo-
umbilical.

A normal vector field Ch = ξxCx

h is said to be parallel if Fcξ
x = 0 identi-

cally, and to be concurrent if there exists a function γ such that FcC
h = pl? c\ [6].

3. Isometric, conformal and volume-preserving normal variations

We consider a normal variation of Mn in M m given by

( 9 ) xh = xh(?) + ξh(ya)ε,

where
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(10) ξh = ξXCx

h ,

and ε is an infinitesimal. From (9) we have

(11) Bb* = Bb* + (βbξ*)ε ,

where Bb

h = dbx
h.

If we displace the vectors Bb

h parallelly from the point (xh) to (xh), we obtain

(12) Bb

h = Bb

h - Γ

Thus putting

(13) δBb

h = Bb

h - Bb

h ,

we find

(14) δBb

h = Vbξ
hε ,

where

(15) Fbξ
h = dbξ

h + Γ^Bbψ .

From (6), (10) and (15), it follows that

(16) Fbξ
h = -hb\ξ*Ba

h + (Fbξ*)Cx

h ,

where

(17) vbξ
x = dbξ* + r%yξy.

Now a computation of the metric tensor gcb = B^B^g^x) of the deformed
submanifold gives

gcb = gcb — 2hcbxξ
xε .

Thus putting δgcb = gcb — gcb, we have

(18) δgcb - -2hcbxξ
xε ,

from which we can easily obtain

(19) δgba = 2hba

xξ
xε ,

where Λδ\ = gbegadhedx. A normal variation (9) is said to be isometric (re-
spectively, conformal) if <5gcδ = 0 (respectively, δgcb = tfgcδ for some function
α). From (18) we thus reach

Proposition 1. A normal variation (9) is isometric if and only if hcbxξ
x = 0,
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that is, if and only if the submanifold is geodesic with respect to the direction
of the normal variation.

Proposition 2. A normal variation (9) is conformal if and only if hchxξ
x =

agcb, a being a certain function, that is, if and only if the submanifold is umbi-
lical with respect to the direction of the normal variation.

If we denote the determinant | g c 6 | by g, then the volume element of the sub-
manifold Mn is given by

(20) dV = V7" dy1 Λ dy2 Λ dyn .

Since we see from (18) that

we have

(21) δdV= -h*£

Hence
Proposition 3. A normal variation (9) is volume-preserving if and only if

ht

ι

xξ
x = 0, that is, if and only if the submanifold is minimal with respevt to the

direction of the normal variation.
From Propositions 1, 2 and 3 we obtain the following theorems.
Theorem 1. A submanifold is totally geodesic if and only if every normal va-

riation of the submanifold is isometric.
Theorem 2. A submanifold is totally umbilical if and only if every normal

variation of the submanifold is conformal.
Theorem 3. A submanifold is minimal if and only if every normal variation

of the submanifold is volume-preserving.

4. Affine normal variations

We introduce the notation

(22) B\ = gabBbJgji , C\ = gxyCyigji .

Then the relation between Γa

ch and Γh

μ can be written as

(23) Γ% = (dcBb

h + Γ%BH)B\ ,

and that between Γx

cy and Γ% as

(24) Γx

y = (dcCy

h + Γ , W C V ) C * Λ .

We denote by Cy

h, Ba

ί and Cx

t the values at the point (xh) of Cy

h

9 Ba

t

and Cx

i9 and by Cy

h, Ba

t and Cx

t the components of the vectors obtained
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from Cυ

h, Ba

t and Cx

t by replacing them parallelly from the point (xh) to (xh),
respectively. We then have

(25) B\ = 5°, + Γ)£B\ε ,

Put

(26) δCy

h = C / - C / , δB\ = 5°, - B% , δC% = C*{ - C\ .

By assuming that δCv

h is given by

(27) δCf = 7 / e = (ηSBa* + , , ' C Λ ,

applying the operator 5 to Bb'Cv

igji = 0, and using ,Sgί4 = 0, we obtain

(F»f W * , t + BAVv^a* + Vv'CAgv = 0 .

From the above equation it follows that Vbξv + ηyb = 0, where ξv = ξ'gty and

%» = Vv'Seb, and therefore that

(28) ηv

a = - F α f , ,

where Fa — gaΨe.

Applying δ to Bb

hBa

h = δa

b and Cv

hBa

h = 0 gives respectively

(Fbξ
h)B\e + Bb

h{δB\) = 0 , ηv*e + Cv\δB\) = 0 ,

from which we have, taking account of (16) and (28),

(29) δB\ = [hc\ξ*B\ + {Vaξx)C\]ε .

Applying δ to Bb

hCx

h = 0 and Cv

hC\ = δ% gives respectively

(Fbξ
h)C\ε + Bb\δC\) = 0 , ηv

zC*C\ + Cv\δC\) = 0 ,

from which we have, taking account of (16),

(30) δC't = -We&B't + ηy'CJe .

