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THE SECOND FUNDAMENTAL FORM
OF A PLANE FIELD

BRUCE L. REINHART

This paper arose out of attempts to understand geometrically the meaning
of various foliation invariants introduced in the last few years. Because these
invariants are associated to the normal bundle, the characteristics of the nor-
mal plane field are important. Since the normal plane field is not integrable,
one is led to study the Riemannian geometry of arbitrary plane fields, which
is done by generalizing the second fundamental form. Concepts such as mean
curvature and minimality can then be introduced for a plane field, and it can
be shown that a totally geodesic plane field has vanishing second fundamental
form. This is of interest because the normal plane field to an R-foliation is
totally geodesic.

Given a foliation of a Riemannian manifold, a foliation connection is chosen
in the normal bundle which is as compatible as possible with the Riemannian
connection. Certain formulas are developed for the components of the con-
nection and curvature forms, then used to prove a number of results, includ-
ing: the leaf classes /; for odd i depend only on the second fundamental form
of the normal plane field, the Godbillon-Vey class in higher codimension is
given by a formula analogous to that of Reinhart and Wood [8], and the re-
ductions modulo the integers of certain leaf classes of dimension 4j — 1 are
independent of the choice of framing (they are defined only for framed folia-
tions). A method for calculating the cohomology of truncated relative Weil
algebras is essential to obtain the results. Such a method has been given in
general by Kamber and Tondeur [9], [10], while more recently Guelorget and
Joubert [5], building on their work, have given very explicit formulas for the
case needed here, the general linear algebra modulo the orthogonal algebra.

Finally, some examples are given of vector fields in euclidean 3-space such
that the normal plane fields are not integrable, and their sscond fundamental
forms have certain prescribed properties.

1. Plane fields
A smooth p-plane field on a smooth Riemannian n-manifold is assumed.
The inner product will be symbolized by { , >, while the Riemannian covari-
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ant derivative, connection form, and curvature form are denoted by F'*, 6*,
and Q*. {V,|le =1, ---,p} is a local orthonormal basis for the plane field,
{X;li=1,...,9 =n — p}is alocal orthonormal basis for the normal plane
field, and {¢°, 0’} is the corresponding coframe. U, V, W denote arbitrary
tangent vectors of the frame and X, Y, Z arbitrary normal vectors belonging
to the frame. The second fundamental form T of the plane field is defined by
the formulas :

(TyU, Xy = JPEU + V3V, X>,  (TyX,Uy = —(T,U,X>,
Ty=0, <(T,UW>=<{TyX,Y>=0.

The first and third formulas imply immediately that T is tensorial with respect
to X, while the tensoriality with respect to U and V follows from

(TyU, Xy = —HCU, TEX) + (V, VX)) .

In the case that the plane field is integrable, T is exactly the second funda-
mental form of the leaves as immersed submanifolds. In any case, it is a sym-
metric 2-form with values in the normal bundle. In a completely analogous
way, we define the second fundamental form § of the normal plane field:

(SxY,Uy = KIEY + PEX, Uy, (SgU, ¥y = —(S;Y, U,
Sy =0, (S:Y,Z>=<(S;U,V>=0.

Each of these tensors has a well-defined trace

Za TVaVa 5 ZZSX@XZ

which is a normal (respectively tangent) vector of the original plane field called
the mean curvature vector. A plane field will be said to be minimal if the trace
of its second fundamental form is the zero vector, and to be totally geodesic
if each geodesic that is tangent to it at one point remains tangent for its entire
length. The following proposition generalizes a well-known property of sub-
manifolds.

Proposition 1. If a plane field is totally geodesic, then its second funda-
mental form is identically 0.

Proof. Since each unit vector U belonging to the plane field is the initial
vector of a geodesic,

TyU,X>=TFU,X> =0
for every normal vector X. This implies {T,V,X> = 0 since {T;V,X) =

{TyU,X>.
In particular, the hypotheses are satisfied by the normal plane field to a
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foliation with bundle-like metric (or R-foliations), so the second fundamental
form of the normal plane field vanishes in this case.

In a way completely ananlogous to the definition of the second fundamental
form, vector valued antisymmetric 2-forms B and 4 are defined. The equation

X, Y] =Py — (X

shows that A = O if and only if the normal plane field is integrable. Similarly,
B = 0 if and only if the given plane field is integrable. Hence these are known
as the integrability tensors.

2. Foliations

For the remainder of the paper, it will be assumed that the given plane field
is integrable, hence defines a foliation of codimension g. Then B = 0 and T
is the usual second fundamental form of the leaves. Furthermore, there is a
connection in the normal bundle which is well-adapted to the foliation and
the metric [5] in the sence that

VY =F5Y, X, Y>=<V,X1,Y>, F,X,U>=0.

The corresponding connection and curvature forms will be denoted by 6 and
£. In terms of a local frame we have
VyXi: Z:]ajz(Y)Xj, Vin: Zjﬁj’(V)Xj, d(!)l: ijf/\ﬁji,
Qf:dﬂji + Zkﬁkl/\ﬁjk, 6*ji=' -—0*¢j, Q*jiZ '—'Q*ij .

The first two equations are the definition of 4%, the next two are proved by
Guelorget and Joubert [5], and the last two are a restatement of the fact that
the Lie algebra of the orthogonal group consists of skew-symmetric matrices.
0;* and ;% are neither symmetric nor skew-symmetric with respect to their
indices, but useful formulas can be given for their symmetric and antisymmetric
pal‘tS. Let 0Sji == ‘%‘(0‘11 + 011) and 0Aji = %(0}‘L - 67,]) SO that 0]'1' = 0Sji + 0Aji.
In a similar manner, 2,;° = Q4,;° + 2,,*.

Proposition 2.

6,(X) = 0,4,/(X) = 6*;(X) ,
045'(V) = 6% (V) + <V, Az X ;) ,
0Sji(V) == <V’ SXin> ’
Qu=dO4 + X 0u® N Oa* + 2k 0si® N Ogj"
+ % Zk (0Akl /\ HSjk - OSki /\ 0Ajk) s
.Qsji = desji + %Zk (0Ak‘b /\ 0sjk + 05161: /\ 0Ajk) .

Proof. The first formula is obvious, while the second and third formulas
follow from
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0ji(V) = <VVX'L’ Xj> = <[V, Xi]’ Xj>
=Xy, X)) — 5V, X
= I Xo, Xi> + XV, VX

by decomposing into symmetric and antisymmetric parts. The last two formulas
follow from decomposing the formula for £,° into symmetric and antisymmet-
ric parts.

The property of § which makes it interesting for study of characteristic
classes is the Bott vanishing theorem [2], which is based on the following pro-
perty of the curvature :

(1) Qi(V,V)=0.

3. Characteristic classes

The real valued characteristic classes of a vector bundle are represented in
de Rham cohomology by products of differential forms ¢; which locally can
be written

ci=tr(@)= 3 0,2ANQ. =N --.0,%,

where £, is the curvature form of any connection in the bundle.
If i is odd, c; is cohomologous to zero. Guelorget and Joubert [5] give the fol-
lowing local formula for global differential forms 4;, i odd, such that dh; = c¢;:

(2) hy=itr j‘ {105 + 04 + (¢ — Do,
0

where the multiplication of Lie algebra valued forms is interpreted in the same
manner as in the formula for c,. ¢; is a scalar valued form of degree 2i, while
h; is a scalar valued form of degree 2i — 1. Formula (1) implies that for the
normal bundle of a foliation of codimension g, any product of ¢;’s of total
dimension greater than 2q is 0, hence that the characteristic ring vanishes
above dimension 2q (see Bott [2]). The characteristic classes of the foliation
are by definition the cohomology of the cochain complex consisting of pro-
ducts of the h; (for i odd) and c; (for all i) with the operation of exterior dif-
ferentiation and the Bott vanishing relations [1], [3], [6]. In particular, the
Godbillon-Vey class 4,c,? will be of interest in this paper. The formula (1) also
implies that the restriction of £, to any leaf is a closed form. This defines a
ring of leaf classes on any leaf [7]. The aim of this section is to relate these
classes to the geometry of the foliation by means of the Guelorget-Joubert
formulas.
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Lemma 1.
h; = Za+ﬂ+r=i—-1 B, tr Q57245057
where

@+p+7+D!