Thus by (12), (13), (14), (25), (26), (27), (29) and (30) we obtain

Cv

h = C / - Γ)^Cυh + ηv

hε ,

B\ = B\ + Γ%ξ*B\ε + [hc

a

xξ*B\ + (Vaξx)C\]ε .

&t = C't + Γ



6 BANG-YEN CHEN & KENTARO YANO

Put

(31) Γ% = (dcBb

h + Γ)i{XiBe^)B\ ,

(32) δr% = n - r%.

Then a straightforward computation yields

(33) δΓ% = [(FcFbξ
h + KkJi

hξ*Bίξ)B\ + h^Fhξx\ε ,

from which together with ξh = ξxCx

h and equation of Codazzi it follows that

(34) δΓ?b = ~[Fc(hbexξ
x) + Fb(hcexξ

x) - Fe(hcbxξ*)lgeae .

Since we can easily see from (34) that δΓa

cb = 0 and Fc(hbexξ
x) = 0 are

equivalent, we have
Theorem 4. The normal variation (9) is affine if and only if hcbxξ

x is parallel.

5. Normal variations which carry umbilical submanifolds to

umbilical submanifolds

By putting

(35) 1% = (3eC/ + Γ%(x)BcJC/)C\ ,

(36) δΓ%, = Γcy - Γ*cy ,

we obtain

(37) δΓ*cy = [(FcV/ + Kkjt*S*Be'Cv*)C*h + hc%Faξ
x]ε .

Suppose that vh is a vector field of Mm defined intrinsically along the sub-
manifold Mn. When we displace the submanifold by xh = xh + ξh in the
direction ξh normal to it, we obtain a vector field vh which is defined also
intrinsically along the deformed submanifold. If we displace vh parallelly from
the point (xh) to (xΛ), we obtain ϋh = vh — r*£jvh and hence forming
δvh = vh — vh, so that

(38) δvh = vh - vh + r%$jvle .

Similarly, we have

δFcv
h = Fcv

h - Fcv
h + Γ

that is,

(39) δFcVh = VcΨ ~ FcVh + {dkΓhjί +

+ (Γ%3cξW + ΓtejdcV



THEORY OF NORMAL VARIATIONS

On the other hand, from (38) it follows that

(40) V M = VcΨ ~ FcV?l + (djfhkί + ΓJ<Γ"KkB*ivie

+ (ΠAξW + rte%v*)e .
Thus by (39) and (40) we find

(41) δFcv
h - Fcδvh = Knf^BJvh .

Similarly, for a covector Wι we have

(42) δFcwt - Fcδwt = -KkJi

hξ*Be'whε .

For a tensor field carrying three kinds of indices, say, Tby

h, we have

(43) 3FcTby

h - FcδTby* = Ktji*ξ*BeJ

Applying (43) to Bb

h gives

δFcBb

h - FcδBb

h = Kkji

h

δ(hcb*Cx

h) = {FcFbξ
h + K^

from which follows

(44) δheb* = [hcb*Vz* + (FcFbξ
h

Substituting ξh = ξxCx

h in (44) we find

(45) δhcb

x = [/zcδ V - hc/hb%ξv + FcFbξ
x + K^C/B^B^C^^ε .

Thus we obtain the following theorems.

Theorem 5. The normal variation given by ξxCx

h carries a totally geodesic
submanifold into a totally geodesic submanifold if and only if

(46) FcFbξ* + Kkjί

hCy

kBcJBbϊC\ξy = 0 .

Theorem 6. The normal variation given by ξxCx

h carries a totally umbilical
submanifold into a totally umbilical submanifold if and only if

(47) FcFbξ
x + Kkji

hCy«BciBjCx

hξy = gcba
x ,

ax being certain functions.
Theorem 7. The normal variation given by ξxCx

h carries a minimal sub-
manifold into a minimal submanifold if and only if

(48) gcbFcFbξ
x + Kkjί

hCy

kB^Cx

hξy - htxht\ξ» = 0 ,

where Bjί == gchBj

cl. In particular, the normal variation given by ξxCx

h carries
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a totally geodesic submanifold into a minimal submanifold if and only if gcbVcVbξ
x

ξy = 0.

6. //-variations

The mean curvature vector of Mn in Mm is given by

Hh = -gcΨcBb

h .
n

For the normal variation (9), if the normal vector field ξxCx

h is parallel to
the mean curvature vector along Mn, then the normal variation (9) is called
an //-variation. In this section, we shall choose the first unit normal vector
Cn+1

h in the direction of the mean curvature vector. Thus

(49) -gcΨcBb

h = aCn+1

h ,

n

where a is the mean curvature of Mn. From (5) it follows that

(50) gc%b

x = 0, (x = n + 2, . . . , m ) .