Baﬂr: (—Z)Tal ‘3' (a + 1)(6( + 3) (CK + 27’ + 1) ‘

Proof. Expand formula (2) by the multinomial formula to obtain coeffi-
cients

. i! Y ate 1w
B = gy ), — e

which can then be evaluated by integration by parts.
In particular h;, = tr (d5) so that

h(X)=0.

(3)

Thus 4, is determined completely by the trace of the second fundamental form
of the normal plane field, that is, its mean curvature vector. If the mean cur-
vature vector is nonzero at a point, then in the neighborhood of that point it
may be written as £V, where V/, is a unit vector. Henceforth, it will be sup-
posed that in any local basis {V,} for the tangent plane to a foliation, V, is so
chosen at any point where it is possible to do so. Then A,(V) = <V, V).

In the case of A, for i odd, i > 1, it is still possible to give a relatively easy
formula for the value on an i-tuple of tangent vectors, since again only the
pure 5 term occurs. That is, we need to consider only the term

(—2)t1!
1.3.5---(2i = 1)

(4) tr (05471,

which still depends only on the second fundamental form of the normal plane
field.
Lemma 2. If k #+ 0, then for « > 1

cl(Va’ Xk) = _k{<V1, V?an> + <V*XkV1a sz>} 5
(hlclq)(Vl’ th’ St Vaq$ le ) Xq)
— Zn (_I)x(_l)(q(q+l))/2kq+l nk=1q {<V1, TVaka> + <Vak’ V*Xle>} ,

where the summation is overall permutations of {ay, « - -, ag}.
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Proof.
aVaoX) = 2d05'(V, X) = — 2 05Ty X, — T*3V,)
- _IC<V1, V*VaXx> + /C<V1a V*XxVa> s

from which the first formula follows. Since 4,(V,) = h,(X,) = 0, the formula
for h,c,? involves only

hl(Vl)cl(Valy Xl) tte Cl(Vaqa Xq) >

which immediately implies the result.

The tensor (F*, V), V,> = t(X,, V,) Will be called the torsion of the nor-
mal plane field, by analogy to the codimension-1 case.

Theorem. The form h, defining the first leaf class is the metric dual of the
mean curvature vector of the normal plane field. More generally, the leaf clas-
ses h; for odd i depend only on the second fundamental form of the normal
plane field. The Godbillon-Vey class h,c,? depends on the mean curvature vec-
tor and the torsion tensor of the normal plane field, and on the second funda-
mental form of the leaves. If the normal plane field is minimal, h, and h,c,?
vanish, while if it is totally geodesic, all the leaf and foliation classes vanish.

Proof. The first statement follows from the formulas (3) and the fact that
the mean curvature vector of the normal plane field is tangent to the leaves.
The second statement follows from the fact that the leaf classes are defined
by restriction of /4, to the leaves, so that formula (4) applies. At points where
£ # 0, the Godbillon-Vey form is given by Lemma 2, while at points where
£ =0, h (V) = 0 for all V, so the Godbillon-Vey form vanishes. (Recall that
h,(X) always vanishes.) This proves the third statement and the first part of
the fourth statement. If the normal field is totally geodesic, s = 0, while
every term in the formula of Lemma 1 contains a positive power of 5. This
completes the proof of the theorem.

4. Foliations with trivial normal bundle

In general, the bases {V,, X;} and {¢*, '} can be constructed only locally,
but the case where they exist globally is of special interest. The ¢, are defined
as before, but when the normal bundle is trivial, they are all cobundaries. In
the classifying space for the general linear group, however, they are cobounda-
ries only on the total space, not on the base space, so a universal formula for
h;, i even, with dh; = c; can be given only on the principal bundle. By using
a section, the A, can be pulled back to forms on the base space, also denoted
by #;, but which depend on the choice of section. A formula for 4, is [5]

h; =itr Il doft2 + (& — e},
0
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which by the same methods as in the proof of Lemma 1 is shown to be

ho= Y A, tr (0%,

a+f=i-1
where A,, = 1 and for 8 > 0

" al (@ + 28 + D!

The cochain complex consisting of cochains %; and c;, with the operation of
exterior differentiation and the Bott vanishing relations gives rise to a set of
characteristic classes which partially overlap those defined in the case of ar-
bitrary normal bundle. For example, in codimension 2, in the general case
the classes are c,, h,c?, and h,c, while in the case of trivial normal bundle,
the classes are h,c?, hic,, h,c,, hh,c? and hh,c,. Also, the h; for even i give
rise to leaf classes by restricting to a leaf, just as they do for i odd. The object
of this section is to obtain certain information about the way these classes de-
pend on the geometry of the foliation and on the choice of frame.
Proposition 3. The leaf class h; for i even depends on the framing, the
integrability tensor of the normal plane field, and the second fundmental form
of the normal plane field. If the normal field is integrable and admits a Rie-
mannian parallel framing, the leaf class is 0. If it admits a Riemannian paral-
lel framing, the leaf class is independent of the choice among such framings.
Proof. The only term in the formula for /; which affects the leaf class is

_ =Dt tr 6*71 .
Qi — !
On the other hand
; 080" 050" /\ =+ + N Og,, "
00 A s A e A

= (—1UDED g @ A LA Osa, N 05, =0,

if i is even, since the last sum equals the first sum. Hence writing § = 6, + 65
and expanding gives a formula in which every term contains a positive power
of 6,. The formulas for 6, and 65 given in the last section then imply the result.

Let x be a real number such that kc; is an integer class in the classifying
space. Then Chern and Simons [4] have defined a cohomology class

(khy), e H""'(M ; R/ Z)

on the base manifold M of any smooth vector bundle. This class is called a
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Pontrjagin character. It is associated to «h; in the sense that its pull back to
the principal bundle is the reduction modulo Z of the real class defined by
rh;. Hence the restriction to any leaf of («4;), is the reduction modulo Z of
the leaf class. Since (x/;), does not depend on any choice of frame, neither
does the reduction of the leaf class. Thus the following proposition has been
proved.

Proposition 4. The reducation modulo the integers of the leaf class h; (i
even) does not depend on the choice of framing, and is in fact the restriction
to the leaf of the Pontrjagin character P; (j = i/2) of the normal bundle.

S. Examples

The simplest nonintegrable plane fields are normal p-plane fields to a vector
field in euclidean three-space, but even in this case there are examples of to-
tally geodesic plane fields, minimal fields which are not totally geodesic, and
fields with nonzero principal curvatures of the same or of opposite sign.

Any Killing vector field is an R-foliation, hence gives S = 0. In the example

0 0 0
B i i el
Y ox oy 0z
the straight lines normal to the orbits may be seen fairly easily. The nonzero
components of 4 are given by

(14 2+ )+ B+ )

A minimal plane field which is not totally geodesic is given by the normal
field to

_xi_}_-a_,

ay 0z

The principal curvatures (that is, the eigenvalues of S) are +(2 + 2x%)~* and
the nonzero components of 4 have the same values. The tangent vector fields
to the lines of curvature (that is, the corresponding eigenvectors) are

w270y @ oyl gx@ 2l
ox oy 0z

Perturbing slightly two-dimensional foliations by surfaces of positive (res-
pectively negative) curvature will give examples of plane fields which are not
integrable and which have principal curvatures of different absolute value and
the same (respectively opposite) signs.
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