We consider an //-variation and hence

(51) ξn+1 = φ , f »+a = . . . = £ * = (),

φ being the length of the variation vector.

Substituting (51) in (45) gives

δheb

n+1 = [hcb

xηx

n+1 - φhce

n+%e

n+1 + φΓc

n+1

yΓb\+ί

+ VcVbφ + KkjίhCn+ι«BUCn+1

h]ε ,

from which, transvecting with gcb and using (15) and (19), we find

(53) nδa = Δφ - φl2 + φhcbh
cb + φKkjίhC

kB^Ch ,

where a is the mean curvature, and

72 σcb(Γ n + 1 Γ n + 1 } h h n + 1 Γh C h RJi Pt^σ0^
1 — 8 K1 c yJ- b y) j "cb — ncb 9 ^ — ^n + l •> JJJ — -DCbg

For the normal variation of the integral acaV, c being any nonegative
J M

number, we have

δ[ acdV= [ cac~ιδadV + [ ac3dV,
J M J M J M

and therefore, in consequence of (21) and (53),
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δ ί afdV
J M

(54) f r -,
= J^ I -ac~\Δφ - φl2 + φhcbh

cύ + φKkjihC
kB^Ch) - nac+ιφγv.

We assume that the normal variation leaves the boundary dM of M strongly
fixed in the sense that both φ and its gradient vanish on dM. Then

ί (ac-ιΔφ)dV=[ φ{Δac~ι)dV,
JM JM

which together with (54) implies that

δ ί acdV = ί —φ\Δac-χ - ac~Ψ - — ac+1

JM JM n L

+ αc-^ fc,ίΛC fc5^CΛjdV .

From this we see that δ acdV = 0 for all //-variations which leave the bound-
j M

ary strongly fixed if and only if

+ ^a2 - h c b h c b -

We say that a submanifold is H-stable if δ andV = 0 for all //-variations

which leave the boundary strongly fixed. From the above equation, we have
Theorem 8. Let Mn be an n-dirnensional submanifold of an m-dίmensional

Rίemannίan manifold Mm. Then Mn is H-stable if and only if

(55) Δan~ι = an-\l2 + na2 - hcbh
cb - KkjihC

kB^Ch) .

We now assume that Mn is //-stable and has parallel mean curvature vector.
Then Fc(aCn+ί

h) = 0, and therefore a is constant. If a Φ 0, then I2 = 0. Sub-
stituting this in (55) gives

(56) - Σ tfa - Λα)2 + KkJihC*B»C* = 0 ,
n b<a

where λi9 λ2, , λn are eigenvalues of hc

a.
Thus assuming that KkjίhC

kBjίCh > 0, we have λx = λ2 = = λn9 that
is, Mn is pseudo-umbilical, and KkjihC

kBjίCh = 0, from which we find

(59) FcC
h= --aBc

h ,
77
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that is, the mean curvature vector is concurrent along Mn. Conversely, if the
mean curvature vector is concurrent, then it is parallel, Mn is pseudo-umbi-
lical, and a is constant. Thus Mn is i/-stable if and only if KkjίhC

kBjίCh = 0.
Consequently, we have the following propositions.

Proposition 4. Let Mn be an H-stable submanίfold of Mn with KkjίhC
kB^Ch

> 0. Then Mn has parallel mean curvature vector if and only if either Mn is
minimal or KkjίhC

kBjίCh = 0 and the mean curvature vector is concurrent.

Proposition 5. Let Mn be a submanifold of Mm with concurrent mean cur-
vature vector. Then Mn is H-stable if and only if KkjίhC

kBjίCh = 0.
Assume that KkjihC

kBjίCh < 0 and Mn is pseudo-umbilical. If M is com-
pact and //-stable, then Δan~λ does not change its sign. Hence, from Hopf's
lemma, Δan~ι = 0, I2 = 0, and KkjίhC

kBjίCk = 0, so that the mean curvature
vector is parallel and therefore concurrent. Consequently, we have

Proposition 6. Let Mn be a compact H-stable submanίfold of Mm with
KkjihC

kBjiCh < 0. If Mn is pseudo-umbilical, then the mean curvature vector
is concurrent and KkjίhC

kBjίCh = 0.
In particular, Propositions 4 and 6 give immediately the following.
Theorem 9. Let Mn be an H-stable submanifold of a positively curved mani-

fold Mm. Then Mn has parallel mean curvature vector if and only if Mn is minimal.
Theorem 10. Let Mn be a compact pseudo-umbilical submanίfold of a nega-

tively curved manifold Mm. Then Mn is not H-stable.
Theorem 11 (Chen and Houh [3]). Let Mn be an H-stable submanίfold of a

euclίdean space Em. Then Mn has parallel mean curvature vector if and only if
either Mn is minimal in Em or Mn is a minimal submanίfold of a hypersphere
ofEm.
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